1
|
Peters-Founshtein G, Eshet Y, Sarfaty M, Dotan Z, Catalano OA, Davidson T, Domachevsky L. The Role of Nuclear Medicine in Imaging and Therapy of Prostate Cancer: The State of the Art. Urol Clin North Am 2025; 52:13-24. [PMID: 39537299 DOI: 10.1016/j.ucl.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men. In recent years, nuclear medicine has played an expanding role in diagnosing, staging, monitoring, and treating PCa. Specifically, the introduction of prostate-specific membrane antigen PET/computed tomography has significantly contributed to detecting locoregional and distant disease. Radioligand therapy, with its capacity to induce highly selective cytotoxic effects, is progressively being integrated into PCa therapy. The advent of novel therapeutic agents, additional indications, and a more comprehensive integration between nuclear imaging and therapy, represent the forefront of nuclear medicine in PCa.
Collapse
Affiliation(s)
- Gregory Peters-Founshtein
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel.
| | - Yael Eshet
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel; Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel
| | - Michal Sarfaty
- Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel; Genitourinary Oncology Unit, The Jusidman Oncology Hospital, Sheba Medical center, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel
| | - Zohar Dotan
- Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel; Department of Urology, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel
| | - Onofrio Antonio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Tima Davidson
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel; Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel
| | - Liran Domachevsky
- Department of Nuclear Medicine, Sheba Medical Center, Tel-Hashomer, 31 Emek Ha'ela Street, Ramat Gan 52621, Israel; Faculty of Medicine, Tel Aviv University, 35 klachkin Street, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas Foley L, Benesova I, Ozaniak A, Novak V, Vesely S, Pacas P, Buchler T, Ozaniak Strizova Z. The Immune Microenvironment in Prostate Cancer: A Comprehensive Review. Oncology 2024:1-25. [PMID: 39380471 DOI: 10.1159/000541881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy with significant immunosuppressive properties and limited immune activation. This immunosuppression is linked to reduced cytotoxic T cell activity, impaired antigen presentation, and elevated levels of immunosuppressive cytokines and immune checkpoint molecules. Studies demonstrate that cytotoxic CD8+ T cell infiltration correlates with improved survival, while increased regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) are associated with worse outcomes and therapeutic resistance. Th1 cells are beneficial, whereas Th17 cells, producing interleukin-17 (IL-17), contribute to tumor progression. Tumor-associated neutrophils (TANs) and immune checkpoint molecules, such as PD-1/PD-L1 and T cell immunoglobulin-3 (TIM-3) are also linked to advanced stages of PCa. Chemotherapy holds promise in converting the "cold" tumor microenvironment (TME) to a "hot" one by depleting immunosuppressive cells and enhancing tumor immunogenicity. SUMMARY This comprehensive review examines the immune microenvironment in PCa, focusing on the intricate interactions between immune and tumor cells in the TME. It highlights how TAMs, Tregs, cytotoxic T cells, and other immune cell types contribute to tumor progression or suppression and how PCa's low immunogenicity complicates immunotherapy. KEY MESSAGES The infiltration of cytotoxic CD8+ T cells and Th1 cells correlates with better outcomes, while elevated T regs and TAMs promote tumor growth, metastasis, and resistance. TANs and natural killer (NK) cells exhibit dual roles, with higher NK cell levels linked to better prognoses. Immune checkpoint molecules like PD-1, PD-L1, and TIM-3 are associated with advanced disease. Chemotherapy can improve tumor immunogenicity by depleting T regs and myeloid-derived suppressor cells, offering therapeutic promise.
Collapse
Affiliation(s)
- Rene Novysedlak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Miray Guney
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Majd Al Khouri
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
3
|
Georgiev T, Principi L, Galbiati A, Gilardoni E, Neri D, Cazzamalli S. Targeted interleukin-2 enhances the in vivo anti-cancer activity of Pluvicto™. Eur J Nucl Med Mol Imaging 2024; 51:2332-2337. [PMID: 38563883 DOI: 10.1007/s00259-024-06705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Pluvicto™ ([177Lu]Lu-PSMA-617), a radioligand therapeutic targeting prostate-specific membrane antigen (PSMA), has been recently approved for the treatment of metastatic castration-resistant prostate cancer (mCRPR). The drug suffers from salivary gland and kidney uptake that prevents its dose escalation to potentially curative doses. In this work, we sought to potentiate the in vivo anti-cancer activity of Pluvicto™ by combining it with L19-IL2, a clinical-stage investigational medicinal product based on tumor-targeted interleukin-2. METHODS We established a new PSMA-expressing model (HT-1080.hPSMA) and validated it using a fluoresceine analogue of PSMA-617 (compound 1). The HT-1080.hPSMA model was used to study the saturation and tumor retention of Pluvicto™ (compound 2) and to run combination therapy studies with L19-IL2. To complement our understanding of the mechanism of action of this novel combination, we conducted proteomics experiments on tumor samples after therapy with Pluvicto™ alone or in combination with the immunocytokine. RESULTS High, selective, and long-lived tumor uptake was observed for Pluvicto™ (2) in the novel HT-1080.hPSMA model. Therapy studies in HT-1080.hPSMA tumor-bearing mice revealed that the combination of Pluvicto™ (2) plus L19-IL2 mediated curative and durable responses in all animals. Potent in vivo anti-cancer activity was observed solely for the combination modality, at doses that were well tolerated by treated animals. Proteomics studies indicated that L19-IL2 boosts the activation of the immune system in animals pre-treated with Pluvicto™. CONCLUSION The therapeutic efficacy of Pluvicto™ at low radioactive doses can be effectively enhanced by the combination with L19-IL2. Our findings warrant further clinical exploration of this novel combination modality.
Collapse
Affiliation(s)
- Tony Georgiev
- R&D Department, Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, ZH, Switzerland
| | - Lucrezia Principi
- R&D Department, Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, ZH, Switzerland
| | - Andrea Galbiati
- R&D Department, Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, ZH, Switzerland
| | - Ettore Gilardoni
- R&D Department, Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, ZH, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, CH-8093, Zurich, Switzerland.
- Philogen S.p.A., I-53100, Siena, Italy.
| | - Samuele Cazzamalli
- R&D Department, Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, ZH, Switzerland.
| |
Collapse
|
4
|
Hou H, Pan Y, Wang Y, Ma Y, Niu X, Sun S, Hou G, Tao W, Gao F. Development and first-in-human study of PSMA-targeted PET tracers with improved pharmacokinetic properties. Eur J Nucl Med Mol Imaging 2024; 51:2819-2832. [PMID: 38683349 DOI: 10.1007/s00259-024-06726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE A series of new 68Ga-labeled tracers based on [68Ga]Ga-PSMA-617 were developed to augment the tumor-to-kidney ratio and reduce the activity accumulation in bladder, ultimately minimize radiation toxicity to the urinary system. METHODS We introduced quinoline group, phenylalanine and decanoic acid into different tracers to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Their binding affinity onto LNCaP cells was determined through in vitro saturation assays and competition binding assays. In vivo metabolic study, PET imaging and biodistribution experiment were performed in LNCaP tumor-bearing B-NSG male mice. The most promising tracer was selected for first-in-human study. RESULTS Four radiotracers were synthesized with radiochemical purity (RCP) > 95% and molar activity in a range of 20.0-25.5 GBq/μmol. The binding affinities (Ki) of TWS01, TWS02 to PSMA were in the low nanomolar range (< 10 nM), while TWS03 and TWS04 exhibited binding affinities with Ki > 20 nM (59.42 nM for TWS03 and 37.14 nM for TWS04). All radiotracers exhibited high stability in vivo except [68Ga]Ga-TWS03. Micro PET/CT imaging and biodistribution analysis revealed that [68Ga]Ga-TWS02 enabled clear tumor visualization in PET images at 1.5 h post-injection, with higher tumor-to-kidney ratio (T/K, 0.93) and tumor-to-muscle ratio (T/M, 107.62) compared with [68Ga]Ga-PSMA-617 (T/K: 0.39, T/M: 15.01) and [68Ga]Ga-PSMA-11 (T/K: 0.15, T/M: 24.00). In first-in-human study, [68Ga]Ga-TWS02 effectively detected PCa-associated lesions including primary and metastatic lesions, with lower accumulation in urinary system, suggesting that [68Ga]Ga-TWS02 might be applied in the detection of bladder invasion, with minimized radiation toxicity to the urinary system. CONCLUSION Introduction of quinoline group, phenylalanine and decanoic acid into different tracers can modulate the binding affinity and pharmacokinetics of PSMA in vivo. [68Ga]Ga-TWS02 showed high binding affinity to PSMA, excellent pharmacokinetic properties and clear imaging of PCa-associated lesions, making it a promising radiotracer for the clinical diagnosis of PCa. Moreover, TWS02 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for PCa treatment without significant side effects. TRIAL REGISTRATION The clinical evaluation of this study was registered On October 30, 2021 at https://www.chictr.org.cn/ (No: ChiCTR2100052545).
Collapse
Affiliation(s)
- Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yanzhi Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuze Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiaobing Niu
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Suan Sun
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Ghorbani F, Aminzadeh B, Borji N, Soudmand S, Montazerabadi A. Molecular MR Imaging of Prostate Cancer by Specified Iron Oxide Nanoparticles With PSMA-11 Peptides: A Preclinical Study. J Magn Reson Imaging 2024; 59:2204-2214. [PMID: 37572082 DOI: 10.1002/jmri.28949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) can provide a prostate cancer (PCa) detection approach in positron emission tomography (PET) using Food and Drug Administration (FDA)-approved PSMA-11 peptide. There are some studies evaluated magnetic-nanoprobes for PSMA detection by MRI, using non-FDA-approved ligands including antibodies or peptides, which are not as specific as PSMA-11. PURPOSE To assess targeted iron oxide nanoparticles (IONPs) by PSMA-11 peptides as a potential specific nano-molecular probes to investigate a PSMA+ PCa-xenograft model by MRI. STUDY TYPE Prospective. ANIMAL MODEL Twenty male C57BL6 nude mice induced subcutaneously PSMA+ LNCaP cell line tumor. FIELD STRENGTH/SEQUENCE 1.5 T, T2-W Fast Spin echo and T2*-W Gradient echo. ASSESSMENT Coated IONPs with Carboxymethylated-dextran (DNPs) and with bovine serum albumin (BNPs), as well as, targeted DNPs with PSMA-11-HYNIC peptide (TDNPs) and targeted BNPs with PSMA-11-HBED peptide (TBNPs) were injected intravenously with dose 2.8 mg Fe/kg. Coronal T2-W and the T2*-W images were obtained before and 4 hours and 6 hours post-injection. Signal intensity (SI) and relative signal enhancement (RSE) were computed in two- and three-dimensional analyses. Histological analysis of tumors was evaluated, and the Fe distribution within the body based on atomic absorption spectroscopy was calculated. STATISTICAL TESTS One-way ANOVA followed by Tukey's multiple comparison test, Paired-samples T-test, P < 0.05 was considered significant. RESULTS A reduction in T2-W SI was achieved as 22 ± 7%, 59 ± 3%, 65 ± 5%, and 78 ± 3% respectively for BNPs, TBNPs, DNPs, and TDNPs 6 hours post-injection. The most difference between targeted and non-targeted groups was observed at 6 hours for PSMA-11-HBED, and at 4 hours for PSMA-11-HYNIC. RSE indicated 88.6 ± 3.1% and 80.7 ± 3.2% enhanced contrast between tumor and muscle region for TBNPs and TDNPs on T2*-W images. CONCLUSIONS Both TBNPs and TDNPs are promising novel nano-molecular probes for PSMA+ PCa tumor detection. The injection dose of non-targeted IONPs can be reduced by using targeted nanoprobes three times for BNPs and two times for DNPs. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Farzaneh Ghorbani
- Department of Medical Physics and Radiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Behzad Aminzadeh
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Borji
- Ghaem Educational, Research and Treatment Center, Mashhad, Iran
| | - Samaneh Soudmand
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Montazerabadi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Müller M, Lucaroni L, Favalli N, Bassi G, Neri D, Cazzamalli S, Oehler S. Discovery of Glutamate Carboxypeptidase III Ligands to Compete the Uptake of [ 177Lu]Lu-PSMA-617 in Healthy Organs. J Med Chem 2024; 67:8247-8260. [PMID: 38716576 DOI: 10.1021/acs.jmedchem.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Prostate-specific membrane antigen (PSMA)-targeted radio ligand therapeutics (RLTs), such as [177Lu]Lu-PSMA-617 (Pluvicto), have been shown to accumulate in salivary glands and kidneys, potentially leading to undesired side effects. As unwanted accumulation in normal organs may derive from the cross-reactivity of PSMA ligands to glutamate carboxypeptidase III (GCPIII), it may be convenient to block this interaction with GCPIII-selective ligands. Parallel screening of a DNA-encoded chemical library (DEL) against GCPIII and PSMA allowed the identification of GCPIII binders. Structure-activity relationship (SAR) studies resulted in the identification of nanomolar GCPIII ligands with up to 1000-fold selectivity over PSMA. We studied the ability of GCPIII ligands to counteract the binding of [177Lu]Lu-PSMA-617 to human salivary glands by autoradiography and could demonstrate a partial radioprotection.
Collapse
Affiliation(s)
| | | | | | | | - Dario Neri
- Philochem AG, Otelfingen 8112, Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich 8093, Switzerland
- Philogen S.p.A., Siena 53100, Italy
| | | | | |
Collapse
|
7
|
Rudd SE, Noor A, Morgan KA, Donnelly PS. Diagnostic Positron Emission Tomography Imaging with Zirconium-89 Desferrioxamine B Squaramide: From Bench to Bedside. Acc Chem Res 2024; 57:1421-1433. [PMID: 38666539 DOI: 10.1021/acs.accounts.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Molecular imaging with antibodies radiolabeled with positron-emitting radionuclides combines the affinity and selectivity of antibodies with the sensitivity of Positron Emission Tomography (PET). PET imaging allows the visualization and quantification of the biodistribution of the injected radiolabeled antibody, which can be used to characterize specific biological interactions in individual patients. This characterization can provide information about the engagement of the antibody with a molecular target such as receptors present in elevated levels in tumors as well as providing insight into the distribution and clearance of the antibody. Potential applications of clinical PET with radiolabeled antibodies include identifying patients for targeted therapies, characterization of heterogeneous disease, and monitoring treatment response.Antibodies often take several days to clear from the blood pool and localize in tumors, so PET imaging with radiolabeled antibodies requires the use of a radionuclide with a similar radioactive half-life. Zirconium-89 is a positron-emitting radionuclide that has a radioactive half-life of 78 h and relatively low positron emission energy that is well suited to radiolabeling antibodies. It is essential that the zirconium-89 radionuclide be attached to the antibody through chemistry that provides an agent that is stable in vivo with respect to the dissociation of the radionuclide without compromising the biological activity of the antibody.This Account focuses on our research using a simple derivative of the bacterial siderophore desferrioxamine (DFO) with a squaramide ester functional group, DFO-squaramide (DFOSq), to link the chelator to antibodies. In our work, we produce conjugates with an average ∼4 chelators per antibody, and this does not compromise the binding of the antibody to the target. The resulting antibody conjugates of DFOSq are stable and can be easily radiolabeled with zirconium-89 in high radiochemical yields and purity. Automated methods for the radiolabeling of DFOSq-antibody conjugates have been developed to support multicenter clinical trials. Evaluation of several DFOSq conjugates with antibodies and low molecular weight targeting agents in tumor mouse models gave PET images with high tumor uptake and low background. The promising preclinical results supported the translation of this chemistry to human clinical trials using two different radiolabeled antibodies. The potential clinical impact of these ongoing clinical trials is discussed.The use of DFOSq to radiolabel relatively low molecular weight targeting molecules, peptides, and peptide mimetics is also presented. Low molecular weight molecules typically clear the blood pool and accumulate in target tissue more rapidly than antibodies, so they are usually radiolabeled with positron-emitting radionuclides with shorter radioactive half-lives such as fluorine-18 (t1/2 ∼ 110 min) or gallium-68 (t1/2 ∼ 68 min). Radiolabeling peptides and peptide mimetics with zirconium-89, with its longer radioactive half-life (t1/2 = 78 h), could facilitate the centralized manufacture and distribution of radiolabeled tracers. In addition, the ability to image patients at later time points with zirconium-89 based agents (e.g. 4-24 h after injection) may also allow the delineation of small or low-uptake disease sites as the delayed imaging results in increased clearance of the tracer from nontarget tissue and lower background signal.
Collapse
Affiliation(s)
- Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
8
|
Zeng N, Sun JX, Liu CQ, Xu JZ, An Y, Xu MY, Zhang SH, Zhong XY, Ma SY, He HD, Wang SG, Xia QD. Knowledge mapping of application of image-guided surgery in prostate cancer: a bibliometric analysis (2013-2023). Int J Surg 2024; 110:2992-3007. [PMID: 38445538 DOI: 10.1097/js9.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Image-guided surgery (IGS) refers to surgery navigated by medical imaging technology, helping doctors better clarify tumor boundaries, identify metastatic lymph nodes and preserve surrounding healthy tissue function. Recent studies have provided expectable momentum of the application of IGS in prostate cancer (PCa). The authors aim to comprehensively construct a bibliometric analysis of the application of IGS in PCa. METHOD The authors searched publications related to application of IGS in PCa from 2013 to 2023 on the web of science core collection (WoSCC) databases. VOSviewer, CiteSpace, and R package 'bibliometrix' were used for bibliometric analysis. RESULTS Two thousand three eighty-nine articles from 75 countries and 2883 institutions led by the United States were included. The number of publications related to the application of IGS in PCa kept high in the last decade. Johns Hopkins University is the top research institutions. Journal of Nuclear Medicine has the highest popularity as the selection of journal and co-cited journal. Pomper Martin G. had published the most paper. Ali Afshar-Oromieh was co-cited most frequently. The clinical efficacy of PSMA-PET/CT in PCa diagnosis and treatment are main topics in this research field, with emerging focuses on the use of fluorescence imaging guidance technology in PCa. 'PSMA' and 'PET/CT' are the main keywords as long-term research hotspots. CONCLUSION This study is the first bibliometric analysis of researches on application of IGS in PCa with three recognized bibliometric software, providing an objective description and comprehensive guidance for the future relevant investigations.
Collapse
Affiliation(s)
- Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Feng YY, Shi YR, Xia Z, Xu L, Li WB, Pang H, Wang ZJ. The clinical signification and application value of [ 68Ga]Ga-PSMA imaging in thyroid malignancy. Endocrine 2024; 84:598-606. [PMID: 37987969 DOI: 10.1007/s12020-023-03599-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE Approximately 5% of differentiated thyroid cancers lose the ability to uptake iodine, leading to limited treatment options and poor prognosis due to invasion and distant metastasis. PSMA imaging probes have been proposed as a potential diagnostic and therapeutic tool for iodine-refractory thyroid cancer. However, there are limited reports and significant heterogeneity in patient selection, warranting further exploration of the application value of PSMA in thyroid cancer. METHODS We performed Western Blot, PCR, and [68Ga]Ga-PSMA uptake experiments on cell lines and conducted in vivo small animal imaging. Clinical and radiological results of included differentiated thyroid cancer patients were collected. (Trial registration number: 2021-669, Trial registration date: December 30, 2021). RESULTS PSMA expression levels were significantly higher in poorly differentiated thyroid cancer (7.86 ± 1.90 vs. 1.00 ± 0, P < 0.01; 7.86 ± 1.90 vs. 0.03 ± 0.02, P < 0.01), but [68Ga]Ga-PSMA imaging correlated with tumor burden, such as 18F-FDG (8.08 ± 7.74 and 5.67 ± 4.23, P = 0.01) and Tg levels (307.1 ± 183.4 vs. 118.0 ± 116.1, P = 0.002). CONCLUSION Our results showed that PSMA expression increased with the decrease of thyroid cancer differentiation. However, the level of [68Ga]Ga-PSMA uptake in thyroid cancer patients was not significantly associated with the degree of thyroid cancer differentiation, but also with the metabolism and burden of tumors such as 2-[18F]FDG and Tg levels. These findings provide additional clinical significance and application value for PSMA in thyroid cancer.
Collapse
Affiliation(s)
- Yu Yue Feng
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Yang Rui Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Zhu Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Lu Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Wen Bo Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China.
| | - Zheng Jie Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Chongqing, PR China.
| |
Collapse
|
10
|
Piranfar A, Moradi Kashkooli F, Zhan W, Bhandari A, Saboury B, Rahmim A, Soltani M. Radiopharmaceutical transport in solid tumors via a 3-dimensional image-based spatiotemporal model. NPJ Syst Biol Appl 2024; 10:39. [PMID: 38609421 PMCID: PMC11015041 DOI: 10.1038/s41540-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA)-targeted radiopharmaceutical therapy is a clinically approved treatment for patients with metastatic castration-resistant prostate cancer (mCRPC). Even though common practice reluctantly follows "one size fits all" approach, medical community believes there is significant room for deeper understanding and personalization of radiopharmaceutical therapies. To pursue this aim, we present a 3-dimensional spatiotemporal radiopharmaceutical delivery model based on clinical imaging data to simulate pharmacokinetic of 177Lu-PSMA within the prostate tumors. The model includes interstitial flow, radiopharmaceutical transport in tissues, receptor cycles, association/dissociation with ligands, synthesis of PSMA receptors, receptor recycling, internalization of radiopharmaceuticals, and degradation of receptors and drugs. The model was studied for a range of values for injection amount (100-1000 nmol), receptor density (10-500 nmol•l-1), and recycling rate of receptors (10-4 to 10-1 min-1). Furthermore, injection type, different convection-diffusion-reaction mechanisms, characteristic time scales, and length scales are discussed. The study found that increasing receptor density, ligand amount, and labeled ligands improved radiopharmaceutical uptake in the tumor. A high receptor recycling rate (0.1 min-1) increased radiopharmaceutical concentration by promoting repeated binding to tumor cell receptors. Continuous infusion results in higher radiopharmaceutical concentrations within tumors compared to bolus administration. These insights are crucial for advancing targeted therapy for prostate cancer by understanding the mechanism of radiopharmaceutical distribution in tumors. Furthermore, measures of characteristic length and advection time scale were computed. The presented spatiotemporal tumor transport model can analyze different physiological parameters affecting 177Lu-PSMA delivery.
Collapse
Affiliation(s)
- Anahita Piranfar
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Babak Saboury
- Department of Computational Nuclear Oncology, Institute of Nuclear Medicine, Bethesda, MD, USA
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
11
|
Hardiansyah D, Yousefzadeh-Nowshahr E, Kind F, Beer AJ, Ruf J, Glatting G, Mix M. Single-Time-Point Renal Dosimetry Using Nonlinear Mixed-Effects Modeling and Population-Based Model Selection in [ 177Lu]Lu-PSMA-617 Therapy. J Nucl Med 2024; 65:566-572. [PMID: 38423787 DOI: 10.2967/jnumed.123.266268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
The aim of this study was to investigate the accuracy of single-time-point (STP) renal dosimetry imaging using SPECT/CT data, a nonlinear mixed-effects (NLME) model, and a population-based model selection (PBMS) in a large population for 177Lu-labeled prostate-specific membrane antigen therapy. Methods: Biokinetic data (mean ± SD) of [177Lu]Lu-PSMA-617 in kidneys at time points 1 (1.8 ± 0.8 h), 2 (18.7 ± 0.9 h), 3 (42.6 ± 1.0 h), 4 (66.3 ± 0.9 h), and 5 (160.3 ± 24.2 h) after injection were obtained from 63 patients with metastatic castration-resistant prostate cancer using SPECT/CT. Thirteen functions were derived from various parameterizations of 1- to 5-exponential functions. The function's parameters were fitted in the NLME framework to the all-time-point (ATP) data. The PBMS NLME method was performed using the goodness-of-fit test and Akaike weight to select the best function fitting the data. The best function from ATP fitting was used to calculate the reference time-integrated activity and absorbed doses. In STP dosimetry, the parameters of a particular patient with STP data were fitted simultaneously to the STP data at different time points of that patient with ATP data of all other patients. The parameters from STP fitting were used to calculate the STP time-integrated activity and absorbed doses. Relative deviations (RDs) and root-mean-square errors (RMSEs) were used to analyze the accuracy of the calculated STP absorbed dose compared with the reference absorbed dose obtained from the best-fit ATP function. The performance of STP dosimetry using PBMS NLME modeling was compared with the Hänscheid and Madsen methods. Results: The function [Formula: see text] was selected as the best-fit ATP function, with an Akaike weight of 100%. For STP dosimetry, the STP measurement by SPECT/CT at time point 3 (42.6 ± 1.0 h) showed a relatively low mean RD of -4.4% ± 9.4% and median RD of -0.7%. Time point 3 had the lowest RMSE value compared with those at the other 4 time points. The RMSEs of the absorbed dose RDs for time points 1-5 were 23%, 16%, 10%, 20%, and 53%, respectively. The STP dosimetry using the PBMS NLME method outperformed the Hänscheid and Madsen methods for all investigated time points. Conclusion: Our results show that a single measurement of SPECT/CT at 2 d after injection might be used to calculate accurate kidney-absorbed doses using the NLME method and PBMS.
Collapse
Affiliation(s)
- Deni Hardiansyah
- Medical Physics and Biophysics, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia;
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Elham Yousefzadeh-Nowshahr
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Felix Kind
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; and
- Nuclear Medicine Division, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Khandelwal Y, Singh Parihar A, Sistani G, Ramirez-Fort MK, Zukotynski K, Subramaniam RM. Role of PET/Computed Tomography in Gastric and Colorectal Malignancies. PET Clin 2024; 19:177-186. [PMID: 38199915 DOI: 10.1016/j.cpet.2023.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This article focuses on the role of PET/computed tomography in evaluating and managing gastric cancer and colorectal cancer. The authors start with describing the common aspects of imaging with 2-deoxy-2-18F-d-glucose, followed by tumor-specific discussions of gastric and colorectal malignancies. Finally, the authors provide a brief overview of non-FDG tracers including their potential clinical applications, and describe future directions in imaging these malignancies.
Collapse
Affiliation(s)
- Yogita Khandelwal
- Department of Nuclear Medicine, AIIMS Campus, Ansari Nagar East, New Delhi, Delhi 110016, India
| | - Ashwin Singh Parihar
- Mallinckodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Golmehr Sistani
- Medical Imaging Department, Royal Victoria Regional Health Centre, 201 Georgian Drive, Barrie, ON L4M 6M2, Canada
| | | | - Katherine Zukotynski
- Department of Medical Imaging, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Rathan M Subramaniam
- Faculty of Medicine, Nursing, Midwifery & Health Sciences, 160 Oxford Street, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
13
|
Yilidir G, Demir M. Determination of Critical Organ Doses with 177Lu Prostate-specific Membrane Antigen Dosimetry in Metastatic Prostate Cancer Treatment. J Med Phys 2024; 49:304-310. [PMID: 39131436 PMCID: PMC11309138 DOI: 10.4103/jmp.jmp_12_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 08/13/2024] Open
Abstract
Aim This study aimed to perform dosimetry in patients with metastatic prostate cancer treated with 177Lutetium (Lu) prostate-specific membrane antigen (PSMA)-617 radiopharmaceutical, calculating organ blood clearance and consequently determining the maximum tolerable treatment activity. Materials and Methods Eighteen patients with metastatic prostate cancer were enrolled in the study. Patients were administered 5.55 gigabecquerel (GBq) of 177Lu-PSMA-617 radiopharmaceutical per treatment cycle through infusion. Blood samples (2 mL each) were collected at 2, 4, 6, 8, 18, 24, 36, and 44 h postinjection to assess the bone marrow absorbed dose. Organ doses were calculated using the OLINDA/EXM software based on scintigraphic images of the 18 patients who received 177Lu-PSMA-617. Results The blood clearance of 177Lu-PSMA-617 radiopharmaceutical was determined to be bi-exponential. The mean absorbed doses for the parotid glands, kidneys, bone marrow, and liver were found to be 1.18 ± 0.27, 1.05 ± 0.3, 0.07 ± 0.05, and 0.31 ± 0.2 Gy/GBq, respectively. The radiation dose to the bone marrow was significantly lower than that to the kidneys and parotid glands. No dose limitations were necessary for kidneys and bone marrow in any of the patients. Conclusions Our dosimetry results indicate that 177Lu-PSMA-617 therapy is safe in terms of radiation toxicity.
Collapse
Affiliation(s)
- Gulcihan Yilidir
- Department of Nuclear Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mustafa Demir
- Department of Nuclear Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
14
|
Jin W, Zhao R, Wang R, Choi SR, Ploessl K, Alexoff D, Wu Z, Zhu L, Kung HF. Theranostic Agent Targeting Bone Metastasis: A Novel [ 68Ga]Ga/[ 177Lu]Lu-DOTA-HBED-bisphosphonate. J Med Chem 2024. [PMID: 38450559 DOI: 10.1021/acs.jmedchem.3c02372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bone metastasis in cancer patients is a major disease advancement for various types of cancer. Previously, [68Ga]Ga-HBED-CC-bisphosphonate ([68Ga]Ga-P15-041) showed excellent bone uptake and efficient detection of bone metastasis in patients. To accommodate different α- or β--emitting metals for radionuclide therapy, a novel DOTA-HBED-CC-bisphosphonate (P15-073, 1) was prepared and the corresponding [68Ga]Ga-1 and [177Lu]Lu-1 were successfully synthesized in high yields and purity. Gallium-68 conjugation to HBED-CC at room temperature and lutetium-177 conjugation to DOTA at 95 °C were verified in model compounds through secondary mass confirmation. These bisphosphonates, [68Ga]Ga-1 and [177Lu]Lu-1, displayed high binding affinity to hydroxyapatite in vitro. After an iv injection, it showed excellent uptake in the spine of normal mice, and micro-PET/CT imaging of nude mice model of bone metastasis showed high bone uptake in tumor tissue. The results indicated that [68Ga]Ga/[177Lu]Lu-1 holds promise as a theranostic radioligand agent for managing cancer bone metastases.
Collapse
Affiliation(s)
- Wenbin Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Ran Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Zehui Wu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Yazdani E, Karamzadeh-Ziarati N, Cheshmi SS, Sadeghi M, Geramifar P, Vosoughi H, Jahromi MK, Kheradpisheh SR. Automated segmentation of lesions and organs at risk on [ 68Ga]Ga-PSMA-11 PET/CT images using self-supervised learning with Swin UNETR. Cancer Imaging 2024; 24:30. [PMID: 38424612 PMCID: PMC10903052 DOI: 10.1186/s40644-024-00675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) PET/CT imaging is widely used for quantitative image analysis, especially in radioligand therapy (RLT) for metastatic castration-resistant prostate cancer (mCRPC). Unknown features influencing PSMA biodistribution can be explored by analyzing segmented organs at risk (OAR) and lesions. Manual segmentation is time-consuming and labor-intensive, so automated segmentation methods are desirable. Training deep-learning segmentation models is challenging due to the scarcity of high-quality annotated images. Addressing this, we developed shifted windows UNEt TRansformers (Swin UNETR) for fully automated segmentation. Within a self-supervised framework, the model's encoder was pre-trained on unlabeled data. The entire model was fine-tuned, including its decoder, using labeled data. METHODS In this work, 752 whole-body [68Ga]Ga-PSMA-11 PET/CT images were collected from two centers. For self-supervised model pre-training, 652 unlabeled images were employed. The remaining 100 images were manually labeled for supervised training. In the supervised training phase, 5-fold cross-validation was used with 64 images for model training and 16 for validation, from one center. For testing, 20 hold-out images, evenly distributed between two centers, were used. Image segmentation and quantification metrics were evaluated on the test set compared to the ground-truth segmentation conducted by a nuclear medicine physician. RESULTS The model generates high-quality OARs and lesion segmentation in lesion-positive cases, including mCRPC. The results show that self-supervised pre-training significantly improved the average dice similarity coefficient (DSC) for all classes by about 3%. Compared to nnU-Net, a well-established model in medical image segmentation, our approach outperformed with a 5% higher DSC. This improvement was attributed to our model's combined use of self-supervised pre-training and supervised fine-tuning, specifically when applied to PET/CT input. Our best model had the lowest DSC for lesions at 0.68 and the highest for liver at 0.95. CONCLUSIONS We developed a state-of-the-art neural network using self-supervised pre-training on whole-body [68Ga]Ga-PSMA-11 PET/CT images, followed by fine-tuning on a limited set of annotated images. The model generates high-quality OARs and lesion segmentation for PSMA image analysis. The generalizable model holds potential for various clinical applications, including enhanced RLT and patient-specific internal dosimetry.
Collapse
Affiliation(s)
- Elmira Yazdani
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, 14155-6183, Iran
- Fintech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyyed Saeid Cheshmi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, 14155-6183, Iran.
- Fintech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Habibeh Vosoughi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Nuclear Medicine and Molecular Imaging Department, Imam Reza International University, Razavi Hospital, Mashhad, Iran
| | - Mahmood Kazemi Jahromi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, 14155-6183, Iran
- Fintech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Reza Kheradpisheh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
16
|
Ling SW, van der Veldt AAM, Konijnenberg M, Segbers M, Hooijman E, Bruchertseifer F, Morgenstern A, de Blois E, Brabander T. Evaluation of the tolerability and safety of [ 225Ac]Ac-PSMA-I&T in patients with metastatic prostate cancer: a phase I dose escalation study. BMC Cancer 2024; 24:146. [PMID: 38287346 PMCID: PMC10826262 DOI: 10.1186/s12885-024-11900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Life expectancy of patients with metastatic castration-resistant prostate cancer (mCRPC) is still limited despite several systemic treatments. Within five years after diagnosis of primary prostate cancer, 10-20% of the patients have mCRPC and curation is not an option. Radionuclide therapy (RNT) targeted against prostate-specific membrane antigen (PSMA) emerged as a new treatment option and showed effective results in patients with mCRPC. Survival benefit after [177Lu]Lu-PSMA RNT has already been demonstrated in several clinical trials. However, [225Ac]Ac-PSMA (225Ac-PSMA) appears to be an even more promising radiopharmaceutical for the treatment of mCRPC. The use of alpha emitting radionuclides offers advantages over beta emitting radionuclides due to the high linear energy transfer effective for killing tumor cells and the limited range to reduce the radiation effects on the healthy tissue. However, these results are based on retrospective data and safety data of 225Ac-PSMA are still limited. Therefore, a prospective trial is needed to determine the optimal amount of activity that can be administered. METHODS The 225Ac-PSMA-Imaging & Therapy (I&T) trial is an investigator-initiated phase I, single-center, open label, repeated dose-escalation and expansion trial. Patient with PSMA-positive mCRPC after at least one line of chemotherapy and/or one line of nonsteroidal antiandrogen will be treated with 225Ac-PSMA-I&T in increasing amount of activity per cycle. Dose-escalation following an accelerated 3 + 3 design which allows to open the next dose-level cohort in the absence of dose limiting toxicity while the previous one is still ongoing. Up to 4 treatment cohorts will be explored including up to 3 dose-escalation cohorts and one expansion cohort where patients will be administered with the recommended dose. A total of up to 30 patients will be enrolled in this trial. All patients will be evaluated for safety. Additionally, dosimetry was performed for the patients in the dose-escalation cohorts after the first 225Ac-PSMA-I&T administration. DISCUSSION This trial will assess the safety and tolerability of 225Ac-PSMA-I&T in patients with mCRPC to recommend the optimal dose for the phase II trial. TRIAL REGISTRATION ClinicalTrials.gov, (NCT05902247). Retrospectively registered 13 June 2023.
Collapse
Affiliation(s)
- Sui Wai Ling
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - Astrid A M van der Veldt
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marcel Segbers
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Eline Hooijman
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Simunic M, Joshi JT, Merkens H, Colpo N, Kuo HT, Lum JJ, Bénard F. PSMA imaging as a non-invasive tool to monitor inducible gene expression in vivo. EJNMMI Res 2024; 14:3. [PMID: 38177950 PMCID: PMC10767034 DOI: 10.1186/s13550-023-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Marin Simunic
- Department of Hematology, Clinic for Internal Medicine, Clinical Hospital Centre, Spinciceva 1, 21000, Split, Croatia
| | - Jay T Joshi
- Deeley Research Centre, BC Cancer Research Institute, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada
| | - Helen Merkens
- BC Cancer Research Institute, 675 West 10Th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Nadine Colpo
- BC Cancer Research Institute, 675 West 10Th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Hsiou-Ting Kuo
- BC Cancer Research Institute, 675 West 10Th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Julian J Lum
- Deeley Research Centre, BC Cancer Research Institute, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada
| | - François Bénard
- BC Cancer Research Institute, 675 West 10Th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
18
|
Swiha M, Ayati N, Oprea-Lager DE, Ceci F, Emmett L. How to Report PSMA PET. Semin Nucl Med 2024; 54:14-29. [PMID: 37558507 DOI: 10.1053/j.semnuclmed.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Prostate cancer (PCa) is the most common cancer diagnosed in men in most developed countries and a leading cause of cancer-related morbidity and mortality. Prostate-specific membrane antigen positron emission tomography (PSMA-PET) has become a valuable tool in the staging and assessment of disease recurrence in PCa, and more recently for assessment for treatment eligibility to PSMA radioligand therapy (RLT). Harmonization of PSMA-PET interpretation and synoptic reports are needed to communicate concisely and reproducibly PSMA-PET/CT to referring physicians and to support clinician therapeutic management decisions in various stages of the disease. Uniform image interpretation is also important to provide comparable data between clinical trials and to translate such data from research to daily practice. This review provides an overview of the value of PSMA-PET across the different clinical stages of PCa, discusses published reporting criteria for PSMA-PET, identifies pitfalls in reporting PSMA, and provides recommendations for synoptic reports.
Collapse
Affiliation(s)
- Mina Swiha
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, Australia; Nuclear Medicine Division, Department of Medical Imaging, University of Western Ontario, London, Canada
| | - Narjess Ayati
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia
| | - Daniela E Oprea-Lager
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University. Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia.
| |
Collapse
|
19
|
Liu Y, Hao L, Dong Y, Dong BZ, Wang XL, Liu X, Hu ZX, Fang GC, Wang GY, Qin JX, Shi ZD, Pang K. Co-delivery of Siape1 and Melatonin by 125I-loaded PSMA-targeted Nanoparticles for the Treatment of Prostate Cancer. Recent Pat Anticancer Drug Discov 2024; 19:503-515. [PMID: 39044710 PMCID: PMC11348473 DOI: 10.2174/1574892818666230419081414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 07/25/2024]
Abstract
BACKGROUND Both apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) inhibition and melatonin suppress prostate cancer (PCa) growth. OBJECTIVE This study evaluated the therapeutic efficiency of self-assembled and prostate-specific membrane antigen (PSMA)-targeted nanocarrier loading 125I radioactive particles and encapsulating siRNA targeting APE1 (siAPE1) and melatonin for PCa. METHODS The linear polyarginine R12 polypeptide was prepared using Fmoc-Arg-Pbf-OH. The PSMA-targeted polymer was synthesized by conjugating azide-modified R12 peptide to PSMA monoclonal antibody (mAb). Before experiments, the PSMA-R12 nanocarrier was installed with melatonin and siAPE1, which were subsequently labeled by 125I radioactive particles. In vitro biocompatibility and cytotoxicity of nanocomposites were examined in LNCaP cells and in vivo biodistribution and pharmacokinetics were determined using PCa tumor-bearing mice. RESULTS PSMA-R12 nanocarrier was ~120 nm in size and was increased to ~150 nm by melatonin encapsulation. PSMA-R12 nanoparticles had efficient loading capacities of siAPE1, melatonin, and 125I particles. The co-delivery of melatonin and siAPE1 by PSMA-R12-125I showed synergistic effects on suppressing LNCaP cell proliferation and Bcl-2 expression and promoting cell apoptosis and caspase-3 expression. Pharmacokinetics analysis showed that Mel@PSMA-R12-125I particles had high uptake activity in the liver, spleen, kidney, intestine, and tumor, and were accumulated in the tumor sites within the first 8 h p.i., but was rapidly cleared from all the tested organs at 24 h p.i. Administration of nanoparticles to PCa tumors in vivo showed that Mel@PSMA-R12- 125I/siAPE1 had high efficiency in suppressing PCa tumor growth. CONCLUSION The PSMA-targeted nanocarrier encapsulating siAPE1 and melatonin is a promising therapeutic strategy for PCa and can provide a theoretical basis for patent applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bing-Zheng Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin-Lei Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
| | - Xing Liu
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
| | - Zheng-Xiang Hu
- Department of Graduate School, University of Jinzhou Medical University, Jinzhou, China
| | - Gao-Chuan Fang
- School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Guang-Yue Wang
- Department of Graduate School, University of Bengbu Medical College, Bengbu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Life Sciences, Jiangsu Normal University, Jiangsu, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
20
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
21
|
Handke A, Kesch C, Fendler WP, Telli T, Liu Y, Hakansson A, Davicioni E, Hughes J, Song H, Lueckerath K, Herrmann K, Hadaschik B, Seifert R. Analysing the tumor transcriptome of prostate cancer to predict efficacy of Lu-PSMA therapy. J Immunother Cancer 2023; 11:e007354. [PMID: 37857524 PMCID: PMC10603337 DOI: 10.1136/jitc-2023-007354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/21/2023] Open
Abstract
RATIONALE 177Lu-PSMA ([177Lu]Lutetium-PSMA-617) therapy is an effective treatment option for patients with prostate specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer, but still shows a non-responder rate of approximately 30%. Combination regimes of programmed death-ligand 1 (PD-L1) inhibition and concomitant 177Lu-PSMA therapy have been proposed to increase the response rate. However, the interplay of immune landscape and 177Lu-PSMA therapy efficacy is poorly understood. METHODS Between March 2018 and December 2021, a total of 168 patients were referred to 177Lu-PSMA therapy in our department and received a mean total dose of 21.9 GBq (three cycles in mean). All patients received baseline PSMA positron emission tomography to assess the PSMA uptake. The histopathological specimen of the primary prostate tumor was available with sufficient RNA passing quality control steps for genomic analysis in n=23 patients. In this subset of patients, tumor RNA transcriptomic analyses assessed 74 immune-related features in total, out of which n=24 signatures were not co-correlated and investigated further for outcome prognostication. RESULTS In the subset of patients who received 177Lu-PSMA therapy, PD-L1 was not significantly associated with OS (HR per SD change (95% CI) 0.74 (0.42 to 1.30); SD: 0.18; p=0.29). In contrast, PD-L2 signature was positively associated with longer OS (HR per SD change 0.46 (95% CI 0.29 to 0.74); SD: 0.24; p=0.001; median OS 17.2 vs 5.7 months in higher vs lower PD-L2 patients). In addition, PD-L2 signature correlated with PSA-response (ϱ=-0.46; p=0.04). The PD-L2 signature association with OS was significantly moderated by L-Lactatdehydrogenase (LDH) levels (Cox model interaction p=0.01). CONCLUSION Higher PD-L2 signature might be associated with a better response to 177Lu-PSMA therapy and warrants further studies investigating additional immunotherapy. In contrast, PD-L1 was not associated with outcome. The protective effect of PD-L2 signature might be present only in men with lower LDH levels.
Collapse
Affiliation(s)
- Analena Handke
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Claudia Kesch
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Tugce Telli
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Yang Liu
- Veracyte, Inc, Decipher Biosciences Inc, Vancouver, BC, Canada
| | | | - Elai Davicioni
- Veracyte, Inc, Decipher Biosciences Inc, Vancouver, BC, Canada
| | - Jason Hughes
- Veracyte, Inc, Decipher Biosciences Inc, Vancouver, BC, Canada
| | - Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Katharina Lueckerath
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| |
Collapse
|
22
|
Chen Y, Zhang X, Ni M, Gao X, Wang X, Xie Q, Zhang J, Cui M. Synthesis, Preclinical Evaluation, and First-in-Human PET Study of [ 68Ga]-Labeled Biphenyl-Containing PSMA Tracers. J Med Chem 2023; 66:13332-13345. [PMID: 37708404 DOI: 10.1021/acs.jmedchem.3c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Radioisotope-labeled prostate-specific membrane antigen (PSMA) PET tracers have gained popularity in diagnosing prostate cancer (PCa). This study aimed to improve the affinity and tumor-targeting capabilities of new PSMA tracers by increasing the number of pharmacophores that specifically bind to PSMA. Using biphenyl as a core scaffold, we investigated the relationship among spacer segments, affinity, and pharmacokinetic properties. In preclinical PET studies on mice with 22Rv1 tumors, compared with [68Ga]Ga-PSMA-11 (SUVmax = 3.37), [68Ga]Ga-PSMA-D5 (Ki = 0.15) showed higher tumor uptake (SUVmax = 3.51) and lower renal uptake (T/K = 1.84). In the first-in-human study, [68Ga]Ga-PSMA-D5 effectively detected small PCa-associated lesions and distant metastases. The advantages of [68Ga]Ga-PSMA-D5 include high tumor uptake, straightforward synthesis, and labeling, making it a promising PSMA PET tracer. Furthermore, [68Ga]Ga-PSMA-D5 contains a DOTA chelator, allowing convenient labeling with therapeutic radionuclides such as 177Lu and 225Ac, providing the potential for targeted radioligand therapy in PCa.
Collapse
Affiliation(s)
- Yimin Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Ming Ni
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Xi Gao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xinlin Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiang Xie
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Jinming Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| |
Collapse
|
23
|
Abouzayed A, Seitova K, Lundmark F, Bodenko V, Oroujeni M, Tolmachev V, Rosenström U, Orlova A. 177Lu-labeled PSMA targeting therapeutic with optimized linker for treatment of disseminated prostate cancer; evaluation of biodistribution and dosimetry. Front Oncol 2023; 13:1221103. [PMID: 37829345 PMCID: PMC10565663 DOI: 10.3389/fonc.2023.1221103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Prostate specific membrane antigen (PSMA), highly expressed in metastatic castration-resistant prostate cancer (mCRPC), is an established therapeutic target. Theranostic PSMA-targeting agents are widely used in patient management and has shown improved outcomes for mCRPC patients. Earlier, we optimized a urea-based probe for radionuclide visualization of PSMA-expression in vivo using computer modeling. With the purpose to develop a targeting agent equally suitable for radionuclide imaging and therapy, the agent containing DOTA chelator was designed (BQ7876). The aim of the study was to test the hypothesis that 177Lu-labeled BQ7876 possesses target binding and biodistribution properties potentially enabling its use for radiotherapy. Methods BQ7876 was synthesized and labeled with Lu-177. Specificity and affinity of [177Lu]Lu-BQ7876 to PSMA-expressing PC3-pip cells was evaluated and its processing after binding to cells was studied. Animal studies in mice were performed to assess its biodistribution in vivo, target specificity and dosimetry. [177Lu]Lu-PSMA-617 was simultaneously evaluated for comparison. Results BQ7876 was labeled with Lu-177 with radiochemical yield >99%. Its binding to PSMA was specific in vitro and in vivo when tested in antigen saturation conditions as well as in PSMA-negative PC-3 tumors. The binding of [177Lu]Lu-BQ7876 to living cells was characterized by rapid association, while the dissociation included a rapid and a slow phase with affinities KD1 = 3.8 nM and KD2 = 25 nM. The half-maximal inhibitory concentration for natLu-BQ7876 was 59 nM that is equal to 61 nM for natLu-PSMA-617. Cellular processing of [177Lu]Lu-BQ7876 was accompanied by slow internalization. [177Lu]Lu-BQ7876 was cleared from blood and normal tissues rapidly. Initial elevated uptake in kidneys decreased rapidly, and by 3 h post injection, the renal uptake (13 ± 3%ID/g) did not differ significantly from tumor uptake (9 ± 3%ID/g). Tumor uptake was stable between 1 and 3 h followed by a slow decline. The highest absorbed dose was in kidneys, followed by organs and tissues in abdomen. Discussion Biodistribution studies in mice demonstrated that targeting properties of [177Lu]Lu-BQ7876 are not inferior to properties of [177Lu]Lu-PSMA-617, but do not offer any decisive advantages.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Kamila Seitova
- Scientific and Research Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Vitalina Bodenko
- Scientific and Research Laboratory of Chemical and Pharmaceutical Research, Siberian State Medical University, Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Affibody AB, Solna, Sweden
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Zoi V, Giannakopoulou M, Alexiou GA, Bouziotis P, Thalasselis S, Tzakos AG, Fotopoulos A, Papadopoulos AN, Kyritsis AP, Sioka C. Nuclear Medicine and Cancer Theragnostics: Basic Concepts. Diagnostics (Basel) 2023; 13:3064. [PMID: 37835806 PMCID: PMC10572920 DOI: 10.3390/diagnostics13193064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer theragnostics is a novel approach that combines diagnostic imaging and radionuclide therapy. It is based on the use of a pair of radiopharmaceuticals, one optimized for positron emission tomography imaging through linkage to a proper radionuclide, and the other bearing an alpha- or beta-emitter isotope that can induce significant damage to cancer cells. In recent years, the use of theragnostics in nuclear medicine clinical practice has increased considerably, and thus investigation has focused on the identification of novel radionuclides that can bind to molecular targets that are typically dysregulated in different cancers. The major advantages of the theragnostic approach include the elimination of multi-step procedures, reduced adverse effects to normal tissues, early diagnosis, better predictive responses, and personalized patient care. This review aims to discuss emerging theragnostic molecules that have been investigated in a series of human malignancies, including gliomas, thyroid cancer, neuroendocrine tumors, cholangiocarcinoma, and prostate cancer, as well as potent and recently introduced molecular targets, like cell-surface receptors, kinases, and cell adhesion proteins. Furthermore, special reference has been made to copper radionuclides as theragnostic agents and their radiopharmaceutical applications since they present promising alternatives to the well-studied gallium-68 and lutetium-177.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
| | | | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45110 Ioannina, Greece
| | - Penelope Bouziotis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece;
| | | | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
- Department of Nuclear Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
25
|
Hatamabadi D, Joukar S, Shakeri P, Balalaie S, Yazdani A, Khoramjouy M, Mazidi SM, Kobarfard F, Mosayebnia M, Bozorgchami N, Ahmadi M, Ayyoubzadeh SM, Shahhosseini S. Synthesis and Radiolabeling of Glu-Urea-Lys with 99mTc-Tricarbonyl-Imidazole-Bathophenanthroline Disulfonate Chelation System and Biological Evaluation as Prostate-Specific Membrane Antigen Inhibitor. Cancer Biother Radiopharm 2023; 38:486-496. [PMID: 37578479 DOI: 10.1089/cbr.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Background: The Glu-Urea-Lys (EUK) pharmacophore as prostate-specific membrane antigen (PSMA)-targeted ligand was synthesized, radiolabeled with 99mTc-tricarbonyl-imidazole-BPS chelation system, and biological activities were evaluated. The strategy [2 + 1] ligand is applied for tricarbonyl labeling. (5-imidazole-1-yl)pentanoic acid as a monodentate ligand and bathophenanthroline disulfonate (BPS) as a bidentate ligand formed a chelate system with 99mTc-tricarbonyl. EUK-pentanoic acid-imidazole and EUK were evaluated for PSMA active site using AutoDock 4 software. Materials and Methods: EUK-pentanoic acid-imidazole was synthesized in two steps. BPS was radiolabeled with 99mTc-tricarbonyl at 100°C for 30 min. The purified 99mTc(CO)3(H2O)BPS was used to radiolabel EUK-pentanoic acid-imidazole at 100°C, 30 min. Radiochemical purity, Log P, and stability studies were carried out within 24 h. Affinity of 99mTc(CO)3BPS-imidazole-EUK was performed in the saturation binding studies using LNCaP cells at 37°C for 1 h with a range of 0.001-1000 nM radiolabeled compound range. Internalization studies were performed in LNCaP cells with 1000 nM radiolabeled compound incubated for (0-2) h at 37°C. Biodistribution was studied in normal male Balb/c mice. The artificial intelligence predicts the uptake of radiolabeled compound in tumor. Results: The structures of synthesized compounds were confirmed by mass spectroscopy. Radiochemical purity, Log P, and protein binding were ≥95%, -0.2%, and 23%, respectively. The radiolabeled compound was stable in saline and human plasma within 24 h with radiochemical purity ≥90%. There was no release of 99mTc within 4 h in competition with histidine. The affinity was 82 ± 26.38 nM, and the activity increased inside the cells over time. Biodistribution studies showed radioactivity accumulation in kidneys less than 99mTc-HYNIC-PSMA. There was a moderate accumulation of radioactivity in the liver and intestine. Conclusion: Based on the results, 99mTc(CO)3BPS-imidazole-EUK can potentially be used as an imaging agent for studies at prostate bed and distal areas. The chelate system can be potentially labeled with rhenium for imaging studies (fluorescent or scintigraphy) and therapy.
Collapse
Affiliation(s)
- Dara Hatamabadi
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safura Joukar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Shakeri
- Peptide Chemistry Research Institute, K. N. Toosi University of Technolology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technolology, Tehran, Iran
| | - Abdolreza Yazdani
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mazidi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
| | - Farzad Kobarfard
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Bozorgchami
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Siebinga H, Privé BM, Peters SMB, Nagarajah J, Dorlo TPC, Huitema ADR, de Wit‐van der Veen BJ, Hendrikx JJMA. Population pharmacokinetic dosimetry model using imaging data to assess variability in pharmacokinetics of 177 Lu-PSMA-617 in prostate cancer patients. CPT Pharmacometrics Syst Pharmacol 2023; 12:1060-1071. [PMID: 36760133 PMCID: PMC10431047 DOI: 10.1002/psp4.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 02/11/2023] Open
Abstract
Studies to evaluate and optimize [177 Lu]Lu-PSMA treatment focus primarily on individual patient data. A population pharmacokinetic (PK) dosimetry model was developed to explore the potential of using imaging data as input for population PK models and to characterize variability in organ and tumor uptake of [177 Lu]Lu-PSMA-617 in patients with low volume metastatic prostate cancer. Simulations were performed to identify the effect of dose adjustments on absorbed doses in salivary glands and tumors. A six-compartment population PK model was developed, consisting of blood, salivary gland, kidneys, liver, tumor, and a lumped compartment representing other tissue (compartment 1-6, respectively), based on data from 10 patients who received [177 Lu]Lu-PSMA-617 (2 cycles, ~ 3 and ~ 6 GBq). Data consisted of radioactivity levels (decay corrected) in blood and tissues (9 blood samples and 5 single photon emission computed tomography/computed tomography scans). Observations in all compartments were adequately captured by individual model predictions. Uptake into salivary glands was saturable with an estimated maximum binding capacity (Bmax ) of 40.4 MBq (relative standard error 12.3%) with interindividual variability (IIV) of 59.3% (percent coefficient of variation [CV%]). IIV on other PK parameters was relatively minor. Tumor volume was included as a structural effect on the tumor uptake rate constant (k15 ), where a two-fold increase in tumor volume resulted in a 1.63-fold increase in k15 . In addition, interoccasion variability on k15 improved the model fit (43.5% [CV%]). Simulations showed a reduced absorbed dose per unit administered activity for salivary glands after increasing radioactivity dosing from 3 to 6 GBq (0.685 Gy/GBq vs. 0.421 Gy/GBq, respectively). All in all, population PK modeling could help to improve future radioligand therapy research.
Collapse
Affiliation(s)
- Hinke Siebinga
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Nuclear MedicineThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Bastiaan M. Privé
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Steffie M. B. Peters
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - James Nagarajah
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Thomas P. C. Dorlo
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacyUppsala UniversityUppsalaSweden
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Clinical PharmacyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Jeroen J. M. A. Hendrikx
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Nuclear MedicineThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
27
|
Shi Y, Feng Y, Xu L, Li W, Guan L, Zuo R, Liu S, Pang H, Wang Z. The value of gallium-68 prostate-specific membrane antigen PET/CT and 2-[18F]fluoro-2-deoxy-D-glucose PET/CT in the detection of thyroid cancer lesions: a prospective head-to-head comparison. Br J Radiol 2023:bjr.20230291. [PMID: 38904463 DOI: 10.1259/bjr.20230291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 07/03/2023] Open
Abstract
OBJECTIVE Thyroid cancer is increasing in incidence. Prostate-specific membrane antigen (PSMA) targeted radionuclide imaging and treatment demonstrated remarkable value in prostate cancer patients. Studies have shown that PSMA is also expressed in thyroid cancer. Our purpose is to evaluate the clinical usefulness of [68Ga]Ga-PSMA-11 PET/CT for the diagnosis of thyroid cancer. METHODS We enrolled 23 DTC and 17 RAIR-DTC patients prospectively. All patients underwent [68Ga]Ga-PSMA-11 PET/CT and 2-[18F]FDG PET/CT. PSMA expression was determined by immunohistochemistry on histological samples of lymphatic metastasis of 12 patients. We compared the detection rates and semi-quantitative parameters between [68Ga]Ga-PSMA-11PET/CT and 2-[18F]FDG PET/CT. RESULTS A total of 72 lesions were detected. Detection rates of DTC and RAIR-DTC by [68Ga]Ga-PSMA-11 PET/CT were lower than those by 2-[18F]FDG PET/CT (60.00% vs. 90.00%, P = .004; 59.38% vs. 96.88%). Compared with DTC, RAIR-DTC had higher semi-quantitative parameters of 2-[18F]FDG PET/CT. There was no significant difference in semi-quantitative parameters of [68Ga]Ga-PSMA-11 PET/CT between DTC and RAIR-DTC. Immunohistochemistry showed a significantly higher PSMA expression for RAIR-DTC than for DTC. However, there was no significant correlation between PSMA expression and SUVmax on 68Ga-PSMA [68Ga]Ga-PSMA-11 PET/CT. CONCLUSIONS [68Ga]Ga-PSMA-11 PET/CT can detect thyroid cancer metastases but its detection rate was lower than that of 2-[18F]FDG PET/CT. There was a difference in PSMA expression levels between DTC and RAIR-DTC, but the difference was not reflected on [68Ga]Ga-PSMA-11 PET/CT. ADVANCES IN KNOWLEDGE [68Ga]Ga-PSMA-11 PET/CT has potential value in the diagnosis of thyroid cancer. [68Ga]Ga-PSMA-11 PET/CT could screen out patients who may benefit from PSMA-targeted radionuclide therapy.
Collapse
Affiliation(s)
- Yangrui Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuyue Feng
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lu Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenbo Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lili Guan
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shuang Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhengjie Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
28
|
Novruzov E, Schmitt D, Mattes-György K, Beu M, Mori Y, Dabir M, Radtke JP, Niegisch G, Albers P, Schimmöller L, Antoch G, Antke C, Giesel FL, Mamlins E. Intra-Individual Comparison of Physiologic [ 68Ga]Ga-PSMA-11 and [ 18F]PSMA-1007 Uptake in Ganglia in Patients with Prostate Cancer: A Retrospective, Monocentric Analysis. Cancers (Basel) 2023; 15:2787. [PMID: 37345124 DOI: 10.3390/cancers15102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Several studies indicate, particularly in the case of [18F]PSMA-1007, a relatively high rate of detection of ganglia in PSMA PET imaging. Ganglia are an integral part of the sympathetic portion of the autonomous nervous system. To date, no studies have directly compared [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 ganglionic uptake intra-individually and analyzed the underlying molecular and physical mechanisms of different detection rates. With this monocentric retrospective study, we sought to evaluate the intra-individual physiological ganglion uptake of these different PSMA ligands in evidence-based imaging for prostate cancer. METHODS Our cohort consists of 19 male patients (median age 72 ± 9 with a range of 56-85) with biochemical recurrence of prostate cancer who underwent both [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT in our clinic on the same scanner per standard care between March 2015 and March 2022. Tracer uptake was quantified according to maximum standardized uptake value (SUVmax) for both [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT scans. Ganglia-to-background ratios (GBRs) were determined to quantify the image contrast through dividing the SUVmax of the ganglia by the background value (SUVmax of blood pool in the descending aorta, fatty tissue, and skeletal muscle in gluteal region). We used descriptive analyses for demographics and tumor characteristics and performed two-way repeated-measures ANOVA (analysis of variance) for SUV metrics including GBR measurements. RESULTS In total, we examined 101 ganglia with [18F]PSMA-1007 scanning, localized mostly in pairs as stellate, coeliac, and sacral, of which 76 were also detected with [68Ga]Ga-PSMA-11 PET/CT scanning. There was no statistically significant difference in PSMA uptake in terms of SUVmax between [18F]PSMA-1007 and [68Ga]Ga-PSMA-11 (p value: 0.052). In contrast, the comparison of GBRs revealed a higher detectability rate of ganglia with [18F]PSMA-1007 imaging (p < 0.001). Furthermore, a separate comparison of ganglia with respect to their anatomical location also demonstrated statistically significant differences both within and between [18F]PSMA-1007 and [68Ga]Ga-PSMA-11 PET/CT scans. CONCLUSION Given the impression of more accentuated [18F]PSMA-1007 uptake in ganglia compared with 68Ga-labelled counterparts, our study demonstrated that the better detectability of ganglia is not due to more intense [18F]PSMA-1007 uptake by these small structures but to much more favorable physical properties of the radionuclide 18F. The most relevant limitations of our study are its retrospective design and the small patient cohort.
Collapse
Affiliation(s)
- Emil Novruzov
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Dominik Schmitt
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Katalin Mattes-György
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Markus Beu
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Yuriko Mori
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Mardjan Dabir
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Jan Philipp Radtke
- Department of Urology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Peter Albers
- Department of Urology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Lars Schimmöller
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Christina Antke
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Eduards Mamlins
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Turkbey B, Oto A, Allen BC, Akin O, Alexander LF, Ari M, Froemming AT, Fulgham PF, Gettle LM, Maranchie JK, Rosenthal SA, Schieda N, Schuster DM, Venkatesan AM, Lockhart ME. ACR Appropriateness Criteria® Post-Treatment Follow-up of Prostate Cancer: 2022 Update. J Am Coll Radiol 2023; 20:S164-S186. [PMID: 37236741 DOI: 10.1016/j.jacr.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 05/28/2023]
Abstract
Prostate cancer has a wide spectrum ranging between low-grade localized disease and castrate-resistant metastatic disease. Although whole gland and systematic therapies result in cure in the majority of patients, recurrent and metastatic prostate cancer can still occur. Imaging approaches including anatomic, functional, and molecular modalities are continuously expanding. Currently, recurrent and metastatic prostate cancer is grouped in three major categories: 1) Clinical concern for residual or recurrent disease after radical prostatectomy, 2) Clinical concern for residual or recurrent disease after nonsurgical local and pelvic treatments, and 3) Metastatic prostate cancer treated by systemic therapy (androgen deprivation therapy, chemotherapy, immunotherapy). This document is a review of the current literature regarding imaging in these settings and the resulting recommendations for imaging. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Baris Turkbey
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Aytekin Oto
- Panel Chair, University of Chicago, Chicago, Illinois
| | - Brian C Allen
- Panel Vice-Chair, Duke University Medical Center, Durham, North Carolina
| | - Oguz Akin
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Mim Ari
- The University of Chicago, Chicago, Illinois, Primary care physician
| | | | - Pat F Fulgham
- Urology Clinics of North Texas, Dallas, Texas; American Urological Association
| | | | | | - Seth A Rosenthal
- Sutter Medical Group, Sacramento, California; Commission on Radiation Oncology
| | - Nicola Schieda
- Ottawa Hospital Research Institute and the Department of Radiology, The University of Ottawa, Ottawa, Ontario, Canada
| | - David M Schuster
- Emory University, Atlanta, Georgia; Commission on Nuclear Medicine and Molecular Imaging
| | | | - Mark E Lockhart
- Specialty Chair, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
30
|
Adiyat KT, Pooleri GK, Cherian DT, Santhamma SGN, Ravichandran K, Sundaram S. Negative predictive value of PSMA PET scan for lymph node staging in patients undergoing robotic radical prostatectomy and pelvic lymph node dissection. Int Urol Nephrol 2023; 55:1453-1457. [PMID: 37086333 DOI: 10.1007/s11255-023-03595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
PURPOSE To assess the negative predictive value of PSMA PET scan for lymph node staging in patients undergoing robotic radical prostatectomy and pelvic lymph node dissection. MATERIALS AND METHODS A retrospective analysis of patients who underwent robotic-assisted radical prostatectomy with pelvic lymph node dissection and had a preoperative negative PSMA PET scan for metastasis was performed. The documented pre-operative variables studied included age, BMI, PSA at diagnosis, Gleason score, and biopsy ISUP grades. Patients were categorised as low, intermediate and high risk according to the D Amico classification. The post-op variables included were number of lymph nodes harvested, number of positive nodes, positivity rate, size of the node metastasis, T staging and ISUP grading. RESULTS The overall negative predictive value of PSMA PET scan was 71.6%. Further sub-classification according to risk stratification demonstrated a NPV of 58.02%, 92.7% and 90% for high, intermediate and low risk, respectively. CONCLUSION Pelvic lymph node dissection cannot be excluded based on a negative preop PSMA PET/CT scan.
Collapse
Affiliation(s)
- Kishore Thekke Adiyat
- Aster Medcity, Kochi, India.
- Department of Urology, Aster Medcity, Kuttisahib Road, Cheranelloor, Ernakulam, Kerala, 682027, India.
| | | | | | | | | | | |
Collapse
|
31
|
Periche PG, Lin J, Bhupathiraju NVSDK, Kalidindi T, Johnson DS, Pillarsetty N, Mootoo DR. Targeting Carbohydrate Mimetics of Tetrahydrofuran-Containing Acetogenins to Prostate Cancer. Molecules 2023; 28:molecules28072884. [PMID: 37049648 PMCID: PMC10095889 DOI: 10.3390/molecules28072884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The high potency of the tetrahydrofuran-containing acetogenins (THF-ACGs) against a broad range of human cancer cell lines has stimulated interest in structurally simpler mimetics. In this context, we have previously reported THF-ACG mimetics in which the THF and butenolide moieties of a mono-THF-ACG were replaced with carbohydrate and thiophene residues, respectively. In the present study, towards the targeting of these carbohydrate analogues to prostate cancer (PCa), we synthesized prodrugs in which a parent thiophene or butenolide congener was conjugated through a self-immolative linker to 2-[3-(1,3-dicarboxypropyl)ureido] pentanedioic acid (DUPA), a highly specific ligand for prostate-specific membrane antigen (PSMA), which is overexpressed on prostate tumors. Both prodrugs were found to be more active against receptor positive LNCaP than receptor-negative PC-3 cells, with 2.5 and 12 times greater selectivity for the more potent thiophene analog and the less active butenolide congener, respectively. This selectivity for LNCaP over PC-3 contrasted with the behavior of the parent drugs, which showed similar or significantly higher activity for PC-3 compared to LNCaP. These data support the notion that higher activity of these DUPA-derived prodrugs against LNCaP cells is connected to their binding to PSMA and suggest that the conjugation of PSMA ligands to this family of cytotoxic agents may be effective for targeting them to PCa.
Collapse
Affiliation(s)
- Patricia Gonzalez Periche
- Department of Chemistry, Hunter College and The Graduate Center, City University of New York, New York, NY 10065, USA
| | - Jacky Lin
- Department of Chemistry, Hunter College and The Graduate Center, City University of New York, New York, NY 10065, USA
| | - Naga V S D K Bhupathiraju
- Department of Chemistry, Hunter College and The Graduate Center, City University of New York, New York, NY 10065, USA
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Delissa S Johnson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - David R Mootoo
- Department of Chemistry, Hunter College and The Graduate Center, City University of New York, New York, NY 10065, USA
| |
Collapse
|
32
|
Murar M, Pujals S, Albertazzi L. Multivalent effect of peptide functionalized polymeric nanoparticles towards selective prostate cancer targeting. NANOSCALE ADVANCES 2023; 5:1378-1385. [PMID: 36866255 PMCID: PMC9972852 DOI: 10.1039/d2na00601d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The concept of selective tumor targeting using nanomedicines has been around for decades; however, no targeted nanoparticle has yet reached the clinic. A key bottleneck is the non-selectivity of targeted nanomedicines in vivo, which is attributed to the lack of characterization of their surface properties, especially the ligand number, thereby calling for robust techniques that allow quantifiable outcomes for an optimal design. Multivalent interactions comprise multiple copies of ligands attached to scaffolds, allowing simultaneous binding to receptors, and they play an important role in targeting. As such, 'multivalent' nanoparticles facilitate simultaneous interaction of weak surface ligands with multiple target receptors resulting in higher avidity and enhanced cell selectivity. Therefore, the study of weak binding ligands for membrane-exposed biomarkers is crucial for the successful development of targeted nanomedicines. Here we carried out a study of a cell targeting peptide known as WQP having weak binding affinity for prostate specific membrane antigen, a known prostate cancer biomarker. We evaluated the effect of its multivalent targeting using polymeric NPs over its monomeric form on the cellular uptake in different prostate cancer cell lines. We developed a method of specific enzymatic digestion to quantify the number of WQPs on NPs having different surface valencies and observed that increasing valencies resulted in a higher cellular uptake of WQP-NPs over the peptide alone. We also found that WQP-NPs showed higher uptake in PSMA over-expressing cells, attributed to a stronger avidity for selective PSMA targeting. This kind of strategy can be useful for improving the binding affinity of a weak ligand as a means for selective tumor targeting.
Collapse
Affiliation(s)
- Madhura Murar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| | - Silvia Pujals
- Institute for Advanced Chemistry of Catalonia (IQAC) Barcelona Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) Barcelona Spain
- Department of Biomedical Engineering, Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
33
|
Berenguer CV, Pereira F, Câmara JS, Pereira JAM. Underlying Features of Prostate Cancer-Statistics, Risk Factors, and Emerging Methods for Its Diagnosis. Curr Oncol 2023; 30:2300-2321. [PMID: 36826139 PMCID: PMC9955741 DOI: 10.3390/curroncol30020178] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently occurring type of malignant tumor and a leading cause of oncological death in men. PCa is very heterogeneous in terms of grade, phenotypes, and genetics, displaying complex features. This tumor often has indolent growth, not compromising the patient's quality of life, while its more aggressive forms can manifest rapid growth with progression to adjacent organs and spread to lymph nodes and bones. Nevertheless, the overtreatment of PCa patients leads to important physical, mental, and economic burdens, which can be avoided with careful monitoring. Early detection, even in the cases of locally advanced and metastatic tumors, provides a higher chance of cure, and patients can thus go through less aggressive treatments with fewer side effects. Furthermore, it is important to offer knowledge about how modifiable risk factors can be an effective method for reducing cancer risk. Innovations in PCa diagnostics and therapy are still required to overcome some of the limitations of the current screening techniques, in terms of specificity and sensitivity. In this context, this review provides a brief overview of PCa statistics, reporting its incidence and mortality rates worldwide, risk factors, and emerging screening strategies.
Collapse
Affiliation(s)
- Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Ferdinando Pereira
- SESARAM—Serviço de Saúde da Região Autónoma da Madeira, EPERAM, Hospital Dr. Nélio Mendonça, Avenida Luís de Camões 6180, 9000-177 Funchal, Portugal
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Correspondence:
| |
Collapse
|
34
|
Yechiel Y, Orr Y, Gurevich K, Gill R, Keidar Z. Advanced PSMA-PET/CT Imaging Parameters in Newly Diagnosed Prostate Cancer Patients for Predicting Metastatic Disease. Cancers (Basel) 2023; 15:cancers15041020. [PMID: 36831365 PMCID: PMC9954788 DOI: 10.3390/cancers15041020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
(1) Purpose: Recent studies indicate that advanced imaging parameters such as prostate PSMA tumor volume may have a value in predicting response to treatment of castration-resistant prostate cancer patients. In this study, we examine whether a relationship can be found between advanced imaging parameters such as prostate PSMA-TV and the presence of metastatic disease in newly diagnosed prostate cancer patients undergoing PSMA-PET/CT for staging purposes; (2) Methods: We retrospectively analyzed PET/CT studies of 91 patients with newly diagnosed prostate cancer. Prostate PSMA-TV was measured using the MIRADA-XD software. PET/CT results were recorded, as well as additional clinical parameters such as the Gleason score, etc.; (3) Results: Prostate PSMA-TV measurements were found to be able to significantly differentiate metastatic from the non-metastatic patient groups (13.7 vs. 5.5, p-value < 0.05). Overall, 54% percent of patients with levels of over 8.1 PSMA-TV had metastatic lesions found on their PSMA-PET/CT. A model based on this cutoff attained a sensitivity of 80%, a specificity of 68.3%, and a negative predictive value of 93.5% for identifying metastatic disease. Another bin model was found statistically capable of assessing the likelihood of the presence of metastatic disease with a p-value of 0.001; (4) Conclusions: Prostate PSMA-TV measurement has the potential to predict the presence of metastatic disease at staging and thus may impact further treatment decision and patient management.
Collapse
Affiliation(s)
- Yaniv Yechiel
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
- Correspondence: ; Tel.: +972-48543009
| | - Yaly Orr
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Konstantin Gurevich
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Ronit Gill
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Zohar Keidar
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3109601, Israel
| |
Collapse
|
35
|
Lucaroni L, Georgiev T, Prodi E, Puglioli S, Pellegrino C, Favalli N, Prati L, Manz MG, Cazzamalli S, Neri D, Oehler S, Bassi G. Cross-reactivity to glutamate carboxypeptidase III causes undesired salivary gland and kidney uptake of PSMA-targeted small-molecule radionuclide therapeutics. Eur J Nucl Med Mol Imaging 2023; 50:957-961. [PMID: 36184692 DOI: 10.1007/s00259-022-05982-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Recently, Pluvicto™ ([177Lu]Lu-PSMA-617), a small-molecule prostate-specific membrane antigen (PSMA) radioligand therapeutic, has been approved by the FDA in metastatic castration-resistant prostate cancer. Pluvicto™ and other PSMA-targeting radioligand therapeutics (RLTs) have shown side effects due to accumulation in certain healthy tissues, such as salivary glands and kidney. Until now, the molecular mechanism underlying the undesired accumulation of PSMA-targeting RLTs had not been elucidated. METHODS We compared the sequence of PSMA with the entire human proteome to identify proteins closely related to the target. We have identified glutamate carboxypeptidase III (GCPIII), N-acetylated alpha-linked acidic dipeptidase like 1 (NAALADL-1), and transferrin receptor 1 (TfR1) as extracellular targets with the highest similarity to PSMA. The affinity of compound 1 for PSMA, GCPIII, NAALADL-1, and TfR1 was measured by fluorescence polarization. The expression of the putative anti-target GCPIII was assessed by immunofluorescence on human salivary glands and kidney, using commercially available antibodies. RESULTS A fluorescent derivative of Pluvicto™ (compound 1) bound tightly to PSMA and to GCPIII in fluorescence polarization experiments, while no interaction was observed with NAALADL-1 and TfR1. Immunofluorescence analysis revealed abundant expression of GCPIII both in healthy human kidney and salivary glands. CONCLUSION We conclude that the membranous expression of GCPIII in kidney and salivary gland may be the underlying cause for unwanted accumulation of Pluvicto™ and other Glu-ureido PSMA radio pharmaceuticals in patients.
Collapse
Affiliation(s)
- Laura Lucaroni
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Tony Georgiev
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Eleonora Prodi
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Sara Puglioli
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Christian Pellegrino
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Nicholas Favalli
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Luca Prati
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Dario Neri
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland
| | - Sebastian Oehler
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland.
| | - Gabriele Bassi
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, (ZH), Switzerland.
| |
Collapse
|
36
|
Parihar AS, Hofman MS, Iravani A. 177Lu-Prostate-specific Membrane Antigen Radioligand Therapy in Patients with Metastatic Castration-resistant Prostate Cancer. Radiology 2023; 306:e220859. [PMID: 36125377 DOI: 10.1148/radiol.220859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 76-year-old man with metastatic castration-resistant prostate carcinoma progressing with antiandrogen and taxane therapy was treated with lutetium 177 prostate-specific membrane antigen (PSMA)-617 and showed marked biochemical and imaging response, with improvement in clinical status and osseous pain. A summary of nuclear medicine theranostics with emphasis on PSMA targeting agents is presented.
Collapse
Affiliation(s)
- Ashwin Singh Parihar
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Suite 3433, MIR East Building, St Louis, MO 63110 (A.S.P., A.I.); and Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.)
| | - Michael S Hofman
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Suite 3433, MIR East Building, St Louis, MO 63110 (A.S.P., A.I.); and Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.)
| | - Amir Iravani
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Suite 3433, MIR East Building, St Louis, MO 63110 (A.S.P., A.I.); and Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia (M.S.H.)
| |
Collapse
|
37
|
Shah HJ, Ruppell E, Bokhari R, Aland P, Lele VR, Ge C, McIntosh LJ. Current and upcoming radionuclide therapies in the direction of precision oncology: A narrative review. Eur J Radiol Open 2023; 10:100477. [PMID: 36785643 PMCID: PMC9918751 DOI: 10.1016/j.ejro.2023.100477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 02/01/2023] Open
Abstract
As new molecular tracers are identified to target specific receptors, tissue, and tumor types, opportunities arise for the development of both diagnostic tracers and their therapeutic counterparts, termed "theranostics." While diagnostic tracers utilize positron emitters or gamma-emitting radionuclides, their theranostic counterparts are typically bound to beta and alpha emitters, which can deliver specific and localized radiation to targets with minimal collateral damage to uninvolved surrounding structures. This is an exciting time in molecular imaging and therapy and a step towards personalized and precise medicine in which patients who were either without treatment options or not candidates for other therapies now have expanded options, with tangible data showing improved outcomes. This manuscript explores the current state of theranostics, providing background, treatment specifics, and toxicities, and discusses future potential trends.
Collapse
Affiliation(s)
- Hina J. Shah
- Department of Radiology, Division of Nuclear Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Imaging, Dana-Farber Cancer Institute, Boston, MA 02115, USA,Corresponding author at: Department of Radiology, Division of Nuclear Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | - Evan Ruppell
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA 01655, USA
| | - Rozan Bokhari
- Department of Radiology, Beth Israel Lahey Health, Burlington, MA 01803, USA
| | - Parag Aland
- In-charge Nuclear Medicine and PET/CT, Infinity Medical Centre, Mumbai, Maharashtra 400015, India
| | - Vikram R. Lele
- Chief, Department of Nuclear Medicine and PET/CT, Jaslok Hospital and Research Centre, Mumbai, Maharashtra 400026, India
| | - Connie Ge
- University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lacey J. McIntosh
- Division of Oncologic and Molecular Imaging, University of Massachusetts Chan Medical School / Memorial Health Care, Worcester, MA 0165, USA
| |
Collapse
|
38
|
Sun JX, Xu JZ, An Y, Ma SY, Liu CQ, Zhang SH, Luan Y, Wang SG, Xia QD. Future in precise surgery: Fluorescence-guided surgery using EVs derived fluorescence contrast agent. J Control Release 2023; 353:832-841. [PMID: 36496053 DOI: 10.1016/j.jconrel.2022.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Surgery is the only cure for many solid tumors, but positive resection margins, damage to vital nerves, vessels and organs during surgery, and the range and extent of lymph node dissection are significant concerns which hinder the development of surgery. The emergence of fluorescence-guided surgery (FGS) means a farewell to the era when surgeons relied only on visual and tactile feedback, and it gives surgeons another eye to distinguish tumors from normal tissues for precise resection and helps to find a balance between complete tumor lesions removal and maximal organ function conservation. However, the existing synthetic fluorescence contrast agent has flaws in safety, specificity and biocompatibility to various extents. Extracellular vesicles (EVs) are a group of heterogeneous types of cell-derived membranous structures present in all biological fluids. EVs, especially engineered targeting EVs, play an increasingly important role in drug delivery because of their good biocompatibility, validated safety and targeting ability. Nevertheless, few studies have employed EVs loaded with fluorophores to construct fluorescence contrast agents and used them in FGS. Here, we systematically reviewed the current state of knowledge regarding FGS, fundamental characteristics of EVs, and the development of engineered targeting EVs, and put forward a novel strategy and procedures to produce EVs-based fluorescence contrast agent used in fluorescence-guided surgery.
Collapse
Affiliation(s)
- Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Yang Luan
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China.
| |
Collapse
|
39
|
Yang H, Gao Z, Xu X, Liu C, Hu S, Zhang J, Song S. Dosimetry estimation and preliminary clinical application of [ 99mTc]Tc-HYNIC-PSMA-XL-2 in prostate cancer. Ann Nucl Med 2023; 37:60-69. [PMID: 36346503 DOI: 10.1007/s12149-022-01804-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Molecular imaging of prostate-specific membrane antigen (PSMA) inhibitors has become a favorite for prostate cancer (PCa). This study aimed to estimate the dosimetry and the preliminary clinical application of the [99mTc]Tc-HYNIC-PSMA-XL-2, which is a novel imaging tracer invented by our team that can specifically targets PSMA for PCa and its metastases. METHODS The single-photon emission computed tomography (SPECT) whole-body (WB) planar images were collected on 6 patients at 0.5, 1.0, 2.0, 4.0 and 8.0 h after 99mTc-PSMA-XL-2 injection, respectively. The SPECT/computed tomography (CT) scan was carried out immediately following the WB planar image scan performed after 2.0 h. The volumes of interest (VOIs) of the bladder, heart wall, intestines, kidneys, liver, lungs, and spleen were segmented in the SPECT/CT images. VOIs of the salivary glands and the whole body were drawn in SPECT planar images. The dosimetry toolkit was used to process the data and project the SPECT/CT images onto planar images. The dosimetry analysis was performed using the IDAC-Dose dosimetry software. Furthermore, other PCa patients were enrolled to study the preliminary clinical application of [99mTc]Tc-HYNIC-PSMA-XL-2. RESULTS The clearance of [99mTc]Tc-HYNIC-PSMA-XL-2 is primarily by the hepatobiliary and intestinal system, due to its lipophilic characteristic. The effective half-life of [99mTc]Tc-HYNIC-PSMA-XL-2 is about 3.90 h. High absorbed doses were observed in the salivary glands (1.93E-02 ± 3.88E-03 mSv/MBq), kidneys (1.63E-02 ± 7.32E-03 mSv/MBq) and spleen (1.21E-02 ± 2.64E-03 mSv/MBq). The total body effective dose was 4.84E-03 ± 9.30E-05 mSv/MBq. The preliminary clinical case indicated that [99mTc]Tc-HYNIC-PSMA-XL-2 SPECT/CT could detect the primary prostate lesion, lymph node and bone metastases comprehensively. CONCLUSION [99mTc]Tc-HYNIC-PSMA-XL-2 is a safe SPECT/CT tracer, which can detect prostate malignant lesions without interference from the bladder. In addition, the malignant lesions of the lymph node and bone of PCa patients also can be detected efficiently.
Collapse
Affiliation(s)
- Hongxing Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Institute of Modern Physics, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Zhiqi Gao
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Institute of Modern Physics, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Institute of Modern Physics, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Chang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Institute of Modern Physics, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Silong Hu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, China.,Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China.,Institute of Modern Physics, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, China. .,Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, China. .,Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China. .,Institute of Modern Physics, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, No. 130, Dong'an Road, Xuhui District, Shanghai, 200032, China. .,Center for Biomedical Imaging, Fudan University, No. 270, Dong'an Road, Shanghai, 200032, China. .,Shanghai Engineering Research Center for Molecular Imaging Probes, No. 270, Dong'an Road, Xuhui District, Shanghai, 200032, China. .,Institute of Modern Physics, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
40
|
Arvola S, Seppänen M, Timonen KL, Rautio P, Ettala O, Anttinen M, Boström PJ, Noponen T. Detection of prostate cancer bone metastases with fast whole-body 99mTc-HMDP SPECT/CT using a general-purpose CZT system. EJNMMI Phys 2022; 9:85. [PMID: 36508016 PMCID: PMC9743860 DOI: 10.1186/s40658-022-00517-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We evaluated the effects of acquisition time, energy window width, and matrix size on the image quality, quantitation, and diagnostic performance of whole-body 99mTc-HMDP SPECT/CT in the primary metastasis staging of prostate cancer. METHODS Thirty prostate cancer patients underwent 99mTc-HMDP SPECT/CT from the top of the head to the mid-thigh using a Discovery NM/CT 670 CZT system with list-mode acquisition, 50-min acquisition time, 15% energy window width, and 128 × 128 matrix size. The acquired list-mode data were resampled to produce data sets with shorter acquisition times of 41, 38, 32, 26, 20, and 16 min, narrower energy windows of 10, 8, 6, and 4%, and a larger matrix size of 256 × 256. Images were qualitatively evaluated by three experienced nuclear medicine physicians and quantitatively evaluated by noise, lesion contrast and SUV measurements. Diagnostic performance was evaluated from the readings of two experienced nuclear medicine physicians in terms of patient-, region-, and lesion-level sensitivity and specificity. RESULTS The originally acquired images had the best qualitative image quality and lowest noise. However, the acquisition time could be reduced to 38 min, the energy window narrowed to 8%, and the matrix size increased to 256 × 256 with still acceptable qualitative image quality. Lesion contrast and SUVs were not affected by changes in acquisition parameters. Acquisition time reduction had no effect on the diagnostic performance, as sensitivity, specificity, accuracy, and area under the receiver-operating characteristic curve were not significantly different between the 50-min and reduced acquisition time images. The average patient-level sensitivities of the two readers were 88, 92, 100, and 96% for the 50-, 32-, 26-, and 16-min images, respectively, and the corresponding specificities were 78, 84, 84, and 78%. The average region-level sensitivities of the two readers were 55, 58, 59, and 56% for the 50-, 32-, 26-, and 16-min images, respectively, and the corresponding specificities were 95, 98, 96, and 95%. The number of equivocal lesions tended to increase as the acquisition time decreased. CONCLUSION Whole-body 99mTc-HMDP SPECT/CT can be acquired using a general-purpose CZT system in less than 20 min without any loss in diagnostic performance in metastasis staging of high-risk prostate cancer patients.
Collapse
Affiliation(s)
- Samuli Arvola
- grid.410552.70000 0004 0628 215XDepartment of Clinical Physiology, Nuclear Medicine and Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, P.O. Box 52, 20521 Turku, Finland
| | - Marko Seppänen
- grid.410552.70000 0004 0628 215XDepartment of Clinical Physiology, Nuclear Medicine and Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, P.O. Box 52, 20521 Turku, Finland
| | - Kirsi L. Timonen
- grid.513298.4Department of Clinical Physiology and Nuclear Medicine, Hospital Nova of Central Finland, Jyväskylä, Finland
| | - Pentti Rautio
- grid.416446.50000 0004 0368 0478Department of Clinical Physiology, North Karelia Central Hospital, Joensuu, Finland
| | - Otto Ettala
- grid.1374.10000 0001 2097 1371Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikael Anttinen
- grid.1374.10000 0001 2097 1371Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - Peter J. Boström
- grid.1374.10000 0001 2097 1371Department of Urology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tommi Noponen
- grid.410552.70000 0004 0628 215XDepartment of Clinical Physiology, Nuclear Medicine and Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, P.O. Box 52, 20521 Turku, Finland ,grid.410552.70000 0004 0628 215XDepartment of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|
41
|
van der Gaag S, Bartelink IH, Vis AN, Burchell GL, Oprea-Lager DE, Hendrikse H. Pharmacological Optimization of PSMA-Based Radioligand Therapy. Biomedicines 2022; 10:3020. [PMID: 36551776 PMCID: PMC9775864 DOI: 10.3390/biomedicines10123020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men of middle and older age. The standard treatment strategy for PCa ranges from active surveillance in low-grade, localized PCa to radical prostatectomy, external beam radiation therapy, hormonal treatment and chemotherapy. Recently, the use of prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) for metastatic castration-resistant PCa has been approved. PSMA is predominantly, but not exclusively, expressed on PCa cells. Because of its high expression in PCa, PSMA is a promising target for diagnostics and therapy. To understand the currently used RLT, knowledge about pharmacokinetics (PK) and pharmacodynamics (PD) of the PSMA ligand and the PSMA protein itself is crucial. PK and PD properties of the ligand and its target determine the duration and extent of the effect. Knowledge on the concentration-time profile, the target affinity and target abundance may help to predict the effect of RLT. Increased specific binding of radioligands to PSMA on PCa cells may be associated with better treatment response, where nonspecific binding may increase the risk of toxicity in healthy organs. Optimization of the radioligand, as well as synergistic effects of concomitant agents and an improved dosing strategy, may lead to more individualized treatment and better overall survival.
Collapse
Affiliation(s)
- Suzanne van der Gaag
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - André N. Vis
- Department of Urology, Prostate Cancer Network Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - George L. Burchell
- Medical Library, VU University, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
42
|
Hu X, Zhang D, Zeng Z, Huang L, Lin X, Hong S. Aptamer-Based Probes for Cancer Diagnostics and Treatment. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111937. [PMID: 36431072 PMCID: PMC9695321 DOI: 10.3390/life12111937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers that have the ability to generate unique and diverse tertiary structures that bind to cognate molecules with high specificity. In recent years, aptamer researches have witnessed a huge surge, owing to its unique properties, such as high specificity and binding affinity, low immunogenicity and toxicity, and simplicity of synthesis with negligible batch-to-batch variation. Aptamers may bind to targets, such as various cancer biomarkers, making them applicable for a wide range of cancer diagnosis and treatment. In cancer diagnostic applications, aptamers are used as molecular probes instead of antibodies. They have the potential to detect various cancer-associated biomarkers. For cancer therapeutic purposes, aptamers can serve as therapeutic or delivery agents. The chemical stabilization and modification strategies for aptamers may expand their serum half-life and shelf life. However, aptamer-based probes for cancer diagnosis and therapy still face several challenges for successful clinical translation. A deeper understanding of nucleic acid chemistry, tissue distribution, and pharmacokinetics is required in the development of aptamer-based probes. This review summarizes their application in cancer diagnostics and treatments based on different localization of target biomarkers, as well as current challenges and future prospects.
Collapse
|
43
|
Low TLR and PSMA-TV predict biochemical response to abiraterone acetate in metastatic prostate cancer patients developing castration resistance after chemohormonal therapy at hormone-sensitive stage. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04438-8. [DOI: 10.1007/s00432-022-04438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
44
|
Bukavina L, Luckenbaugh AN, Hofman MS, Hope T, Kamran SC, Murphy DG, Yamoah K, Ost P. Incorporating Prostate-specific Membrane Antigen Positron Emission Tomography in Management Decisions for Men with Newly Diagnosed or Biochemically Recurrent Prostate Cancer. Eur Urol 2022; 83:521-533. [PMID: 36404204 DOI: 10.1016/j.eururo.2022.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Prostate-specific membrane antigen (PSMA) is a promising molecular target for prostate cancer (PCa) that has allowed the development of a novel diagnostic approach to PCA in the primary and recurrent settings. OBJECTIVE To summarize available data and recommendations regarding the use of PSMA in newly diagnosed and recurrent PCa via a narrative review. EVIDENCE ACQUISITION A literature review was conducted using MEDLINE (via PubMed) and Scopus. The search strategy included meta-analyses, reviews, and original studies on staging and restaging with 68Ga-PSMA positron emission tomography (PET)/computed tomography (CT). EVIDENCE SYNTHESIS Studies comparing PSMA-targeted imaging and conventional imaging suggest superior performance of PSMA-targeted imaging in primary and recurrent PCa, albeit with several clinically relevant limitations. Pretreatment 68Ga-PSMA PET/CT allowed more accurate PCa staging in compared to routine practice for high-risk cases, and identified a number of otherwise unknown metastatic lesions. In biochemically recurrent PCa, PSMA PET can reveal sites of recurrence with greater sensitivity and specificity than conventional imaging, potentially detecting a major proportion of occult disease. This review will help providers in applying the most up-to-date and relevant literature to (1) determine which patients truly have oligometastatic disease and (2) ascertain who is most likely to experience a meaningful response to local consolidation in the biochemical recurrence setting. CONCLUSIONS Data on PSMA diagnostic studies in primary and recurrent PCa highlight the accuracy and clinical application of PSMA PET. While this review and the evidence to date might lead to a perception of superiority in metastasis directed therapy, fundamental lack of phase III clinical trials with clinically meaningful outcomes are yet to be determined. PATIENT SUMMARY PSMA (prostate-specific membrane antigen) scans have shown great promise for initial evaluation of prostate cancer (PCa) and in detection of PCa recurrence. The benefits are more apparent for initial staging of PCa. There are more limited clinical trial results for PCa recurrence on how best to use this new technique to guide cancer treatment.
Collapse
|
45
|
Zha Z, Choi SR, Li L, Zhao R, Ploessl K, Yao X, Alexoff D, Zhu L, Kung HF. New PSMA-Targeting Ligands: Transformation from Diagnosis (Ga-68) to Radionuclide Therapy (Lu-177). J Med Chem 2022; 65:13001-13012. [DOI: 10.1021/acs.jmedchem.2c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhihao Zha
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Seok Rye Choi
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Linlin Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ruiyue Zhao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Karl Ploessl
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Xinyue Yao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - David Alexoff
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hank F. Kung
- Five Eleven Pharma Inc., Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
46
|
Rosar F, Hügle MJ, Ries M, Bartholomä M, Maus S, Fries P, Khreish F, Ezziddin S. Benefit of including CT urography in [68Ga]PSMA-11 PET/CT with low-dose CT: first results from a larger prostate cancer cohort analysis. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:280-289. [PMID: 31992688 DOI: 10.23736/s1824-4785.20.03224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Accuracy of [68Ga]PSMA-11 PET/CT may be hampered by ureter accumulation, mimicking lymph node metastases depending on localization and configuration. The benefit of CT urography for differentiation of lymph node metastasis from urinary tract activity was evaluated in a "PET/CT with low-dose CT" setting. METHODS Retrospective analysis of PET/CT for primary staging, biochemical recurrence or local treatment planning in patients with prostate cancer. For CT urography (CTU), iodinated contrast agent was administered 10 minutes prior to image acquisition. All potential pathologic (peri)ureteral tracer uptake was assigned to excretory ureteral accumulation or pathological lesion. To assess additional provided benefit of CTU all foci were rated with an introduced scoring system (ranging from 0 pts: CTU not needed; up to 3 pts: no differentiation possible without CTU). Success of ureter contrasting was assessed by measurement of Hounsfield units. Besides benefit for reading urography-enhanced PET/CT, the possible impact on subsequent patient treatment was evaluated. RESULTS A number of N.=247 patients were included in this study. By CT urography, it was possible to identify each ureter on low-dose CT, with its major part contrasted. In 120/247 (48.6%) patients, urography increased the diagnostic confidence while providing substantial support for interpretation in 60 (24.3%) cases. In 42 (17.0%) patients, urography was clinically relevant (up-/downstaging) with potential impact on subsequent patient care. In 30 of these 42 cases (12.1% of all), discrepant treatment would have resulted from a misdiagnosed tracer accumulation without urography. CONCLUSIONS CT urography benefits the interpretation of [68Ga]-PSMA-11 PET/CT with low-dose CT and leads to discrepant patient treatment in a small but significant subset of patients (12% in our cohort). The implementation of CT urography into standard protocols of [68Ga]PSMA-11 PET/CT with low-dose CT is recommended.
Collapse
Affiliation(s)
- Florian Rosar
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany -
| | - Martin J Hügle
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Martin Ries
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Mark Bartholomä
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Peter Fries
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg, Germany
| | - Fadi Khreish
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
47
|
[ 89Zr]Zr-PSMA-617 PET/CT in biochemical recurrence of prostate cancer: first clinical experience from a pilot study including biodistribution and dose estimates. Eur J Nucl Med Mol Imaging 2022; 49:4736-4747. [PMID: 35930033 PMCID: PMC9606102 DOI: 10.1007/s00259-022-05925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/22/2022] [Indexed: 11/14/2022]
Abstract
Purpose Prostate-specific membrane antigen (PSMA)-targeted PET/CT has become increasingly important in the management of prostate cancer, especially in localization of biochemical recurrence (BCR). PSMA-targeted PET/CT imaging with long-lived radionuclides as 89Zr (T1/2 = 78.4 h) may improve diagnostics by allowing data acquisition on later time points. In this study, we present our first clinical experience including preliminary biodistribution and dosimetry data of [89Zr]Zr-PSMA-617 PET/CT in patients with BCR of prostate cancer. Methods Seven patients with BCR of prostate cancer who revealed no (n = 4) or undetermined (n = 3) findings on [68Ga]Ga-PSMA-11 PET/CT imaging were referred to [89Zr]Zr-PSMA-617 PET/CT. PET/CT imaging was performed 1 h, 24 h, 48 h, and 72 h post injection (p.i.) of 111 ± 11 MBq [89Zr]Zr-PSMA-617 (mean ± standard deviation). Normal organ distribution and dosimetry were determined. Lesions visually considered as suggestive of prostate cancer were quantitatively analyzed. Results Intense physiological uptake was observed in the salivary and lacrimal glands, liver, spleen, kidneys, intestine and urinary tract. The parotid gland received the highest absorbed dose (0.601 ± 0.185 mGy/MBq), followed by the kidneys (0.517 ± 0.125 mGy/MBq). The estimated overall effective dose for the administration of 111 MBq was 10.1 mSv (0.0913 ± 0.0118 mSv/MBq). In 6 patients, and in particular in 3 of 4 patients with negative [68Ga]Ga-PSMA-11 PET/CT, at least one prostate cancer lesion was detected in [89Zr]Zr-PSMA-617 PET/CT imaging at later time points. The majority of tumor lesions were first visible at 24 h p.i. with continuously increasing tumor-to-background ratio over time. All tumor lesions were detectable at 48 h and 72 h p.i. Conclusion [89Zr]Zr-PSMA-617 PET/CT imaging is a promising new diagnostic tool with acceptable radiation exposure for patients with prostate cancer especially when [68Ga]Ga-PSMA-11 PET/CT imaging fails detecting recurrent disease. The long half-life of 89Zr enables late time point imaging (up to 72 h in our study) with increased tracer uptake in tumor lesions and higher tumor-to-background ratios allowing identification of lesions non-visible on [68Ga]Ga-PSMA-11 PET/CT imaging.
Collapse
|
48
|
Super Early Scan of PSMA PET/CT in Evaluating Primary and Metastatic Lesions of Prostate Cancer. Molecules 2022; 27:molecules27144661. [PMID: 35889531 PMCID: PMC9318552 DOI: 10.3390/molecules27144661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
68Ga-prostate specific membrane antigen (PSMA)-11 PET/CT has been widely used in the diagnosis of prostate cancer (PCa); however, the urine lead shielding resulting from the urinary metabolism of tracers may obstruct the detection of surrounding metastasis. In this research, the additive value of super early scanning in diagnosing primary lesions and metastasis in the pelvic cavity was evaluated. Firstly, the differentiation efficiency of 68Ga-PSMA-11 PET scanned at 3 min post-injection (min P.I.) was measured in PSMA-positive (22rv1 cells) and PSMA-negative (PC3 cells) model mice. Secondly, 106 patients were scanned at 3 min P.I. for the pelvic cavity and then scanned as a standard protocol at 45 min P.I. In the results, the differential diagnosis of PSMA expression was completely reflected as early as 3 min P.I. for mice models. For patients, when correlated with the Gleason score, the quantitative results of the super early scan displayed a comparable correlation coefficient with the routine scan. The target to bladder ratios increased from 1.44 ± 2.40 at 45 min to 10.10 ± 19.10 at 3 min (p < 0.001) for the primary lesions, and it increased from 0.99 ± 1.88 to 9.27 ± 23.03 for metastasis. Meanwhile, the target to background ratios increased from 2.21 ± 2.44 at 3 min to 19.13 ± 23.93 at 45 min (p < 0.001) for the primary lesions, and it increased from 1.68 ± 2.71 to 12.04 ± 18.73 (p < 0.001) for metastasis. In conclusion, super early scanning of 68Ga-PSMA-11 PET/CT added referable information for metastasis detection in order to avoid disturbing tracer activity in the urinary system.
Collapse
|
49
|
Specified iron oxide nanoparticles by PSMA-11 as a promising nanomolecular imaging probe for early detection of prostate cancer. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
50
|
El-Haddad G, Lim R, Fegan J, Chandrashekar R. Stability matters: Radiochemical stability of therapeutic radiopharmaceutical of 177Lu-PSMA-I&T. J Nucl Med Technol 2022; 50:244-247. [PMID: 35701217 DOI: 10.2967/jnmt.121.262423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Labelling radiopharmaceuticals and testing the quality of the labelled product before injecting it into patients are standard operating procedures in the Nuclear Medicine department. There is a different shelf life for each labelled product, which determines how long a product can maintain in-vitro stability before it needs to be discarded. Lutetium-177 (177Lu) is a radioactive isotope that is increasingly being accepted into the treatment paradigm for palliation of advanced-stage tumours, including metastatic castration-resistant prostate cancer (mCRPC) and neuroendocrine tumours (NET). In our institution, synthesis of 177Lu with prostate-specific membrane antigen imaging and therapy (PSMA-I & T) for palliation of mCRPC is performed on Eckert & Ziegler Eurotope's Modular-Lab Pharm Tracer® automated synthesis system. Sterile GMP-certified no-carrier-added 177Lu is supplied by Australia's Nuclear Science and Technology Organization (ANSTO). Following each synthesis, the final product quality is evaluated by High-performance liquid chromatography (HPLC) and instant thin-layer chromatography (ITLC) at three different time points: 0 hours, 24 hours, and 48 hours. Between February 2020 to October 2020, the quality of 35 batches of 177Lu-PSMA-I & T was evaluated. The average radiochemical purity of ITLC-SG was found to be greater than 99 percent (99.70±05%), and HPLC was greater than 98 percent (98.60±0.05%). Our findings demonstrate that automated synthesis of 177Lu-PSMA-I & T with Eckert & Ziegler Eurotope's Modular-Lab Pharm Tracer® can remain stable for 48 hours post labelling.
Collapse
Affiliation(s)
- Ghassan El-Haddad
- Department of Nuclear Medicine and PET-CT, Mercy Radiology, New Zealand
| | - Remy Lim
- School of healthcare and social practice, Unitec institute of technology, New Zealand
| | - Jessica Fegan
- School of healthcare and social practice, Unitec institute of technology, New Zealand
| | - Rudresh Chandrashekar
- School of healthcare and social practice, Unitec institute of technology, New Zealand
| |
Collapse
|