1
|
Yang X, Wu M, Liang M, Zhang H, Li B, Mao C, Dong L, Wang Y, Xing H, Ren C, Huang Z, Wen Q, Ge Q, Yu Z, Feng F, Gao J, Huo L. Ultra-fast [ 18F]florbetapir PET imaging using the uMI Panorama PET/CT system. EJNMMI Phys 2024; 11:107. [PMID: 39738784 DOI: 10.1186/s40658-024-00712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND There is a need for faster amyloid PET scans to reduce patients' discomfort, minimize movement artifacts, and increase throughput. The recently introduced uMI Panorama PET/CT system featuring enhanced spatial resolution and sub-200ps TOF offers the potential for shorter scan duration without sacrificing image quality or efficacy to detect Aβ deposition. The study aims to establish a faster acquisition protocol for [18F]florbetapir PET imaging using digital PET/CT scanner uMI Panorama, while ensuring adequate image quality and amyloid-β (Aβ) detectability comparable to the standard 10-minute scan. METHODS Thirty-eight participants (29 Aβ positive and 9 Aβ negative) from a prospective dementia cohort at Peking Union Medical University Hospital underwent routine [18F]florbetapir PET scans using the uMI Panorama PET/CT scanner and a T1-weighted brain MRI scan. List-mode PET data were reconstructed into durations of 10 min, 2 min, 1 min, 45 s, and 30 s (G10min, G2min, G1min, G45s, G30s). Two trained nuclear medicine physicians independently evaluated the image quality using a 5-point scale and provided binary diagnosis. Standardized uptake value ratios (SUVr) of the composite cortex (frontal, lateral parietal, lateral temporal, and cingulate cortices) were calculated to discriminate Aβ status and coefficient of variation assessed objective image quality. Comparisons of image quality and Aβ detectability between various fast scan groups and G10min group were conducted. RESULTS The subjective image quality evaluation and Aβ detectability results from the two physicians showed both good intra-reader and inter-reader agreements (Cohen's kappa coefficient: 0.759-1.000). The subjective and objective image qualities of the G2min scans were comparable to the G10min scans, whereas adequate image quality was achieved with the G1min and G45s scans (5-point score ≥ 3). Subjective visual diagnosis by two physicians yielded consistent accuracy for G10min, G2min, and G1min groups, but lower specificity for G45s and G30s groups. The objective detection of Aβ status by cortex SUVr across all scan durations maintained perfect discriminatory efficiency and relatively high effect size (Hedge's G: 2.48-2.54). CONCLUSIONS A 1-min ultra-fast scan is feasible for [18F]florbetapir PET imaging using uMI Panorama PET/CT, while maintaining adequate image quality and Aβ diagnostic efficiency. CLINICAL TRIAL REGISTRATION NCT05023564. Registered September 2022 https://clinicaltrials.gov/search?term=NCT05023564 .
Collapse
Affiliation(s)
- Xueqian Yang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Meiqi Wu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Menglin Liang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Haiqiong Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Bo Li
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Chenhui Mao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Liling Dong
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yuan Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Haiqun Xing
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Chao Ren
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Zhenghai Huang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Qingxiang Wen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Qi Ge
- Central Research Institute, United Imaging Healthcare, Shanghai, 201807, China
| | - Zhengqing Yu
- Central Research Institute, United Imaging Healthcare, Shanghai, 201807, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jing Gao
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Li Huo
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Jovalekic A, Bullich S, Roé-Vellvé N, Kolinger GD, Howard LR, Elsholz F, Lagos-Quintana M, Blanco-Rodriguez B, Pérez-Martínez E, Gismondi R, Perrotin A, Chapleau M, Keegan R, Mueller A, Stephens AW, Koglin N. Experiences from Clinical Research and Routine Use of Florbetaben Amyloid PET-A Decade of Post-Authorization Insights. Pharmaceuticals (Basel) 2024; 17:1648. [PMID: 39770490 PMCID: PMC11728731 DOI: 10.3390/ph17121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Florbetaben (FBB) is a radiopharmaceutical approved by the FDA and EMA in 2014 for the positron emission tomography (PET) imaging of brain amyloid deposition in patients with cognitive impairment who are being evaluated for Alzheimer's disease (AD) or other causes of cognitive decline. Initially, the clinical adoption of FBB PET faced significant barriers, including reimbursement challenges and uncertainties regarding its integration into diagnostic clinical practice. This review examines the progress made in overcoming these obstacles and describes the concurrent evolution of the diagnostic landscape. Advances in quantification methods have further strengthened the traditional visual assessment approach. Over the past decade, compelling evidence has emerged, demonstrating that amyloid PET has a strong impact on AD diagnosis, management, and outcomes across diverse clinical scenarios, even in the absence of amyloid-targeted therapies. Amyloid PET imaging has become essential in clinical trials and the application of new AD therapeutics, particularly for confirming eligibility criteria (i.e., the presence of amyloid plaques) and monitoring biological responses to amyloid-lowering therapies. Since its approval, FBB PET has transitioned from a purely diagnostic tool aimed primarily at excluding amyloid pathology to a critical component in AD drug development, and today, it is essential in the diagnostic workup and therapy management of approved AD treatments.
Collapse
Affiliation(s)
| | - Santiago Bullich
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | - Núria Roé-Vellvé
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | | | | | - Floriana Elsholz
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | | | | | | | | | - Audrey Perrotin
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | - Marianne Chapleau
- Life Molecular Imaging Inc., 75 State Street, Floor 1, Boston, MA 02109, USA
| | - Richard Keegan
- Life Molecular Imaging Inc., 75 State Street, Floor 1, Boston, MA 02109, USA
| | - Andre Mueller
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| | | | - Norman Koglin
- Life Molecular Imaging GmbH, Tegeler Str. 7, 13353 Berlin, Germany
| |
Collapse
|
3
|
Perry J, Radenbach K, Geschke K, Rostamzadeh A. Counseling and disclosure practices in predictive Alzheimer's disease diagnostics: A scoping review. Alzheimers Dement 2024; 20:8910-8936. [PMID: 39559917 DOI: 10.1002/alz.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Accepted: 09/08/2024] [Indexed: 11/20/2024]
Abstract
New possibilities of biomarker-based predictive technologies for Alzheimer's disease (AD) have become more reliable as well as more accessible. Standardized clinical recommendations and guidance for counseling and disclosure in this context are not yet well developed. Our scoping review identified publications from database searches in PubMed, PsycINFO, LIVIVO, and Web of Science. Inclusion criteria were: (1) information or counseling, (2) biomarkers and a type of cognitive impairment or AD, and (3) published between 2005 and 2024. We identified 63 articles and synthesized them along the categories of staged information provision: pre-test counseling, disclosure, and post-disclosure follow-up. Most publications referred to the context of disclosure (48), followed by pre-test counseling (33), and post-disclosure follow-up (31). Some publications referred to all stages of counseling (17). Our findings highlight the need to further develop and specify comprehensive and standardized guidelines for counseling, disclosure, and post-disclosure follow-up in the context of AD biomarker testing. HIGHLIGHTS: New possibilities of biomarker-based predictive technologies for Alzheimer's disease (AD) have become more reliable and also more accessible. However, clinical recommendations and guidance for counseling and disclosure in the context of AD biomarker testing are currently not well developed. We carried out a scoping review with the aim to generate an overview of the scientific literature and guidance available regarding counseling, biomarker test result and dementia risk disclosure, and clinical management prior to and in the course of a biomarker-based diagnosis in early stages of AD. We identified 63 relevant articles. Most publications referred to the context of disclosure (48), followed by pre-test counseling (33), and post-disclosure follow-up (31). Some publications referred to all stages of counseling (17). Our findings highlight the urgent need for national and international consensus guidelines for comprehensive and staged counseling and disclosure practices. While most publications identify relevant ethical challenges posed for counseling practices in the context of AD biomarker testing, they rarely present any practical recommendations for clinicians, on how and what to counsel on a concrete level.
Collapse
Affiliation(s)
- Julia Perry
- Department of Medical Ethics and History of Medicine, University Medical Center Goettingen, Goettingen, Germany
| | - Katrin Radenbach
- Department of Geriatric Psychiatry, Ökumenisches Hainich Klinikum gGmbH, Mühlhausen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
| | - Katharina Geschke
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| |
Collapse
|
4
|
Kaewchur T, Thientunyakit T, Chamroonrat W, Khiewvan B, Kiatkittikul P, Wongsurawat N, Chotipanich C, Likitjaroen Y, Senanarong V, Pasawang P, Sontrapornpol T, Poon-iad N, Amnuaywattakorn S, Tepmongkol S. Thai Guideline for Nuclear Medicine Investigations of Neurocognitive Disorders: Nuclear Medicine Society of Thailand, the Neurological Society of Thailand, and Thai Medical Physicist Society Collaboration. Diagnostics (Basel) 2024; 14:2474. [PMID: 39594140 PMCID: PMC11592784 DOI: 10.3390/diagnostics14222474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Nuclear medicine investigations play a significant role in diagnosing dementia, mainly using imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). By providing functional and molecular data via brain imaging, nuclear medicine investigations offer valuable insights that complement clinical evaluations and structural imaging in the early detection, diagnosis, and differentiation of various types of dementia, leading to more accurate diagnosis and personalized treatment planning. Therefore, the Nuclear Medicine Society of Thailand, the Neurological Society of Thailand, and the Thai Medical Physicist Society have collaborated to establish these practical nuclear medicine investigation guidelines aiming to (1) identify the role of nuclear medicine studies in patients with neurocognitive disorders; (2) assist referrers in requesting the most appropriate procedure for diagnosis of each type of neurocognitive disorders; and (3) identify scientific evidence that is useful to assisting nuclear medicine professionals in recommending, performing, interpreting, and reporting the results of nuclear medicine investigations in patients with neurocognitive disorders.
Collapse
Affiliation(s)
- Tawika Kaewchur
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.K.)
- PET/CT and Cyclotron Center, Center for Medicine Excellence, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanyaluck Thientunyakit
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.T.); (B.K.); (N.P.-i.)
| | - Wichana Chamroonrat
- Division of Nuclear Medicine, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (W.C.); (S.A.)
| | - Benjapa Khiewvan
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.T.); (B.K.); (N.P.-i.)
| | - Peerapon Kiatkittikul
- National Cyclotron and PET Centre, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (P.K.); (C.C.)
| | - Nantaporn Wongsurawat
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Chanisa Chotipanich
- National Cyclotron and PET Centre, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok 10210, Thailand; (P.K.); (C.C.)
| | - Yuttachai Likitjaroen
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand;
| | - Vorapun Senanarong
- Department of Internal Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Panya Pasawang
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (P.P.); (T.S.)
| | - Tanawat Sontrapornpol
- Division of Nuclear Medicine, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand; (P.P.); (T.S.)
| | - Nucharee Poon-iad
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.T.); (B.K.); (N.P.-i.)
| | - Sasithorn Amnuaywattakorn
- Division of Nuclear Medicine, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (W.C.); (S.A.)
| | - Supatporn Tepmongkol
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Chulalongkorn University Biomedical Imaging Group (CUBIG), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Center of Excellence in Cognitive Impairment and Dementia, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Kuchenbecker LA, Thompson KJ, Hurst CD, Opdenbosch BM, Heckman MG, Reddy JS, Nguyen T, Casellas HL, Sotelo KD, Reddy DJ, Lucas JA, Day GS, Willis FB, Graff-Radford N, Ertekin-Taner N, Kalari KR, Carrasquillo MM. Nomination of a novel plasma protein biomarker panel capable of classifying Alzheimer's disease dementia with high accuracy in an African American cohort. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605373. [PMID: 39131392 PMCID: PMC11312441 DOI: 10.1101/2024.07.27.605373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Introduction African Americans (AA) are widely underrepresented in plasma biomarker studies for Alzheimer's disease (AD) and current diagnostic biomarker candidates do not reflect the heterogeneity of AD. Methods Untargeted proteome measurements were obtained using the SomaScan 7k platform to identify novel plasma biomarkers for AD in a cohort of AA clinically diagnosed as AD dementia (n=183) or cognitively unimpaired (CU, n=145). Machine learning approaches were implemented to identify the set of plasma proteins that yields the best classification accuracy. Results A plasma protein panel achieved an area under the curve (AUC) of 0.91 to classify AD dementia vs CU. The reproducibility of this finding was observed in the ANMerge plasma and AMP-AD Diversity brain datasets (AUC=0.83; AUC=0.94). Discussion This study demonstrates the potential of biomarker discovery through untargeted plasma proteomics and machine learning approaches. Our findings also highlight the potential importance of the matrisome and cerebrovascular dysfunction in AD pathophysiology.
Collapse
Affiliation(s)
- Lindsey A. Kuchenbecker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
| | - Kevin J. Thompson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Michael G. Heckman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Joseph S. Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Katie D. Sotelo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Delila J. Reddy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - John A. Lucas
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Floyd B. Willis
- Department of Family Medicine, Mayo Clinic, Jacksonville, FL USA
| | | | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Krishna R. Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
6
|
Gandia-Ferrero MT, Torres-Espallardo I, Martínez-Sanchis B, Muñoz E, Morera-Ballester C, Sopena-Novales P, Álvarez-Sánchez L, Baquero-Toledo M, Martí-Bonmatí L. Amyloid brain-dedicated PET images can diagnose Alzheimer's pathology with Centiloid Scale. Phys Med 2024; 121:103345. [PMID: 38581963 DOI: 10.1016/j.ejmp.2024.103345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024] Open
Abstract
PURPOSE To evaluate whether the Centiloid Scale may be used to diagnose Alzheimer's Disease (AD) pathology effectively with the only use of amyloid PET imaging modality from a brain-dedicated PET scanner. METHODS This study included 26 patients with amyloid PET images with 3 different radiotracers. All patients were acquired both on a PET/CT and a brain-dedicated PET scanner (CareMiBrain, CMB), from which 4 different reconstructions were implemented. A new pipeline was proposed and used for the PET image analysis based on the original Centiloid Scale processing pipeline, but with only PET images. The Youden's Index was employed to calculate the optimal cutoffs for diagnosis and evaluated by the AUC, accuracy, precision, and recall metrics. RESULTS The Centiloid Scale (CL) processing pipeline was validated with and without the use of MR images. The CL cutoffs for AD pathology diagnosis on the PET/CT and the 4 CMB reconstructions were 34.4 ± 2.2, 43.5 ± 3.5, 51.9 ± 12.5, 57.5 ± 6.8 and 41.8 ± 1.2 respectively. Overall, for these cutoffs all metrics obtained the maximum score. CONCLUSION The Centiloid scale applied to PET images allows for AD pathology diagnosis. The CMB scanner can be used with the Centiloid scale to automatically assist in the diagnosis of AD pathology, relieving the large burden of neurodegenerative diseases on a traditional PET/CT.
Collapse
Affiliation(s)
- Maria Teresa Gandia-Ferrero
- Biomedical Imaging Research Group (GIBI2(30)), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València 46026, Spain.
| | - Irene Torres-Espallardo
- Biomedical Imaging Research Group (GIBI2(30)), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València 46026, Spain; Nuclear Medicine Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Begoña Martínez-Sanchis
- Nuclear Medicine Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Enrique Muñoz
- Oncovision, Carrer de Jeroni de Montsoriu, 92, València 46022, Spain
| | | | - Pablo Sopena-Novales
- Nuclear Medicine Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Lourdes Álvarez-Sánchez
- Neurology Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Miquel Baquero-Toledo
- Neurology Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI2(30)), La Fe Health Research Institute (IIS La Fe), Avenida Fernando Abril Martorell, València 46026, Spain; Radiology Department, La Fe University and Polytechnic Hospital, Avenida Fernando Abril Martorell, València 46026, Spain
| |
Collapse
|
7
|
Maeda Y, Matsumoto K, Ikari Y, Akamatsu G, Shimizu K, Tsuda K. [Accuracy of Injection Dose of Amyloid PET Agent Using Radiopharmaceutical Activity Suppliers]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2024; 80:155-165. [PMID: 38072451 DOI: 10.6009/jjrt.2024-1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
PURPOSE This study aimed to identify disposable items with low amyloid positron emission tomography (PET) agent radioactivity adsorption for accurate injections using a radiopharmaceutical activity supplier. METHODS First, we investigated disposable items currently used for amyloid PET agent injection. Next, we measured the residual radioactivity rates of amyloid PET agents on three-way stopcocks, extension tubes, butterfly needles, and indwelling needles to identify disposable items with low radioactivity adsorption. Finally, we evaluated the accuracy of amyloid PET agent injection using the selected disposable items and a radiopharmaceutical activity supplier. RESULTS The polybutadiene extension tube exhibited a significantly lower residual activity rate than that of the polyvinyl chloride extension tube. Similarly, the indwelling needles showed significantly lower residual activity rate than that of butterfly needles. The dose indicated by a radiopharmaceutical activity supplier was 184.1 MBq, while the dose calibrator measured the radioactivity which flowed into the vial as 170.2 MBq, resulting in an administration accuracy of 8.2%. CONCLUSION To ensure accurate amyloid PET agent injections, we recommend using polybutadiene extension tubes and indwelling needles due to their lower radioactivity adsorption.
Collapse
Affiliation(s)
- Yukito Maeda
- Department of Medical Technology, Kagawa University Hospital
| | - Keiichi Matsumoto
- Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science
- Department of Molecular Imaging Research, Center of Clinical Research and Innovation, Kobe City Medical Center General Hospital
| | - Yasuhiko Ikari
- Department of Molecular Imaging Research, Center of Clinical Research and Innovation, Kobe City Medical Center General Hospital
- Department of Medical Physics and Engineering Course of Health Science, Osaka University Graduate School of Medicine
| | - Go Akamatsu
- Department of Molecular Imaging Research, Center of Clinical Research and Innovation, Kobe City Medical Center General Hospital
- Imaging Physics Group, Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, QST
| | - Keiji Shimizu
- Department of Radiological Technology, Kobe City Medical Center General Hospital
| | - Keisuke Tsuda
- Department of Radiological Technology, Juntendo University
| |
Collapse
|
8
|
van Maurik IS, Bakker ED, van Unnik AAJM, Broulikova HM, Zwan MD, van de Giessen E, Berkhof J, Bouwman FH, Bosmans JE, van der Flier WM. How healthy participants value additional diagnostic testing with amyloid-PET in patients diagnosed with mild cognitive impairment - a bidding game experiment. Alzheimers Res Ther 2023; 15:208. [PMID: 38017549 PMCID: PMC10683285 DOI: 10.1186/s13195-023-01346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND To estimate the perceived value of additional testing with amyloid-PET in Euros in healthy participants acting as analogue patients with mild cognitive impairment (MCI). METHODS One thousand four hundred thirty-one healthy participants acting as analogue MCI patients (mean age 65 ± 8, 929 (75%) female) were recruited via the Dutch Brain Research Registry. Participants were asked to identify with a presented case (video vignette) of an MCI patient and asked whether they would prefer additional diagnostic testing with amyloid PET in this situation. If yes, respondents were asked how much they would be willing to pay for additional diagnostic testing. Monetary value was elicited via a bidding game in which participants were randomized over three conditions: (A) additional testing results in better patient management, (B) Same as condition A and a delay in institutionalization of 3 months, and (C) same as A and a delay in institutionalization of 6 months. Participants who were not willing to take a test were compared with participants who were willing to take a test using logit models. The highest monetary value per condition was analyzed using random-parameter mixed models. RESULTS The vast majority of participants acting as analogue MCI patients (87% (n = 1238)) preferred additional testing with amyloid PET. Participants who were not interested were more often female (OR = 1.61 95% CI [1.09-2.40]) and expressed fewer worries to get AD (OR = 0.64 [0.47-0.87]). The median "a priori" (i.e., before randomization) monetary value of additional diagnostic testing was €1500 (IQR 500-1500). If an additional amyloid PET resulted in better patient management (not further specified; condition A), participants were willing to pay a median price of €2000 (IQR = 1000-3500). Participants were willing to pay significantly more than condition A (better patient management) if amyloid-PET testing additionally resulted in a delay in institutionalization of 3 months (€530 [255-805] on top of €2000, condition B) or 6 months (€596 [187-1005] on top of €2000, condition C). CONCLUSIONS Members of the general population acting as MCI patients are willing to pay a substantial amount of money for amyloid-PET and this increases when diagnostic testing leads to better patient management and the prospect to live longer at home.
Collapse
Affiliation(s)
- I S van Maurik
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
| | - E D Bakker
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - A A J M van Unnik
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - H M Broulikova
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - M D Zwan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - E van de Giessen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - J Berkhof
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| | - F H Bouwman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - J E Bosmans
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - W M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, De Boelelaan 1118, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Hazan J, Liu KY, Fox NC, Howard R. Online clinical tools to support the use of new plasma biomarker diagnostic technology in the assessment of Alzheimer's disease: a narrative review. Brain Commun 2023; 5:fcad322. [PMID: 38090277 PMCID: PMC10715781 DOI: 10.1093/braincomms/fcad322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/11/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024] Open
Abstract
Recent advances in new diagnostic technologies for Alzheimer's disease have improved the speed and precision of diagnosis. However, accessing the potential benefits of this technology poses challenges for clinicians, such as deciding whether it is clinically appropriate to order a diagnostic test, which specific test or tests to order and how to interpret test results and communicate these to the patient and their caregiver. Tools to support decision-making could provide additional structure and information to the clinical assessment process. These tools could be accessed online, and such 'e-tools' can provide an interactive interface to support patients and clinicians in the use of new diagnostic technologies for Alzheimer's disease. We performed a narrative review of the literature to synthesize information available on this research topic. Relevant studies that provide an understanding of how these online tools could be used to optimize the clinical utility of diagnostic technology were identified. Based on these, we discuss the ways in which e-tools have been used to assist in the diagnosis of Alzheimer's disease and propose recommendations for future research to aid further development.
Collapse
Affiliation(s)
- Jemma Hazan
- Division of Psychiatry, University College London, London W1T 7BN, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London W1T 7BN, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, W1T 7NF, UK
| | - Robert Howard
- Division of Psychiatry, University College London, London W1T 7BN, UK
| |
Collapse
|
10
|
Teipel SJ, Spottke A, Boecker H, Daamen M, Graf E, Sahlmann J, Buchert R, Mohnike W, Mohnike K, Kurth J, Jessen F, Krause BJ. Patient-related benefits of amyloid PET imaging in dementia: Rationale and design of the German randomized coverage with evidence development study ENABLE. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12383. [PMID: 37560401 PMCID: PMC10407881 DOI: 10.1002/trc2.12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 08/11/2023]
Abstract
The utility of amyloid positron emission tomography (PET) for the etiological diagnosis of dementia and its impact on functional status of patients in routine care are currently unclear. Here, we describe the design of ENABLE, a randomized controlled two-armed coverage with evidence development (CED) study in Germany. Approximately 1126 patients with mild to moderate dementia of unclear etiology will be randomly assigned to either an amyloid PET or a no amyloid PET group. Patients will be followed-up for 24 months. The study has been registered at the German Clinical Trials Register (https://drks.de/search/de/trial/DRKS00030839) with the registration code DRKS00030839. The primary endpoint of ENABLE is the ability to perform functional activities of daily living at 18 months. Secondary endpoints include change in diagnosis, diagnostic confidence, and cognitive and clinical outcomes of patients. We expect that the CED study ENABLE will inform about patient relevant effects of amyloid PET in routine care. Furthermore, we anticipate that ENABLE will support physicians' and payers' decisions on provision of health care for patients with dementia. Highlights Study design focuses on the usefulness of amyloid positron emission tomography (PET) in routine care.Study design addresses the patient-relevant effect of amyloid PET.Patient representatives were involved in the creation of the study design.The study will help improve routine care for people with dementia.
Collapse
Affiliation(s)
- Stefan J. Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/GreifswaldRostockGermany
- Department of Psychosomatic MedicineRostock University Medical CenterRostockGermany
| | - Annika Spottke
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) BonnBonnGermany
| | - Henning Boecker
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) BonnBonnGermany
| | - Marcel Daamen
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) BonnBonnGermany
| | - Erika Graf
- Institute of Medical Biometry and Statistics (IMBI)Faculty of Medicine − University Medical Center FreiburgFreiburgGermany
| | - Jörg Sahlmann
- Institute of Medical Biometry and Statistics (IMBI)Faculty of Medicine − University Medical Center FreiburgFreiburgGermany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Wolfgang Mohnike
- PET e.V.BerlinGermany
- Diagnostic Therapeutic Center Berlin‐Frankfurter TorBerlinGermany
| | - Konrad Mohnike
- PET e.V.BerlinGermany
- Diagnostic Therapeutic Center Berlin‐Frankfurter TorBerlinGermany
| | - Jens Kurth
- Department of Nuclear MedicineRostock University Medical CenterRostockGermany
| | - Frank Jessen
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) BonnBonnGermany
- Department of PsychiatryUniversity Hospital of Cologne, Medical Faculty, University of CologneCologneGermany
| | - Bernd J. Krause
- Department of Nuclear MedicineRostock University Medical CenterRostockGermany
| |
Collapse
|
11
|
Pemberton HG, Buckley C, Battle M, Bollack A, Patel V, Tomova P, Cooke D, Balhorn W, Hegedorn K, Lilja J, Brand C, Farrar G. Software compatibility analysis for quantitative measures of [ 18F]flutemetamol amyloid PET burden in mild cognitive impairment. EJNMMI Res 2023; 13:48. [PMID: 37225974 DOI: 10.1186/s13550-023-00994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
RATIONALE Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease pathogenesis. In clinical practice, trained readers will visually categorise positron emission tomography (PET) scans as either Aβ positive or negative. However, adjunct quantitative analysis is becoming more widely available, where regulatory approved software can currently generate metrics such as standardised uptake value ratios (SUVr) and individual Z-scores. Therefore, it is of direct value to the imaging community to assess the compatibility of commercially available software packages. In this collaborative project, the compatibility of amyloid PET quantification was investigated across four regulatory approved software packages. In doing so, the intention is to increase visibility and understanding of clinically relevant quantitative methods. METHODS Composite SUVr using the pons as the reference region was generated from [18F]flutemetamol (GE Healthcare) PET in a retrospective cohort of 80 amnestic mild cognitive impairment (aMCI) patients (40 each male/female; mean age = 73 years, SD = 8.52). Based on previous autopsy validation work, an Aβ positivity threshold of ≥ 0.6 SUVrpons was applied. Quantitative results from MIM Software's MIMneuro, Syntermed's NeuroQ, Hermes Medical Solutions' BRASS and GE Healthcare's CortexID were analysed using intraclass correlation coefficient (ICC), percentage agreement around the Aβ positivity threshold and kappa scores. RESULTS Using an Aβ positivity threshold of ≥ 0.6 SUVrpons, 95% agreement was achieved across the four software packages. Two patients were narrowly classed as Aβ negative by one software package but positive by the others, and two patients vice versa. All kappa scores around the same Aβ positivity threshold, both combined (Fleiss') and individual software pairings (Cohen's), were ≥ 0.9 signifying "almost perfect" inter-rater reliability. Excellent reliability was found between composite SUVr measurements for all four software packages, with an average measure ICC of 0.97 and 95% confidence interval of 0.957-0.979. Correlation coefficient analysis between the two software packages reporting composite z-scores was strong (r2 = 0.98). CONCLUSION Using an optimised cortical mask, regulatory approved software packages provided highly correlated and reliable quantification of [18F]flutemetamol amyloid PET with a ≥ 0.6 SUVrpons positivity threshold. In particular, this work could be of interest to physicians performing routine clinical imaging rather than researchers performing more bespoke image analysis. Similar analysis is encouraged using other reference regions as well as the Centiloid scale, when it has been implemented by more software packages.
Collapse
Affiliation(s)
- Hugh G Pemberton
- GE Healthcare, Pollards Wood, Chalfont St Giles, Amersham, HP8 4SP, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | | | - Mark Battle
- GE Healthcare, Pollards Wood, Chalfont St Giles, Amersham, HP8 4SP, UK
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ariane Bollack
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Vrajesh Patel
- GE Healthcare, Pollards Wood, Chalfont St Giles, Amersham, HP8 4SP, UK
| | - Petya Tomova
- GE Healthcare, Pollards Wood, Chalfont St Giles, Amersham, HP8 4SP, UK
| | | | | | | | | | - Christine Brand
- GE Healthcare, Pollards Wood, Chalfont St Giles, Amersham, HP8 4SP, UK
| | - Gill Farrar
- GE Healthcare, Pollards Wood, Chalfont St Giles, Amersham, HP8 4SP, UK
| |
Collapse
|
12
|
Nojima H, Ito S, Kushida A, Abe A, Motsuchi W, Verbel D, Vandijck M, Jannes G, Vandenbroucke I, Aoyagi K. Clinical utility of cerebrospinal fluid biomarkers measured by LUMIPULSE ® system. Ann Clin Transl Neurol 2022; 9:1898-1909. [PMID: 36321325 PMCID: PMC9735374 DOI: 10.1002/acn3.51681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) are well-established in research settings, but their use in routine clinical practice remains a largely unexploited potential. Here, we examined the relationship between CSF biomarkers, measured by a fully automated immunoassay platform, and brain β-amyloid (Aβ) deposition status confirmed by amyloid positron emission tomography (PET). METHODS One hundred ninety-nine CSF samples from clinically diagnosed AD patients enrolled in a clinical study and who underwent amyloid PET were used for the measurement of CSF biomarkers Aβ 1-40 (Aβ40), Aβ 1-42 (Aβ42), total tau (t-Tau), and phosphorylated tau-181 (p-Tau181) using the LUMIPULSE system. These biomarkers and their combinations were compared to amyloid PET classification (negative or positive) using visual read assessments. Several combinations were also analyzed with a multivariable logistic regression model. RESULTS Aβ42, t-Tau, and p-Tau181, and the ratios of Aβ42 with other biomarkers had a good diagnostic agreement with amyloid PET imaging. The multivariable logistic regression analysis showed that amyloid PET status was associated with Aβ40 and Aβ42, but other factors, such as MMSE, sex, t-Tau, and p-Tau181, did not significantly add information to the model. CONCLUSIONS CSF biomarkers measured with the LUMIPULSE system showed good agreement with amyloid PET imaging. The ratio of Aβ42 with the other analyzed biomarkers showed a higher correlation with amyloid PET than Aβ42 alone, suggesting that the combinations of biomarkers could be useful in the diagnostic assessment in clinical research and potentially in routine clinical practice.
Collapse
Affiliation(s)
- Hisashi Nojima
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - Satoshi Ito
- Eisai Co., Ltd. 4‐6‐10 KoishikawaBunkyo‐kuTokyo112‐8088Japan,Eisai Inc.200 Metro BoulevardNutleyNew Jersey07110USA
| | - Akira Kushida
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - Aki Abe
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - Wataru Motsuchi
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| | - David Verbel
- Eisai Inc.200 Metro BoulevardNutleyNew Jersey07110USA
| | - Manu Vandijck
- Fujirebio‐Europe N.V.Technologiepark 69052GhentBelgium
| | - Geert Jannes
- Fujirebio‐Europe N.V.Technologiepark 69052GhentBelgium
| | | | - Katsumi Aoyagi
- FUJIREBIO Inc.2‐1‐1, Nishishinjuku, Shinjuku‐kuTokyo163‐0410Japan
| |
Collapse
|
13
|
Raval NR, Madsen CA, Shalgunov V, Nasser A, Battisti UM, Beaman EE, Juhl M, Jørgensen LM, Herth MM, Hansen HD, Plavén-Sigray P, Knudsen GM. Evaluation of the α-synuclein PET radiotracer (d 3)-[ 11C]MODAG-001 in pigs. Nucl Med Biol 2022; 114-115:42-48. [PMID: 36095921 DOI: 10.1016/j.nucmedbio.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND A positron emission tomography (PET) radiotracer to neuroimage α-synuclein aggregates would be a crucial addition for early diagnosis and treatment development in disorders such as Parkinson's disease, where elevated aggregate levels are a histopathological hallmark. The radiotracer (d3)-[11C]MODAG-001 has recently shown promise for visualization of α-synuclein pre-formed fibrils (α-PFF) in rodents. We here test the radiotracer in a pig model where proteins are intracerebrally injected immediately before scanning. Four pigs were injected in one hemisphere with 150 μg α-PFF, and in the other hemisphere, either 75 μg α-PFF or human brain homogenate from either dementia with Lewy bodies (DLB) or Alzheimer's disease (AD) was injected. All pigs underwent one or two (d3)-[11C]MODAG-001 PET scans, quantified with the non-invasive Logan graphical analysis using the occipital cortex as a reference region. RESULTS The α-PFF and AD homogenate injected brain regions had high uptake of (d3)-[11C]MODAG-001 compared to the occipital cortex or cerebellum. BPND values in 150 μg α-PFF injected regions was 0.78, and in the AD homogenate injected regions was 0.73. By contrast, the DLB homogenate injected region did not differ in uptake and clearance compared to the reference regions. The time-activity curves and BPND values in the 150 μg and 75 μg injected regions of α-PFFs show a dose-dependent effect, and the PET signal could be blocked by pretreatment with unlabeled MODAG-001. CONCLUSION We find that both α-PFF and AD brain homogenates give rise to increased binding of (d3)-[11C]MODAG-001 when injected into the pig brain. Despite its limited specificity for cerebral α-synuclein pathology, (d3)-[11C]MODAG-001 shows promise as a lead tracer for future radiotracer development.
Collapse
Affiliation(s)
- Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clara Aabye Madsen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emily Eufaula Beaman
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Louise Møller Jørgensen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Spine Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Clinical impact of amyloid PET using 18F-florbetapir in patients with cognitive impairment and suspected Alzheimer's disease: a multicenter study. Ann Nucl Med 2022; 36:1039-1049. [PMID: 36194355 DOI: 10.1007/s12149-022-01792-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Amyloid positron emission tomography (PET) can reliably detect senile plaques and fluorinated ligands are approved for clinical use. However, the clinical impact of amyloid PET imaging is still under investigation. The aim of this study was to evaluate the diagnostic impact and clinical utility in patient management of amyloid PET using 18F-florbetapir in patients with cognitive impairment and suspected Alzheimer's disease (AD). We also aimed to determine the cutoffs for amyloid positivity for quantitative measures by investigating the agreement between quantitative and visual assessments. METHODS Ninety-nine patients suspected of having AD underwent 18F-florbetapir PET at five institutions. Site-specialized physicians provided a diagnosis of AD or non-AD with a percentage estimate of their confidence and their plan for patient management in terms of medication, prescription dosage, additional diagnostic tests, and care planning both before and after receiving the amyloid imaging results. A PET image for each patient was visually assessed and dichotomously rated as either amyloid-positive or amyloid-negative by four board-certified nuclear medicine physicians. The PET images were also quantitatively analyzed using the standardized uptake value ratio (SUVR) and Centiloid (CL) scale. RESULTS Visual interpretation obtained 48 positive and 51 negative PET scans. The amyloid PET results changed the AD and non-AD diagnosis in 39 of 99 patients (39.3%). The change rates of 26 of the 54 patients (48.1%) with a pre-scan AD diagnosis were significantly higher than those of 13 of the 45 patients with a pre-scan non-AD diagnosis (χ2 = 5.334, p = 0.0209). Amyloid PET results also resulted in at least one change to the patient management plan in 42 patients (42%), mainly medication (20 patients, 20%) and care planning (25 patients, 25%). Receiver-operating characteristic analysis determined the best agreement of the quantitative assessments and visual interpretation of PET scans to have an area under the curve of 0.993 at an SUVR of 1.19 and CL of 25.9. CONCLUSION Amyloid PET using 18F-florbetapir PET had a substantial clinical impact on AD and non-AD diagnosis and on patient management by enhancing diagnostic confidence. In addition, the quantitative measures may improve the visual interpretation of amyloid positivity.
Collapse
|
15
|
Caprioglio C, Garibotto V, Jessen F, Frölich L, Allali G, Assal F, Frisoni GB, Altomare D. The Clinical Use of Alzheimer's Disease Biomarkers in Patients with Mild Cognitive Impairment: A European Alzheimer's Disease Consortium Survey. J Alzheimers Dis 2022; 89:535-551. [PMID: 35912743 PMCID: PMC9535580 DOI: 10.3233/jad-220333] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent advances occurred in the field of Alzheimer's disease (AD) biomarkers and the introduction of a research framework grounded on a biomarker-based definition of AD might have fostered an increased clinical use of AD biomarkers. For this reason, an up-to-date depiction of the clinical use of AD biomarkers is needed. OBJECTIVE To investigate the clinical use of the main AD biomarkers in patients with mild cognitive impairment (MCI) by examining the beliefs and preferences of professionals (clinicians and biomarker experts) of the European Alzheimer's Disease Consortium (EADC). METHODS 150 professionals filled in an online survey from May to September 2020. The investigated biomarkers were medial temporal lobe atrophy score (MTA) on structural MRI, typical AD (i.e., temporoparietal and posterior cingulate) hypometabolism on FDG-PET, CSF (Aβ42, p-tau, t-tau), amyloid-PET and tau-PET. RESULTS The frequency of responders reporting a frequent-to-constant use of MTA (77%) is higher than that of those reporting a frequent-to-constant use of the other AD biomarkers (i.e. , CSF 45%, p = 0.014; FDG-PET: 32%, p < 0.001; amyloid-PET: 8%, p < 0.001; and tau-PET: 2%, p < 0.001). CSF is considered the most valuable biomarker in terms of additional diagnostic value, followed by amyloid-PET, tau-PET, and typical AD hypometabolism on FDG-PET. CONCLUSION AD biomarkers are widely used across European memory clinics with a clinical research background for the diagnosis of MCI. Overall, we observed that CSF is currently considered as the most useful biomarker, followed by amyloid-PET.
Collapse
Affiliation(s)
- Camilla Caprioglio
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland,Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Frank Jessen
- Department of Psychiatry, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute for Mental Health, University of Heidelberg, Mannheim, Germany
| | - Gilles Allali
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland,Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Frédéric Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland,Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland,Geneva Memory Center, Geneva University Hospitals, Geneva, Switzerland,Correspondence to: Daniele Altomare, PhD, Memory Clinic, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 6, 1205 Geneva, Switzerland. Tel.: +41 22 372 58 00; E-mail:
| | | |
Collapse
|
16
|
Pemberton HG, Collij LE, Heeman F, Bollack A, Shekari M, Salvadó G, Alves IL, Garcia DV, Battle M, Buckley C, Stephens AW, Bullich S, Garibotto V, Barkhof F, Gispert JD, Farrar G. Quantification of amyloid PET for future clinical use: a state-of-the-art review. Eur J Nucl Med Mol Imaging 2022; 49:3508-3528. [PMID: 35389071 PMCID: PMC9308604 DOI: 10.1007/s00259-022-05784-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
Collapse
Affiliation(s)
- Hugh G Pemberton
- GE Healthcare, Amersham, UK.
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fiona Heeman
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ariane Bollack
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Isadora Lopes Alves
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Research Center, Amsterdam, The Netherlands
| | - David Vallez Garcia
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark Battle
- GE Healthcare, Amersham, UK
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam Neurocience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | | |
Collapse
|
17
|
Bouter Y, Bouter C. Selective Serotonin Reuptake Inhibitor-Treatment Does Not Show Beneficial Effects on Cognition or Amyloid Burden in Cognitively Impaired and Cognitively Normal Subjects. Front Aging Neurosci 2022; 14:883256. [PMID: 35813957 PMCID: PMC9260503 DOI: 10.3389/fnagi.2022.883256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/24/2022] [Indexed: 11/15/2022] Open
Abstract
Preclinical studies indicate that selective serotonin reuptake inhibitors (SSRI) have beneficial effects on Alzheimer-related pathologies. Therefore, the aim of this study was to evaluate the influence of SSRI-treatment on amyloid burden in 18F-Florbetapir-positron emission tomography (PET) and on cognition in cognitively normal and cognitively impaired subjects. We included n = 755 cognitively impaired and n = 394 cognitively normal participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) that underwent at least one 18F-Florbetapir-PET. Standardized uptake ratios (SUVR) and the Alzheimer Disease Assessment Scale-cognitive subscale (ADAS) scores as well as follow-up results were compared between subgroups with a history of SSRI-treatment (SSRI+) and without SSRI-treatment (SSRI-) as well as in subgroups of SSRI+/Depression+ and SSRI+/Depression- and SSRI-/Depression+ and SSRI-/Depression-. 18F-Florbetapir-PET did not show significant differences of SUVR between the SSRI+ and SSRI- groups in both, cognitively impaired and cognitively normal participants. There were no differences in subgroups of SSRI+/Depression+ and SSRI+/Depression- and SSRI-/Depression+ and SSRI-/Depression-. However, SUVR showed a dose-dependent inverse correlation to the duration of medication in cognitively normal and in cognitively impaired patients. SRRI-treatment did not show an effect on ADAS scores. Furthermore, there was no effect on follow-up SUVR or on follow-up ADAS scores. Overall, SSRI-treatment did not show beneficial effects on amyloid load nor on cognition.
Collapse
Affiliation(s)
- Yvonne Bouter
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
18
|
Chapleau M, Iaccarino L, Soleimani-Meigooni D, Rabinovici GD. The Role of Amyloid PET in Imaging Neurodegenerative Disorders: A Review. J Nucl Med 2022; 63:13S-19S. [PMID: 35649652 DOI: 10.2967/jnumed.121.263195] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Imaging of amyloid deposition using PET has been available in research studies for 2 decades and has been approved for clinical use by the U.S. Food and Drug Administration, the European Medicines Agency, and other regulatory agencies around the world. Amyloid PET is a crucial tool for the diagnosis of Alzheimer disease, as it allows the noninvasive detection of amyloid plaques, a core neuropathologic feature that defines the disease. The clinical use of amyloid PET is expected to increase with recent accelerated approval in the United States of aducanumab, an antiamyloid monoclonal antibody, for the treatment of mild cognitive impairment and mild dementia due to Alzheimer disease. However, amyloid pathology can also be found in cognitively unimpaired older adults and in patients with other neurodegenerative disorders. The aim of this review is to provide an up-to-date overview of the application of amyloid PET in neurodegenerative diseases. We provide an in-depth analysis of the clinical, pathologic, and imaging correlates; a comparison with other available biomarkers; and a review of the application of amyloid PET in clinical trials and clinical utility studies.
Collapse
Affiliation(s)
- Marianne Chapleau
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California;
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - David Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California.,Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; and.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| |
Collapse
|
19
|
Peira E, Poggiali D, Pardini M, Barthel H, Sabri O, Morbelli S, Cagnin A, Chincarini A, Cecchin D. A comparison of advanced semi-quantitative amyloid PET analysis methods. Eur J Nucl Med Mol Imaging 2022; 49:4097-4108. [PMID: 35652962 PMCID: PMC9525368 DOI: 10.1007/s00259-022-05846-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To date, there is no consensus on how to semi-quantitatively assess brain amyloid PET. Some approaches use late acquisition alone (e.g., ELBA, based on radiomic features), others integrate the early scan (e.g., TDr, which targets the area of maximum perfusion) and structural imaging (e.g., WMR, that compares kinetic behaviour of white and grey matter, or SI based on the kinetic characteristics of the grey matter alone). In this study SUVr, ELBA, TDr, WMR, and SI were compared. The latter - the most complete one - provided the reference measure for amyloid burden allowing to assess the efficacy and feasibility in clinical setting of the other approaches. METHODS We used data from 85 patients (aged 44-87) who underwent dual time-point PET/MRI acquisitions. The correlations with SI were computed and the methods compared with the visual assessment. Assuming SUVr, ELBA, TDr, and WMR to be independent measures, we linearly combined them to obtain more robust indices. Finally, we investigated possible associations between each quantifier and age in amyloid-negative patients. RESULTS Each quantifier exhibited excellent agreement with visual assessment and strong correlation with SI (average AUC = 0.99, ρ = 0.91). Exceptions to this were observed for subcortical regions with ELBA and WMR (ρELBA = 0.44, ρWMR = 0.70). The linear combinations showed better performances than the individual methods. Significant associations were observed between TDr, WMR, SI, and age in amyloid-negative patients (p < 0.05). CONCLUSION Among the other methods, TDr came closest to the reference with less implementation complexity. Moreover, this study suggests that combining independent approaches gives better results than the individual procedure, so efforts should focus on multi-classifier systems for amyloid PET. Finally, the ability of techniques integrating blood perfusion to depict age-related variations in amyloid load in amyloid-negative subjects demonstrates the goodness of the estimate.
Collapse
Affiliation(s)
- Enrico Peira
- INFN - National Institute of Nuclear Physics, via Dodecaneso 33, 16146, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genoa, Genoa, Italy.
| | - Davide Poggiali
- PNC - Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Annachiara Cagnin
- Neurology Unit, Department of Neurology, University Hospital of Padua, Padua, Italy
| | - Andrea Chincarini
- INFN - National Institute of Nuclear Physics, via Dodecaneso 33, 16146, Genoa, Italy
| | - Diego Cecchin
- PNC - Padua Neuroscience Center, University of Padua, Padua, Italy
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padua, Padua, Italy
| |
Collapse
|
20
|
Smedinga M, Bunnik EM, Richard E, Schermer MHN. Should Doctors Offer Biomarker Testing to Those Afraid to Develop Alzheimer's Dementia? : Applying the Method of Reflective Equilibrium for a Clinical Dilemma. JOURNAL OF BIOETHICAL INQUIRY 2022; 19:287-297. [PMID: 35306635 DOI: 10.1007/s11673-022-10167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
An increasing number of people seek medical attention for mild cognitive symptoms at older age, worried that they might develop Alzheimer's disease. Some clinical practice guidelines suggest offering biomarker testing in such cases, using a brain scan or a lumbar puncture, to improve diagnostic certainty about Alzheimer's disease and enable an earlier diagnosis. Critics, on the other hand, point out that there is no effective Alzheimer treatment available and argue that biomarker tests lack clinical validity. The debate on the ethical desirability of biomarker testing is currently polarized; advocates and opponents tend to focus on their own line of arguments. In this paper, we show how the method of reflective equilibrium (RE) can be used to systematically weigh the relevant arguments on both sides of the debate to decide whether to offer Alzheimer biomarker testing. In the tradition of RE, we reflect upon these arguments in light of their coherence with other argumentative elements, including relevant facts (e.g. on the clinical validity of the test), ethical principles, and theories on societal ideals or relevant concepts, such as autonomy. Our stance in the debate therefore rests upon previously set out in-depth arguments and reflects a wide societal perspective.
Collapse
Affiliation(s)
- Marthe Smedinga
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4, 6525 GC, Nijmegen, The Netherlands.
| | - Eline M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Reinier Postlaan 4, 6525 GC, Nijmegen, The Netherlands
| | - Maartje H N Schermer
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer's pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71:101451. [PMID: 34450351 DOI: 10.1016/j.arr.2021.101451] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated, multifactorial neurodegenerative disorder that is incurable. Despite recent success in treatments that partially improve symptomatic relief, they have failed in most clinical trials. Re-holding AD for accurate diagnosis and treatment is widely known as a challenging task. Lack of knowledge of basic molecular pathogenesis might be a possible reason for ineffective AD treatment. Historically, a majority of therapy-based studies have investigated the role of amyloid-β (Aβ peptide) in the central nervous system (CNS), whereas less is known about Aβ peptide in the periphery in AD. In this review, we provide a comprehensive summary of the current understanding of Aβ peptide metabolism (anabolism and catabolism) in the brain and periphery. We show that the abnormal metabolism of Aβ peptide is significantly linked with central-brain and peripheral abnormalities; the interaction between peripheral Aβ peptide metabolism and peripheral abnormalities affects central-brain Aβ peptide metabolism, suggesting the existence of significant communication between these two pathways of Aβ peptide metabolism. This close interaction between the central brain and periphery in abnormal Aβ peptide metabolism plays a key role in the development and progression of AD. In conclusion, we need to obtain a full understanding of the dynamic roles of Aβ peptide at the molecular level in both the brain and periphery in relation to the pathology of AD. This will not only provide new information regarding the complex disease pathology, but also offer potential new clues to improve therapeutic strategies and diagnostic biomarkers for the successful treatment of AD.
Collapse
|
22
|
Koychev I, Jansen K, Dette A, Shi L, Holling H. Blood-Based ATN Biomarkers of Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2021; 79:177-195. [PMID: 33252080 DOI: 10.3233/jad-200900] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Amyloid Tau Neurodegeneration (ATN) framework was proposed to define the biological state underpinning Alzheimer's disease (AD). Blood-based biomarkers offer a scalable alternative to the costly and invasive currently available biomarkers. OBJECTIVE In this meta-analysis we sought to assess the diagnostic performance of plasma amyloid (Aβ40, Aβ42, Aβ42/40 ratio), tangle (p-tau181), and neurodegeneration (total tau [t-tau], neurofilament light [NfL]) biomarkers. METHODS Electronic databases were screened for studies reporting biomarker concentrations for AD and control cohorts. Biomarker performance was examined by random-effect meta-analyses based on the ratio between biomarker concentrations in patients and controls. RESULTS 83 studies published between 1996 and 2020 were included in the analyses. Aβ42/40 ratio as well as Aβ42 discriminated AD patients from controls when using novel platforms such as immunomagnetic reduction (IMR). We found significant differences in ptau-181 concentration for studies based on single molecule array (Simoa), but not for studies based on IMR or ELISA. T-tau was significantly different between AD patients and control in IMR and Simoa but not in ELISA-based studies. In contrast, NfL differentiated between groups across platforms. Exosome studies showed strong separation between patients and controls for Aβ42, t-tau, and p-tau181. CONCLUSION Currently available assays for sampling plasma ATN biomarkers appear to differentiate between AD patients and controls. Novel assay methodologies have given the field a significant boost for testing these biomarkers, such as IMR for Aβ, Simoa for p-tau181. Enriching samples through extracellular vesicles shows promise but requires further validation.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Katrin Jansen
- Department of Psychology, University of Münster, Münster, Germany
| | - Alina Dette
- Department of Psychology, University of Münster, Münster, Germany
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Heinz Holling
- Department of Psychology, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Spyrou B, Hungnes IN, Mota F, Bordoloi J, Blower PJ, White JM, Ma MT, Donnelly PS. Oxorhenium(V) and Oxotechnetium(V) Complexes of N 3S Tetradentate Ligands with a Styrylpyridyl Functional Group: Toward Imaging Agents to Assist in the Diagnosis of Alzheimer's Disease. Inorg Chem 2021; 60:13669-13680. [PMID: 34424670 DOI: 10.1021/acs.inorgchem.1c01992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is associated with the presence of amyloid plaques in the brain mainly comprised of aggregated forms of amyloid-β (Aβ). Molecules radiolabeled with technetium-99m that cross the blood-brain barrier (BBB) and selectively bind to Aβ plaques have the potential to assist in the diagnosis of AD using single-photon emission computed tomography imaging. In this work, three new tetradentate ligands of pyridyl, amide, amine and thiol donors, featuring a styrylpyridyl group that is known to interact with amyloid plaques, were prepared. The new ligands formed charge-neutral and lipophilic complexes with the [Tc═O]3+ and [Re═O]3+ motifs, and two rhenium complexes were characterized by X-ray crystallography. The rhenium(V) complexes interact with synthetic Aβ1-40 and amyloid plaques on human brain tissue. Two of the new ligands were radiolabeled with 99mTc using a kit-based approach, and their biodistribution in wild-type mice was evaluated. The presence of amide donors in the tetradentate ligand increased the stability of the respective [Tc═O]3+ complexes but reduced brain uptake. While the complexes were able to cross the BBB, the degree of uptake in the brain was not sufficient to justify further investigation of these complexes.
Collapse
Affiliation(s)
- Benjamin Spyrou
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ingebjørg N Hungnes
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Filipa Mota
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Jayanta Bordoloi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
24
|
Chen MK, Mecca AP, Naganawa M, Gallezot JD, Toyonaga T, Mondal J, Finnema SJ, Lin SF, O’Dell RS, McDonald JW, Michalak HR, Vander Wyk B, Nabulsi NB, Huang Y, Arnsten AFT, van Dyck CH, Carson RE. Comparison of [ 11C]UCB-J and [ 18F]FDG PET in Alzheimer's disease: A tracer kinetic modeling study. J Cereb Blood Flow Metab 2021; 41:2395-2409. [PMID: 33757318 PMCID: PMC8393289 DOI: 10.1177/0271678x211004312] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
[11C]UCB-J PET for synaptic vesicle glycoprotein 2 A (SV2A) has been proposed as a suitable marker for synaptic density in Alzheimer's disease (AD). We compared [11C]UCB-J binding for synaptic density and [18F]FDG uptake for metabolism (correlated with neuronal activity) in 14 AD and 11 cognitively normal (CN) participants. We assessed both absolute and relative outcome measures in brain regions of interest, i.e., K1 or R1 for [11C]UCB-J perfusion, VT (volume of distribution) or DVR to cerebellum for [11C]UCB-J binding to SV2A; and Ki or KiR to cerebellum for [18F]FDG metabolism. [11C]UCB-J binding and [18F]FDG metabolism showed a similar magnitude of reduction in the medial temporal lobe of AD -compared to CN participants. However, the magnitude of reduction of [11C]UCB-J binding in neocortical regions was less than that observed with [18F]FDG metabolism. Inter-tracer correlations were also higher in the medial temporal regions between synaptic density and metabolism, with lower correlations in neocortical regions. [11C]UCB-J perfusion showed a similar pattern to [18F]FDG metabolism, with high inter-tracer regional correlations. In summary, we conducted the first in vivo PET imaging of synaptic density and metabolism in the same AD participants and reported a concordant reduction in medial temporal regions but a discordant reduction in neocortical regions.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Jayanta Mondal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Sjoerd J Finnema
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Shu-fei Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan S O’Dell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Julia W McDonald
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hannah R Michalak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brent Vander Wyk
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Nabeel B Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Amy FT Arnsten
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Shi L, Buckley NJ, Bos I, Engelborghs S, Sleegers K, Frisoni GB, Wallin A, Lléo A, Popp J, Martinez-Lage P, Legido-Quigley C, Barkhof F, Zetterberg H, Visser PJ, Bertram L, Lovestone S, Nevado-Holgado AJ. Plasma Proteomic Biomarkers Relating to Alzheimer's Disease: A Meta-Analysis Based on Our Own Studies. Front Aging Neurosci 2021; 13:712545. [PMID: 34366831 PMCID: PMC8335587 DOI: 10.3389/fnagi.2021.712545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background and Objective: Plasma biomarkers for the diagnosis and stratification of Alzheimer's disease (AD) are intensively sought. However, no plasma markers are well established so far for AD diagnosis. Our group has identified and validated various blood-based proteomic biomarkers relating to AD pathology in multiple cohorts. The study aims to conduct a meta-analysis based on our own studies to systematically assess the diagnostic performance of our previously identified blood biomarkers. Methods: To do this, we included seven studies that our group has conducted during the last decade. These studies used either Luminex xMAP or ELISA to measure proteomic biomarkers. As proteins measured in these studies differed, we selected protein based on the criteria that it must be measured in at least four studies. We then examined biomarker performance using random-effect meta-analyses based on the mean difference between biomarker concentrations in AD and controls (CTL), AD and mild cognitive impairment (MCI), MCI, and CTL as well as MCI converted to dementia (MCIc) and non-converted (MCInc) individuals. Results: An overall of 2,879 subjects were retrieved for meta-analysis including 1,053 CTL, 895 MCI, 882 AD, and 49 frontotemporal dementia (FTD) patients. Six proteins were measured in at least four studies and were chosen for meta-analyses for AD diagnosis. Of them, three proteins had significant difference between AD and controls, among which alpha-2-macroglobulin (A2M) and ficolin-2 (FCN2) increased in AD while fibrinogen gamma chain (FGG) decreased in AD compared to CTL. Furthermore, FGG significantly increased in FTD compared to AD. None of the proteins passed the significance between AD and MCI, or MCI and CTL, or MCIc and MCInc, although complement component 4 (CC4) tended to increase in MCIc individuals compared to MCInc. Conclusions: The results suggest that A2M, FCN2, and FGG are promising biomarkers to discriminate AD patients from controls, which are worthy of further validation.
Collapse
Affiliation(s)
- Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands.,Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Universitair Ziekenhuis Brussel and Center for Neurociences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Kristel Sleegers
- Complex Genetics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Anders Wallin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Alberto Lléo
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Julius Popp
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland.,Geriatric Psychiatry, Department of Mental Health and Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | | | - Cristina Legido-Quigley
- Kings College London, London, United Kingdom.,The Systems Medicine Group, Steno Diabetes Center, Gentofte, Denmark
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands.,UCL Institutes of Neurology and Healthcare Engineering, London, United Kingdom
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands.,Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Janssen R&D, High Wycombe, United Kingdom
| | | |
Collapse
|
26
|
Vera JH, Eftychiou N, Schuerer M, Rullmann M, Barthel H, Sabri O, Gisslen M, Zetterberg H, Blennow K, O'Brien C, Banerjee S, Dizdarevic S. Clinical Utility of β-Amyloid PET Imaging in People Living With HIV With Cognitive Symptoms. J Acquir Immune Defic Syndr 2021; 87:826-833. [PMID: 33587503 DOI: 10.1097/qai.0000000000002648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Imaging with β-amyloid (Aβ) positron emission tomography (PET) has the potential to aid the diagnosis of the cause of cognitive impairment affecting people living with HIV (PLWH) when neurodegenerative disorders are considered. We evaluated the clinical utility of [18F]Florbetaben (FBB) in PLWH with cognitive symptoms. METHODS Imaging with FBB PET was performed in 20 patients with cognitive concerns about dementia. Neuropsychological testing, plasma neurofilament light protein, plasma Aβ40, Aβ42, and cerebrospinal fluid Aβ42, tau, and HIV RNA were obtained. FBB PET images were assessed visually by 3 readers blinded to the clinical diagnosis and quantitatively by obtaining a composite cortical to cerebellar cortex standardized uptake value ratio (SUVR). FBB SUVR from 10 age-matched healthy controls was compared with SUVR of PLWH. RESULTS Most participants were men (90%) of white ethnicity (90%) with a median age (interquartile range) of 59 (43-79) years. Median CD4 count was 682 (74-1056). All patients were on combination antiretroviral therapy with plasma and cerebrospinal fluid HIV RNA <40 copies/mL. Fourteen patients had objective cognitive impairment including 2 who met clinical criteria for a diagnosis of dementia. No significant differences in composite SUVRs between PLWH and controls [mean (SD): 1.18 (0.03) vs. 1.16 (0.09); P = 0.37] were observed. Four patients were FBB+ with the highest SUVR in the posterior cingulate, superior temporal, and frontal superior lobe. Amyloid PET results contributed to a change in diagnosis and treatment for 10 patients. CONCLUSION [18F]Florbetaben PET has potential as an adjunctive tool in the diagnosis of PLWH with cognitive impairment, increasing diagnostic certainty and optimizing management.
Collapse
Affiliation(s)
- Jaime H Vera
- Centre for Global Health Research, Brighton and Sussex Med School, United Kingdom
| | - Nicholas Eftychiou
- Department of Nuclear Medicine, Brighton and Sussex University Hospitals, United Kingdom
| | - Matti Schuerer
- Department of Nuclear Medicine, University of Leipzig, Germany
| | | | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Germany
| | - Magnus Gisslen
- Department of Infectious Diseases, University of Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Sweden
| | - Clara O'Brien
- Department of Neuropsychology, Brighton and Sussex University Hospitals, United Kingdom ; and
| | - Sube Banerjee
- Faculty of Health, University of Plymouth, United Kingdom
| | - Sabina Dizdarevic
- Department of Nuclear Medicine, Brighton and Sussex University Hospitals, United Kingdom
| |
Collapse
|
27
|
Relationship between F-18 florbetapir uptake in occipital lobe and neurocognitive performance in Alzheimer's disease. Jpn J Radiol 2021; 39:984-993. [PMID: 34019227 DOI: 10.1007/s11604-021-01132-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To determine the association between occipital amyloid-PET uptake and neurocognitive performance in Alzheimer's disease (AD). MATERIALS AND METHODS Fifty-eight participants with normal aged, mild cognitive impairment (MCI) due to AD and AD subjects who underwent F-18 florbetapir brain PET/CT scans were divided into four groups (A, normal; B, MCI; C, mild AD; and D, moderate/severe AD). Semiquantitative analyses of SUVR images were performed. The differences between groups and the correlations between florbetapir uptake and Thai Mental State Examination (TMSE) scores were determined. Significant differences were defined using a P < 0.001, uncorrected, or a P < 0.05, FWE for the voxel-based analyses with Statistical Parametric Mapping (SPM). RESULTS There was a slightly higher florbetapir uptake in the precuneus, parietal, and occipital association cortices in Group B > A. The occipital florbetapir uptake in Groups C and D was significantly higher than in Group A, in addition to the precuneus, anterior cingulate, posterior cingulate, temporoparietal, and frontal cortices. There was a strong negative correlation between TMSE scores and florbetapir uptake in the occipital lobe. CONCLUSIONS Occipital amyloid uptake is associated with clinically advanced AD, and is inversely correlated with neurocognitive performance and may be useful for evaluating AD severity.
Collapse
|
28
|
Mielke MM. Consideration of Sex Differences in the Measurement and Interpretation of Alzheimer Disease-Related Biofluid-Based Biomarkers. J Appl Lab Med 2021; 5:158-169. [PMID: 31811073 DOI: 10.1373/jalm.2019.030023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The development of cerebrospinal fluid and blood-based biomarkers for Alzheimer disease (AD) and related disorders is rapidly progressing. Such biomarkers may be used clinically to screen the population, to enhance diagnosis, or to help determine prognosis. Although the use of precision medicine methods has contributed to enhanced understanding of the AD pathophysiological changes and development of assays, one aspect not commonly considered is sex differences. CONTENT There are several ways in which sex can affect the concentration or interpretation of biofluid biomarkers. For some markers, concentrations will vary by sex. For others, the concentrations might not vary by sex, but the impact or interpretation may vary by sex depending on the context of use (e.g., diagnostic vs prognostic). Finally, for others, there will be no sex differences in concentrations or their interpretation. This review will first provide a basis for sex differences, including differences in brain structure and function, and the means by which these differences could contribute to sex differences in biomarker concentrations. Next, the current state of sex differences in AD-related biofluid markers (i.e., amyloid-β, phosphorylated τ, total τ, neurofilament light chain, and neurogranin) will be reviewed. Lastly, factors that can lead to the misinterpretation of observed sex differences in biomarkers (either providing evidence for or against) will be considered. SUMMARY This review is intended to provide an impetus to consider sex differences in the measurement and interpretation of AD-related biofluid-based biomarkers.
Collapse
Affiliation(s)
- Michelle M Mielke
- Departments of Health Sciences Research and Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
29
|
Bucci M, Savitcheva I, Farrar G, Salvadó G, Collij L, Doré V, Gispert JD, Gunn R, Hanseeuw B, Hansson O, Shekari M, Lhommel R, Molinuevo JL, Rowe C, Sur C, Whittington A, Buckley C, Nordberg A. A multisite analysis of the concordance between visual image interpretation and quantitative analysis of [ 18F]flutemetamol amyloid PET images. Eur J Nucl Med Mol Imaging 2021; 48:2183-2199. [PMID: 33844055 PMCID: PMC8175298 DOI: 10.1007/s00259-021-05311-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND [18F]flutemetamol PET scanning provides information on brain amyloid load and has been approved for routine clinical use based upon visual interpretation as either negative (equating to none or sparse amyloid plaques) or amyloid positive (equating to moderate or frequent plaques). Quantitation is however fundamental to the practice of nuclear medicine and hence can be used to supplement amyloid reading methodology especially in unclear cases. METHODS A total of 2770 [18F]flutemetamol images were collected from 3 clinical studies and 6 research cohorts with available visual reading of [18F]flutemetamol and quantitative analysis of images. These were assessed further to examine both the discordance and concordance between visual and quantitative imaging primarily using thresholds robustly established using pathology as the standard of truth. Scans covered a wide range of cases (i.e. from cognitively unimpaired subjects to patients attending the memory clinics). Methods of quantifying amyloid ranged from using CE/510K cleared marked software (e.g. CortexID, Brass), to other research-based methods (e.g. PMOD, CapAIBL). Additionally, the clinical follow-up of two types of discordance between visual and quantitation (V+Q- and V-Q+) was examined with competing risk regression analysis to assess possible differences in prediction for progression to Alzheimer's disease (AD) and other diagnoses (OD). RESULTS Weighted mean concordance between visual and quantitation using the autopsy-derived threshold was 94% using pons as the reference region. Concordance from a sensitivity analysis which assessed the maximum agreement for each cohort using a range of cut-off values was also estimated at approximately 96% (weighted mean). Agreement was generally higher in clinical cases compared to research cases. V-Q+ discordant cases were 11% more likely to progress to AD than V+Q- for the SUVr with pons as reference region. CONCLUSIONS Quantitation of amyloid PET shows a high agreement vs binary visual reading and also allows for a continuous measure that, in conjunction with possible discordant analysis, could be used in the future to identify possible earlier pathological deposition as well as monitor disease progression and treatment effectiveness.
Collapse
Affiliation(s)
- Marco Bucci
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gill Farrar
- Pharmaceutical Diagnostics, GE Healthcare, Amersham, UK
| | - Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Lyduine Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, Netherlands
| | - Vincent Doré
- Austin Health, University of Melbourne, Melbourne, Australia.,Health and Biosecurity, CSIRO, Parkville, Australia
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingenieriá, Biomateriales y Nanomedicina, (CIBER-BBN), Barcelona, Spain
| | - Roger Gunn
- Invicro, London, UK.,Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
| | - Bernard Hanseeuw
- Neurology and Nuclear Medicine Departments, Saint-Luc University Hospital, Av. Hippocrate, 10, 1200, Brussels, Belgium.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmo, Lund University, Lund, Sweden
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Renaud Lhommel
- Neurology and Nuclear Medicine Departments, Saint-Luc University Hospital, Av. Hippocrate, 10, 1200, Brussels, Belgium
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Christopher Rowe
- Austin Health, University of Melbourne, Melbourne, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Australia
| | | | | | | | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden. .,Department of Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
30
|
Buckley RF. Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease. Neurotherapeutics 2021; 18:709-727. [PMID: 33782864 PMCID: PMC8423933 DOI: 10.1007/s13311-021-01026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying treatment in clinical trials. With recent neuroimaging advances, along with the burgeoning availability of longitudinal neuroimaging data and big-data harmonization approaches, a more comprehensive evaluation of the disease has shed light on the topographical staging and temporal sequencing of the disease. Multimodal imaging approaches have also promoted the development of data-driven models of AD-associated pathological propagation of tau proteinopathies. Studies of autosomal dominant, early sporadic, and late sporadic courses of the disease have shed unique insights into the AD pathological cascade, particularly with regard to genetic vulnerabilities and the identification of potential drug targets. Further, neuroimaging markers of b-amyloid, tau, and neurodegeneration have provided a powerful tool for validation of novel fluid cerebrospinal and plasma markers. This review highlights some of the latest advances in the field of human neuroimaging in AD across these topics, particularly with respect to positron emission tomography and structural and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital & Brigham and Women's, Harvard Medical School, Boston, MA, USA.
- Melbourne School of Psychological Sciences and Florey Institutes, University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, Massachusetts General Hospital, 149 13th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
31
|
Barthel H. Switching on Brain PET to Light Up Amyloid Pathology In Vivo. J Nucl Med 2021; 61:227S-228S. [PMID: 33293442 DOI: 10.2967/jnumed.120.251900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
Altomare D, Caprioglio C, Assal F, Allali G, Mendes A, Ribaldi F, Ceyzeriat K, Martins M, Tomczyk S, Stampacchia S, Dodich A, Boccardi M, Chicherio C, Frisoni GB, Garibotto V. Diagnostic value of amyloid-PET and tau-PET: a head-to-head comparison. Eur J Nucl Med Mol Imaging 2021; 48:2200-2211. [PMID: 33638661 PMCID: PMC8175315 DOI: 10.1007/s00259-021-05246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Purpose Assess the individual and combined diagnostic value of amyloid-PET and tau-PET in a memory clinic population. Methods Clinical reports of 136 patients were randomly assigned to two diagnostic pathways: AMY-TAU, amyloid-PET is presented before tau-PET; and TAU-AMY, tau-PET is presented before amyloid-PET. Two neurologists independently assessed all reports with a balanced randomized design, and expressed etiological diagnosis and diagnostic confidence (50–100%) three times: (i) at baseline based on the routine diagnostic workup, (ii) after the first exam (amyloid-PET for the AMY-TAU pathway, and tau-PET for the TAU-AMY pathway), and (iii) after the remaining exam. The main outcomes were changes in diagnosis (from AD to non-AD or vice versa) and in diagnostic confidence. Results Amyloid-PET and tau-PET, when presented as the first exam, resulted in a change of etiological diagnosis in 28% (p = 0.006) and 28% (p < 0.001) of cases, and diagnostic confidence increased by 18% (p < 0.001) and 19% (p < 0.001) respectively, with no differences between exams (p > 0.05). We observed a stronger impact of a negative amyloid-PET versus a negative tau-PET (p = 0.014). When added as the second exam, amyloid-PET and tau-PET resulted in a further change in etiological diagnosis in 6% (p = 0.077) and 9% (p = 0.149) of cases, and diagnostic confidence increased by 4% (p < 0.001) and 5% (p < 0.001) respectively, with no differences between exams (p > 0.05). Conclusion Amyloid-PET and tau-PET significantly impacted diagnosis and diagnostic confidence in a similar way, although a negative amyloid-PET has a stronger impact on diagnosis than a negative tau-PET. Adding either of the two as second exam further improved diagnostic confidence. Trial number PB 2016-01346. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05246-x.
Collapse
Affiliation(s)
- Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland. .,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.
| | - Camilla Caprioglio
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Frédéric Assal
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gilles Allali
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA
| | - Aline Mendes
- Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), Saint John of God Clinical Research Centre, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kelly Ceyzeriat
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Marta Martins
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Sara Stampacchia
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alessandra Dodich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Marina Boccardi
- Late Translational Dementia Research Group, German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Rostock, Germany
| | | | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.,Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
33
|
Outcomes of clinical utility in amyloid-PET studies: state of art and future perspectives. Eur J Nucl Med Mol Imaging 2021; 48:2157-2168. [PMID: 33594474 PMCID: PMC8175294 DOI: 10.1007/s00259-020-05187-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To review how outcomes of clinical utility are operationalized in current amyloid-PET validation studies, to prepare for formal assessment of clinical utility of amyloid-PET-based diagnosis. METHODS Systematic review of amyloid-PET research studies published up to April 2020 that included outcomes of clinical utility. We extracted and analyzed (a) outcome categories, (b) their definition, and (c) their methods of assessment. RESULTS Thirty-two studies were eligible. (a) Outcome categories were clinician-centered (found in 25/32 studies, 78%), patient-/caregiver-centered (in 9/32 studies, 28%), and health economics-centered (5/32, 16%). (b) Definition: Outcomes were mainly defined by clinical researchers; only the ABIDE study expressly included stakeholders in group discussions. Clinician-centered outcomes mainly consisted of incremental diagnostic value (25/32, 78%) and change in patient management (17/32, 53%); patient-/caregiver-centered outcomes considered distress after amyloid-pet-based diagnosis disclosure (8/32, 25%), including quantified burden of procedure for patients' outcomes (n = 8) (1/8, 12.5%), impact of disclosure of results (6/8, 75%), and psychological implications of biomarker-based diagnosis (75%); and health economics outcomes focused on costs to achieve a high-confidence etiological diagnosis (5/32, 16%) and impact on quality of life (1/32, 3%). (c) Assessment: all outcome categories were operationalized inconsistently across studies, employing 26 different tools without formal rationale for selection. CONCLUSION Current studies validating amyloid-PET already assessed outcomes for clinical utility, although non-clinician-based outcomes were inconsistent. A wider participation of stakeholders may help produce a more thorough and systematic definition and assessment of outcomes of clinical utility and help collect evidence informing decisions on reimbursement of amyloid-PET.
Collapse
|
34
|
Juengling FD, Allenbach G, Bruehlmeier M, Klaeser B, Wissmeyer MP, Garibotto V, Felbecker A, Georgescu D. Appropriate use criteria for dementia amyloid imaging in Switzerland - mini-review and statement on behalf of the Swiss Society of Nuclear Medicine and the Swiss Memory Clinics. Nuklearmedizin 2021; 60:7-9. [PMID: 33080626 DOI: 10.1055/a-1277-6014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
While FDG-PET imaging of the brain for the differential diagnosis of dementia has been covered by the compulsory health insurance in Switzerland for more than a decade, beta-amyloid-PET just recently has been added to the catalogue of procedures that have been cleared for routine use, provided that a set of appropriate use criteria (AUC) be followed. To provide guidance to dementia care practitioners, the Swiss Society of Nuclear Medicine and the Swiss Memory Clinics jointly report a mini-review on beta-amyloid-PET and discuss the AUC set into effect by the Swiss Federal Office of Public Health, as well as their application and limitations.
Collapse
Affiliation(s)
| | - Gilles Allenbach
- Centre hospitalier universitaire vaudois (CHUV), Lausanne, Switzerland
| | | | - Bernd Klaeser
- Cantonal hospital Winterthur, Winterthur, Switzerland
| | | | | | - Ansgar Felbecker
- Clinic for Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | |
Collapse
|
35
|
Brisson M, Brodeur C, Létourneau‐Guillon L, Masellis M, Stoessl J, Tamm A, Zukotynski K, Ismail Z, Gauthier S, Rosa‐Neto P, Soucy J. CCCDTD5: Clinical role of neuroimaging and liquid biomarkers in patients with cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 6:e12098. [PMID: 33532543 PMCID: PMC7821956 DOI: 10.1002/trc2.12098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 04/21/2023]
Abstract
Since 1989, four Canadian Consensus Conferences on the Diagnosis and Treatment of Dementia (CCCDTDs) have provided evidence-based dementia diagnostic and treatment guidelines for Canadian clinicians and researchers. We present the results from the Neuroimaging and Fluid Biomarkers Group of the 5th CCCDTD (CCCDTD5), which addressed topics chosen by the steering committee to reflect advances in the field and build on our previous guidelines. Recommendations on Imaging and Fluid Biomarker Use from this Conference cover a series of different fields. Prior structural imaging recommendations for both computerized tomography (CT) and magnetic resonance imaging (MRI) remain largely unchanged, but MRI is now more central to the evaluation than before, with suggested sequences described here. The use of visual rating scales for both atrophy and white matter anomalies is now included in our recommendations. Molecular imaging with [18F]-fluorodeoxyglucose ([18F]-FDG) Positron Emisson Tomography (PET) or [99mTc]-hexamethylpropyleneamine oxime/ethylene cysteinate dimer ([99mTc]-HMPAO/ECD) Single Photon Emission Tomography (SPECT), should now decidedly favor PET. The value of [18F]-FDG PET in the assessment of neurodegenerative conditions has been established with greater certainty since the previous conference, and it has now been recognized as a useful biomarker to establish the presence of neurodegeneration by a number of professional organizations around the world. Furthermore, the role of amyloid PET has been clarified and our recommendations follow those from other groups in multiple countries. SPECT with [123I]-ioflupane (DaTscanTM) is now included as a useful study in differentiating Alzheimer's disease (AD) from Lewy body disease. Finally, liquid biomarkers are in a rapid phase of development and, could lead to a revolution in the assessment AD and other neurodegenerative conditions at a reasonable cost. We hope these guidelines will be useful for clinicians, researchers, policy makers, and the lay public, to inform a current and evidence-based approach to the use of neuroimaging and liquid biomarkers in clinical dementia evaluation and management.
Collapse
Affiliation(s)
- Mélanie Brisson
- Centre hospitalier de l'université de QuébecQuebec CityCanada
| | | | | | | | - Jon Stoessl
- Vancouver Coastal Health, University of British‐ColumbiaVancouverCanada
| | | | | | - Zahinoor Ismail
- Department of Psychiatry, Hotchkiss Brain Institute and O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | | | - Pedro Rosa‐Neto
- McGill Center for Studies in AgingCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
| | - Jean‐Paul Soucy
- Centre hospitalier de l'université de MontréalMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- PERFORM Center, Concordia UniversityMontrealCanada
| |
Collapse
|
36
|
Drzezga A, Bischof GN, Giehl K, van Eimeren T. PET and SPECT Imaging of Neurodegenerative Diseases. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Tromp K, Smedinga M, Richard E, Perry M, Schermer MHN. Views on Early Diagnosis of Alzheimer's Disease Among Dutch Physicians: A Qualitative Interview Study. J Alzheimers Dis 2020; 79:917-927. [PMID: 33361592 PMCID: PMC7902965 DOI: 10.3233/jad-200884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hope for future treatments to prevent or slow down dementia motivates researchers to strive for ever-earlier diagnoses of Alzheimer's disease (AD) based on biomarkers, even before symptoms occur. But is a biomarker-based early diagnosis desirable in clinical practice? OBJECTIVE This study explores the ethical considerations that shape current clinical practice regarding early AD diagnostics and the use of biomarkers. METHODS In this qualitative study, Dutch physicians were interviewed. Topics included physicians' views concerning early AD diagnosis in persons with no or mild cognitive impairment, physicians' considerations regarding current and expected future practices of early AD diagnosis, the use of biomarkers, and the use of the concepts preclinical and prodromal AD. We analyzed the transcripts using directed content analysis. RESULTS 15 general practitioners, neurologists, and geriatricians in the Netherlands were interviewed. Most of them interpreted an early AD diagnosis with an early diagnosis of dementia. We identified six clusters of considerations sometimes in favor but most often against pursuing an early AD diagnosis in people with no or mild cognitive impairment that influence physicians' diagnostic decision-making: preferences and characteristics of persons, test characteristics, impact on care, type of setting, disease concepts, and issues on a societal level. CONCLUSION The discussion concerning an early AD diagnosis based on biomarkers which is widely held in the scientific field, has not entered clinical practice structurally. A biomarker-based early diagnosis does not fit within Dutch physicians' views on what good care for people with no, subjective, or mild cognitive impairment should entail.
Collapse
Affiliation(s)
- Krista Tromp
- Department of Medical Ethics and Philosophy and History of Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Marthe Smedinga
- Department of Medical Ethics and Philosophy and History of Medicine, Erasmus MC, Rotterdam, the Netherlands.,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - Marieke Perry
- Department of Geriatric Medicine, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands.,Department of Primary and Community Care, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Maartje H N Schermer
- Department of Medical Ethics and Philosophy and History of Medicine, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
38
|
Reich CM, Sattler B, Jochimsen TH, Unger M, Melzer L, Landgraf L, Barthel H, Sabri O, Melzer A. Practical setting and potential applications of interventions guided by PET/MRI. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 65:43-50. [PMID: 33300750 DOI: 10.23736/s1824-4785.20.03293-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multimodality imaging has emerged from a vision thirty years ago to routine clinical use today. Positron emission tomography (PET)/magnetic resonance imaging (MRI) is still relatively new in this arena and particularly suitable for clinical research and technical development. PET/MRI-guidance for interventions opens up opportunities for novel treatments but at the same time demands certain technical and organizational requirements to be fulfilled. In this work, we aimed to demonstrate a practical setting and potential application of PET/MRI guidance of interventional procedures. The superior quantitative physiologic information of PET, the various unique imaging characteristics of MRI, and the reduced radiation exposure are the most relevant advantages of this technique. As a noninvasive interventional tool, focused ultrasound (FUS) ablation of tumor cells would benefit from PET/MRI for diagnostics, treatment planning and intervention. Yet, technical limitations might impeed preclinical research, given that PET/MRI sites are per se not designed as interventional suites. Nonetheless, several approaches have been offered in the past years to upgrade MRI suites for interventional purposes. Taking advantage of state of the art and easy-to-use technology it is possible to create a supporting infrastructure that is suitable for broad preclinical adaption. Several aspects are to be addressed, including remote control of the imaging system, display of the imaging results, communication technology, and implementation of additional devices such as a FUS platform and an MR-compatible robotic system for positioning of the FUS equipment. Feasibility could be demostrated with an examplary experimental setup for interventional PET/MRI. Most PET/MRI sites could allow for interventions with just a few add-ons and modifications, such as comunication, in room image display and sytems control. By unlocking this feature, and driving preclinical research in interventional PET/MRI, translation of the protocol and methodology into clinical settings seems feasible.
Collapse
Affiliation(s)
- C Martin Reich
- Innovation Center Computer Assisted Surgery, University of Leipzig, Leipzig, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany -
| | - Thies H Jochimsen
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Michael Unger
- Innovation Center Computer Assisted Surgery, University of Leipzig, Leipzig, Germany
| | - Leon Melzer
- Innovation Center Computer Assisted Surgery, University of Leipzig, Leipzig, Germany
| | - Lisa Landgraf
- Innovation Center Computer Assisted Surgery, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery, University of Leipzig, Leipzig, Germany.,Institute for Medical Science and Technology IMSaT, University Dundee, Scotland, UK
| |
Collapse
|
39
|
De Meyer S, Schaeverbeke JM, Verberk IMW, Gille B, De Schaepdryver M, Luckett ES, Gabel S, Bruffaerts R, Mauroo K, Thijssen EH, Stoops E, Vanderstichele HM, Teunissen CE, Vandenberghe R, Poesen K. Comparison of ELISA- and SIMOA-based quantification of plasma Aβ ratios for early detection of cerebral amyloidosis. Alzheimers Res Ther 2020; 12:162. [PMID: 33278904 PMCID: PMC7719262 DOI: 10.1186/s13195-020-00728-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Blood-based amyloid biomarkers may provide a non-invasive, cost-effective and scalable manner for detecting cerebral amyloidosis in early disease stages. METHODS In this prospective cross-sectional study, we quantified plasma Aβ1-42/Aβ1-40 ratios with both routinely available ELISAs and novel SIMOA Amyblood assays, and provided a head-to-head comparison of their performances to detect cerebral amyloidosis in a nondemented elderly cohort (n = 199). Participants were stratified according to amyloid-PET status, and the performance of plasma Aβ1-42/Aβ1-40 to detect cerebral amyloidosis was assessed using receiver operating characteristic analysis. We additionally investigated the correlations of plasma Aβ ratios with amyloid-PET and CSF Alzheimer's disease biomarkers, as well as platform agreement using Passing-Bablok regression and Bland-Altman analysis for both Aβ isoforms. RESULTS ELISA and SIMOA plasma Aβ1-42/Aβ1-40 detected cerebral amyloidosis with identical accuracy (ELISA: area under curve (AUC) 0.78, 95% CI 0.72-0.84; SIMOA: AUC 0.79, 95% CI 0.73-0.85), and both increased the performance of a basic demographic model including only age and APOE-ε4 genotype (p ≤ 0.02). ELISA and SIMOA had positive predictive values of respectively 41% and 36% in cognitively normal elderly and negative predictive values all exceeding 88%. Plasma Aβ1-42/Aβ1-40 correlated similarly with amyloid-PET for both platforms (Spearman ρ = - 0.32, p < 0.0001), yet correlations with CSF Aβ1-42/t-tau were stronger for ELISA (ρ = 0.41, p = 0.002) than for SIMOA (ρ = 0.29, p = 0.03). Plasma Aβ levels demonstrated poor agreement between ELISA and SIMOA with concentrations of both Aβ1-42 and Aβ1-40 measured by SIMOA consistently underestimating those measured by ELISA. CONCLUSIONS ELISA and SIMOA demonstrated equivalent performances in detecting cerebral amyloidosis through plasma Aβ1-42/Aβ1-40, both with high negative predictive values, making them equally suitable non-invasive prescreening tools for clinical trials by reducing the number of necessary PET scans for clinical trial recruitment. TRIAL REGISTRATION EudraCT 2009-014475-45 (registered on 23 Sept 2009) and EudraCT 2013-004671-12 (registered on 20 May 2014, https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-004671-12/BE ).
Collapse
Affiliation(s)
- Steffi De Meyer
- Laboratory for Molecular Neurobiomarker Research, Department of Neurosciences, KU Leuven, box 7003, Herestraat 49, 3000, Leuven, Belgium
- Laboratory Medicine, UZ Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jolien M Schaeverbeke
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Benjamin Gille
- Laboratory for Molecular Neurobiomarker Research, Department of Neurosciences, KU Leuven, box 7003, Herestraat 49, 3000, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Maxim De Schaepdryver
- Laboratory for Molecular Neurobiomarker Research, Department of Neurosciences, KU Leuven, box 7003, Herestraat 49, 3000, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Emma S Luckett
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Silvy Gabel
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Rose Bruffaerts
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Department, UZ Leuven, Leuven, Belgium
| | | | - Elisabeth H Thijssen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Vandenberghe
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Department, UZ Leuven, Leuven, Belgium
| | - Koen Poesen
- Laboratory for Molecular Neurobiomarker Research, Department of Neurosciences, KU Leuven, box 7003, Herestraat 49, 3000, Leuven, Belgium.
- Laboratory Medicine, UZ Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Kolanko MA, Win Z, Loreto F, Patel N, Carswell C, Gontsarova A, Perry RJ, Malhotra PA. Amyloid PET imaging in clinical practice. Pract Neurol 2020; 20:451-462. [PMID: 32973035 DOI: 10.1136/practneurol-2019-002468] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
Amyloid positron emission tomography (PET) imaging enables in vivo detection of brain Aβ deposition, one of the neuropathological hallmarks of Alzheimer's disease. There is increasing evidence to support its clinical utility, with major studies showing that amyloid PET imaging improves diagnostic accuracy, increases diagnostic certainty and results in therapeutic changes. The Amyloid Imaging Taskforce has developed appropriate use criteria to guide clinicians by predefining certain scenarios where amyloid PET would be justified. This review provides a practical guide on how and when to use amyloid PET, based on the available research and our own experience. We discuss its three main appropriate indications and illustrate these with clinical cases. We stress the importance of a multidisciplinary approach when deciding who might benefit from amyloid PET imaging. Finally, we highlight some practical points and common pitfalls in its interpretation.
Collapse
Affiliation(s)
- Magdalena A Kolanko
- Department of Brain Sciences, Imperial College London, London, UK.,Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Zarni Win
- Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Flavia Loreto
- Department of Brain Sciences, Imperial College London, London, UK
| | - Neva Patel
- Department of Nuclear Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Christopher Carswell
- Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, London, UK.,Department of Neurology, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | | | - Richard J Perry
- Department of Brain Sciences, Imperial College London, London, UK.,Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London, UK .,Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, London, UK.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, UK
| |
Collapse
|
41
|
Chételat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S, van de Giessen E, Agosta F, Barkhof F, Brooks DJ, Carrillo MC, Dubois B, Fjell AM, Frisoni GB, Hansson O, Herholz K, Hutton BF, Jack CR, Lammertsma AA, Landau SM, Minoshima S, Nobili F, Nordberg A, Ossenkoppele R, Oyen WJG, Perani D, Rabinovici GD, Scheltens P, Villemagne VL, Zetterberg H, Drzezga A. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias. Lancet Neurol 2020; 19:951-962. [PMID: 33098804 DOI: 10.1016/s1474-4422(20)30314-8] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Various biomarkers are available to support the diagnosis of neurodegenerative diseases in clinical and research settings. Among the molecular imaging biomarkers, amyloid-PET, which assesses brain amyloid deposition, and 18F-fluorodeoxyglucose (18F-FDG) PET, which assesses glucose metabolism, provide valuable and complementary information. However, uncertainty remains regarding the optimal timepoint, combination, and an order in which these PET biomarkers should be used in diagnostic evaluations because conclusive evidence is missing. Following an expert panel discussion, we reached an agreement on the specific use of the individual biomarkers, based on available evidence and clinical expertise. We propose a diagnostic algorithm with optimal timepoints for these PET biomarkers, also taking into account evidence from other biomarkers, for early and differential diagnosis of neurodegenerative diseases that can lead to dementia. We propose three main diagnostic pathways with distinct biomarker sequences, in which amyloid-PET and 18F-FDG-PET are placed at different positions in the order of diagnostic evaluations, depending on clinical presentation. We hope that this algorithm can support diagnostic decision making in specialist clinical settings with access to these biomarkers and might stimulate further research towards optimal diagnostic strategies.
Collapse
Affiliation(s)
- Gaël Chételat
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Unité 1237, Groupement d'Intérêt Public Cyceron, Caen, France.
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra, Clinica Universidad de Navarra, Pamplona, Spain
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTlab, Geneva University, Geneva, Switzerland
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Silvia Morbelli
- Nuclear Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere, San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - David J Brooks
- Institute of Neuroscience, Newcastle University, Newcastle, UK; Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | - Bruno Dubois
- Centre des Maladies Cognitives et Comportementales, University Hospital of Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Paris, France
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway, Oslo; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Giovanni B Frisoni
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Malmö, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Brian F Hutton
- Institute of Nuclear Medicine, University College London, London, UK
| | | | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Flavio Nobili
- UO Clinica Neurologica, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Child and Mother Health, University of Genoa, Genova, Italy
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Rik Ossenkoppele
- Department of Neurology, Alzheimer Center, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Wim J G Oyen
- Humanitas University and Humanitas Clinical and Research Center, Department of Nuclear Medicine, Milan, Italy; Rijnstate, Department of Radiology and Nuclear Medicine, Arnhem, Netherlands; Radboud UMC, Department of Radiology and Nuclear Medicine, Nijmegen, Netherlands
| | - Daniela Perani
- Vita-Salute San Raffaele University, Nuclear Medicine Unit, San Raffaele Hospital, Division of Neuroscience San Raffaele Scientific Institute, Milan, Italy
| | - Gil D Rabinovici
- Departments of Neurology, Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at University College London, London, UK
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany; German Center for Neurodegenerative Diseases, Bonn-Cologne, Germany; Institute of Neuroscience and Medicine, Molecular Organization of the Brain, Forschungszentrum Jülich, Germany
| |
Collapse
|
42
|
Kameyama M, Ishibashi K, Toyohara J, Wagatsuma K, Umeda-Kameyama Y, Shimoji K, Kanemaru K, Murayama S, Ogawa S, Tokumaru AM, Ishii K. Voxel-based morphometry focusing on medial temporal lobe structures has a limited capability to detect amyloid β, an Alzheimer's disease pathology. Aging (Albany NY) 2020; 12:19701-19710. [PMID: 33024054 PMCID: PMC7732322 DOI: 10.18632/aging.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/30/2020] [Indexed: 01/24/2023]
Abstract
Voxel-based morphometry (VBM) analysis of nuclear Magnetic Resonance Imaging (MRI) data allows the identification of medial temporal lobe (MTL) atrophy and is widely used to assist the diagnosis of Alzheimer's disease (AD). However, its reliability in the clinical environment has not yet been confirmed. To determine the credibility of VBM, amyloid positron emission tomography (PET) and VBM studies were compared retrospectively. Patients who underwent Pittsburgh Compound B (PiB) PET were retrospectively recruited. Ninety-seven patients were found to be amyloid negative and 116 were amyloid positive. MTL atrophy in the PiB positive group, as quantified by thin sliced 3D MRI and VBM software, was significantly more severe (p =0.0039) than in the PiB negative group. However, data histogram showed a vast overlap between the two groups. The area under the ROC curve (AUC) was 0.646. MMSE scores of patients in the amyloid negative and positive groups were also significantly different (p = 0.0028), and the AUC was 0.672. Thus, MTL atrophy could not reliably differentiate between amyloid positive and negative patients in a clinical setting, possibly due to the wide array of dementia-type diseases that exist other than AD.
Collapse
Affiliation(s)
- Masashi Kameyama
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yumi, Umeda-Kameyama
- Department of Geriatric Medicine, The University of Tokyo School of Medicine, Tokyo 113-8655, Japan
| | - Keigo Shimoji
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Kazutomi Kanemaru
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 113-0015, Japan
| | - Shigeo Murayama
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 113-0015, Japan
| | - Sumito Ogawa
- Department of Geriatric Medicine, The University of Tokyo School of Medicine, Tokyo 113-8655, Japan
| | - Aya M. Tokumaru
- Department of Diagnostic Radiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| |
Collapse
|
43
|
Visual interpretation of [18F]Florbetaben PET supported by deep learning–based estimation of amyloid burden. Eur J Nucl Med Mol Imaging 2020; 48:1116-1123. [DOI: 10.1007/s00259-020-05044-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
|
44
|
Wang X, Huang W, Su L, Xing Y, Jessen F, Sun Y, Shu N, Han Y. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer's disease. Mol Neurodegener 2020; 15:55. [PMID: 32962744 PMCID: PMC7507636 DOI: 10.1186/s13024-020-00395-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Subjective cognitive decline (SCD) is regarded as the first clinical manifestation in the Alzheimer’s disease (AD) continuum. Investigating populations with SCD is important for understanding the early pathological mechanisms of AD and identifying SCD-related biomarkers, which are critical for the early detection of AD. With the advent of advanced neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), accumulating evidence has revealed structural and functional brain alterations related to the symptoms of SCD. In this review, we summarize the main imaging features and key findings regarding SCD related to AD, from local and regional data to connectivity-based imaging measures, with the aim of delineating a multimodal imaging signature of SCD due to AD. Additionally, the interaction of SCD with other risk factors for dementia due to AD, such as age and the Apolipoprotein E (ApoE) ɛ4 status, has also been described. Finally, the possible explanations for the inconsistent and heterogeneous neuroimaging findings observed in individuals with SCD are discussed, along with future directions. Overall, the literature reveals a preferential vulnerability of AD signature regions in SCD in the context of AD, supporting the notion that individuals with SCD share a similar pattern of brain alterations with patients with mild cognitive impairment (MCI) and dementia due to AD. We conclude that these neuroimaging techniques, particularly multimodal neuroimaging techniques, have great potential for identifying the underlying pathological alterations associated with SCD. More longitudinal studies with larger sample sizes combined with more advanced imaging modeling approaches such as artificial intelligence are still warranted to establish their clinical utility.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Sino-Britain Centre for Cognition and Ageing Research, Southwest University, Chongqing, China
| | - Yue Xing
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50937, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China. .,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China. .,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
45
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
46
|
Zayas-Santiago A, Díaz-García A, Nuñez-Rodríguez R, Inyushin M. Accumulation of amyloid beta in human glioblastomas. Clin Exp Immunol 2020; 202:325-334. [PMID: 32654112 PMCID: PMC7670151 DOI: 10.1111/cei.13493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Many cancer types are intrinsically associated with specific types of amyloidosis, in which amyloid is accumulated locally inside tumors or systemically. Usually, this condition relates to the hyperproduction of specific amylogenic proteins. Recently, we found that the accumulation of amyloid beta (Aβ) peptide immunofluorescence is linked to glioma cells in mouse tumors. Here we report that amyloid-specific histochemical dyes reveal amyloid accumulation in all human glioma samples. Application of two different antibodies against Aβ peptide (a polyclonal antibody against human Aβ1-42 and a monoclonal pan-specific mAb-2 antibody against Aβ) showed that the amyloid in glioma samples contains Aβ. Amyloid was linked to glioma cells expressing glial-specific fibrillary acidic protein (GFAP) and to glioma blood vessels. Astrocytes close to the glioma site and to affected vessels also accumulated Aβ. We discuss whether amyloid is produced by glioma cells or is the result of systemic production of Aβ in response to glioma development due to an innate immunity reaction. We conclude that amyloid build-up in glioma tumors is a part of the tumor environment, and may be used as a target for developing a novel class of anti-tumor drugs and as an antigen for glioma visualization.
Collapse
Affiliation(s)
- A Zayas-Santiago
- Physiology Department, Medical School, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - A Díaz-García
- Physiology Department, Medical School, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - R Nuñez-Rodríguez
- Biochemistry Department, Medical School, Universidad Central del Caribe, Bayamon, Puerto Rico
| | - M Inyushin
- Physiology Department, Medical School, Universidad Central del Caribe, Bayamon, Puerto Rico
| |
Collapse
|
47
|
Koychev I, Hofer M, Friedman N. Correlation of Alzheimer Disease Neuropathologic Staging with Amyloid and Tau Scintigraphic Imaging Biomarkers. J Nucl Med 2020; 61:1413-1418. [PMID: 32764121 DOI: 10.2967/jnumed.119.230458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
PET neuroimaging of amyloid-β (Aβ) provides an in vivo biomarker for pathologic changes associated with Alzheimer disease (AD). Aβ-targeted agents have been approved by the Food and Drug Administration, with additional agents, most notably targeting tau, currently under clinical investigation and one approved in May 2020. These agents, along with nonscintigraphic biomarkers from blood and cerebrospinal fluid, have provided an opportunity to investigate the pathogenesis, prodromal changes, and time course of the disease in living individuals. The current understanding is that the neuropathologic changes of the AD continuum begin up to 25 y before the onset of clinical symptomatology. The opportunities afforded by in vivo biomarkers of AD, whether by serum, cerebrospinal fluid examination or PET, have transformed the design of AD therapeutic trials by shifting focus to the preclinical stages of disease. Future disease-modifying therapies, should they be forthcoming, will rely heavily on the use of approved biomarkers or biomarkers currently under investigation to confirm the presence of target pathology. Understanding the progressive neuropathologic changes that occur in AD-and how scintigraphic findings relate to these changes-will help the interpreting physician to fully appreciate the implications of the scintigraphic findings and provide a basis to interpret the examinations. The recently adopted National Institute on Aging-Alzheimer Association guidelines define postmortem AD neuropathologic changes as a composite score based on 3 elements. These elements are the extent of involvement (spread) by cerebral Aβ based on the progression model defined by the Thal Aβ phases, the extent of involvement (spread) by neurofibrillary tangles (composed of hyperphosphorylated tau proteins) based on the progression model defined by Braak, and the Consortium to Establish a Registry for Alzheimer's Disease score, which describes the density of neuritic plaques based on certain key locations in the neocortex. This paper will review the 3 elements that define the National Institute on Aging-Alzheimer's Association scoring system and discusses current evidence on how these elements relate to findings based on Aβ and tau PET scintigraphy.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Monika Hofer
- Department of Neuropathology, Oxford University Hospitals, Oxford, United Kingdom; and
| | | |
Collapse
|
48
|
Czernin J, Sonni I, Razmaria A, Calais J. The Future of Nuclear Medicine as an Independent Specialty. J Nucl Med 2020; 60:3S-12S. [PMID: 31481589 DOI: 10.2967/jnumed.118.220558] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/06/2019] [Indexed: 02/07/2023] Open
Abstract
In this article, we provide an overview of established and emerging conventional nuclear medicine and PET imaging biomarkers, as the diagnostic nuclear medicine portfolio is rapidly expanding. Next, we review briefly nuclear theranostic approaches that have already entered or are about to enter clinical routine. Using some approximations and taking into account emerging applications, we also provide some simplified business forecasts for nuclear theranostics. We argue that an optimistic outlook by the nuclear medicine community is crucial to the growth of the specialty and emphasize the urgent need for training adaptations.
Collapse
Affiliation(s)
- Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Ida Sonni
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Aria Razmaria
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
49
|
Hattori N, Sherwin P, Farrar G. Initial Physician Experience with [ 18F]Flutemetamol Amyloid PET Imaging Following Availability for Routine Clinical Use in Japan. J Alzheimers Dis Rep 2020; 4:165-174. [PMID: 32715277 PMCID: PMC7369136 DOI: 10.3233/adr-190150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Brain amyloid is a neuropathological hallmark of Alzheimer’s disease (AD). By visualizing brain amyloid, positron emission tomography (PET) may influence the diagnostic assessment and management of patients with cognitive impairment. Objective: As part of a Japanese post-approval study to measure the safety of [18F]flutemetamol PET, the association of amyloid PET results with changes in diagnosis and diagnostic confidence was assessed. Methods: Fifty-seven subjects were imaged for amyloid PET using [18F]flutemetamol at a single Japanese memory clinic. The cognitive diagnosis and referring physician’s confidence in the diagnosis were recorded before and after availability of PET results. Imaging started approximately 90 minutes after [18F]flutemetamol administration with approximately 185 MBq injected. PET images were acquired for 30 minutes. Results: Amyloid PET imaging led to change in diagnosis in 15/44 clinical subjects (34%). Mean diagnostic confidence increased by approximately 20%, from 73% pre-scan to 93% post-scan, and this rise was fairly consistent across the main patient subgroups (mild cognitive impairment, AD, and non-AD) irrespective of the pre-scan diagnosis and scan result. Conclusion: The study examined the utility of amyloid PET imaging in a Japanese clinical cohort and highlighted the use of an etiological diagnosis in the presence of the amyloid scan. [18F]Flutemetamol PET led to a change in diagnosis in over 30% of cases and to an increase in diagnostic confidence by approximately 20% consistent with other reports.
Collapse
|
50
|
Spallazzi M, Barocco F, Michelini G, Morelli N, Scarlattei M, Baldari G, Ruffini L, Caffarra P. The Incremental Diagnostic Value of [18F]Florbetaben PET and the Pivotal Role of the Neuropsychological Assessment in Clinical Practice. J Alzheimers Dis 2020; 67:1235-1244. [PMID: 30689568 DOI: 10.3233/jad-180646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Amyloid pathology is a key feature of Alzheimer's disease (AD) and can be assessed in vivo with amyloid positron emission tomography (PET) imaging. OBJECTIVE The objective of this study was to evaluate the incremental value of a PET scan with [18F]florbetaben, in terms of changes of diagnosis, diagnostic confidence, and treatment plan when added to a standardized diagnostic workup for cognitive disorders, with particular focus on the role of the neuropsychological assessment, including the Free and Cued Selective Reminding Test (FCSRT). METHODS A total of 104 patients (69 mild cognitive impairment, 35 dementia), with diagnostic uncertainty after diagnostic workup, were recruited from our memory clinic. [18F]florbetaben PET scans were interpreted as amyloid negative or positive on the basis of a semi-quantitative visual rating. Clinical diagnosis and diagnostic confidence for AD or non-AD dementia were rated before and after PET result disclosure, as was the impact of PET on the patient management plan. RESULTS There were 69/104 (66%) [18F]florbetaben positive scans, 51/62 (82%) patients were suspected as having AD before the PET scan and 18/42 (43%) were not. Overall, the data obtained at PET changed 18/104 diagnoses (17%) and increased diagnostic confidence from 69.1±8.1% to 83.5±9.1 (p < 0.001), with the greatest impact on diagnosis and confidence in PET negative patients with an initial diagnosis of AD (p < 0.01) and in early-onset patients (p = 0.01). CONCLUSION Amyloid PET represents a source of added value in dementia diagnosis, with a significant effect on diagnosis and diagnostic confidence. However, the use of a complete neuropsychological assessment has an add-on value on limiting the amyloid PET influence on change of diagnosis, and the real impact of amyloid PET should always be weighed up together with an accurate standardized diagnostic workup.
Collapse
Affiliation(s)
- Marco Spallazzi
- Department of Neurology, G. da Saliceto Hospital, Piacenza, Italy
| | | | | | - Nicola Morelli
- Department of Neurology, G. da Saliceto Hospital, Piacenza, Italy
| | - Maura Scarlattei
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Giorgio Baldari
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Livia Ruffini
- Department of Nuclear Medicine, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Paolo Caffarra
- Alzheimer Center, Briolini Hospital, Gazzaniga, Bergamo, Italy.,Department of Medicine and Surgery, Section of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|