1
|
Comi G, Dalla Costa G, Stankoff B, Hartung HP, Soelberg Sørensen P, Vermersch P, Leocani L. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat Rev Neurol 2024; 20:573-586. [PMID: 39251843 DOI: 10.1038/s41582-024-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | | | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière, Centre National de la Recherche Scientifique, Inserm, Paris, France
| | - Hans-Peter Hartung
- Brain and Mind Center, University of Sydney, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Per Soelberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Patrick Vermersch
- University of Lille, Inserm U1172, Lille Neuroscience & Cognition, Centre Hospitalier Universitaire de Lille, Fédération Hospitalo-Universitaire Precision Medicine in Psychiatry, Lille, France
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Multiple Sclerosis Center, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
2
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
3
|
Singhal T, Cicero S, Rissanen E, Ficke J, Kukreja P, Vaquerano S, Glanz B, Dubey S, Sticka W, Seaver K, Kijewski M, Callen AM, Chu R, Carter K, Silbersweig D, Chitnis T, Bakshi R, Weiner HL. Glial Activity Load on PET Reveals Persistent "Smoldering" Inflammation in MS Despite Disease-Modifying Treatment: 18 F-PBR06 Study. Clin Nucl Med 2024; 49:491-499. [PMID: 38630948 DOI: 10.1097/rlu.0000000000005201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
PURPOSE OF THE REPORT 18 F-PBR06-PET targeting 18-kDa translocator protein can detect abnormal microglial activation (MA) in multiple sclerosis (MS). The objectives of this study are to develop individualized mapping of MA using 18 F-PBR06, to determine the effect of disease-modifying treatment (DMT) efficacy on reducing MA, and to determine its clinical, radiological, and serological correlates in MS patients. PATIENTS AND METHODS Thirty 18 F-PBR06-PET scans were performed in 22 MS patients (mean age, 46 ± 13 years; 16 females) and 8 healthy controls (HCs). Logarithmically transformed "glial activity load on PET" scores (calculated as the sum of voxel-by-voxel z -scores ≥4), "lnGALP," were compared between MS and HC and between MS subjects on high-efficacy DMTs (H-DMT, n = 13) and those on no or lower-efficacy treatment, and correlated with clinical measures, serum biomarkers, and cortical thickness. RESULTS Cortical gray matter (CoGM) and white matter (WM) lnGALP scores were higher in MS versus HC (+33% and +48%, P < 0.001). In H-DMT group, CoGM and WM lnGALP scores were significantly lower than lower-efficacy treatment ( P < 0.01) but remained abnormally higher than in HC group ( P = 0.006). Within H-DMT patients, CoGM lnGALP scores correlated positively with physical disability, fatigue and serum glial fibrillary acid protein levels ( r = 0.65-0.79, all P 's < 0.05), and inversely with cortical thickness ( r = -0.66, P < 0.05). CONCLUSIONS High-efficacy DMTs decrease, but do not normalize, CoGM and WM MA in MS patients. Such "residual" MA in CoGM is associated with clinical disability, serum biomarkers, and cortical degeneration. Individualized mapping of translocator protein PET using 18 F-PBR06 is clinically feasible and can potentially serve as an imaging biomarker for evaluating "smoldering" inflammation in MS patients.
Collapse
Affiliation(s)
| | - Steven Cicero
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Eero Rissanen
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - John Ficke
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Preksha Kukreja
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Steven Vaquerano
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Bonnie Glanz
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Shipra Dubey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - William Sticka
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - Kyle Seaver
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - Marie Kijewski
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - Alexis M Callen
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Renxin Chu
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Kelsey Carter
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - David Silbersweig
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tanuja Chitnis
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Rohit Bakshi
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Howard L Weiner
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| |
Collapse
|
4
|
Reza MI, Kumar A, Pabelick CM, Britt RD, Prakash YS, Sathish V. Downregulation of protein phosphatase 2Aα in asthmatic airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2024; 326:L651-L659. [PMID: 38529552 PMCID: PMC11380972 DOI: 10.1152/ajplung.00050.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.
Collapse
Affiliation(s)
- Mohammad Irshad Reza
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Ashish Kumar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
5
|
Qiu L, Jiang H, Cho K, Yu Y, Jones LA, Huang T, Perlmutter JS, Gropler RJ, Brier MR, Patti GJ, Benzinger TLS, Tu Z. Metabolite Study and Structural Authentication for the First-in-Human Use Sphingosine-1-phosphate Receptor 1 Radiotracer. ACS Chem Neurosci 2024; 15:1882-1892. [PMID: 38634759 PMCID: PMC11103254 DOI: 10.1021/acschemneuro.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The sphingosine-1-phosphate receptor 1 (S1PR1) radiotracer [11C]CS1P1 has shown promise in proof-of-concept PET imaging of neuroinflammation in multiple sclerosis (MS). Our HPLC radiometabolite analysis of human plasma samples collected during PET scans with [11C]CS1P1 detected a radiometabolite peak that is more lipophilic than [11C]CS1P1. Radiolabeled metabolites that cross the blood-brain barrier complicate quantitative modeling of neuroimaging tracers; thus, characterizing such radiometabolites is important. Here, we report our detailed investigation of the metabolite profile of [11C]CS1P1 in rats, nonhuman primates, and humans. CS1P1 is a fluorine-containing ligand that we labeled with C-11 or F-18 for preclinical studies; the brain uptake was similar for both radiotracers. The same lipophilic radiometabolite found in human studies also was observed in plasma samples of rats and NHPs for CS1P1 labeled with either C-11 or F-18. We characterized the metabolite in detail using rats after injection of the nonradioactive CS1P1. To authenticate the molecular structure of this radiometabolite, we injected rats with 8 mg/kg of CS1P1 to collect plasma for solvent extraction and HPLC injection, followed by LC/MS analysis of the same metabolite. The LC/MS data indicated in vivo mono-oxidation of CS1P1 produces the metabolite. Subsequently, we synthesized three different mono-oxidized derivatives of CS1P1 for further investigation. Comparing the retention times of the mono-oxidized derivatives with the metabolite observed in rats injected with CS1P1 identified the metabolite as N-oxide 1, also named TZ82121. The MS fragmentation pattern of N-oxide 1 also matched that of the major metabolite in rat plasma. To confirm that metabolite TZ82121 does not enter the brain, we radiosynthesized [18F]TZ82121 by the oxidation of [18F]FS1P1. Radio-HPLC analysis confirmed that [18F]TZ82121 matched the radiometabolite observed in rat plasma post injection of [18F]FS1P1. Furthermore, the acute biodistribution study in SD rats and PET brain imaging in a nonhuman primate showed that [18F]TZ82121 does not enter the rat or nonhuman primate brain. Consequently, we concluded that the major lipophilic radiometabolite N-oxide [11C]TZ82121, detected in human plasma post injection of [11C]CS1P1, does not enter the brain to confound quantitative PET data analysis. [11C]CS1P1 is a promising S1PR1 radiotracer for detecting S1PR1 expression in the CNS.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Kevin Cho
- Center for Mass Spectrometry and Metabolic Tracing, Department of Chemistry, Department of Medicine, Washington University, Saint Louis, Missouri 63130, United States
| | - Yanbo Yu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Lynne A Jones
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
- Departments of Neurology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Matthew R Brier
- Departments of Neurology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Gary J Patti
- Center for Mass Spectrometry and Metabolic Tracing, Department of Chemistry, Department of Medicine, Washington University, Saint Louis, Missouri 63130, United States
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
6
|
Mantovani DBA, Pitombeira MS, Schuck PN, de Araújo AS, Buchpiguel CA, de Paula Faria D, M da Silva AM. Evaluation of Non-Invasive Methods for (R)-[ 11C]PK11195 PET Image Quantification in Multiple Sclerosis. J Imaging 2024; 10:39. [PMID: 38392087 PMCID: PMC10889702 DOI: 10.3390/jimaging10020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
This study aims to evaluate non-invasive PET quantification methods for (R)-[11C]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[11C]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[11C]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.
Collapse
Affiliation(s)
| | - Milena S Pitombeira
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | | | - Adriel S de Araújo
- Graduate Program in Computer Science, Pontificia Universidade Catolica do Rio Grande do Sul PUCRS, Porto Alegre 90619-900, Brazil
| | - Carlos Alberto Buchpiguel
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Daniele de Paula Faria
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Ana Maria M da Silva
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| |
Collapse
|
7
|
Ottoy J, De Picker L, Kang MS. Microglial Positron Emission Tomography Imaging In Vivo : Positron Emission Tomography Radioligands: Utility in Research and Clinical Practice. ADVANCES IN NEUROBIOLOGY 2024; 37:579-589. [PMID: 39207714 DOI: 10.1007/978-3-031-55529-9_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS) play a key role in regulating and maintaining homeostasis in the brain. However, the CNS is also vulnerable to infections and inflammatory processes. In response to CNS perturbations, microglia become reactive, notably with expression of the translocator protein (TSPO), primarily on their outer mitochondrial membrane. Despite TSPO being commonly used as a marker for microglia, it is also present in other cell types such as astrocytes. Positron emission tomography (PET) ligands that target the TSPO enable the noninvasive detection and quantification of glial reactivity. While some limitations were raised, TSPO PET remains an attractive biomarker of CNS infection and inflammation. This book chapter delves into the development and application of microglial PET imaging with a focus on the TSPO PET. First, we provide an overview of the evolution of TSPO PET radioligands from first-generation to second-generation ligands and their applications in studying neuroinflammation (or CNS inflammation). Subsequently, we discuss the limitations and challenges associated with TSPO PET. Then we go on to explore non-TSPO targets for microglial PET imaging. Finally, we conclude with future directions for research and clinical practice in this field.
Collapse
Affiliation(s)
- Julie Ottoy
- Dr. Sandra E. Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| | - Min Su Kang
- Dr. Sandra E. Black Centre for Brain Resilience and Recovery, LC Campbell Cognitive Neurology, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Oh J, Airas L, Harrison D, Järvinen E, Livingston T, Lanker S, Malik RA, Okuda DT, Villoslada P, de Vries HE. Neuroimaging to monitor worsening of multiple sclerosis: advances supported by the grant for multiple sclerosis innovation. Front Neurol 2023; 14:1319869. [PMID: 38107636 PMCID: PMC10722910 DOI: 10.3389/fneur.2023.1319869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Key unmet needs in multiple sclerosis (MS) include detection of early pathology, disability worsening independent of relapses, and accurate monitoring of treatment response. Collaborative approaches to address these unmet needs have been driven in part by industry-academic networks and initiatives such as the Grant for Multiple Sclerosis Innovation (GMSI) and Multiple Sclerosis Leadership and Innovation Network (MS-LINK™) programs. We review the application of recent advances, supported by the GMSI and MS-LINK™ programs, in neuroimaging technology to quantify pathology related to central pathology and disease worsening, and potential for their translation into clinical practice/trials. GMSI-supported advances in neuroimaging methods and biomarkers include developments in magnetic resonance imaging, positron emission tomography, ocular imaging, and machine learning. However, longitudinal studies are required to facilitate translation of these measures to the clinic and to justify their inclusion as endpoints in clinical trials of new therapeutics for MS. Novel neuroimaging measures and other biomarkers, combined with artificial intelligence, may enable accurate prediction and monitoring of MS worsening in the clinic, and may also be used as endpoints in clinical trials of new therapies for MS targeting relapse-independent disease pathology.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Daniel Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD, United States
| | - Elina Järvinen
- Neurology and Immunology, Medical Unit N&I, Merck OY (an affiliate of Merck KGaA), Espoo, Finland
| | - Terrie Livingston
- Patient Solutions and Center of Excellence Strategic Engagement, EMD Serono, Inc., Rockland, MA, United States
| | - Stefan Lanker
- Neurology & Immunology, US Medical Affairs, EMD Serono Research & Development Institute, Inc., (an affiliate of Merck KGaA), Billerica, MA, United States
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Research Division, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Darin T. Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, UT Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Villoslada
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Helga E. de Vries
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
9
|
Jiang H, Zhou C, Qiu L, Gropler RJ, Brier MR, Wu GF, Cross AH, Perlmutter JS, Benzinger TLS, Tu Z. Quantitative Analysis of S1PR1 Expression in the Postmortem Multiple Sclerosis Central Nervous System. ACS Chem Neurosci 2023; 14:4039-4050. [PMID: 37882753 PMCID: PMC11037862 DOI: 10.1021/acschemneuro.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease that is characterized by demyelination and inflammation in the central nervous system (CNS). Previous studies demonstrated that sphingosine-1-phosphate receptor (S1PR) modulators effectively inhibit S1PR1 in immune cell trafficking and reduce entry of pathogenic cells into the CNS. Studies have also implicated a nonimmune, inflammatory role of S1PR1 within the CNS in MS. In this study, we explored the expression of S1PR1 in the development and progression of demyelinating pathology of MS by quantitative assessment of S1PR1 expression using our S1PR1-specific radioligand, [3H]CS1P1, in the postmortem human CNS tissues including cortex, cerebellum, and spinal cord of MS cases and age- and sex-matched healthy cases. Immunohistochemistry with whole slide scanning for S1PR1 and various myelin proteins was also performed. Autoradiographic analysis using [3H]CS1P1 showed that the expression of S1PR1 was statistically significantly elevated in lesions compared to nonlesion regions in the MS cases, as well as normal healthy controls. The uptake of [3H]CS1P1 in the gray matter and nonlesion white matter did not significantly differ between healthy and MS CNS tissues. Saturation autoradiography analysis showed an increased binding affinity (Kd) of [3H]CS1P1 to S1PR1 in both gray matter and white matter of MS brains compared to healthy brains. Our blocking study using NIBR-0213, a S1PR1 antagonist, indicated [3H]CS1P1 is highly specific to S1PR1. Our findings demonstrated the activation of S1PR1 and an increased uptake of [3H]CS1P1 in the lesions of MS CNS. In summary, our quantitative autoradiography analysis using [3H]CS1P1 on human postmortem tissues shows the feasibility of novel imaging strategies for MS by targeting S1PR1.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Charles Zhou
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Lin Qiu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Matthew R Brier
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Anne H Cross
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| |
Collapse
|
10
|
Brier MR, Taha F. Measuring Pathology in Patients with Multiple Sclerosis Using Positron Emission Tomography. Curr Neurol Neurosci Rep 2023; 23:479-488. [PMID: 37418219 DOI: 10.1007/s11910-023-01285-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis is characterized by a diverse and complex pathology. Clinical relapses, the hallmark of the disease, are accompanied by focal white matter lesions with intense inflammatory and demyelinating activity. Prevention of these relapses has been the major focus of pharmaceutical development, and it is now possible to dramatically reduce this inflammatory activity. Unfortunately, disability accumulation persists for many people living with multiple sclerosis owing to ongoing damage within existing lesions, pathology outside of discrete lesions, and other yet unknown factors. Understanding this complex pathological cascade will be critical to stopping progressive multiple sclerosis. Positron emission tomography uses biochemically specific radioligands to quantitatively measure pathological processes with molecular specificity. This review examines recent advances in the understanding of multiple sclerosis facilitated by positron emission tomography and identifies future avenues to expand understanding and treatment options. RECENT FINDINGS An increasing number of radiotracers allow for the quantitative measurement of inflammatory abnormalities, de- and re-myelination, and metabolic disruption associated with multiple sclerosis. The studies have identified contributions of ongoing, smoldering inflammation to accumulating tissue injury and clinical worsening. Myelin studies have quantified the dynamics of myelin loss and recovery. Lastly, metabolic changes have been found to contribute to symptom worsening. The molecular specificity facilitated by positron emission tomography in people living with multiple sclerosis will critically inform efforts to modulate the pathology leading to progressive disability accumulation. Existing studies show the power of this approach applied to multiple sclerosis. This armamentarium of radioligands allows for new understanding of how the brain and spinal cord of people is impacted by multiple sclerosis.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, John L Trotter MS Center, Washington University in St. Louis, St. Louis, USA.
| | - Farris Taha
- Department of Neurology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
11
|
Lehto J, Sucksdorff M, Nylund M, Raitanen R, Matilainen M, Airas L. PET-measurable innate immune cell activation reduction in chronic active lesions in PPMS brain after rituximab treatment: a case report. J Neurol 2023; 270:2329-2332. [PMID: 36576574 DOI: 10.1007/s00415-022-11539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To evaluate the effects of rituximab treatment on innate immune cell activation in primary progressive multiple sclerosis (PPMS). METHODS A 48-year-old woman with PPMS was started on rituximab shortly after diagnosis. [11C]PK11195 PET imaging was employed to assess innate immune cell activation with special interest in the white matter around chronic lesions. PET, MRI, and disability measurements were performed at baseline and after 18 months of rituximab treatment. Specific binding of [11C]PK11195 was quantified using mean distribution volume ratios (DVRs), and at voxel-level based on proportions of active voxels. RESULTS The PPMS patient had higher PK11195 DVRs and higher proportions of active voxels in the thalamus and the normal appearing white matter compared to the healthy control group. The thalamic and perilesional white matter DVRs and the proportions of active voxels decreased after rituximab treatment. The patient remained clinically stable during the 5-years follow-up. CONCLUSIONS This case suggests that while a degree of smoldering activity persists, high efficacy B-cell-targeting therapy may contribute to reduced innate immune cell activation in PPMS brain areas relevant for disease progression. This case supports the therapeutic concept that controlling smoldering brain inflammation is beneficial for slowing down progression independent of relapses.
Collapse
Affiliation(s)
- Jussi Lehto
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| | - Marcus Sucksdorff
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Marjo Nylund
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Roope Raitanen
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku University Hospital, Po Box 52, 20521, Turku, Finland
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Laura Airas
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
12
|
Kuhlmann T, Moccia M, Coetzee T, Cohen JA, Correale J, Graves J, Marrie RA, Montalban X, Yong VW, Thompson AJ, Reich DS. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol 2023; 22:78-88. [PMID: 36410373 PMCID: PMC10463558 DOI: 10.1016/s1474-4422(22)00289-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/29/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
Traditionally, multiple sclerosis has been categorised by distinct clinical descriptors-relapsing-remitting, secondary progressive, and primary progressive-for patient care, research, and regulatory approval of medications. Accumulating evidence suggests that the clinical course of multiple sclerosis is better considered as a continuum, with contributions from concurrent pathophysiological processes that vary across individuals and over time. The apparent evolution to a progressive course reflects a partial shift from predominantly localised acute injury to widespread inflammation and neurodegeneration, coupled with failure of compensatory mechanisms, such as neuroplasticity and remyelination. Ageing increases neural susceptibility to injury and decreases resilience. These observations encourage a new consideration of the course of multiple sclerosis as a spectrum defined by the relative contributions of overlapping pathological and reparative or compensatory processes. New understanding of key mechanisms underlying progression and measures to quantify progressive pathology will potentially have important and beneficial implications for clinical care, treatment targets, and regulatory decision-making.
Collapse
Affiliation(s)
- Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany; Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Marcello Moccia
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Federico II University of Naples, Naples, Italy
| | - Timothy Coetzee
- National Multiple Sclerosis Society (USA), New York, NY, USA
| | - Jeffrey A Cohen
- Department of Neurology, Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jorge Correale
- Fleni, Department of Neurology, Buenos Aires, Argentina; Institute of Biological Chemistry and Biophysics (IQUIFIB), CONICET/UBA, Buenos Aires, Argentina
| | - Jennifer Graves
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Ruth Ann Marrie
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia and Department of Neurology-Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - V Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Alan J Thompson
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, Faculty of Brain Sciences, University College London, London, UK
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Pozzilli C, Pugliatti M, Vermersch P, Grigoriadis N, Alkhawajah M, Airas L, Oreja-Guevara C. Diagnosis and treatment of progressive multiple sclerosis: A position paper. Eur J Neurol 2023; 30:9-21. [PMID: 36209464 PMCID: PMC10092602 DOI: 10.1111/ene.15593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis (MS) is an unpredictable disease characterised by a highly variable disease onset and clinical course. Three main clinical phenotypes have been described. However, distinguishing between the two progressive forms of MS can be challenging for clinicians. This article examines how the diagnostic definitions of progressive MS impact clinical research, the design of clinical trials and, ultimately, treatment decisions. METHODS We carried out an extensive review of the literature highlighting differences in the definition of progressive forms of MS, and the importance of assessing the extent of the ongoing inflammatory component in MS when making treatment decisions. RESULTS Inconsistent results in phase III clinical studies of treatments for progressive MS, may be attributable to differences in patient characteristics (e.g., age, clinical and radiological activity at baseline) and endpoint definitions. In both primary and secondary progressive MS, patients who are younger and have more active disease will derive the greatest benefit from the available treatments. CONCLUSIONS We recommend making treatment decisions based on the individual patient's pattern of disease progression, as well as functional, clinical and imaging parameters, rather than on their clinical phenotype. Because the definition of progressive MS differs across clinical studies, careful selection of eligibility criteria and study endpoints is needed for future studies in patients with progressive MS.
Collapse
Affiliation(s)
- Carlo Pozzilli
- Multiple Sclerosis Center, Sant'Andrea Hospital, Rome, Italy.,Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Interdepartmental Center of Research for Multiple Sclerosis and Neuro-inflammatory and Degenerative Diseases, University of Ferrara, Ferrara, Italy
| | - Patrick Vermersch
- Inserm U1172 LilNCog, CHU Lille, FHU Precise, University of Lille, Lille, France
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mona Alkhawajah
- Section of Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, College of Medicine, Al Faisal University, Riyadh, Kingdom of Saudi Arabia
| | - Laura Airas
- Division of Clinical Neurosciences, University of Turku, Turku, Finland.,Neurocenter of Turku University Hospital, Turku, Finland
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clinico San Carlos, IdISSC, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
14
|
de Souza AM, Real CC, Junqueira MDS, Estessi de Souza L, Navarro Marques FL, Buchpiguel CA, Chammas R, Sapienza MT, de Paula Faria D. Potential of [ 11C]( R)-PK11195 PET Imaging for Evaluating Tumor Inflammation: A Murine Mammary Tumor Model. Pharmaceutics 2022; 14:2715. [PMID: 36559209 PMCID: PMC9786563 DOI: 10.3390/pharmaceutics14122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Breast tumor inflammation is an immunological process that occurs mainly by mediation of Tumor-Associated Macrophages (TAM). Aiming for a specific measurement of tumor inflammation, the current study evaluated the potential of Positron Emission Tomography (PET) imaging with [11C](R)-PK11195 to evaluate tumor inflammation in a mammary tumor animal model. METHODS Female Balb/C mice were inoculated with 4T1 cells. The PET imaging with [11C](R)-PK11195 and [18F]FDG was acquired 3 days, 1 week, and 2 weeks after cell inoculation. RESULTS The [11C](R)-PK11195 tumor uptake increased from 3 days to 1 week, and decreased at 2 weeks after cell inoculation, as opposed to the [18F]FDG uptake, which showed a slight decrease in uptake at 1 week and increased uptake at 2 weeks. In the control group, no significant differences occurred in tracer uptake over time. Tumor uptake of both radiopharmaceuticals is more expressed in tumor edge regions, with greater intensity at 2 weeks, as demonstrated by [11C](R)-PK11195 autoradiography and immunofluorescence with TSPO antibodies and CD86 pro-inflammatory phenotype. CONCLUSION The [11C](R)-PK11195 was able to identify heterogeneous tumor inflammation in a murine model of breast cancer and the uptake varied according to tumor size. Together with the glycolytic marker [18F]FDG, molecular imaging with [11C](R)-PK11195 may provide a better characterization of inflammatory responses in cancer.
Collapse
Affiliation(s)
- Aline Morais de Souza
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| | - Mara de Souza Junqueira
- Centro de Investigação Translacional em Oncologia (CTO), Instituto do Câncer de Sao Paulo (ICESP), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Larissa Estessi de Souza
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Fábio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (CTO), Instituto do Câncer de Sao Paulo (ICESP), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-000, Brazil
| | - Marcelo Tatit Sapienza
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| |
Collapse
|
15
|
Gruchot J, Lein F, Lewen I, Reiche L, Weyers V, Petzsch P, Göttle P, Köhrer K, Hartung HP, Küry P, Kremer D. Siponimod Modulates the Reaction of Microglial Cells to Pro-Inflammatory Stimulation. Int J Mol Sci 2022; 23:13278. [PMID: 36362063 PMCID: PMC9655930 DOI: 10.3390/ijms232113278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Siponimod (Mayzent®), a sphingosine 1-phosphate receptor (S1PR) modulator which prevents lymphocyte egress from lymphoid tissues, is approved for the treatment of relapsing-remitting and active secondary progressive multiple sclerosis. It can cross the blood-brain barrier (BBB) and selectively binds to S1PR1 and S1PR5 expressed by several cell populations of the central nervous system (CNS) including microglia. In multiple sclerosis, microglia are a key CNS cell population moving back and forth in a continuum of beneficial and deleterious states. On the one hand, they can contribute to neurorepair by clearing myelin debris, which is a prerequisite for remyelination and neuroprotection. On the other hand, they also participate in autoimmune inflammation and axonal degeneration by producing pro-inflammatory cytokines and molecules. In this study, we demonstrate that siponimod can modulate the microglial reaction to lipopolysaccharide-induced pro-inflammatory activation.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Ferdinand Lein
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Isabel Lewen
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, D-40225 Dusseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, D-40225 Dusseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW 2050, Australia
- Department of Neurology, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Patrick Küry
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| |
Collapse
|
16
|
Misin O, Matilainen M, Nylund M, Honkonen E, Rissanen E, Sucksdorff M, Airas L. Innate Immune Cell–Related Pathology in the Thalamus Signals a Risk for Disability Progression in Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/4/e1182. [PMID: 35581004 PMCID: PMC9128041 DOI: 10.1212/nxi.0000000000001182] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives Our aim was to investigate whether 18-kDa translocator protein (TSPO) radioligand binding in gray matter (GM) predicts later disability progression in multiple sclerosis (MS). Methods In this prospective imaging study, innate immune cells were investigated in the MS patient brain using PET imaging. The distribution volume ratio (DVR) of the TSPO-binding radioligand [11C]PK11195 was determined in 5 GM regions: thalamus, caudate, putamen, pallidum, and cortical GM. Volumetric brain MRI parameters were obtained for comparison. The Expanded Disability Status Scale (EDSS) score was assessed at baseline and after follow-up of 3.0 ± 0.3 (mean ± SD) years. Disability progression was defined as an EDSS score increase of 1.0 point or 0.5 point if the baseline EDSS score was ≥6.0. A forward-type stepwise logistic regression model was constructed to compare multiple imaging and clinical variables in their ability to predict later disability progression. Results The cohort consisted of 66 patients with MS and 18 healthy controls. Patients with later disability progression (n = 17) had more advanced atrophy in the thalamus, caudate, and putamen at baseline compared with patients with no subsequent worsening. TSPO binding was significantly higher in the thalamus among the patients with later worsening. The thalamic DVR was the only measured imaging variable that remained a significant predictor of disability progression in the regression model. The final model predicted disability progression with 52.9% sensitivity and 93.9% specificity with an area under the curve value of 0.82 (receiver operating characteristic curve). Discussion Increased TSPO radioligand binding in the thalamus has potential in predicting short-term disability progression in MS and seems to be more sensitive for this than GM atrophy measures.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Microglia normally protects the central nervous system (CNS) against insults. However, their persistent activation in multiple sclerosis (MS) contributes to injury. Here, we review microglia activation in MS and their detection using positron emission tomography (PET). RECENT FINDINGS During lesion evolution and the progression of MS, microglia activity may contribute to neurotoxicity through the release of pro-inflammatory cytokines, reactive oxidative species, proteases and glutamate. A means to detect and monitor microglia activation in individuals living with MS is provided by positron emission tomography (PET) imaging using the mitochondrial 18-kDa translocator protein (TSPO) ligand. TSPO PET imaging shows increased microglial activation within the normal appearing white matter that precedes radiological signs of neurodegeneration measured by T2 lesion enlargement. PET-detected microglia activation increases with progression of MS. These findings demand the use of CNS penetrant inhibitors that affect microglia. Such therapies may include hydroxychloroquine that is recently reported in a small study to reduce the expected progression in primary progressive MS, and Bruton's tyrosine kinase inhibitors for which there are now eleven Phase 3 registered trials in MS. SUMMARY Microglial activation drives injury in MS. PET imaging with microglia-specific ligands offer new insights into progression of MS and as a monitor for treatment responses.
Collapse
|
18
|
Thomas AM, Barkhof F, Bulte JWM. Opportunities for Molecular Imaging in Multiple Sclerosis Management: Linking Probe to Treatment. Radiology 2022; 303:486-497. [PMID: 35471110 PMCID: PMC9131169 DOI: 10.1148/radiol.211252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Imaging has been a critical component of multiple sclerosis (MS) management for nearly 40 years. The visual information derived from structural MRI, that is, signs of blood-brain barrier disruption, inflammation and demyelination, and brain and spinal cord atrophy, are the primary metrics used to evaluate therapeutic efficacy in MS. The development of targeted imaging probes has expanded our ability to evaluate and monitor MS and its therapies at the molecular level. Most molecular imaging probes evaluated for MS applications are small molecules initially developed for PET, nearly half of which are derived from U.S. Food and Drug Administration-approved drugs and those currently undergoing clinical trials. Superparamagnetic and fluorinated particles have been used for tracking circulating immune cells (in situ labeling) and immunosuppressive or remyelinating therapeutic stem cells (ex vivo labeling) clinically using proton (hydrogen 1 [1H]) and preclinically using fluorine 19 MRI. Translocator protein PET and 1H MR spectroscopy have been demonstrated to complement imaging metrics from structural (gadolinium-enhanced) MRI in nine and six trials for MS disease-modifying therapies, respectively. Still, despite multiple demonstrations of the utility of molecular imaging probes to evaluate the target location and to elucidate the mechanisms of disease-modifying therapies for MS applications, their use has been sparse in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Aline M Thomas
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| | - Frederik Barkhof
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| | - Jeff W M Bulte
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| |
Collapse
|
19
|
den Boer JA, de Vries EJ, Borra RJ, Waarde AV, Lammertsma AA, Dierckx RA. Role of Brain Imaging in Drug Development for Psychiatry. Curr Rev Clin Exp Pharmacol 2022; 17:46-71. [DOI: 10.2174/1574884716666210322143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
Background:
Over the last decades, many brain imaging studies have contributed to
new insights in the pathogenesis of psychiatric disease. However, in spite of these developments,
progress in the development of novel therapeutic drugs for prevalent psychiatric health conditions
has been limited.
Objective:
In this review, we discuss translational, diagnostic and methodological issues that have
hampered drug development in CNS disorders with a particular focus on psychiatry. The role of
preclinical models is critically reviewed and opportunities for brain imaging in early stages of drug
development using PET and fMRI are discussed. The role of PET and fMRI in drug development
is reviewed emphasizing the need to engage in collaborations between industry, academia and
phase I units.
Conclusion:
Brain imaging technology has revolutionized the study of psychiatric illnesses, and
during the last decade, neuroimaging has provided valuable insights at different levels of analysis
and brain organization, such as effective connectivity (anatomical), functional connectivity patterns
and neurochemical information that may support both preclinical and clinical drug development.
Since there is no unifying pathophysiological theory of individual psychiatric syndromes and since
many symptoms cut across diagnostic boundaries, a new theoretical framework has been proposed
that may help in defining new targets for treatment and thus enhance drug development in CNS diseases.
In addition, it is argued that new proposals for data-mining and mathematical modelling as
well as freely available databanks for neural network and neurochemical models of rodents combined
with revised psychiatric classification will lead to new validated targets for drug development.
Collapse
Affiliation(s)
| | - Erik J.F. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald J.H. Borra
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudi A. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010474. [PMID: 35008899 PMCID: PMC8745199 DOI: 10.3390/ijms23010474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of new disease-modifying therapies in multiple sclerosis (MS) has revolutionized our ability to fight inflammatory relapses and has immensely improved patients’ quality of life. Although remarkable, this achievement has not carried over into reducing long-term disability. In MS, clinical disability progression can continue relentlessly irrespective of acute inflammation. This “silent” disease progression is the main contributor to long-term clinical disability in MS and results from chronic inflammation, neurodegeneration, and repair failure. Investigating silent disease progression and its underlying mechanisms is a challenge. Standard MRI excels in depicting acute inflammation but lacks the pathophysiological lens required for a more targeted exploration of molecular-based processes. Novel modalities that utilize nuclear magnetic resonance’s ability to display in vivo information on imaging look to bridge this gap. Displaying the CNS through a molecular prism is becoming an undeniable reality. This review will focus on “molecular imaging biomarkers” of disease progression, modalities that can harmoniously depict anatomy and pathophysiology, making them attractive candidates to become the first valid biomarkers of neuroprotection and remyelination.
Collapse
|
21
|
Positron emission tomography in multiple sclerosis - straight to the target. Nat Rev Neurol 2021; 17:663-675. [PMID: 34545219 DOI: 10.1038/s41582-021-00537-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Following the impressive progress in the treatment of relapsing-remitting multiple sclerosis (MS), the major challenge ahead is the development of treatments to prevent or delay the irreversible accumulation of clinical disability in progressive forms of the disease. The substrate of clinical progression is neuro-axonal degeneration, and a deep understanding of the mechanisms that underlie this process is a precondition for the development of therapies for progressive MS. PET imaging involves the use of radiolabelled compounds that bind to specific cellular and metabolic targets, thereby enabling direct in vivo measurement of several pathological processes. This approach can provide key insights into the clinical relevance of these processes and their chronological sequence during the disease course. In this Review, we focus on the contribution that PET is making to our understanding of extraneuronal and intraneuronal mechanisms that are involved in the pathogenesis of irreversible neuro-axonal damage in MS. We consider the major challenges with the use of PET in MS and the steps necessary to realize clinical benefits of the technique. In addition, we discuss the potential of emerging PET tracers and future applications of existing compounds to facilitate the identification of effective neuroprotective treatments for patients with MS.
Collapse
|
22
|
Liu H, Luo Z, Gu J, Jiang H, Joshi S, Shoghi KI, Zhou Y, Gropler RJ, Benzinger TLS, Tu Z. In vivo Characterization of Four 18F-Labeled S1PR1 Tracers for Neuroinflammation. Mol Imaging Biol 2021; 22:1362-1369. [PMID: 32602083 PMCID: PMC7679043 DOI: 10.1007/s11307-020-01514-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE The sphingosine-1-phosphate receptor 1 (S1PR1) is an important biomarker for imaging inflammation in the central nervous system (CNS). Herein, we report our recent evaluation of four 18F-labeled S1PR1 tracers (18F-TZ43113, 18F-TZ35104, 18F-TZ4877, and 18F-TZ4881) in a rat model of multiple sclerosis (MS). PROCEDURES MicroPET studies of each tracer's uptake and kinetics were performed in an experimental autoimmune encephalomyelitis (EAE) rat model of MS to quantify upregulated S1PR1 expression in the lumbar spinal cord of EAE rats. Western blot analysis was conducted to confirm the differences in the expression of S1PR1 protein level between EAE and sham rats. Radiometabolite analysis was performed for the most promising candidate in rats. RESULTS All four S1PR1 tracers detected increased S1PR1 levels in response to neuroinflammation in the lumbar spinal cord of EAE rats, which was supported by western blot results. The ranked order of tracer uptake in rat spinal cord was 18F-TZ4877 > 18F-TZ4881 > 18F-TZ35104 > 18F-TZ43113. 18F-TZ4877 had the highest uptake of the four tracers and showed good kinetic modeling fits in rat spinal cord using an image-based method of arterial blood input function. Radiometabolite analysis of 18F-TZ4877 showed good in vivo stability with no major radiometabolite accumulation in the rat brain. CONCLUSION Among these four new PET tracers, 18F-TZ4877 showed the most favorable profile for assessing S1PR1 expression in the EAE rat model of MS. Further characterization of these radiotracers in other models of neuroinflammation is warranted to identify a promising 18F-labeled tracer for imaging S1PR1 in vivo.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Zonghua Luo
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Sumit Joshi
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Kooresh I Shoghi
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Yun Zhou
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO, 63110, USA.
| |
Collapse
|
23
|
Gelibter S, Pisa M, Croese T, Finardi A, Mandelli A, Sangalli F, Colombo B, Martinelli V, Comi G, Filippi M, Furlan R. Spinal Fluid Myeloid Microvesicles Predict Disease Course in Multiple Sclerosis. Ann Neurol 2021; 90:253-265. [PMID: 34216397 DOI: 10.1002/ana.26154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In vivo measures of myeloid activity are promising biomarkers in multiple sclerosis. We previously demonstrated that cerebrospinal fluid (CSF) myeloid microvesicles are markers of microglial/macrophage activity and neuroinflammation in multiple sclerosis. Here, we aimed at investigating the diagnostic and prognostic value of myeloid microvesicles in a clinical setting. METHODS Six hundred one patients discharged with a diagnosis of neuroinflammatory, neurodegenerative, or no neurological disease were enrolled. Myeloid microvesicles were measured with flow cytometry as isolectin B4-positive events in fresh CSF. Clinical, demographical, and magnetic resonance imaging (MRI) data were collected at diagnosis (all patients) and during follow-up (n = 176). RESULTS CSF myeloid microvesicles were elevated in neuroinflammatory patients compared to the neurodegenerative and control groups. In multiple sclerosis, microvesicles were higher in patients with MRI disease activity and their concentration increased along with the number of enhancing lesions (p < 0.0001, Jonckheere-Terpstra test). CSF myeloid microvesicles were also higher in patients with higher disease activity in the month and year preceding diagnosis. Microvesicles excellently discriminated between the relapsing-remitting and control groups (receiver operator characteristic curve, area under the curve = 0.939, p < 0.0001) and between radiologically isolated syndrome and unspecific brain lesions (0.942, p < 0.0001). Furthermore, microvesicles were independent predictors of prognosis for both the relapsing-remitting and progressive groups. Microvesicles independently predicted future disease activity in relapsing-remitting patients (hazard ratio [HR] = 1.967, 95% confidence interval [CI] = 1.147-3.372), correcting for prognostic factors of standard clinical use. In the progressive group, microvesicles were independent predictors of disability accrual (HR = 10.767, 95% CI = 1.335-86.812). INTERPRETATION Our results confirm that CSF myeloid microvesicles are a clinically meaningful biomarker of neuroinflammation and microglial/macrophage activity in vivo. These findings may support a possible use in clinical practice during diagnostic workup and prognostic assessment. ANN NEUROL 2021;90:253-265.
Collapse
Affiliation(s)
- Stefano Gelibter
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Pisa
- Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso Croese
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Bruno Colombo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Preziosa P, Filippi M, Rocca MA. Chronic active lesions: a new MRI biomarker to monitor treatment effect in multiple sclerosis? Expert Rev Neurother 2021; 21:837-841. [PMID: 34236010 DOI: 10.1080/14737175.2021.1953983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
25
|
Preziosa P, Storelli L, Meani A, Moiola L, Rodegher M, Filippi M, Rocca MA. Effects of Fingolimod and Natalizumab on Brain T1-/T2-Weighted and Magnetization Transfer Ratios: a 2-Year Study. Neurotherapeutics 2021; 18:878-888. [PMID: 33483938 PMCID: PMC8423925 DOI: 10.1007/s13311-020-00997-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 11/26/2022] Open
Abstract
Fingolimod and natalizumab significantly reduce disease activity in relapsing-remitting multiple sclerosis (RRMS) and could promote tissue repair and neuroprotection. The ratio between conventional T1- and T2-weighted sequences (T1w/T2w-ratio) and magnetization transfer ratio (MTR) allow to quantify brain microstructural tissue abnormalities. Here, we compared fingolimod and natalizumab effects on brain T1w/T2w-ratio and MTR in RRMS over 2 years of treatment. RRMS patients starting fingolimod (n = 25) or natalizumab (n = 30) underwent 3T brain MRI scans at baseline (T0), month 6 (M6), month 12 (M12), and month 24 (M24). White matter (WM) lesions, normal-appearing (NA) WM, and gray matter (GM) T1w/T2w-ratio and MTR were estimated and compared between groups using linear mixed models. No baseline demographic, clinical, and MRI difference was found between groups. In natalizumab patients, lesion T1w/T2w-ratio and MTR significantly increased at M6 vs. T0 (p ≤ 0.035) and decreased at subsequent timepoints (p ≤ 0.037). In fingolimod patients, lesion T1w/T2w-ratio increased at M12 vs. T0 (p = 0.010), while MTR gradually increased at subsequent timepoints vs. T0 (p ≤ 0.027). Natalizumab stabilized NAWM and GM T1w/T2w-ratio and MTR. In fingolimod patients, NAWM T1w/T2w-ratio and MTR significantly increased at M24 vs. M12 (p ≤ 0.001). A significant GM T1w/T2w-ratio decrease at M6 vs. T0 (p = 0.014) and increase at M24 vs. M6 (p = 0.008) occurred, whereas GM MTR was significantly higher at M24 vs. previous timepoints (p ≤ 0.017) with significant between-group differences (p ≤ 0.034). Natalizumab may promote an early recovery of lesional damage and prevent microstructural damage accumulation in NAWM and GM during the first 2 years of treatment. Fingolimod enhances tissue damage recovery being visible after 6 months in lesions and after 2 years in NAWM and GM.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy.
| |
Collapse
|
26
|
Mahler C, Schumacher AM, Unterrainer M, Kaiser L, Höllbacher T, Lindner S, Havla J, Ertl-Wagner B, Patzig M, Seelos K, Neitzel J, Mäurer M, Krumbholz M, Metz I, Brück W, Stadelmann C, Merkler D, Gass A, Milenkovic V, Bartenstein P, Albert NL, Kümpfel T, Kerschensteiner M. TSPO PET imaging of natalizumab-associated progressive multifocal leukoencephalopathy. Brain 2021; 144:2683-2695. [PMID: 33757118 DOI: 10.1093/brain/awab127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a severe infection of the central nervous system caused by the polyomavirus JC (JCV) that can occur in multiple sclerosis (MS) patients treated with natalizumab. Clinical management of patients with natalizumab-associated PML is challenging not the least because current imaging tools for the early detection, longitudinal monitoring and differential diagnosis of PML lesions are limited. Here we evaluate whether TSPO positron emission tomography (PET) imaging can be applied to monitor the inflammatory activity of PML lesions over time and differentiate them from MS lesions. For this monocenter pilot study we followed 8 patients with natalizumab-associated PML with PET imaging using the TSPO radioligand [18F]GE-180 combined with frequent 3 T MRI imaging. In addition we compared TSPO PET signals in PML lesions with the signal pattern of MS lesions from 17 independent MS patients. We evaluated the standardized uptake value ratio (SUVR) as well as the morphometry of the TSPO uptake for putative PML and MS lesions areas compared to a radiologically unaffected pseudo-reference region in the cerebrum. Furthermore TSPO expression in situ was immunohistochemically verified by determining the density and cellular identity of TSPO-expressing cells in brain sections from four patients with early natalizumab-associated PML as well as five patients with other forms of PML and six patients with inflammatory demyelinating CNS lesions (clinically isolated syndrome/MS). Histological analysis revealed a reticular accumulation of TSPO expressing phagocytes in PML lesions, while such phagocytes showed a more homogenous distribution in putative MS lesions. TSPO PET imaging showed an enhanced tracer uptake in natalizumab-associated PML lesions that was present from the early to the chronic stages (up to 52 months after PML diagnosis). While gadolinium enhancement on MRI rapidly declined to baseline levels, TSPO tracer uptake followed a slow one phase decay curve. A TSPO-based 3-dimensional diagnostic matrix taking into account the uptake levels as well as the shape and texture of the TSPO signal differentiated more than 96% of PML and MS lesions. Indeed, treatment with rituximab after natalizumab-associated PML in three patients did not affect tracer uptake in the assigned PML lesions but reverted tracer uptake to baseline in the assigned active MS lesions. Taken together our study suggests that TSPO PET imaging can reveal CNS inflammation in natalizumab-associated PML. TSPO PET may facilitate longitudinal monitoring of disease activity and help to distinguish recurrent MS activity from PML progression.
Collapse
Affiliation(s)
- Christoph Mahler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Adrian-Minh Schumacher
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Thomas Höllbacher
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Birgit Ertl-Wagner
- Institute of Clinical Radiology, University Hospital Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Maximilian Patzig
- Institute of Neuroradiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Julia Neitzel
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | | | - Markus Krumbholz
- Department of Neurology & Stroke and Hertie-Institute for Clinical Brain Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Imke Metz
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Achim Gass
- Department of Neurology, University Hospital Mannheim, Mannheim, Germany
| | - Vladimir Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität Munich, Martinsried, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
27
|
Bagnato F, Gauthier SA, Laule C, Moore GRW, Bove R, Cai Z, Cohen-Adad J, Harrison DM, Klawiter EC, Morrow SA, Öz G, Rooney WD, Smith SA, Calabresi PA, Henry RG, Oh J, Ontaneda D, Pelletier D, Reich DS, Shinohara RT, Sicotte NL. Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. J Neuroimaging 2021; 30:251-266. [PMID: 32418324 DOI: 10.1111/jon.12700] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinicians involved with different aspects of the care of persons with multiple sclerosis (MS) and scientists with expertise on clinical and imaging techniques convened in Dallas, TX, USA on February 27, 2019 at a North American Imaging in Multiple Sclerosis Cooperative workshop meeting. The aim of the workshop was to discuss cardinal pathobiological mechanisms implicated in the progression of MS and novel imaging techniques, beyond brain atrophy, to unravel these pathologies. Indeed, although brain volume assessment demonstrates changes linked to disease progression, identifying the biological mechanisms leading up to that volume loss are key for understanding disease mechanisms. To this end, the workshop focused on the application of advanced magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging techniques to assess and measure disease progression in both the brain and the spinal cord. Clinical translation of quantitative MRI was recognized as of vital importance, although the need to maintain a relatively short acquisition time mandated by most radiology departments remains the major obstacle toward this effort. Regarding PET, the panel agreed upon its utility to identify ongoing pathological processes. However, due to costs, required expertise, and the use of ionizing radiation, PET was not considered to be a viable option for ongoing care of persons with MS. Collaborative efforts fostering robust study designs and imaging technique standardization across scanners and centers are needed to unravel disease mechanisms leading to progression and discovering medications halting neurodegeneration and/or promoting repair.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Department of Neurology, Feil Family Brain and Mind Institute, and Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Cornelia Laule
- Department of Radiology, Pathology, and Laboratory Medicine, Department of Physics and Astronomy, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - George R Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley Bove
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal and Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Eric C Klawiter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - William D Rooney
- Advanced Imaging Research Center, Departments of Biomedical Engineering, Neurology, and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Seth A Smith
- Radiology and Radiological Sciences and Vanderbilt University Imaging Institute, Vanderbilt University Medical Center, and Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roland G Henry
- Departments of Neurology, Radiology and Biomedical Imaging, and the UC San Francisco & Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA
| | - Jiwon Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | -
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
28
|
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11:373-393. [PMID: 33643818 PMCID: PMC7893127 DOI: 10.1016/j.apsb.2020.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
- ANT, adenine nucleotide transporter
- Am, molar activities
- BBB, blood‒brain barrier
- BMSC, bone marrow stromal cells
- BP, binding potential
- BPND, non-displaceable binding potential
- BcTSPO, Bacillus cereus TSPO
- CBD, corticobasal degeneration
- CNS disorders
- CNS, central nervous system
- CRAC, cholesterol recognition amino acid consensus sequence
- DLB, Lewy body dementias
- EP, epilepsy
- FTD, frontotemporal dementia
- HAB, high-affinity binding
- HD, Huntington's disease
- HSE, herpes simplex encephalitis
- IMM, inner mitochondrial membrane
- KA, kainic acid
- LAB, low-affinity binding
- LPS, lipopolysaccharide
- MAB, mixed-affinity binding
- MAO-B, monoamine oxidase B
- MCI, mild cognitive impairment
- MDD, major depressive disorder
- MMSE, mini-mental state examination
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- MSA, multiple system atrophy
- Microglial activation
- NAA/Cr, N-acetylaspartate/creatine
- Neuroinflammation
- OCD, obsessive compulsive disorder
- OMM, outer mitochondrial membrane
- P2X7R, purinergic receptor P2X7
- PAP7, RIa-associated protein
- PBR, peripheral benzodiazepine receptor
- PCA, posterior cortical atrophy
- PD, Parkinson's disease
- PDD, PD dementia
- PET, positron emission tomography
- PKA, protein kinase A
- PRAX-1, PBR-associated protein 1
- PSP, progressive supranuclear palsy
- Positron emission tomography (PET)
- PpIX, protoporphyrin IX
- QA, quinolinic acid
- RCYs, radiochemical yields
- ROS, reactive oxygen species
- RRMS, relapsing remitting multiple sclerosis
- SA, specific activity
- SAH, subarachnoid hemorrhage
- SAR, structure–activity relationship
- SCIDY, spirocyclic iodonium ylide
- SNL, selective neuronal loss
- SNR, signal to noise ratio
- SUV, standard uptake volume
- SUVR, standard uptake volume ratio
- TBAH, tetrabutyl ammonium hydroxide
- TBI, traumatic brain injury
- TLE, temporal lobe epilepsy
- TSPO
- TSPO, translocator protein
- VDAC, voltage-dependent anion channel
- VT, distribution volume
- d.c. RCYs, decay-corrected radiochemical yields
- dMCAO, distal middle cerebral artery occlusion
- fP, plasma free fraction
- n.d.c. RCYs, non-decay-corrected radiochemical yields
- p.i., post-injection
Collapse
|
29
|
Foray C, Valtorta S, Barca C, Winkeler A, Roll W, Müther M, Wagner S, Gardner ML, Hermann S, Schäfers M, Grauer OM, Moresco RM, Zinnhardt B, Jacobs AH. Imaging temozolomide-induced changes in the myeloid glioma microenvironment. Theranostics 2021; 11:2020-2033. [PMID: 33500706 PMCID: PMC7797694 DOI: 10.7150/thno.47269] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
Rationale: The heterogeneous nature of gliomas makes the development and application of novel treatments challenging. In particular, infiltrating myeloid cells play a role in tumor progression and therapy resistance. Hence, a detailed understanding of the dynamic interplay of tumor cells and immune cells in vivo is necessary. To investigate the complex interaction between tumor progression and therapy-induced changes in the myeloid immune component of the tumor microenvironment, we used a combination of [18F]FET (amino acid metabolism) and [18F]DPA-714 (TSPO, GAMMs, tumor cells, astrocytes, endothelial cells) PET/MRI together with immune-phenotyping. The aim of the study was to monitor temozolomide (TMZ) treatment response and therapy-induced changes in the inflammatory tumor microenvironment (TME). Methods: Eighteen NMRInu/nu mice orthotopically implanted with Gli36dEGFR cells underwent MRI and PET/CT scans before and after treatment with TMZ or DMSO (vehicle). Tumor-to-background (striatum) uptake ratios were calculated and areas of unique tracer uptake (FET vs. DPA) were determined using an atlas-based volumetric approach. Results: TMZ therapy significantly modified the spatial distribution and uptake of both tracers. [18F]FET uptake was significantly reduced after therapy (-53 ± 84%) accompanied by a significant decrease of tumor volume (-17 ± 6%). In contrast, a significant increase (61 ± 33%) of [18F]DPA-714 uptake was detected by TSPO imaging in specific areas of the tumor. Immunohistochemistry (IHC) validated the reduction in tumor volumes and further revealed the presence of reactive TSPO-expressing glioma-associated microglia/macrophages (GAMMs) in the TME. Conclusion: We confirm the efficiency of [18F]FET-PET for monitoring TMZ-treatment response and demonstrate that in vivo TSPO-PET performed with [18F]DPA-714 can be used to identify specific reactive areas of myeloid cell infiltration in the TME.
Collapse
|
30
|
de Souza AM, Pitombeira MS, de Souza LE, Marques FLN, Buchpiguel CA, Real CC, de Paula Faria D. 11C-PK11195 plasma metabolization has the same rate in multiple sclerosis patients and healthy controls: a cross-sectional study. Neural Regen Res 2021; 16:2494-2498. [PMID: 33907039 PMCID: PMC8374550 DOI: 10.4103/1673-5374.313062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
11C-PK11195 is a positron emitter tracer used for Positron Emission Tomography (PET) imaging of innate immune cell activation in studies of neuroinflammatory diseases. For the image quantitative analysis, it is necessary to quantify the intact fraction of this tracer in the arterial plasma during imaging acquisition (plasma intact fraction). Due to the complexity and costs involved in this analysis it is important to evaluate the real necessity of individual analysis in each 11C-PK11195 PET imaging acquisition. The purpose of this study is to compare 11C-PK11195 plasma metabolization rate between healthy controls and multiple sclerosis (MS) patients and evaluate the interference of sex, age, treatment, and disease phenotype in the tracer intact fraction measured in arterial plasma samples. 11C-PK11195 metabolization rate in arterial plasma was quantified by high performance liquid chromatography in samples from MS patients (n = 50) and healthy controls (n = 23) at 20, 45, and 60 minutes after 11C-PK11195 injection. Analyses were also stratified by sex, age, treatment type, and MS phenotype. The results showed no significant differences in the metabolization rate of healthy controls and MS patients, or in the stratified samples. In conclusion, 11C-PK11195 metabolization has the same rate in patients with MS and healthy controls, which is not affected by sex, age, treatment, and disease phenotype. Thus, these findings could contribute to exempting the necessity for tracer metabolization determination in all 11C-PK11195 PET imaging acquisition, by using a population metabolization rate average. The study procedures were approved by the Ethics Committee for Research Projects Analysis of the Hospital das Clinicas of the University of Sao Paulo Medical School (approval No. 624.065) on April 23, 2014.
Collapse
Affiliation(s)
- Aline Morais de Souza
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Milena Sales Pitombeira
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Larissa Estessi de Souza
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabio Luiz Navarro Marques
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carlos Alberto Buchpiguel
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Caroline Cristiano Real
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniele de Paula Faria
- Laboratory of Nuclear Medicine (LIM43), Department of Radiology and Oncology; Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
31
|
Saraste M, Bezukladova S, Sucksdorff M, Saunavaara V, Rissanen E, Matilainen M, Airas L. Fingolimod treatment reverses signs of diffuse white matter damage in multiple sclerosis: A pilot study. Mult Scler Relat Disord 2020; 48:102690. [PMID: 33352357 DOI: 10.1016/j.msard.2020.102690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/09/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND In multiple sclerosis (MS) diffuse normal appearing white matter (NAWM) damage may drive chronic worsening independent of relapse activity. Diffusion tensor imaging (DTI) is a nonconventional MRI technique that can be used to assess microstructural alterations in myelin and axons. The aim of our study was to investigate the effect of six months fingolimod treatment on the integrity of entire and segmented NAWM in patients with relapsing-remitting multiple sclerosis (RRMS). METHODS Ten RRMS patients initiating fingolimod treatment were included in the study. Patients underwent 3 T MRI including diffusion tensor sequences at baseline before the initiation of treatment and at six months. The mean values for fractional anisotropy (FA), and mean, radial and axial diffusivities (MD, RD and AD) were calculated within the whole NAWM and in six segmented sub-regions of NAWM (frontal, parietal, temporal, occipital, cingulate and deep NAWM). Clinical characteristics, Expanded Disability Status Scale (EDSS) and volumetric MRI data were also evaluated. RESULTS In the cingulate NAWM FA was increased and RD was decreased significantly at six months compared to baseline (0.462 vs. 0.472, P = 0.027 and 0.000646 vs. 0.000634, P = 0.041, respectively), indicating improvements in myelin and axonal integrity following fingolimod treatment, whereas there were no alterations in cingulate MD or AD. Cingulate and temporal FA and RD correlated with T2 lesion volume percentage of cingulate and temporal areas. EDSS change correlated with change of the whole NAWM AD. CONCLUSIONS Increased FA and decreased RD in the cingulate NAWM might suggest microstructural fingolimod-induced improvements in the normal appearing cingulate white matter. Our results support the concept that DTI can be used as a marker of diffuse neuronal damage also in interventional settings.
Collapse
Affiliation(s)
- Maija Saraste
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| | - Svetlana Bezukladova
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Medical Physics, Division of Medical Imaging, Turku University Hospital, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura Airas
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| |
Collapse
|
32
|
Preziosa P, Pagani E, Moiola L, Rodegher M, Filippi M, Rocca MA. Occurrence and microstructural features of slowly expanding lesions on fingolimod or natalizumab treatment in multiple sclerosis. Mult Scler 2020; 27:1520-1532. [DOI: 10.1177/1352458520969105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: In multiple sclerosis (MS), up to 57% of white matter lesions are chronically active. These slowly expanding lesions (SELs) contribute to disability progression. Objective: The aim of this study is to compare fingolimod and natalizumab effects on progressive linearly enlarging lesions (i.e. SELs), a putative biomarker of smouldering inflammation. Methods: Relapsing-remitting MS patients starting fingolimod ( n = 24) or natalizumab ( n = 28) underwent 3T brain magnetic resonance imaging (MRI) at baseline, months 6, 12 and 24. SELs were identified among baseline-visible lesions showing ⩾ 12.5% of annual increase, calculated by linearly fitting the Jacobian of the nonlinear deformation field between timepoints obtained combining T1- and T2-weighted scans. SEL burden, magnetization transfer ratio (MTR) and T1 signal intensity were compared using linear models. Results: The prevalences of fingolimod (75%) and natalizumab patients (46%) with ⩾ 1 SEL were not significantly different (adjusted- p = 0.08). Fingolimod group had higher SEL number and volume (adjusted- p ⩽ 0.047, not false discovery rate (FDR) survived). In both groups, SELs versus non-SELs showed lower MTR and T1 signal intensity (adjusted- p ⩽ 0.01, FDR-survived). Longitudinally, non-SEL MTR increased in both treatment groups (adjusted- p ⩽ 0.005, FDR-survived). T1 signal intensity decreased in SELs with both treatments (adjusted- p ⩽ 0.049, FDR-survived in fingolimod group) and increased in natalizumab non-SELs (adjusted- p = 0.03, FDR-survived). Conclusion: The effects of natalizumab and fingolimod on SEL occurrence seem modest, with natalizumab being slightly more effective. Both treatments may promote reparative mechanisms in stable or chronic inactive lesions.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
33
|
Kreisl WC, Kim MJ, Coughlin JM, Henter ID, Owen DR, Innis RB. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol 2020; 19:940-950. [PMID: 33098803 PMCID: PMC7912433 DOI: 10.1016/s1474-4422(20)30346-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
A growing need exists for reliable in-vivo measurement of neuroinflammation to better characterise the inflammatory processes underlying various diseases and to inform the development of novel therapeutics that target deleterious glial activity. PET is well suited to quantify neuroinflammation and has the potential to discriminate components of the neuroimmune response. However, there are several obstacles to the reliable quantification of neuroinflammation by PET imaging. Despite these challenges, PET studies have consistently identified associations between neuroimmune responses and pathophysiology in brain disorders such as Alzheimer's disease. Tissue studies have also begun to clarify the meaning of changes in PET signal in some diseases. Furthermore, although PET imaging of neuroinflammation does not have an established clinical application, novel targets are under investigation and a small but growing number of studies have suggested that this imaging modality could have a role in drug development. Future studies are needed to further improve our knowledge of the cellular mechanisms that underlie changes in PET signal, how immune response contributes to neurological disease, and how it might be therapeutically modified.
Collapse
Affiliation(s)
- William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Pinto MV, Fernandes A. Microglial Phagocytosis-Rational but Challenging Therapeutic Target in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21175960. [PMID: 32825077 PMCID: PMC7504120 DOI: 10.3390/ijms21175960] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is the most common autoimmune and demyelinating disease of the central nervous system (CNS), characterized, in the majority of cases, by initial relapses that later evolve into progressive neurodegeneration, severely impacting patients’ motor and cognitive functions. Despite the availability of immunomodulatory therapies effective to reduce relapse rate and slow disease progression, they all failed to restore CNS myelin that is necessary for MS full recovery. Microglia are the primary inflammatory cells present in MS lesions, therefore strongly contributing to demyelination and lesion extension. Thus, many microglial-based therapeutic strategies have been focused on the suppression of microglial pro-inflammatory phenotype and neurodegenerative state to reduce disease severity. On the other hand, the contribution of myelin phagocytosis advocating the neuroprotective role of microglia in MS has been less explored. Indeed, despite the presence of functional oligodendrocyte precursor cells (OPCs), within lesioned areas, MS plaques fail to remyelinate as a result of the over-accumulation of myelin-toxic debris that must be cleared away by microglia. Dysregulation of this process has been associated with the impaired neuronal recovery and deficient remyelination. In line with this, here we provide a comprehensive review of microglial myelin phagocytosis and its involvement in MS development and repair. Alongside, we discuss the potential of phagocytic-mediated therapeutic approaches and encourage their modulation as a novel and rational approach to ameliorate MS-associated pathology.
Collapse
Affiliation(s)
- Maria V. Pinto
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217946400
| |
Collapse
|
35
|
Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, Breur M, van der Valk P, Matthews PM, Owen DR, Amor S. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 2020; 142:3440-3455. [PMID: 31578541 PMCID: PMC6821167 DOI: 10.1093/brain/awz287] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely considered to reflect activated pathogenic microglia, although quantitative neuropathological data to support this interpretation have not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting. Here we have studied the cellular expression of TSPO and specific binding of two TSPO targeting radioligands (3H-PK11195 and 3H-PBR28) in tissue sections from 42 multiple sclerosis cases and 12 age-matched controls. Markers of homeostatic and reactive microglia, astrocytes, and lymphocytes were used to investigate the phenotypes of cells expressing TSPO. There was an approximate 20-fold increase in cells double positive for TSPO and HLA-DR in active lesions and in the rim of chronic active lesion, relative to normal appearing white matter. TSPO was uniformly expressed across myeloid cells irrespective of their phenotype, rather than being preferentially associated with pro-inflammatory microglia or macrophages. TSPO+ astrocytes were increased up to 7-fold compared to normal-appearing white matter across all lesion subtypes and accounted for 25% of the TSPO+ cells in these lesions. To relate TSPO protein expression to ligand binding, specific binding of the TSPO ligands 3H-PK11195 and 3H-PBR28 was determined in the same lesions. TSPO radioligand binding was increased up to seven times for 3H-PBR28 and up to two times for 3H-PK11195 in active lesions and the centre of chronic active lesions and a strong correlation was found between the radioligand binding signal for both tracers and the number of TSPO+ cells across all of the tissues examined. In summary, in multiple sclerosis, TSPO expression arises from microglia of different phenotypes, rather than being restricted to microglia which express classical pro-inflammatory markers. While the majority of cells expressing TSPO in active lesions or chronic active rims are microglia/macrophages, our findings also emphasize the significant contribution of activated astrocytes, as well as smaller contributions from endothelial cells. These observations establish a quantitative framework for interpretation of TSPO in multiple sclerosis and highlight the need for neuropathological characterization of TSPO expression for the interpretation of TSPO PET in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Jodie A Stephenson
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Rianne P Gorter
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Joy de Bruin
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | | | | | - Marjolein Breur
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul van der Valk
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, UK.,UK Dementia Research Institute, Imperial College London, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, UK
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
36
|
Guerrero BL, Sicotte NL. Microglia in Multiple Sclerosis: Friend or Foe? Front Immunol 2020; 11:374. [PMID: 32265902 PMCID: PMC7098953 DOI: 10.3389/fimmu.2020.00374] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia originate from myeloid progenitors in the embryonic yolk sac and play an integral role in central nervous system (CNS) development, immune surveillance and repair. The role of microglia in multiple sclerosis (MS) has been complex and controversial, with evidence suggesting that these cells play key roles in both active inflammation and remyelination. Here we will review the most recent histological classification of MS lesions as well as the evidence supporting both inflammatory and reparative functions of these cells. We will also review how microglia may yield new biomarkers for MS activity and serve as a potential target for therapy.
Collapse
Affiliation(s)
- Brooke L Guerrero
- Multiple Sclerosis and Neuroimmunology Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nancy L Sicotte
- Multiple Sclerosis and Neuroimmunology Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
37
|
Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J Stroke 2020; 22:29-46. [PMID: 32027790 PMCID: PMC7005353 DOI: 10.5853/jos.2019.02236] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a catastrophic illness causing significant morbidity and mortality. Despite advances in surgical technique addressing primary brain injury caused by ICH, little progress has been made treating the subsequent inflammatory cascade. Pre-clinical studies have made advancements identifying components of neuroinflammation, including microglia, astrocytes, and T lymphocytes. After cerebral insult, inflammation is initially driven by the M1 microglia, secreting cytokines (e.g., interleukin-1β [IL-1β] and tumor necrosis factor-α) that are involved in the breakdown of the extracellular matrix, cellular integrity, and the blood brain barrier. Additionally, inflammatory factors recruit and induce differentiation of A1 reactive astrocytes and T helper 1 (Th1) cells, which contribute to the secretion of inflammatory cytokines, augmenting M1 polarization and potentiating inflammation. Within 7 days of ICH ictus, the M1 phenotype coverts to a M2 phenotype, key for hematoma removal, tissue healing, and overall resolution of inflammation. The secretion of anti-inflammatory cytokines (e.g., IL-4, IL-10) can drive Th2 cell differentiation. M2 polarization is maintained by the secretion of additional anti-inflammatory cytokines by the Th2 cells, suppressing M1 and Th1 phenotypes. Elucidating the timing and trigger of the anti-inflammatory phenotype may be integral in improving clinical outcomes. A challenge in current translational research is the absence of an equivalent disease animal model mirroring the patient population and comorbid pathophysiologic state. We review existing data and describe potential therapeutic targets around which we are creating a bench to bedside translational research model that better reflects the pathophysiology of ICH patients.
Collapse
Affiliation(s)
- Christine Tschoe
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cheryl D Bushnell
- Department of Neurology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Pamela W Duncan
- Department of Neurology, Wake Forest Baptist Health, Winston-Salem, NC, USA.,Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Stacey Q Wolfe
- Department of Neurological Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
38
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
39
|
Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int J Mol Sci 2019; 20:ijms20133161. [PMID: 31261683 PMCID: PMC6650818 DOI: 10.3390/ijms20133161] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is an inflammatory response in the brain and spinal cord, which can involve the activation of microglia and astrocytes. It is a common feature of many central nervous system disorders, including a range of neurodegenerative disorders. An overlap between activated microglia, pro-inflammatory cytokines and translocator protein (TSPO) ligand binding was shown in early animal studies of neurodegeneration. These findings have been translated in clinical studies, where increases in TSPO positron emission tomography (PET) signal occur in disease-relevant areas across a broad spectrum of neurodegenerative diseases. While this supports the use of TSPO PET as a biomarker to monitor response in clinical trials of novel neurodegenerative therapeutics, the clinical utility of current TSPO PET radioligands has been hampered by the lack of high affinity binding to a prevalent form of polymorphic TSPO (A147T) compared to wild type TSPO. This review details recent developments in exploration of ligand-sensitivity to A147T TSPO that have yielded ligands with improved clinical utility. In addition to developing a non-discriminating TSPO ligand, the final frontier of TSPO biomarker research requires developing an understanding of the cellular and functional interpretation of the TSPO PET signal. Recent insights resulting from single cell analysis of microglial phenotypes are reviewed.
Collapse
|
40
|
Perani D, Iaccarino L, Lammertsma AA, Windhorst AD, Edison P, Boellaard R, Hansson O, Nordberg A, Jacobs AH. A new perspective for advanced positron emission tomography-based molecular imaging in neurodegenerative proteinopathies. Alzheimers Dement 2019; 15:1081-1103. [PMID: 31230910 DOI: 10.1016/j.jalz.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Recent studies in neurodegenerative conditions have increasingly highlighted that the same neuropathology can trigger different clinical phenotypes or, vice-versa, that similar phenotypes can be triggered by different neuropathologies. This evidence has called for the adoption of a pathology spectrum-based approach to study neurodegenerative proteinopathies. These conditions share brain deposition of abnormal protein aggregates, leading to aberrant biochemical, metabolic, functional, and structural changes. Positron emission tomography (PET) is a well-recognized and unique tool for the in vivo assessment of brain neuropathology, and novel PET techniques are emerging for the study of specific protein species. Today, key applications of PET range from early research and clinical diagnostic tools to their use in clinical trials for both participants screening and outcome evaluation. This position article critically reviews the role of distinct PET molecular tracers for different neurodegenerative proteinopathies, highlighting their strengths, weaknesses, and opportunities, with special emphasis on methodological challenges and future applications.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Iaccarino
- Vita-Salute San Raffaele University, Nuclear Medicine Unit San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK; Neurology Imaging Unit, Imperial College London, London, UK
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Center for Alzheimer Research, Stockholm, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany.
| | | |
Collapse
|
41
|
Sucksdorff M, Tuisku J, Matilainen M, Vuorimaa A, Smith S, Keitilä J, Rokka J, Parkkola R, Nylund M, Rinne J, Rissanen E, Airas L. Natalizumab treatment reduces microglial activation in the white matter of the MS brain. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e574. [PMID: 31355310 PMCID: PMC6624093 DOI: 10.1212/nxi.0000000000000574] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/02/2019] [Indexed: 01/31/2023]
Abstract
Objective To evaluate whether natalizumab treatment reduces microglial activation in MS. Methods We measured microglial activation using the 18-kDa translocator protein (TSPO)-binding radioligand [11C]PK11195 and PET imaging in 10 patients with MS before and after 1 year treatment with natalizumab. Microglial activation was evaluated as the distribution volume ratio (DVR) of the specifically bound radioligand in brain white and gray matter regions of interest. MRI and disability measurements were performed for comparison. Evaluation was performed identically with 11 age- and sex-matched patients with MS who had no MS therapy. Results Natalizumab treatment reduced microglial activation in the normal-appearing white matter (NAWM; baseline DVR vs DVR after 1 year of treatment 1.25 vs 1.22, p = 0.014, Wilcoxon) and at the rim of chronic lesions (baseline DVR vs DVR after 1 year of treatment 1.24 vs 1.18, p = 0.014). In patients with MS with no treatment, there was an increase in microglial activation at the rim of chronic lesions (1.23 vs 1.27, p = 0.045). No alteration was observed in microglial activation in gray matter areas. In the untreated patient group, higher microglial activation at baseline was associated with more rapid disability progression during an average of 4 years of follow-up. Conclusions TSPO-PET imaging can be used as a tool to assess longitudinal changes in microglial activation in the NAWM and in the perilesional areas in the MS brain in vivo. Natalizumab treatment reduces the diffuse compartmentalized CNS inflammation related to brain resident innate immune cells.
Collapse
Affiliation(s)
- Marcus Sucksdorff
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Markus Matilainen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Sarah Smith
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Joonas Keitilä
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Johanna Rokka
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Riitta Parkkola
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Marjo Nylund
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Juha Rinne
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Eero Rissanen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Laura Airas
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Clinical MRI is of paramount importance for multiple sclerosis diagnosis but lacks the specificity to investigate the pathogenic mechanisms underlying disease onset and progression. The application of advanced MR sequences allows the characterization of diverse and complex pathological mechanisms, granting insights into multiple sclerosis natural history and response to treatment. RECENT FINDINGS This review provides an update on the most recent international guidelines for optimal standard imaging of multiple sclerosis and discusses advantages and limitations of advanced imaging approaches for investigating inflammation, demyelination and neurodegeneration. An overview is provided for methods devoted to imaging leptomeningeal enhancement, microglial activation, demyelination, neuronal metabolic damage and neuronal loss. SUMMARY The application of magnetic resonance (MR) guidelines to standard-of-care MR protocols, although still limited, would substantially contribute to the optimization of multiple sclerosis management. From an academic perspective, different mechanism-specific imaging techniques are available and offer a powerful tool to elucidate multiple sclerosis pathogenesis, monitor disease progression and guide therapeutic choices.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW To summarize recent findings from the application of MRI in the diagnostic work-up of patients with suspected multiple sclerosis (MS), and to review the insights into disease pathophysiology and the utility of MRI for monitoring treatment response. RECENT FINDINGS New evidence from the application of MRI in patients with clinically isolated syndromes has guided the 2017 revision of the McDonald criteria for MS diagnosis, which has simplified their clinical use while preserving accuracy. Other MRI measures (e.g., cortical lesions and central vein signs) may improve diagnostic specificity, but their assessment still needs to be standardized, and their reliability confirmed. Novel MRI techniques are providing fundamental insights into the pathological substrates of the disease and are helping to give a better understanding of its clinical manifestations. Combined clinical-MRI measures of disease activity and progression, together with the use of clinically relevant MRI measures (e.g., brain atrophy) might improve treatment monitoring, but these are still not ready for the clinical setting. SUMMARY Advances in MRI technology are improving the diagnostic work-up and monitoring of MS, even in the earliest phases of the disease, and are providing MRI measures that are more specific and sensitive to disease pathological substrates.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | |
Collapse
|
44
|
Kaunzner UW, Kang Y, Zhang S, Morris E, Yao Y, Pandya S, Hurtado Rua SM, Park C, Gillen KM, Nguyen TD, Wang Y, Pitt D, Gauthier SA. Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain 2019; 142:133-145. [PMID: 30561514 PMCID: PMC6308309 DOI: 10.1093/brain/awy296] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/21/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic active multiple sclerosis lesions, characterized by a hyperintense rim of iron-enriched, activated microglia and macrophages, have been linked to greater tissue damage. Post-mortem studies have determined that chronic active lesions are primarily related to the later stages of multiple sclerosis; however, the occurrence of these lesions, and their relationship to earlier disease stages may be greatly underestimated. Detection of chronic active lesions across the patient spectrum of multiple sclerosis requires a validated imaging tool to accurately identify lesions with persistent inflammation. Quantitative susceptibility mapping provides efficient in vivo quantification of susceptibility changes related to iron deposition and the potential to identify lesions harbouring iron-laden inflammatory cells. The PET tracer 11C-PK11195 targets the translocator protein expressed by activated microglia and infiltrating macrophages. Accordingly, this study aimed to validate that lesions with a hyperintense rim on quantitative susceptibility mapping from both relapsing and progressive patients demonstrate a higher level of innate immune activation as measured on 11C-PK11195 PET. Thirty patients were enrolled in this study, 24 patients had relapsing remitting multiple sclerosis, six had progressive multiple sclerosis, and all patients had concomitant MRI with a gradient echo sequence and PET with 11C-PK11195. A total of 406 chronic lesions were detected, and 43 chronic lesions with a hyperintense rim on quantitative susceptibility mapping were identified as rim+ lesions. Susceptibility (relative to CSF) was higher in rim+ (2.42 ± 17.45 ppb) compared to rim- lesions (-14.6 ± 19.3 ppb, P < 0.0001). Among rim+ lesions, susceptibility within the rim (20.04 ± 14.28 ppb) was significantly higher compared to the core (-5.49 ± 14.44 ppb, P < 0.0001), consistent with the presence of iron. In a mixed-effects model, 11C-PK11195 uptake, representing activated microglia/macrophages, was higher in rim+ lesions compared to rim- lesions (P = 0.015). Validating our in vivo imaging results, multiple sclerosis brain slabs were imaged with quantitative susceptibility mapping and processed for immunohistochemistry. These results showed a positive translocator protein signal throughout the expansive hyperintense border of rim+ lesions, which co-localized with iron containing CD68+ microglia and macrophages. In conclusion, this study provides evidence that suggests that a hyperintense rim on quantitative susceptibility measure within a chronic lesion is a correlate for persistent inflammatory activity and that these lesions can be identified in the relapsing patients. Utilizing quantitative susceptibility measure to differentiate chronic multiple sclerosis lesion subtypes, especially chronic active lesions, would provide a method to assess the impact of these lesions on disease progression.
Collapse
Affiliation(s)
- Ulrike W Kaunzner
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| | - Yeona Kang
- Department of Radiology/Nuclear Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Shun Zhang
- Cornell MRI Research Lab, New York City, NY, USA
| | - Eric Morris
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| | - Yihao Yao
- Cornell MRI Research Lab, New York City, NY, USA
| | - Sneha Pandya
- Department of Radiology/Nuclear Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Sandra M Hurtado Rua
- Department of Mathematics, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, USA
| | - Calvin Park
- Yale Multiple Sclerosis Center, New Haven, CT, USA
| | | | | | - Yi Wang
- Cornell MRI Research Lab, New York City, NY, USA
| | - David Pitt
- Yale Multiple Sclerosis Center, New Haven, CT, USA
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|
45
|
Rocca MA, Preziosa P, Filippi M. Application of advanced MRI techniques to monitor pharmacologic and rehabilitative treatment in multiple sclerosis: current status and future perspectives. Expert Rev Neurother 2018; 19:835-866. [PMID: 30500303 DOI: 10.1080/14737175.2019.1555038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Advances in magnetic resonance imaging (MRI) technology and analyses are improving our understanding of the pathophysiology of multiple sclerosis (MS). Due to their ability to grade the presence of irreversible tissue loss, microstructural tissue abnormalities, metabolic changes and functional plasticity, the application of these techniques is also expanding our knowledge on the efficacy and mechanisms of action of different pharmacological and rehabilitative treatments. Areas covered: This review discusses recent findings derived from the application of advanced MRI techniques to evaluate the structural and functional substrates underlying the effects of pharmacologic and rehabilitative treatments in patients with MS. Current applications as outcome in clinical trials and observational studies, their interpretation and possible pitfalls in their use are discussed. Finally, how these techniques could evolve in the future to improve monitoring of disease progression and treatment response is examined. Expert commentary: The number of treatments currently available for MS is increasing. The application of advanced MRI techniques is providing reliable and specific measures to better understand the targets of different treatments, including neuroprotection, tissue repair, and brain plasticity. This is a fundamental progress to move toward personalized medicine and individual treatment selection.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
46
|
Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, Wei W, Belachew S, Arnold DL. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler 2018; 25:1915-1925. [PMID: 30566027 PMCID: PMC6876256 DOI: 10.1177/1352458518814117] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Chronic lesion activity driven by smoldering inflammation is a pathological hallmark of progressive forms of multiple sclerosis (MS). Objective: To develop a method for automatic detection of slowly expanding/evolving lesions (SELs) on conventional brain magnetic resonance imaging (MRI) and characterize such SELs in primary progressive MS (PPMS) and relapsing MS (RMS) populations. Methods: We defined SELs as contiguous regions of existing T2 lesions showing local expansion assessed by the Jacobian determinant of the deformation between reference and follow-up scans. SEL candidates were assigned a heuristic score based on concentricity and constancy of change in T2- and T1-weighted MRIs. SELs were examined in 1334 RMS patients and 555 PPMS patients. Results: Compared with RMS patients, PPMS patients had higher numbers of SELs (p = 0.002) and higher T2 volumes of SELs (p < 0.001). SELs were devoid of gadolinium enhancement. Compared with areas of T2 lesions not classified as SEL, SELs had significantly lower T1 intensity at baseline and larger decrease in T1 intensity over time. Conclusion: We suggest that SELs reflect chronic tissue loss in the absence of ongoing acute inflammation. SELs may represent a conventional brain MRI correlate of chronic active MS lesions and a candidate biomarker for smoldering inflammation in MS.
Collapse
Affiliation(s)
| | - Jerry S Wolinsky
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Stephen L Hauser
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands/Institutes of Biomedical Engineering and Neurology, University College London (UCL), London, UK
| | | | - Wei Wei
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Douglas L Arnold
- NeuroRx Research, Montreal, QC, Canada/Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
Stankoff B, Poirion E, Tonietto M, Bodini B. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 2018; 28:723-734. [PMID: 30020560 PMCID: PMC8099240 DOI: 10.1111/bpa.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
The biological mechanisms driving disability worsening in multiple sclerosis (MS) are only partly understood. Monitoring changes in lesion load on MRI has a limited predictive value on the progression of clinical disability, and there is an essential need for novel imaging markers specific for the main candidate mechanisms underlying neurodegeneration which include failing myelin repair, innate immune cell activation and gray matter neuronal damage. Positron Emission Tomography (PET) is an imaging technology based on the injection of radiotracers directed against specific molecular targets, which has recently allowed the selective quantification in-vivo of the key biological mechanisms relevant to MS pathophysiology. Pilot PET studies performed in patients with all forms of MS allowed to revisit the contribution of MS lesions to disability worsening and showed that the evolution of lesions toward chronic activation, together with their remyelination profile were relevant predictors of disability worsening. PET offers the opportunity to bridge a critical gap between neuropathology and in-vivo imaging. This technique provides an original approach to disentangle some of the most relevant pathological components driving MS progression, to follow-up their temporal evolution, to investigate their clinical relevance and to evaluate novel therapeutics aimed to prevent disease progression.
Collapse
Affiliation(s)
- Bruno Stankoff
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| | - Emilie Poirion
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Matteo Tonietto
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Benedetta Bodini
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| |
Collapse
|
48
|
Simmons DA, James ML, Belichenko NP, Semaan S, Condon C, Kuan J, Shuhendler AJ, Miao Z, Chin FT, Longo FM. TSPO-PET imaging using [18F]PBR06 is a potential translatable biomarker for treatment response in Huntington's disease: preclinical evidence with the p75NTR ligand LM11A-31. Hum Mol Genet 2018; 27:2893-2912. [PMID: 29860333 PMCID: PMC6077813 DOI: 10.1093/hmg/ddy202] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that has no cure. HD therapeutic development would benefit from a non-invasive translatable biomarker to track disease progression and treatment response. A potential biomarker is using positron emission tomography (PET) imaging with a translocator protein 18 kDa (TSPO) radiotracer to detect microglial activation, a key contributor to HD pathogenesis. The ability of TSPO-PET to identify microglial activation in HD mouse models, essential for a translatable biomarker, or therapeutic efficacy in HD patients or mice is unknown. Thus, this study assessed the feasibility of utilizing PET imaging with the TSPO tracer, [18F]PBR06, to detect activated microglia in two HD mouse models and to monitor response to treatment with LM11A-31, a p75NTR ligand known to reduce neuroinflammation in HD mice. [18F]PBR06-PET detected microglial activation in striatum, cortex and hippocampus of vehicle-treated R6/2 mice at a late disease stage and, notably, also in early and mid-stage symptomatic BACHD mice. After oral administration of LM11A-31 to R6/2 and BACHD mice, [18F]PBR06-PET discerned the reductive effects of LM11A-31 on neuroinflammation in both HD mouse models. [18F]PBR06-PET signal had a spatial distribution similar to ex vivo brain autoradiography and correlated with microglial activation markers: increased IBA-1 and TSPO immunostaining/blotting and striatal levels of cytokines IL-6 and TNFα. These results suggest that [18F]PBR06-PET is a useful surrogate marker of therapeutic efficacy in HD mice with high potential as a translatable biomarker for preclinical and clinical HD trials.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Semaan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Condon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Kuan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam J Shuhendler
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Zheng Miao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
49
|
Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018; 24:1399-1412. [DOI: 10.1177/1352458518791680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.
Collapse
Affiliation(s)
- Heidi Högel
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
50
|
Dupont AC, Largeau B, Guilloteau D, Santiago Ribeiro MJ, Arlicot N. The Place of PET to Assess New Therapeutic Effectiveness in Neurodegenerative Diseases. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:7043578. [PMID: 29887768 PMCID: PMC5985069 DOI: 10.1155/2018/7043578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/01/2018] [Indexed: 12/16/2022]
Abstract
In vivo exploration of neurodegenerative diseases by positron emission tomography (PET) imaging has matured over the last 20 years, using dedicated radiopharmaceuticals targeting cellular metabolism, neurotransmission, neuroinflammation, or abnormal protein aggregates (beta-amyloid and intracellular microtubule inclusions containing hyperphosphorylated tau). The ability of PET to characterize biological processes at the cellular and molecular levels enables early detection and identification of molecular mechanisms associated with disease progression, by providing accurate, reliable, and longitudinally reproducible quantitative biomarkers. Thus, PET imaging has become a relevant imaging method for monitoring response to therapy, approved as an outcome measure in bioclinical trials. The aim of this paper is to review and discuss the current inputs of PET in the assessment of therapeutic effectiveness in neurodegenerative diseases connected by common pathophysiological mechanisms, including Parkinson's disease, Huntington's disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. We also discuss opportunities for PET imaging to drive more personalized neuroprotective and therapeutic strategies, taking into account individual variability, within the growing framework of precision medicine.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
| | | | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vitro, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| | - Maria Joao Santiago Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vivo, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| |
Collapse
|