1
|
Hufnagel M, Rademaekers A, Weisert A, Häberlein H, Franken S. Pharmacological profile of dicaffeoylquinic acids and their role in the treatment of respiratory diseases. Front Pharmacol 2024; 15:1371613. [PMID: 39239645 PMCID: PMC11374715 DOI: 10.3389/fphar.2024.1371613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Dicaffeoylquinic acids (DCQAs) are polyphenolic compounds found in various medicinal plants such as Echinacea species and Hedera helix, whose multi-constituent extracts are used worldwide to treat respiratory diseases. Besides triterpenes, saponins, alkamides, and other constituents, DCQAs are an important group of substances for the pharmacological activity of plant-derived extracts. Therefore, the pharmacological properties of DCQAs have been studied over the last decades, suggesting antioxidative, anti-inflammatory, antimicrobial, hypoglycaemic, cardiovascular protective, neuroprotective, and hepatoprotective effects. However, the beneficial pharmacological profile of DCQAs has not yet been linked to their use in treating respiratory diseases such as acute or even chronic bronchitis. The aim of this review was to assess the potential of DCQAs for respiratory indications based on published in vitro and in vivo pharmacological and pre-clinical data, with particular focus on antioxidative, anti-inflammatory, and respiratory-related effects such as antitussive or antispasmodic properties. A respective literature search revealed a large number of publications on the six DCQA isoforms. Based on this search, a focus was placed on 1,3-, 3,4-, 3,5-, and 4,5-DCQA, as the publications focused mainly on these isomers. Based on the available pre-clinical data, DCQAs trigger cellular mechanisms that are important in the treatment of respiratory diseases such as decreasing NF-κB activation, reducing oxidative stress, or activating the Nrf2 pathway. Taken together, these data suggest an essential role for DCQAs within herbal medicines used for the treatment of respiratory diseases and highlights the need for the identifications of DCQAs as lead substances within such extracts.
Collapse
Affiliation(s)
| | | | - Anika Weisert
- Engelhard Arzneimittel GmbH & Co. KG, Niederdorfelden, Germany
| | - Hanns Häberlein
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Sebastian Franken
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Zhang K, Li H, Wu X, Zhang D, Li Z. Positron Emission Tomography of Nitric Oxide by a Specific Radical-Generating Dihydropyridine Tracer. ACS Sens 2024; 9:2793-2800. [PMID: 38820066 DOI: 10.1021/acssensors.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Nitric oxide (NO) plays a pivotal role as a biological signaling molecule, presenting challenges in its specific detection and differentiation from other reactive nitrogen and oxygen species within living organisms. Herein, a 18F-labeled (fluorine-18, t1/2 = 109.7 min) small-molecule tracer dimethyl 4-(4-(4-[18F]fluorobutoxy)benzyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate ([18F]BDHP) is developed based on the dihydropyridine scaffold for positron emission tomography (PET) imaging of NO in vivo. [18F]BDHP exhibits a highly sensitive and efficient C-C cleavage reaction specifically triggered by NO under physiological conditions, leading to the production of a 18F-labeled radical that is readily retained within the cells. High uptakes of [18F]BDHP are found within and around NO-generating cells, such as macrophages treated with lipopolysaccharide or benzo(a)pyrene. MicroPET/CT imaging of arthritic animal model mice reveals distinct tracer accumulation in the arthritic legs, showcasing a higher distribution of NO compared with the control legs. In summary, a specific radical-generating dihydropyridine tracer with a unique radical retention strategy has been established for the marking of NO in real-time in vivo.
Collapse
Affiliation(s)
- Kaiqiang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Hua Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Deliang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
- Department of Nuclear Medicine, Xiang'an Hospital affiliated to Xiamen University, Xiamen, Fujian 361005, China
| | - Zijing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
3
|
Wooliscroft L, Salter A, Adusumilli G, Levasseur VA, Sun P, Lancia S, Perantie DC, Trinkaus K, Naismith RT, Song SK, Cross AH. Diffusion basis spectrum imaging and diffusion tensor imaging predict persistent black hole formation in multiple sclerosis. Mult Scler Relat Disord 2024; 84:105494. [PMID: 38359694 PMCID: PMC10978237 DOI: 10.1016/j.msard.2024.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/13/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AND OBJECTIVES Diffusion basis spectrum imaging (DBSI) extracts multiple anisotropic and isotropic diffusion tensors, providing greater histopathologic specificity than diffusion tensor imaging (DTI). Persistent black holes (PBH) represent areas of severe tissue damage in multiple sclerosis (MS), and a high PBH burden is associated with worse MS disability. This study evaluated the ability of DBSI and DTI to predict which acute contrast-enhancing lesions (CELs) would persist as T1 hypointensities (i.e. PBHs) 12 months later. We expected that a higher radial diffusivity (RD), representing demyelination, and higher DBSI-derived isotropic non-restricted fraction, representing edema and increased extracellular space, of the acute CEL would increase the likelihood of future PBH development. METHODS In this prospective cohort study, relapsing MS patients with ≥1 CEL(s) underwent monthly MRI scans for 4 to 6 months until gadolinium resolution. DBSI and DTI metrics were quantified when the CEL was most conspicuous during the monthly scans. To determine whether the CEL became a PBH, a follow-up MRI was performed at least 12 months after the final monthly scan. RESULTS The cohort included 20 MS participants (median age 33 years; 13 women) with 164 CELs. Of these, 59 (36 %) CELs evolved into PBHs. At Gd-max, DTI RD and AD of all CELs increased, and both metrics were significantly elevated for CELs which became PBHs, as compared to non-black holes (NBHs). DTI RD above 0.74 conferred an odds ratio (OR) of 7.76 (CI 3.77-15.98) for a CEL becoming a PBH (AUC 0.80, CI 0.73-0.87); DTI axial diffusivity (AD) above 1.22 conferred an OR of 7.32 (CI 3.38-15.86) for becoming a PBH (AUC 0.75, CI 0.66-0.83). DBSI RD and AD did not predict PBH development in a multivariable model. At Gd-max, DBSI restricted fraction decreased and DBSI non-restricted fraction increased in all CELs, and both metrics were significantly different for CELs which became PBHs, as compared to NBHs. A CEL with a DBSI non-restricted fraction above 0.45 had an OR of 4.77 (CI 2.35-9.66) for becoming a PBH (AUC 0.74, CI 0.66-0.81); a CEL with a DBSI restricted fraction below 0.07 had an OR of 9.58 (CI 4.59-20.02) for becoming a PBH (AUC 0.80, 0.72-0.87). CONCLUSION Our findings suggest that greater degree of edema/extracellular space in a CEL is a predictor of tissue destruction, as evidenced by PBH evolution.
Collapse
Affiliation(s)
- Lindsey Wooliscroft
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, VA Portland Health Care System, Portland, OR, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Amber Salter
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA; Department of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gautam Adusumilli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Victoria A Levasseur
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Minneapolis Clinic of Neurology, Coon Rapids, MN, USA
| | - Peng Sun
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha Lancia
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA; Department of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dana C Perantie
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn Trinkaus
- Biostatistics Shared Resource, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert T Naismith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Lee K, Niku S, Koo SJ, Belezzuoli E, Guma M. Molecular imaging for evaluation of synovitis associated with osteoarthritis: a narrative review. Arthritis Res Ther 2024; 26:25. [PMID: 38229205 PMCID: PMC10790518 DOI: 10.1186/s13075-023-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Recent evidence highlights the role of low-grade synovial inflammation in the progression of osteoarthritis (OA). Inflamed synovium of OA joints detected by imaging modalities are associated with subsequent progression of OA. In this sense, detecting and quantifying synovitis of OA by imaging modalities may be valuable in predicting OA progressors as well as in improving our understanding of OA progression. Of the several imaging modalities, molecular imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) has an advantage of visualizing the cellular or subcellular events of the tissues. Depending on the radiotracers used, molecular imaging method can potentially detect and visualize various aspects of synovial inflammation. This narrative review summarizes the recent progresses of imaging modalities in assessing inflammation and OA synovitis and focuses on novel radiotracers. Recent studies about imaging modalities including ultrasonography (US), magnetic resonance imaging (MRI), and molecular imaging that were used to detect and quantify inflammation and OA synovitis are summarized. Novel radiotracers specifically targeting the components of inflammation have been developed. These tracers may show promise in detecting inflamed synovium of OA and help in expanding our understanding of OA progression.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Soheil Niku
- Nuclear Medicine Service, Jennifer Moreno VA San Diego Healthcare System, San Diego, CA, USA
| | - Sonya J Koo
- Department of Radiology, West Los Angeles VA Medical Center, Los Angeles, CA, USA
| | - Ernest Belezzuoli
- Nuclear Medicine Service, Jennifer Moreno VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Monica Guma
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Zerikiotis S, Efentakis P, Dapola D, Agapaki A, Seiradakis G, Kostomitsopoulos N, Skaltsounis AL, Tseti I, Triposkiadis F, Andreadou I. Synergistic Pulmonoprotective Effect of Natural Prolyl Oligopeptidase Inhibitors in In Vitro and In Vivo Models of Acute Respiratory Distress Syndrome. Int J Mol Sci 2023; 24:14235. [PMID: 37762537 PMCID: PMC10531912 DOI: 10.3390/ijms241814235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a highly morbid inflammatory lung disease with limited pharmacological interventions. The present study aims to evaluate and compare the potential pulmonoprotective effects of natural prolyl oligopeptidase (POP) inhibitors namely rosmarinic acid (RA), chicoric acid (CA), epigallocatechin-3-gallate (EGCG) and gallic acid (GA), against lipopolysaccharide (LPS)-induced ARDS. Cell viability and expression of pro-inflammatory mediators were measured in RAW264.7 cells and in primary murine lung epithelial and bone marrow cells. Nitric oxide (NO) production was also assessed in unstimulated and LPS-stimulated RAW264.7 cells. For subsequent in vivo experiments, the two natural products (NPs) with the most favorable effects, RA and GA, were selected. Protein, cell content and lipid peroxidation levels in bronchoalveolar lavage fluid (BALF), as well as histopathological changes and respiratory parameters were evaluated in LPS-challenged mice. Expression of key mediators involved in ARDS pathophysiology was detected by Western blotting. RA and GA favorably reduced gene expression of pro-inflammatory mediators in vitro, while GA decreased NO production in macrophages. In LPS-challenged mice, RA and GA co-administration improved respiratory parameters, reduced cell and protein content and malondialdehyde (MDA) levels in BALF, decreased vascular cell adhesion molecule-1 (VCAM-1) and the inducible nitric oxide synthase (iNOS) protein expression, activated anti-apoptotic mechanisms and down-regulated POP in the lung. Conclusively, these synergistic pulmonoprotective effects of RA and GA co-administration could render them a promising prophylactic/therapeutic pharmacological intervention against ARDS.
Collapse
Affiliation(s)
- Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Danai Dapola
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Anna Agapaki
- Histochemistry Facility, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Georgios Seiradakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
| | - Alexios-Leandros Skaltsounis
- Section of Pharmacognosy and Natural Product Chemistry Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece;
| | | | - Filippos Triposkiadis
- Department of Cardiology, University General Hospital of Larissa, 413 34 Larissa, Greece;
- Faculty of Health Sciences, University of Thessaly, 413 34 Larissa, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece; (S.Z.); (P.E.); (D.D.); (G.S.)
| |
Collapse
|
6
|
Musch G. Molecular imaging of inflammation with PET in acute and ventilator-induced lung injury. Front Physiol 2023; 14:1177717. [PMID: 37457026 PMCID: PMC10338917 DOI: 10.3389/fphys.2023.1177717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
This review focuses on methods to image acute lung inflammation with Positron Emission Tomography (PET). Four approaches are discussed that differ for biologic function of the PET reporter probe, radiotracer employed, and the specific aspect of the inflammatory response that is targeted. 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) is an enzyme substrate whose uptake is used to measure the metabolic activation of inflammatory cells during acute lung injury in the noncancerous lung. H2 15O and radiolabeled plasma proteins are inert molecules with the same physical characteristics as their nonradioactive counterparts and are used to measure edema and vascular permeability. Tagged enzyme or receptor inhibitors are used to probe expression of these targets induced by inflammatory stimuli. Lastly, cell-specific tracers are being developed to differentiate the cell types that contribute to the inflammatory response. Taken together, these methods cast PET imaging as a versatile and quantitative tool to measure inflammation in vivo noninvasively during acute and ventilator-induced lung injury.
Collapse
|
7
|
Wetherill RR, Doot RK, Young AJ, Lee H, Schubert EK, Wiers CE, Leone FT, Mach RH, Kranzler HR, Dubroff JG. Molecular Imaging of Pulmonary Inflammation in Users of Electronic and Combustible Cigarettes: A Pilot Study. J Nucl Med 2023; 64:797-802. [PMID: 36657981 PMCID: PMC10152129 DOI: 10.2967/jnumed.122.264529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Electronic cigarette (EC) use has increased dramatically, particularly among adolescents and young adults, and, like cigarette use, can cause pulmonary inflammation and increase the risk of lung disease. Methods: This preliminary study used PET with 18F-6-(1/2)(2-fluoro-propyl)-4-methylpyridin-2-amine (18F-NOS) to quantify inducible nitric oxide synthase expression to characterize oxidative stress and inflammation in the lungs in vivo in 3 age- and sex-matched groups: 5 EC users, 5 cigarette smokers, and 5 controls who had never smoked or vaped. Results: EC users showed greater 18F-NOS nondisplaceable binding potential (BPND) than cigarette smokers (P = 0.03) and controls (P = 0.01), whereas BPND in cigarette smokers did not differ from that in controls (P > 0.1). 18F-NOS lung tissue delivery and inducible nitric oxide synthase distribution volume did not significantly differ among groups. Although there were no group differences in peripheral inflammatory biomarker concentrations, 18F-NOS BPND correlated with the proinflammatory cytokine tumor necrosis factor-α concentrations (rs = 0.87, P = 0.05) in EC users. Additionally, when EC users and cigarette smokers were pooled together, number of vaping episodes or cigarettes per day correlated with interleukin-6 levels (rs = 0.86, P = 0.006). Conclusion: This is the first PET imaging study to compare lung inflammation between EC and cigarette users in vivo. We found preliminary evidence that EC users have greater pulmonary inflammation than cigarette smokers and controls, with a positive association between pulmonary and peripheral measures of inflammation.
Collapse
Affiliation(s)
- Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hsiaoju Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erin K Schubert
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frank T Leone
- Comprehensive Smoking Treatment Program, Penn Lung Center, Philadelphia, Pennsylvania; and
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Henry R Kranzler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Crescenz VAMC, Philadelphia, Pennsylvania
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Justo AFO, Toscano ECDB, Farias-Itao DS, Suemoto CK. The action of phosphodiesterase-5 inhibitors on β-amyloid pathology and cognition in experimental Alzheimer's disease: A systematic review. Life Sci 2023; 320:121570. [PMID: 36921685 DOI: 10.1016/j.lfs.2023.121570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia worldwide. The etiology of AD is partially explained by the deposition of β-amyloid in the brain. Despite extensive research on the pathogenesis of AD, the current treatments are ineffective. Here, we systematically reviewed studies that investigated whether phosphodiesterase 5 inhibitors (PDE5i) are efficient in reducing the β-amyloid load in hippocampi and improving cognitive decline in rodent models with β-amyloid accumulation. We identified ten original studies, which used rodent models with β-amyloid accumulation, were treated with PDE5i, and β-amyloid was measured in the hippocampi. PDE5i was efficient in reducing the β-amyloid levels, except for one study that exclusively used female rodents and the treatment did not affect β-amyloid levels. Interestingly, PDE5i prevented cognitive decline in all studies. This study supports the potential therapeutic use of PDE5i for the reduction of the β-amyloid load in hippocampi and cognitive decline. However, we highlight the importance of conducting additional experimental studies to evaluate the PDE5i-related molecular mechanisms involved in β-amyloid removal in male and female animals.
Collapse
Affiliation(s)
- Alberto Fernando Oliveira Justo
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| | - Eliana Cristina de Brito Toscano
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Pathology, Federal University of Juiz de Fora Medical School, Juiz de Fora, Brazil; Post-graduation Program in Health, Federal University of Juiz de Fora Medical School, Juiz de Fora, Brazil.
| | | | - Claudia Kimie Suemoto
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil; Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
9
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
10
|
Zhou D, Chu W, Xu J, Schwarz S, Katzenellenbogen JA. [ 18F]Tosyl fluoride as a versatile [ 18F]fluoride source for the preparation of 18F-labeled radiopharmaceuticals. Sci Rep 2023; 13:3182. [PMID: 36823435 PMCID: PMC9950486 DOI: 10.1038/s41598-023-30200-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Positron emission tomography (PET) is an in vivo imaging technology that utilizes positron-emitting radioisotope-labeled compounds as PET radiotracers that are commonly used in clinic and in various research areas, including oncology, cardiology, and neurology. Fluorine-18 is the most widely used PET-radionuclide and commonly produced by proton bombardment of 18O-enriched water in a cyclotron. The [18F]fluoride thus obtained generally requires processing by azeotropic drying in order to completely remove H2O before it can be used for nucleophilic radiofluorination. In general, the drying step is important in facilitating the radiofluorination reactions and the preparation of 18F-labeled PET radiotracers. In this communication, we have demonstrated the feasibility of using [18F]tosyl fluoride ([18F]TsF) as a versatile [18F]fluoride source for radiofluorination to bypass the azeotropic drying step, and we have developed a continuous flow solid-phase radiosynthesis strategy to generate [18F]TsF in a form that is excellent for radiofluorination. [18F]TsF shows high reactivity in radiofluorination and provides the features suitable for preparing PET radiotracers on a small scale and exploring novel radiolabeling technologies. Thus, using [18F]TsF as a [18F]fluoride source is a promising strategy that facilitates radiofluorination and provides a convenient and efficient solution for the preparation of 18F-labeled radiopharmaceuticals that is well matched to the emerging trends in PET imaging technologies.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA.
| | - Wenhua Chu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA
| | - Jinbin Xu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA
| | - Sally Schwarz
- Department of Radiology, School of Medicine, Washington University in Saint Louis, 510 S. Kingshighway Blvd, Saint Louis, MO, 63110, USA
| | - John A Katzenellenbogen
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| |
Collapse
|
11
|
Doot RK, Young AJ, Nasrallah IM, Wetherill RR, Siderowf A, Mach RH, Dubroff JG. [ 18F]NOS PET Brain Imaging Suggests Elevated Neuroinflammation in Idiopathic Parkinson's Disease. Cells 2022; 11:3081. [PMID: 36231041 PMCID: PMC9563966 DOI: 10.3390/cells11193081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation is implicated as a key pathologic mechanism in many neurodegenerative diseases and is thought to be mediated in large part by microglia, native phagocytic immune cells of the CNS. Abnormal aggregation of the protein α-synuclein after phagocytosis by microglia is one possible neuropathophysiological mechanism driving Parkinson's disease (PD). We conducted a human pilot study to evaluate the feasibility of targeting the inducible isoform of nitric oxide synthase using the [18F]NOS radiotracer to measure neuroinflammation in idiopathic PD. Ten adults consisting of 6 PD patients and 4 healthy controls (HC) underwent one hour of dynamic [18F]NOS positron emission tomography (PET) brain imaging with arterial blood sampling. We observed increased [18F]NOS whole brain distribution volume (VT) in PD patients compared to age-matched healthy controls (p < 0.008) via a 1-tissue compartment (TC) model. The rate constant K1 for transport from blood into tissue did not differ between groups (p = 0.72). These findings suggest elevated oxidative stress, a surrogate marker of inflammation, is present in early-stage idiopathic PD and indicate that [18F]NOS PET imaging is a promising, non-invasive method to measure neuroinflammation.
Collapse
Affiliation(s)
- Robert K. Doot
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony J. Young
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya M. Nasrallah
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reagan R. Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob G. Dubroff
- Division of Nuclear Medicine Imaging and Therapy, Department of Radiology in the Perelman, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Gulhane AV, Chen DL. Overview of positron emission tomography in functional imaging of the lungs for diffuse lung diseases. Br J Radiol 2022; 95:20210824. [PMID: 34752146 PMCID: PMC9153708 DOI: 10.1259/bjr.20210824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography (PET) is a quantitative molecular imaging modality increasingly used to study pulmonary disease processes and drug effects on those processes. The wide range of drugs and other entities that can be radiolabeled to study molecularly targeted processes is a major strength of PET, thus providing a noninvasive approach for obtaining molecular phenotyping information. The use of PET to monitor disease progression and treatment outcomes in DLD has been limited in clinical practice, with most of such applications occurring in the context of research investigations under clinical trials. Given the high costs and failure rates for lung drug development efforts, molecular imaging lung biomarkers are needed not only to aid these efforts but also to improve clinical characterization of these diseases beyond canonical anatomic classifications based on computed tomography. The purpose of this review article is to provide an overview of PET applications in characterizing lung disease, focusing on novel tracers that are in clinical development for DLD molecular phenotyping, and briefly address considerations for accurately quantifying lung PET signals.
Collapse
Affiliation(s)
- Avanti V Gulhane
- Department of Radiology, University of Washington School of Medicine, Seattle, United States
| | - Delphine L Chen
- Department of Radiology, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
14
|
Wu J, Boutagy NE, Cai Z, Lin SF, Zheng MQ, Feher A, Stendahl JC, Kapinos M, Gallezot JD, Liu H, Mulnix T, Zhang W, Lindemann M, Teng JK, Miller EJ, Huang Y, Carson RE, Sinusas AJ, Liu C. Feasibility study of PET dynamic imaging of [ 18F]DHMT for quantification of reactive oxygen species in the myocardium of large animals. J Nucl Cardiol 2022; 29:216-225. [PMID: 32415628 PMCID: PMC7666654 DOI: 10.1007/s12350-020-02184-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVES We aimed to develop a dynamic imaging technique for a novel PET superoxide tracer, [18F]DHMT, to allow for absolute quantification of myocardial reactive oxygen species (ROS) production in a large animal model. METHODS Six beagle dogs underwent a single baseline dynamic [18F]DHMT PET study, whereas one animal underwent three serial dynamic studies over the course of chronic doxorubicin administration (1 mg·kg-1·week-1 for 15 weeks). During the scans, sequential arterial blood samples were obtained for plasma metabolite correction. The optimal compartment model and graphical analysis method were identified for kinetic modeling. Values for the left ventricular (LV) net influx rate, Ki, were reported for all the studies and compared with the LV standard uptake values (SUVs) and the LV-to-blood pool SUV ratios from the 60 to 90 minute static images. Parametric images were also generated. RESULTS [18F]DHMT followed irreversible kinetics once oxidized within the myocardium in the presence of superoxide, as evidenced by the fitting generated by the irreversible two-tissue (2Ti) compartment model and the linearity of Patlak analysis. Myocardial Ki values showed a weak correlation with LV SUV (R2 = 0.27), but a strong correlation with LV-to-blood pool SUV ratio (R2 = 0.92). Generation of high-quality parametric images showed superior myocardial to blood contrast compared to static images. CONCLUSIONS A dynamic PET imaging technique for [18F]DHMT was developed with full and simplified kinetic modeling for absolute quantification of myocardial superoxide production in a large animal model.
Collapse
Affiliation(s)
- Jing Wu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Nabil E Boutagy
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Shu-Fei Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - John C Stendahl
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - Michael Kapinos
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Hui Liu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Wenjie Zhang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Marcel Lindemann
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jo-Ku Teng
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA.
| |
Collapse
|
15
|
NRM 2021 Abstract Booklet. J Cereb Blood Flow Metab 2021; 41:11-309. [PMID: 34905986 PMCID: PMC8851538 DOI: 10.1177/0271678x211061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Functionally Heterogenous Macrophage Subsets in the Pathogenesis of Giant Cell Arteritis: Novel Targets for Disease Monitoring and Treatment. J Clin Med 2021; 10:jcm10214958. [PMID: 34768479 PMCID: PMC8585092 DOI: 10.3390/jcm10214958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022] Open
Abstract
Giant cell arteritis (GCA) is a granulomatous large-vessel vasculitis that affects adults above 50 years of age. In GCA, circulating monocytes are recruited to the inflamed arteries. With cues from the vascular microenvironment, they differentiate into macrophages and play important roles in the pathogenesis of GCA via pro-inflammatory cytokine production and vascular remodeling. However, a deeper understanding of macrophage heterogeneity in GCA pathogenesis is needed to assist the development of novel diagnostic tools and targeted therapies. Here, we review the current knowledge on macrophage heterogeneity and diverse functions of macrophage subsets in the pathogenesis of GCA. We next discuss the possibility to exploit their heterogeneity as a source of novel biomarkers and as targets for nuclear imaging. Finally, we discuss novel macrophage-targeted therapies and future directions for targeting these cells in GCA.
Collapse
|
17
|
Gierhardt M, Pak O, Walmrath D, Seeger W, Grimminger F, Ghofrani HA, Weissmann N, Hecker M, Sommer N. Impairment of hypoxic pulmonary vasoconstriction in acute respiratory distress syndrome. Eur Respir Rev 2021; 30:30/161/210059. [PMID: 34526314 DOI: 10.1183/16000617.0059-2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 12/29/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious complication of severe systemic or local pulmonary inflammation, such as caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ARDS is characterised by diffuse alveolar damage that leads to protein-rich pulmonary oedema, local alveolar hypoventilation and atelectasis. Inadequate perfusion of these areas is the main cause of hypoxaemia in ARDS. High perfusion in relation to ventilation (V/Q<1) and shunting (V/Q=0) is not only caused by impaired hypoxic pulmonary vasoconstriction but also redistribution of perfusion from obstructed lung vessels. Rebalancing the pulmonary vascular tone is a therapeutic challenge. Previous clinical trials on inhaled vasodilators (nitric oxide and prostacyclin) to enhance perfusion to high V/Q areas showed beneficial effects on hypoxaemia but not on mortality. However, specific patient populations with pulmonary hypertension may profit from treatment with inhaled vasodilators. Novel treatment targets to decrease perfusion in low V/Q areas include epoxyeicosatrienoic acids and specific leukotriene receptors. Still, lung protective ventilation and prone positioning are the best available standard of care. This review focuses on disturbed perfusion in ARDS and aims to provide basic scientists and clinicians with an overview of the vascular alterations and mechanisms of V/Q mismatch, current therapeutic strategies, and experimental approaches.
Collapse
Affiliation(s)
- Mareike Gierhardt
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI) Bad Nauheim, Germany
| | - Oleg Pak
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Dieter Walmrath
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Werner Seeger
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Institute for Lung Health (ILH), Giessen, Germany
| | - Friedrich Grimminger
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Hossein A Ghofrani
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Dept of Medicine, Imperial College London, London, UK
| | - Norbert Weissmann
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Matthias Hecker
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Both authors contributed equally
| | - Natascha Sommer
- Dept of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Both authors contributed equally
| |
Collapse
|
18
|
Automated Synthesis and Initial Evaluation of (4'-Amino-5',8'-difluoro-1'H-spiro[piperidine-4,2'-quinazolin]-1-yl)(4-[ 18F]fluorophenyl)methanone for PET/MR Imaging of Inducible Nitric Oxide Synthase. Mol Imaging 2021; 2021:9996125. [PMID: 34381316 PMCID: PMC8328489 DOI: 10.1155/2021/9996125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
Background Inducible nitric oxide synthase (iNOS) plays a crucial role in neuroinflammation, especially microglial activity, and may potentially represent a useful biomarker of neuroinflammation. In this study, we carefully defined a strategic plan to develop iNOS-targeted molecular PET imaging using (4′-amino-5′,8′-difluoro-1′H-spiro[piperidine-4,2′-quinazolin]-1-yl)(4-fluorophenyl)methanone ([18F]FBAT) as a tracer in a mouse model of lipopolysaccharide- (LPS-) induced brain inflammation. Methods An in vitro model, murine microglial BV2 cell line, was used to assess the uptake of [18F]FBAT in response to iNOS induction at the cellular level. In vivo whole-body dynamic PET/MR imaging was acquired in LPS-treated (5 mg/kg) and control mice. Standard uptake value (SUV), total volume of distribution (Vt), and area under the curve (AUC) based on the [18F]FBAT PET signals were determined. The expression of iNOS was confirmed by immunohistochemistry (IHC) of brain tissues. Results At the end of synthesis, the yield of [18F]FBAT was 2.2–3.1% (EOS), radiochemical purity was >99%, and molar radioactivity was 125–137 GBq/μmol. In vitro, [18F]FBAT rapidly and progressively accumulated in murine microglial BV2 cells exposed to LPS; however, [18F]FBAT accumulation was inhibited by aminoguanidine, a selective iNOS inhibitor. In vivo biodistribution studies of [18F]FBAT showed a significant increase in the liver and kidney on LPS-treated mice. At 3 h postinjection of LPS, in vivo, the [18F]FBAT accumulation ratios at 30 min post intravenous (i.v.) radiotracer injection for the whole brain, cortex, cerebellum, and brainstem were 2.16 ± 0.18, 1.53 ± 0.25, 1.41 ± 0.21, and 1.90 ± 0.12, respectively, compared to those of mice not injected with LPS. The mean area under the curve (AUC0-30min), total volume of distribution (Vt, mL/cm3), and Ki (influx rate) of [18F]FBAT were 1.9 ± 0.21- and 1.4 ± 0.22-fold higher in the 3 h LPS group, respectively, than in the control group. In the pharmacokinetic two-compartment model, the whole brain Ki of [18F]FBAT was significantly higher in mice injected with LPS compared to the control group. Aminoguanidine, selective iNOS inhibitor, pretreatment significantly reduced the AUC0-30min and Vt values in LPS-induced mice. Quantitative analysis of immunohistochemically stained brain sections confirmed iNOS was preferentially upregulated in the cerebellum and cortex of mice injected with LPS. Conclusion An automated robotic method was established for radiosynthesis of [18F]FBAT, and the preliminary in vitro and in vivo results demonstrated the feasibility of detecting iNOS activity/expression in LPS-treated neuroinflammation by noninvasive imaging with [18F]FBAT PET/MRI.
Collapse
|
19
|
Vidanapathirana AK, Psaltis PJ, Bursill CA, Abell AD, Nicholls SJ. Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future. Med Res Rev 2020; 41:435-463. [PMID: 33075148 DOI: 10.1002/med.21736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM-µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real-time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.
Collapse
Affiliation(s)
- Achini K Vidanapathirana
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Department of Chemistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen J Nicholls
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Vass L, Fisk M, Lee S, Wilson FJ, Cheriyan J, Wilkinson I. Advances in PET to assess pulmonary inflammation: A systematic review. Eur J Radiol 2020; 130:109182. [PMID: 32702614 DOI: 10.1016/j.ejrad.2020.109182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
|
21
|
Pourfathi M, Kadlecek SJ, Chatterjee S, Rizi RR. Metabolic Imaging and Biological Assessment: Platforms to Evaluate Acute Lung Injury and Inflammation. Front Physiol 2020; 11:937. [PMID: 32982768 PMCID: PMC7487972 DOI: 10.3389/fphys.2020.00937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary inflammation is a hallmark of several pulmonary disorders including acute lung injury and acute respiratory distress syndrome. Moreover, it has been shown that patients with hyperinflammatory phenotype have a significantly higher mortality rate. Despite this, current therapeutic approaches focus on managing the injury rather than subsiding the inflammatory burden of the lung. This is because of the lack of appropriate non-invasive biomarkers that can be used clinically to assess pulmonary inflammation. In this review, we discuss two metabolic imaging tools that can be used to non-invasively assess lung inflammation. The first method, Positron Emission Tomography (PET), is widely used in clinical oncology and quantifies flux in metabolic pathways by measuring uptake of a radiolabeled molecule into the cells. The second method, hyperpolarized 13C MRI, is an emerging tool that interrogates the branching points of the metabolic pathways to quantify the fate of metabolites. We discuss the differences and similarities between these techniques and discuss their clinical applications.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Rahim R. Rizi,
| |
Collapse
|
22
|
Ruano CA, Grafino M, Borba A, Pinheiro S, Fernandes O, Silva SC, Bilhim T, Moraes-Fontes MF, Irion KL. Multimodality imaging in connective tissue disease-related interstitial lung disease. Clin Radiol 2020; 76:88-98. [PMID: 32868089 DOI: 10.1016/j.crad.2020.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/28/2020] [Indexed: 11/18/2022]
Abstract
Interstitial lung disease is a well-recognised manifestation and a major cause of morbidity and mortality in patients with connective tissue diseases. Interstitial lung disease may arise in the context of an established connective tissue disease or be the initial manifestation of an otherwise occult autoimmune disorder. Early detection and characterisation are paramount for adequate patient management and require a multidisciplinary approach, in which imaging plays a vital role. Computed tomography is currently the imaging method of choice; however, other imaging techniques have recently been investigated, namely ultrasound, magnetic resonance imaging, and positron-emission tomography, with promising results. The aim of this review is to describe the imaging findings of connective tissue disease-related interstitial lung disease and explain the role of each imaging technique in diagnosis and disease characterisation.
Collapse
Affiliation(s)
- C A Ruano
- Radiology Department, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal; Radiology Department, Hospital da Luz, Lisboa, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - M Grafino
- Pulmonology Department, Hospital da Luz, Lisboa, Portugal
| | - A Borba
- Pulmonology Department, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - S Pinheiro
- Autoimmune Disease Unit, Unidade de Doenças Auto-imunes/Serviço Medicina 3, Hospital de Santo António dos Capuchos, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - O Fernandes
- Radiology Department, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal; Radiology Department, Hospital da Luz, Lisboa, Portugal
| | - S C Silva
- Radiology Department, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - T Bilhim
- NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal; Interventional Radiology Unit, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - M F Moraes-Fontes
- Autoimmune Disease Unit, Unidade de Doenças Auto-imunes/Serviço Medicina 7.2, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - K L Irion
- Radiology Department, Manchester Royal Infirmary, Manchester, United Kingdom; University of Manchester, Division of Infection Immunity & Respiratory Medicine, School of Biological Sciences, Manchester, United Kingdom
| |
Collapse
|
23
|
S. Clemente G, van Waarde A, F. Antunes I, Dömling A, H. Elsinga P. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int J Mol Sci 2020; 21:E5291. [PMID: 32722521 PMCID: PMC7432485 DOI: 10.3390/ijms21155291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Arginase is a widely known enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The action of arginase goes beyond the boundaries of hepatic ureogenic function, being widespread through most tissues. Two arginase isoforms coexist, the type I (Arg1) predominantly expressed in the liver and the type II (Arg2) expressed throughout extrahepatic tissues. By producing L-ornithine while competing with nitric oxide synthase (NOS) for the same substrate (L-arginine), arginase can influence the endogenous levels of polyamines, proline, and NO•. Several pathophysiological processes may deregulate arginase/NOS balance, disturbing the homeostasis and functionality of the organism. Upregulated arginase expression is associated with several pathological processes that can range from cardiovascular, immune-mediated, and tumorigenic conditions to neurodegenerative disorders. Thus, arginase is a potential biomarker of disease progression and severity and has recently been the subject of research studies regarding the therapeutic efficacy of arginase inhibitors. This review gives a comprehensive overview of the pathophysiological role of arginase and the current state of development of arginase inhibitors, discussing the potential of arginase as a molecular imaging biomarker and stimulating the development of novel specific and high-affinity arginase imaging probes.
Collapse
Affiliation(s)
- Gonçalo S. Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Inês F. Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| |
Collapse
|
24
|
Li X, Rosenkrans ZT, Wang J, Cai W. PET imaging of macrophages in cardiovascular diseases. Am J Transl Res 2020; 12:1491-1514. [PMID: 32509158 PMCID: PMC7270023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular diseases (CVDs) have been the leading cause of death in United States. While tremendous progress has been made for treating CVDs over the year, the high prevalence and substantial medical costs requires the necessity for novel methods for the early diagnosis and treatment monitoring of CVDs. Macrophages are a promising target due to its crucial role in the progress of CVDs (atherosclerosis, myocardial infarction and inflammatory cardiomyopathies). Positron emission tomography (PET) is a noninvasive imaging technique with high sensitivity and provides quantitive functional information of the macrophages in CVDs. Although 18F-FDG can be taken up by active macrophages, the PET imaging tracer is non-specific and susceptible to blood glucose levels. Thus, developing more specific PET tracers will help us understand the role of macrophages in CVDs. Moreover, macrophage-targeted PET imaging will further improve the diagnosis, treatment monitoring, and outcome prediction for patients with CVDs. In this review, we summarize various targets-based tracers for the PET imaging of macrophages in CVDs and highlight research gaps to advise future directions.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Weibo Cai
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonMadison, WI 53705, USA
- Department of Pharmaceutical Sciences, University of Wisconsin-MadisonMadison, WI 53705, USA
| |
Collapse
|
25
|
Giraudo C, Evangelista L, Fraia AS, Lupi A, Quaia E, Cecchin D, Casali M. Molecular Imaging of Pulmonary Inflammation and Infection. Int J Mol Sci 2020; 21:ijms21030894. [PMID: 32019142 PMCID: PMC7037834 DOI: 10.3390/ijms21030894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Infectious and inflammatory pulmonary diseases are a leading cause of morbidity and mortality worldwide. Although infrequently used in this setting, molecular imaging may significantly contribute to their diagnosis using techniques like single photon emission tomography (SPET), positron emission tomography (PET) with computed tomography (CT) or magnetic resonance imaging (MRI) with the support of specific or unspecific radiopharmaceutical agents. 18F-Fluorodeoxyglucose (18F-FDG), mostly applied in oncological imaging, can also detect cells actively involved in infectious and inflammatory conditions, even if with a low specificity. SPET with nonspecific (e.g., 67Gallium-citrate (67Ga citrate)) and specific tracers (e.g., white blood cells radiolabeled with 111Indium-oxine (111In) or 99mTechnetium (99mTc)) showed interesting results for many inflammatory lung diseases. However, 67Ga citrate is unfavorable by a radioprotection point of view while radiolabeled white blood cells scan implies complex laboratory settings and labeling procedures. Radiolabeled antibiotics (e.g., ciprofloxacin) have been recently tested, although they seem to be quite unspecific and cause antibiotic resistance. New radiolabeled agents like antimicrobic peptides, binding to bacterial cell membranes, seem very promising. Thus, the aim of this narrative review is to provide a comprehensive overview about techniques, including PET/MRI, and tracers that can guide the clinicians in the appropriate diagnostic pathway of infectious and inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Chiara Giraudo
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
- Correspondence: ; Tel.: +39-049-821-2357; Fax: +39-049-821-1878
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (L.E.); (D.C.)
| | - Anna Sara Fraia
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Amalia Lupi
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Emilio Quaia
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (L.E.); (D.C.)
- Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| | - Massimiliano Casali
- Azienda Unità Sanitaria Locale–IRCCS di Reggio Emilia, 42121 Reggio Emilia, Italy;
| |
Collapse
|
26
|
Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Am J Cancer Res 2019; 9:7730-7748. [PMID: 31695797 PMCID: PMC6831464 DOI: 10.7150/thno.37306] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor associated macrophages (TAM) are key players in the cancer microenvironment. Molecular imaging modalities such as MRI and PET can be used to track and monitor TAM dynamics in tumors non-invasively, based on specific uptake and quantification of MRI-detectable nanoparticles or PET-detectable radiotracers. Particular molecular signatures can be leveraged to target anti-inflammatory TAM, which support tumor growth, and pro-inflammatory TAM, which suppress tumor growth. In addition, TAM-directed imaging probes can be designed to include immune modulating properties, thereby leading to combined diagnostic and therapeutic (theranostic) effects. In this review, we will discuss the complementary role of TAM-directed radiotracers and iron oxide nanoparticles for monitoring cancer immunotherapies with PET and MRI technologies. In addition, we will outline how TAM-directed imaging and therapy is interdependent and can be connected towards improved clinical outcomes
Collapse
|
27
|
Foss CA, Plyku D, Ordonez AA, Sanchez-Bautista J, Rosenthal HB, Minn I, Lodge MA, Pomper MG, Sgouros G, Jain SK. Biodistribution and Radiation Dosimetry of 124I-DPA-713, a PET Radiotracer for Macrophage-Associated Inflammation. J Nucl Med 2018; 59:1751-1756. [PMID: 29700124 PMCID: PMC6225541 DOI: 10.2967/jnumed.117.207431] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Whole-body PET/CT was performed using 124I-DPA-713, a radioligand for the 18-kDa translocator protein (TSPO), to determine biodistribution and radiation dosimetry. Methods: Healthy subjects aged 18-65 y underwent whole-body PET/CT either at 4, 24, and 48 h or at 24, 48, and 72 h after intravenous injection of 124I-DPA-713. Time-activity curves were generated and used to calculate organ time-integrated activity coefficients for each subject. The resulting time-integrated activity coefficients provided input data for calculation of organ absorbed doses and effective dose for each subject using OLINDA. Subjects were genotyped for the TSPO polymorphism rs6971, and plasma protein binding of 124I-DPA-713 was measured. Results: Three male and 3 female adults with a mean age of 40 ± 19 y were imaged. The mean administered activity and mass were 70.5 ± 5.1 MBq (range, 62.4-78.1 MBq) and 469 ± 34 ng (range, 416-520 ng), respectively. There were no adverse or clinically detectable pharmacologic effects in any of the 6 subjects. No changes in vital signs, laboratory values, or electrocardiograms were observed. 124I-DPA-713 cleared rapidly (4 h after injection) from the lungs, with hepatic elimination and localization to the gastrointestinal tract. The mean effective dose over the 6 subjects was 0.459 ± 0.127 mSv/MBq, with the liver being the dose-limiting organ (0.924 ± 0.501 mGy/MBq). The percentage of free radiotracer in blood was approximately 30% at 30 and 60 min after injection. Conclusion:124I-DPA-713 clears rapidly from the lungs, with predominantly hepatic elimination, and is safe and well tolerated in healthy adults.
Collapse
Affiliation(s)
- Catherine A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Donika Plyku
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julian Sanchez-Bautista
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hailey B Rosenthal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin A Lodge
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanjay K Jain
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018; 24:1399-1412. [DOI: 10.1177/1352458518791680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.
Collapse
Affiliation(s)
- Heidi Högel
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
29
|
Jiemy WF, Heeringa P, Kamps JA, van der Laken CJ, Slart RH, Brouwer E. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: Current status and future prospects. Autoimmun Rev 2018; 17:715-726. [PMID: 29729443 DOI: 10.1016/j.autrev.2018.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
|
30
|
Airas L, Nylund M, Rissanen E. Evaluation of Microglial Activation in Multiple Sclerosis Patients Using Positron Emission Tomography. Front Neurol 2018; 9:181. [PMID: 29632509 PMCID: PMC5879102 DOI: 10.3389/fneur.2018.00181] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/08/2018] [Indexed: 01/24/2023] Open
Abstract
Understanding the mechanisms underlying progression in multiple sclerosis (MS) is one of the key elements contributing to the identification of appropriate therapeutic targets for this under-managed condition. In addition to plaque-related focal inflammatory pathology typical for relapsing remitting MS there are, in progressive MS, widespread diffuse alterations in brain areas outside the focal lesions. This diffuse pathology is tightly related to microglial activation and is co-localized with signs of neurodegeneration. Microglia are brain-resident cells of the innate immune system and overactivation of microglia is associated with several neurodegenerative diseases. Understanding the role of microglial activation in relation to developing neurodegeneration and disease progression may provide a key to developing therapies to target progressive MS. 18-kDa translocator protein (TSPO) is a mitochondrial molecule upregulated in microglia upon their activation. Positron emission tomography (PET) imaging using TSPO-binding radioligands provides a method to assess microglial activation in patients in vivo. In this mini-review, we summarize the current status of TSPO imaging in the field of MS. In addition, the review discusses new insights into the potential use of this method in treatment trials and in clinical assessment of progressive MS.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Marjo Nylund
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
31
|
The peroxisome proliferator-activated receptor agonist pioglitazone and 5-lipoxygenase inhibitor zileuton have no effect on lung inflammation in healthy volunteers by positron emission tomography in a single-blind placebo-controlled cohort study. PLoS One 2018; 13:e0191783. [PMID: 29414995 PMCID: PMC5802889 DOI: 10.1371/journal.pone.0191783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
Background Anti-inflammatory drug development efforts for lung disease have been hampered in part by the lack of noninvasive inflammation biomarkers and the limited ability of animal models to predict efficacy in humans. We used 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in a human model of lung inflammation to assess whether pioglitazone, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, and zileuton, a 5-lipoxygenase inhibitor, reduce lung inflammation. Methods For this single center, single-blind, placebo-controlled cohort study, we enrolled healthy volunteers sequentially into the following treatment cohorts (N = 6 per cohort): pioglitazone plus placebo, zileuton plus placebo, or dual placebo prior to bronchoscopic endotoxin instillation. 18F-FDG uptake pre- and post-endotoxin was quantified as the Patlak graphical analysis-determined Ki (primary outcome measure). Secondary outcome measures included the mean standard uptake value (SUVmean), post-endotoxin bronchoalveolar lavage (BAL) cell counts and differentials and blood adiponectin and urinary leukotriene E4 (LTE4) levels, determined by enzyme-linked immunosorbent assay, to verify treatment compliance. One- or two-way analysis of variance assessed for differences among cohorts in the outcome measures (expressed as mean ± standard deviation). Results Ten females and eight males (29±6 years of age) completed all study procedures except for one volunteer who did not complete the post-endotoxin BAL. Ki and SUVmean increased in all cohorts after endotoxin instillation (Ki increased by 0.0021±0.0019, 0.0023±0.0017, and 0.0024±0.0020 and SUVmean by 0.47±0.14, 0.55±0.15, and 0.54±0.38 in placebo, pioglitazone, and zileuton cohorts, respectively, p<0.001) with no differences among treatment cohorts (p = 0.933). Adiponectin levels increased as expected with pioglitazone treatment but not urinary LTE4 levels as expected with zileuton treatment. BAL cell counts (p = 0.442) and neutrophil percentage (p = 0.773) were similar among the treatment cohorts. Conclusions Endotoxin-induced lung inflammation in humans is not responsive to pioglitazone or zileuton, highlighting the challenge in translating anti-inflammatory drug efficacy results from murine models to humans. Trial registration ClinicalTrials.gov NCT01174056.
Collapse
|
32
|
Makvandi M, Sellmyer MA, Mach RH. Inflammation and DNA damage: Probing pathways to cancer and neurodegeneration. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:37-43. [PMID: 29233266 DOI: 10.1016/j.ddtec.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/02/2023]
Abstract
Cancer and neurodegeneration represent two opposite ends of the biological spectrum but contain many common biological mechanisms. Two such mechanisms include the elevated levels of oxidative stress and DNA damage. In this brief review, we describe current approaches for imaging these biological pathways with the molecular imaging technique, Positron Emission Tomography (PET), and the potential of PET imaging studies to measure the efficacy of anticancer drugs and strategies for delaying the progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mehran Makvandi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Sellmyer
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Im HJ, Bradshaw T, Solaiyappan M, Cho SY. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl Med Mol Imaging 2017; 52:5-15. [PMID: 29391907 DOI: 10.1007/s13139-017-0493-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Numerous methods to segment tumors using 18F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods.
Collapse
Affiliation(s)
- Hyung-Jun Im
- 1Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI USA.,2Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Tyler Bradshaw
- 1Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Meiyappan Solaiyappan
- 3Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Steve Y Cho
- 1Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI USA.,3Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA.,4University of Wisconsin Carbone Cancer Center, Madison, WI USA
| |
Collapse
|
34
|
Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. Int J Mol Sci 2017; 18:ijms18040802. [PMID: 28398245 PMCID: PMC5412386 DOI: 10.3390/ijms18040802] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals’ binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians’ expectations.
Collapse
Affiliation(s)
- Claire Tronel
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Denis Guilloteau
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Anne-Claire Dupont
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Nicolas Arlicot
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| |
Collapse
|
35
|
Zhu X, Zhang Y, Huang H, Zhang H, Hou L, Zhang Z. Folic acid-modified and functionalized CuS nanocrystal-based nanoparticles for combined tumor chemo- and photothermal therapy. J Drug Target 2016; 25:425-435. [DOI: 10.1080/1061186x.2016.1266651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiali Zhu
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou, PR China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Yingjie Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Heqing Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Huijuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, PR China
| |
Collapse
|
36
|
Abstract
Lung inflammatory diseases contribute significantly to the socioeconomic burden of disease. Yet very few new, effective therapies for respiratory disease have been approved for use. A major contributing factor is the lack of biomarkers that can accurately quantify the lung inflammatory burden and can be used to understand the contribution of lung inflammation to loss in lung function. Molecular imaging approaches can detect and quantify the recruitment and activation of specific immune cells in lung inflammation. We review the clinical techniques used to image lung inflammation, provide an overview of clinical and emerging PET techniques for quantifying lung inflammation, and discuss potential clinical applications.
Collapse
Affiliation(s)
| | - Delphine L Chen
- Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
37
|
PET imaging approaches for inflammatory lung diseases: Current concepts and future directions. Eur J Radiol 2016; 86:371-376. [PMID: 27663638 DOI: 10.1016/j.ejrad.2016.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 11/21/2022]
Abstract
Inflammatory lung disease is one of the most common clinical scenarios, and yet, it is often poorly understood. Inflammatory lung disorders, such as chronic obstructive pulmonary diseases, which are causing significant mortality and morbidity, have limited therapeutic options. Recently, new treatments have become available for pulmonary fibrosis. This review article will describe the new insights that are starting to be gained from positron emission tomography (PET) methods, by targeting molecular processes using dedicated radiotracers. Ultimately, this should aid in deriving better pathophysiological classification of these disorders, which will ultimately result in better evaluation of novel therapies.
Collapse
|
38
|
Poutiainen P, Jaronen M, Quintana FJ, Brownell AL. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes. Front Mol Neurosci 2016; 9:85. [PMID: 27695400 PMCID: PMC5023680 DOI: 10.3389/fnmol.2016.00085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research.
Collapse
Affiliation(s)
- Pekka Poutiainen
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Anna-Liisa Brownell
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| |
Collapse
|
39
|
Hammoud DA. Molecular Imaging of Inflammation: Current Status. J Nucl Med 2016; 57:1161-5. [PMID: 27173159 DOI: 10.2967/jnumed.115.161182] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/11/2016] [Indexed: 11/16/2022] Open
Abstract
The ability to image inflammation in vivo can improve our understanding of the pathophysiology underlying various disease etiologies, including cancer, atherosclerosis, and neurodegeneration. A great wealth of preclinical and translational research has been and is currently being developed to decipher the involvement of the immune system in disease pathophysiology, quantify the course of a disease, and visualize the potential detrimental effects of excessive inflammation. Down the road, the ultimate goal is to have clinical noninvasive in vivo imaging biomarkers of inflammation that will help diagnose disease, establish prognosis, and gauge response to preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
40
|
Pesenti A, Musch G, Lichtenstein D, Mojoli F, Amato MBP, Cinnella G, Gattinoni L, Quintel M. Imaging in acute respiratory distress syndrome. Intensive Care Med 2016; 42:686-698. [DOI: 10.1007/s00134-016-4328-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
|