1
|
Matsui H, Lopez IA, Ishiyama G, Ishiyama A. Immunohistochemical localization of glucocorticoid receptors in the human cochlea. Brain Res 2023; 1806:148301. [PMID: 36868509 PMCID: PMC10521330 DOI: 10.1016/j.brainres.2023.148301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
In the present study we investigated the localization of glucocorticoid receptors (GCR) in the human inner ear using immunohistochemistry. Celloidin-embedded cochlear sections of patients with normal hearing (n = 5), patients diagnosed with MD (n = 5), and noise induced hearing loss (n = 5) were immunostained using GCR rabbit affinity-purified polyclonal antibodies and secondary fluorescent or HRP labeled antibodies. Digital fluorescent images were acquired using a light sheet laser confocal microscope. In celloidin-embedded sections GCR-IF was present in the cell nuclei of hair cells and supporting cells of the organ of Corti. GCR-IF was detected in cell nuclei of the Reisner's membrane. GCR-IF was seen in cell nuclei of the stria vascularis and the spiral ligament. GCR-IF was found in the spiral ganglia cell nuclei, however, spiral ganglia neurons showed no GCR-IF. Although GCRs were found in most cell nuclei of the cochlea, the intensity of IF was differential among the different cell types being more intense in supporting cells than in sensory hair cells. The differential expression of GCR receptors found in the human cochlea may help to understand the site of action of glucocorticoids in different ear diseases.
Collapse
Affiliation(s)
- Hirooki Matsui
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA; Department of Otolaryngology, Head and Neck Surgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Ivan A Lopez
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA.
| | - Gail Ishiyama
- Department of Neurology. David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA
| |
Collapse
|
2
|
Barnes CC, Yee KT, Vetter DE. Conditional Ablation of Glucocorticoid and Mineralocorticoid Receptors from Cochlear Supporting Cells Reveals Their Differential Roles for Hearing Sensitivity and Dynamics of Recovery from Noise-Induced Hearing Loss. Int J Mol Sci 2023; 24:3320. [PMID: 36834731 PMCID: PMC9961551 DOI: 10.3390/ijms24043320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Endogenous glucocorticoids (GC) are known to modulate basic elements of cochlear physiology. These include both noise-induced injury and circadian rhythms. While GC signaling in the cochlea can directly influence auditory transduction via actions on hair cells and spiral ganglion neurons, evidence also indicates that GC signaling exerts effects via tissue homeostatic processes that can include effects on cochlear immunomodulation. GCs act at both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Most cell types in the cochlea express both receptors sensitive to GCs. The GR is associated with acquired sensorineural hearing loss (SNHL) through its effects on both gene expression and immunomodulatory programs. The MR has been associated with age-related hearing loss through dysfunction of ionic homeostatic balance. Cochlear supporting cells maintain local homeostatic requirements, are sensitive to perturbation, and participate in inflammatory signaling. Here, we have used conditional gene manipulation techniques to target Nr3c1 (GR) or Nr3c2 (MR) for tamoxifen-induced gene ablation in Sox9-expressing cochlear supporting cells of adult mice to investigate whether either of the receptors sensitive to GCs plays a role in protecting against (or exacerbating) noise-induced cochlear damage. We have selected mild intensity noise exposure to examine the role of these receptors related to more commonly experienced noise levels. Our results reveal distinct roles of these GC receptors for both basal auditory thresholds prior to noise exposure and during recovery from mild noise exposure. Prior to noise exposure, auditory brainstem responses (ABRs) were measured in mice carrying the floxed allele of interest and the Cre recombinase transgene, but not receiving tamoxifen injections (defined as control (no tamoxifen treatment), versus conditional knockout (cKO) mice, defined as mice having received tamoxifen injections. Results revealed hypersensitive thresholds to mid- to low-frequencies after tamoxifen-induced GR ablation from Sox9-expressing cochlear supporting cells compared to control (no tamoxifen) mice. GR ablation from Sox9-expressing cochlear supporting cells resulted in a permanent threshold shift in mid-basal cochlear frequency regions after mild noise exposure that produced only a temporary threshold shift in both control (no tamoxifen) f/fGR:Sox9iCre+ and heterozygous f/+GR:Sox9iCre+ tamoxifen-treated mice. A similar comparison of basal ABRs measured in control (no tamoxifen) and tamoxifen-treated, floxed MR mice prior to noise exposure indicated no difference in baseline thresholds. After mild noise exposure, MR ablation was initially associated with a complete threshold recovery at 22.6 kHz by 3 days post-noise. Threshold continued to shift to higher sensitivity over time such that by 30 days post-noise exposure the 22.6 kHz ABR threshold was 10 dB more sensitive than baseline. Further, MR ablation produced a temporary reduction in peak 1 neural amplitude one day post-noise. While supporting cell GR ablation trended towards reducing numbers of ribbon synapses, MR ablation reduced ribbon synapse counts but did not exacerbate noise-induced damage including synapse loss at the experimental endpoint. GR ablation from the targeted supporting cells increased the basal resting number of Iba1-positive (innate) immune cells (no noise exposure) and decreased the number of Iba1-positive cells seven days following noise exposure. MR ablation did not alter innate immune cell numbers at seven days post-noise exposure. Taken together, these findings support differential roles of cochlear supporting cell MR and GR expression at basal, resting conditions and especially during recovery from noise exposure.
Collapse
Affiliation(s)
- Charles C. Barnes
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kathleen T. Yee
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas E. Vetter
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Otolaryngology–Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
3
|
Zhong S, Zhang B, Qin L, Wang Q, Luo X. Aldosterone inhibits Dot1l expression in guinea pig cochlea. Eur J Med Res 2023; 28:26. [PMID: 36639782 PMCID: PMC9838020 DOI: 10.1186/s40001-023-00994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Aldosterone relieves transcriptional repression of epithelial sodium channel (ENaC) by inhibiting Dot1a and Af9 expression and their interaction with ENaC promoter in various tissues. Expressions of ENaC and Af9 in inner ear have been identified. However, it is not known how Dot1l is regulated by aldosterone in inner ear. METHODS Twenty-eight adult guinea pigs were randomly divided into the control group and treatment group. Aldosterone 1 mg/kg/d was injected intraperitoneally in the treatment group and saline in the control group for 7 days. Animals were killed 1 month later following auditory brainstem response examination. Histomorphology of cochlea was detected with hematoxylin-eosin staining, and Dot1l expression was examined with immunohistochemistry and Western blot. RESULTS There was no significant difference in ABR thresholds before and after injection of aldosterone or saline in either group. Endolymphatic hydrops was found in 75% of animals in the treatment group. Dot1l was found in both groups in the stria vascularis, Reissner's membrane, spiral limbus, organ of Corti and spiral ligament. Dot1l expression in the treatment group was decreased by aldosterone. CONCLUSIONS Dot1l in guinea pig cochlea is inhibited by aldosterone with induction of endolymphatic hydrops. Dot1l may be closely related to endolymph regulation by aldosterone and to pathogenesis of Meniere's disease.
Collapse
Affiliation(s)
- Shixun Zhong
- grid.452206.70000 0004 1758 417XDepartment of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Biyun Zhang
- grid.452206.70000 0004 1758 417XDepartment of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Li Qin
- grid.490255.f0000 0004 7594 4364 Department of Otolaryngology, Mianyang Central Hospital, Mianyang, China
| | - Qianying Wang
- grid.452206.70000 0004 1758 417XDepartment of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Xiaoli Luo
- Department of Otolaryngology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
4
|
Wang C, Li Y, Liu W, Wang C, Jiang W, Zhao Z, Li X, Qiao Y, Dai C. The expression and significance of Epac1 and Epac2 in the inner ear of guinea pigs. Eur Arch Otorhinolaryngol 2022; 279:5207-5214. [PMID: 35438345 DOI: 10.1007/s00405-022-07380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To detect the expression of Epac1 and Epac2 in the inner ear of guinea pigs and its association with microcirculation in the inner ear. METHODS The temporal bones of 30 healthy red-eye guinea pigs (60 ears) weighing 200-350 g were collected, then the surrounding bone wall of the cochlea was removed under a dissection microscope. Real-time quantitative PCR (RT-qPCR) and Western blot were used to detect mRNA and protein expression, respectively, of Epac1 and Epac2 in the inner ear and to compare their expression in heart, liver, kidney, intestine, and lung tissues. The specimens of the cochlea included the stria vascularis, basilar membrane, saccule, and utricles isolated under a microscope to detect the localization of Epac1 and Epac2 proteins in various parts of the inner ear through immunofluorescence staining. RESULTS The RT-qPCR and Western blot results showed that Epac1 mRNA was universally expressed in the inner ear, heart, liver, kidneys, intestines, and lungs, and was highly expressed in the liver, kidneys, and intestines (p < 0.05 vs heart, liver, kidney, intestine; p > 0.05 vs lung). Epac2 mRNA was expressed in the inner ear and heart, but not in the liver, kidneys, intestines, or lungs (p < 0.05 vs Heart). Epac1 and Epac2 proteins were both expressed in the inner ear, heart, liver, kidneys, intestines, and lungs. The relative expression of Epac1 proteins in the inner ear was significantly different from the liver, kidneys, intestines, and lungs (p < 0.05). The relative expression of Epac2 proteins in the inner ear was significantly different from the liver, kidneys, and lungs (p < 0.05), but not from the heart (p = 0.127) or intestines (p = 0.274). Immunofluorescence staining observed under confocal microscopy indicated that Epac1 and Epac2 proteins were expressed in the stria vascularis, basilar membrane, saccule, and utricles of the inner ear. They were expressed in maginal cells, intermediate cells, and basal cells of the stria vascularis, and highly expressed in capillary endothelial cells. CONCLUSIONS Epac1 and Epac2 mRNA and proteins were both expressed in the inner ear of guinea pigs and evenly expressed in the spiral ganglion, basilar membrane, saccule, and utricles. However, their expression in capillary endothelial cells of the stria vascularis was more obvious, suggesting that cyclic adenosine monophosphate-Epac1 signaling may play an important role in maintaining the function of the blood-labyrinth barrier and regulating the stability of microcirculation in the inner ear.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Yuan Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Wen Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China
| | - Caiji Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Wen Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Zeqi Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Yuehua Qiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Chunfu Dai
- National Health Commission Key Laboratory of Hearing Medicine (Fudan University), Department of Otology and Skull Base Surgery, Shanghai, 200000, People's Republic of China
| |
Collapse
|
5
|
Marchetta P, Eckert P, Lukowski R, Ruth P, Singer W, Rüttiger L, Knipper M. Loss of central mineralocorticoid or glucocorticoid receptors impacts auditory nerve processing in the cochlea. iScience 2022; 25:103981. [PMID: 35281733 PMCID: PMC8914323 DOI: 10.1016/j.isci.2022.103981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
The key auditory signature that may associate peripheral hearing with central auditory cognitive defects remains elusive. Suggesting the involvement of stress receptors, we here deleted the mineralocorticoid and glucocorticoid receptors (MR and GR) using a CaMKIIα-based tamoxifen-inducible CreERT2/loxP approach to generate mice with single or double deletion of central but not cochlear MR and GR. Hearing thresholds of MRGRCaMKIIαCreERT2 conditional knockouts (cKO) were unchanged, whereas auditory nerve fiber (ANF) responses were larger and faster and auditory steady state responses were improved. Subsequent analysis of single MR or GR cKO revealed discrete roles for both, central MR and GR on cochlear functions. Limbic MR deletion reduced inner hair cell (IHC) ribbon numbers and ANF responses. In contrast, GR deletion shortened the latency and improved the synchronization to amplitude-modulated tones without affecting IHC ribbon numbers. These findings imply that stress hormone-dependent functions of central MR/GR contribute to “precognitive” sound processing in the cochlea. Top-down MR/GR signaling differentially contributes to cochlear sound processing Limbic MR stimulates auditory nerve fiber discharge rates Central GR deteriorates auditory nerve fiber synchrony
Collapse
Affiliation(s)
- Philine Marchetta
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Philipp Eckert
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Robert Lukowski
- University of Tübingen, Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, 72076 Tübingen, Germany
| | - Peter Ruth
- University of Tübingen, Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, 72076 Tübingen, Germany
| | - Wibke Singer
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Marlies Knipper
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Spironolactone Ameliorates Cochlear Implant Induced Endolymphatic Hydrops. Otol Neurotol 2022; 43:685-693. [DOI: 10.1097/mao.0000000000003517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
Emotional stress has accompanied humans since the dawn of time and has played an essential role not only in positive selection and adaptation to an ever-changing environment, but also in the acceleration or even initiation of many illnesses. The three main somatic mechanisms induced by stress are the hypothalamus-pituitary-adrenal axis (HPA axis), the sympathetic-adreno-medullar (SAM) axis, and the immune axis. In this chapter, the stress-induced mechanisms that can affect cochlear physiology are presented and discussed in the context of tinnitus generation and auditory neurobiology. It is concluded that all of the presented mechanisms need to be further investigated. It is advised that clinical practitioners ask patients about stressful events or chronic stress preceding the tinnitus onset and measure the vital signs. Finally, taking into account that tinnitus itself acts as a stressor, the implementation of anti-stress therapies for tinnitus treatment is recommended.
Collapse
|
8
|
Pérez-Valenzuela C, Terreros G, Dagnino-Subiabre A. Effects of stress on the auditory system: an approach to study a common origin for mood disorders and dementia. Rev Neurosci 2019; 30:317-324. [PMID: 30205652 DOI: 10.1515/revneuro-2018-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
The concept of stress is a fundamental piece to understand how organisms can adapt to the demands produced by a continuously changing environment. However, modern lifestyle subjects humans to high levels of negative stress or distress, which increases the prevalence of mental illnesses. Definitely, stress has become the pandemic of the 21st century, a fact that demands a great intellectual effort from scientists to understand the neurobiology of stress. This review proposes an innovative point of view to understand that mood disorders and dementia have a common etiology in a stressful environment. We propose that distress produces sensory deprivation, and this interferes with the connection between the brain and the environment in which the subject lives. The auditory system can serve as an example to understand this idea. In this sense, distress impairs the auditory system and induces hearing loss or presbycusis at an early age; this can increase the cognitive load in stressed people, which can stimulate the development of dementia in them. On the other hand, distress impairs the auditory system and increases the excitability of the amygdala, a limbic structure involved in the emotional processing of sounds. A consequence of these alterations could be the increase in the persistence of auditory fear memory, which could increase the development of mood disorders. Finally, it is important to emphasize that stress is an evolutionary issue that is necessary to understand the mental health of humans in these modern times. This article is a contribution to this discussion and will provide insights into the origin of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Catherine Pérez-Valenzuela
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile.,Auditory and Cognition Center (AUCO), Santiago, Chile
| | - Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile.,Auditory and Cognition Center (AUCO), Santiago, Chile
| |
Collapse
|
9
|
Glucococorticoid receptor activation exacerbates aminoglycoside-induced damage to the zebrafish lateral line. Hear Res 2019; 377:12-23. [PMID: 30878773 DOI: 10.1016/j.heares.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/18/2018] [Accepted: 03/04/2019] [Indexed: 01/14/2023]
Abstract
Aminoglycoside antibiotics have potent antibacterial properties but cause hearing loss in up to 25% of patients. These drugs are commonly administered in patients with high glucocorticoid stress hormone levels and can be combined with exogenous glucocorticoid treatment. However, the interaction of stress and aminoglycoside-induced hearing loss has not been fully explored. In this study, we investigated the effect of the glucocorticoid stress hormone cortisol on hair cells in the zebrafish lateral line as an important step toward understanding how physiological stressors modulate hair cell survival. We found that 24-hr cortisol incubation sensitized hair cells to neomycin damage. Pharmacological and genetic manipulation demonstrates that sensitization depended on the action of the glucocorticoid receptor but not the mineralocorticoid receptor. Blocking endogenous cortisol production reduced hair cell susceptibility to neomycin, further evidence that glucocorticoids modulate aminoglycoside ototoxicity. Glucocorticoid transcriptional activity was apparent in lateral line hair cells, suggesting a direct action of cortisol in these aminoglycoside-sensitive cells. Our work shows that the stress hormone cortisol can increase hair cell sensitivity to aminoglycoside damage, which highlights the importance of recognizing stress and the impacts of glucocorticoid signaling in both ototoxicity research and clinical practice.
Collapse
|
10
|
Singer W, Kasini K, Manthey M, Eckert P, Armbruster P, Vogt MA, Jaumann M, Dotta M, Yamahara K, Harasztosi C, Zimmermann U, Knipper M, Rüttiger L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats. FASEB J 2018; 32:3005-3019. [PMID: 29401591 DOI: 10.1096/fj.201701041rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systemic corticosteroids have been the mainstay of treatment for various hearing disorders for more than 30 yr. Accordingly, numerous studies have described glucocorticoids (GCs) and stressors to be protective in the auditory organ against damage associated with a variety of health conditions, including noise exposure. Conversely, stressors are also predictive risk factors for hearing disorders. How both of these contrasting stress actions are linked has remained elusive. Here, we demonstrate that higher corticosterone levels during acoustic trauma in female rats is highly correlated with a decline of auditory fiber responses in high-frequency cochlear regions, and that hearing thresholds and the outer hair cell functions (distortion products of otoacoustic emissions) are left unaffected. Moreover, when GC receptor (GR) or mineralocorticoid receptor (MR) activation was antagonized by mifepristone or spironolactone, respectively, GR, but not MR, inhibition significantly and permanently attenuated trauma-induced effects on auditory fiber responses, including inner hair cell ribbon loss and related reductions of early and late auditory brainstem responses. These findings strongly imply that higher corticosterone stress levels profoundly impair auditory nerve processing, which may influence central auditory acuity. These changes are likely GR mediated as they are prevented by mifepristone.-Singer, W., Kasini, K., Manthey, M., Eckert, P., Armbruster, P., Vogt, M. A., Jaumann, M., Dotta, M., Yamahara, K., Harasztosi, C., Zimmermann, U., Knipper, M., Rüttiger, L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.
Collapse
Affiliation(s)
- Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Kamyar Kasini
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marie Manthey
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Armbruster
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Miriam Annika Vogt
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Mirko Jaumann
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Michela Dotta
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Kohei Yamahara
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany.,Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Csaba Harasztosi
- Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Ulrike Zimmermann
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Qin L, Zhang B, Wang Q, Li D, Luo X, Zhong S. Effect of aldosterone on cochlear Af9 expression and hearing in guinea pig. Acta Otolaryngol 2017; 137:903-909. [PMID: 28399691 DOI: 10.1080/00016489.2017.1309681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONCLUSIONS Af9 protein in cochlea may be closely related to endolymph regulation by aldosterone and thus may be involved in pathogenesis of endolymphatic hydrops (EH). OBJECTIVES EH is the pathological characteristic of Ménière's disease (MD). Aldosterone could induce EH, but its relationship with MD is still controversial. The aim of the present study is to investigate the Af9 protein expression in guinea pig cochlea and regulation of Af9 expression and cochlear function by aldosterone. The role of Af9 in pathogenesis of EH is discussed. METHODS Thirty guinea pigs were randomly divided into two groups. The treatment group was intraperitoneally injected with aldosterone 0.1 mg/kg/d for 5 days, while the control group was done with saline. Hearing and histomorphology of cochlea were examined. In addition, expression of Af9 protein was studied. RESULTS The hearing threshold of the treatment group was increased. EH was induced in 73% of guinea pigs in the treatment group, and no EH was found in the control group. Af9 protein was found in spiral limbus, stria vascularis, Reissner's membrane, organ of Corti and spiral ganglion in both groups. Af9 expression in cochlea decreased significantly at protein level after treatment by aldosterone.
Collapse
Affiliation(s)
- Li Qin
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Biyun Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianying Wang
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Duanchao Li
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Luo
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shixun Zhong
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Wangemann P, Marcus DC. Ion and Fluid Homeostasis in the Cochlea. UNDERSTANDING THE COCHLEA 2017. [DOI: 10.1007/978-3-319-52073-5_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Silva MCC, de Sousa CNS, Gomes PXL, de Oliveira GV, Araújo FYR, Ximenes NC, da Silva JC, Vasconcelos GS, Leal LKAM, Macêdo D, Vasconcelos SMM. Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:142-8. [PMID: 26265141 DOI: 10.1016/j.pnpbp.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/26/2022]
Abstract
Oxidative stress is implicated in the neurobiology of depression. Here we investigated oxidative alterations in brain areas of animals submitted to the model of depression induced by corticosterone (CORT) and the effects of the antioxidant compound alpha-lipoic acid (ALA) alone or associated with the antidepressant desvenlafaxine (DVS) in these alterations. Female mice received vehicle or CORT (20 mg/kg) during 14 days. From the 15th to 21st days different animals received further administrations of: vehicle, DVS (10 or 20 mg/kg), ALA (100 or 200 mg/kg), or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200, or DVS20+ALA200. Twenty-four hours after the last drug administration prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were dissected for the determination of the activity of superoxide dismutase (SOD), reduced glutathione (GSH) and lipid peroxidation (LP) levels. CORT significantly increased SOD activity in the PFC and HC, decreased GSH levels in the HC and increased LP in all brain areas studied when compared to saline-treated animals. Decrements of SOD activity were observed in all groups and brain areas studied when compared to controls and CORT. The hippocampal decrease in GSH was reversed by ALA100, DVS10+ALA100, DVS20+ALA100 and DVS20+ALA200. The same DVS+ALA combination groups presented increased levels of GSH in the PFC and ST. The greater GSH levels were observed in the PFC, HC and ST of DVS20+ALA200 mice. LP was reversed in the groups ALA200 (PFC), DVS10+ALA100, DVS20+ALA100 (PFC, HC and ST), and DVS20+ALA200 (PFC, HC). Our findings contribute to the previous preclinical evidences implicating ALA as a promising agent for augmentation therapy in depression.
Collapse
Affiliation(s)
- Márcia Calheiros Chaves Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Caren Nádia Soares de Sousa
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Patrícia Xavier Lima Gomes
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Gersilene Valente de Oliveira
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Fernanda Yvelize Ramos Araújo
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Naiara Coelho Ximenes
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Jéssica Calheiros da Silva
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Germana Silva Vasconcelos
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | | | - Danielle Macêdo
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, 60431-270 Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Knipper M, Panford-Walsh R, Singer W, Rüttiger L, Zimmermann U. Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 2015; 361:77-93. [PMID: 25843689 PMCID: PMC4487345 DOI: 10.1007/s00441-015-2168-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/08/2023]
Abstract
Before hearing onset, inner hair cell (IHC) maturation proceeds under the influence of spontaneous Ca(2+) action potentials (APs). The temporal signature of the IHC Ca(2+) AP is modified through an efferent cholinergic feedback from the medial olivocochlear bundle (MOC) and drives the IHC pre- and post-synapse phenotype towards low spontaneous (spike) rate (SR), high-threshold characteristics. With sensory experience, the IHC pre- and post-synapse phenotype matures towards the instruction of low-SR, high-threshold and of high-SR, low-threshold auditory fiber characteristics. Corticosteroid feedback together with local brain-derived nerve growth factor (BDNF) and catecholaminergic neurotransmitters (dopamine) might be essential for this developmental step. In this review, we address the question of whether the control of low-SR and high-SR fiber characteristics is linked to various degrees of vulnerability of auditory fibers in the mature system. In particular, we examine several IHC synaptopathies in the context of various hearing disorders and exemplified shortfalls before and after hearing onset.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U. Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 2013; 111:17-33. [DOI: 10.1016/j.pneurobio.2013.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
16
|
Singer W, Panford-Walsh R, Knipper M. The function of BDNF in the adult auditory system. Neuropharmacology 2013; 76 Pt C:719-28. [PMID: 23688926 DOI: 10.1016/j.neuropharm.2013.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023]
Abstract
The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Wibke Singer
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | | |
Collapse
|
17
|
Kil SH, Kalinec F. Expression and dexamethasone-induced nuclear translocation of glucocorticoid and mineralocorticoid receptors in guinea pig cochlear cells. Hear Res 2013; 299:63-78. [PMID: 23403298 PMCID: PMC3633732 DOI: 10.1016/j.heares.2013.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/14/2013] [Accepted: 01/27/2013] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GC) are powerful anti-inflammatory agents frequently used to protect the auditory organ against damage associated with a variety of conditions, including noise exposure and ototoxic drugs as well as bacterial and viral infections. In addition to glucocorticoid receptors (GC-R), natural and synthetic GC are known to bind mineralocorticoid receptors (MC-R) with great affinity. We used light and laser scanning confocal microscopy to investigate the expression of GC-R and MC-R in different cell populations of the guinea pig cochlea, and their translocation to different cell compartments after treatment with the synthetic GC dexamethasone. We found expression of both types of receptors in the cytoplasm and nucleus of sensory inner and outer hair cells as well as pillar, Hensen and Deiters cells in the organ of Corti, inner and outer sulcus cells, spiral ganglion neurons and several types of spiral ligament and spiral limbus cells; stria vascularis cells expressed mostly MC-R whereas fibrocytes type IV were positive for GC-R only. GC-R and MC-R were also localized at or near the plasma membrane of pillar cells and outer hair cells, whereas GC-R were found at or near the plasma membrane of Hensen cells only. We investigated the relative levels of receptor expression in the cytoplasm and the nucleus of Hensen cells treated with dexamethasone, and found they varied in a way suggestive of dose-induced translocation. These results suggest that the oto-protective effects of GC could be associated with the concerted activation of genomic and non-genomic, GC-R and MC-R mediated signaling pathways in different regions of the cochlea.
Collapse
Affiliation(s)
- Sung-Hee Kil
- Division of Cell Biology and Genetics, House Research Institute, Los Angeles, CA, 90057, USA
| | - Federico Kalinec
- Division of Cell Biology and Genetics, House Research Institute, Los Angeles, CA, 90057, USA
- Departments of Cell & Neurobiology and Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
18
|
Dong Y, Shi JR. [Biological research evaluating the Chinese medical theory of the association of the kidney with the ears]. ACTA ACUST UNITED AC 2012; 10:128-34. [PMID: 22313879 DOI: 10.3736/jcim20120202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
"Association of the kidney with the ears" is central to the traditional Chinese medical (TCM) theory of the viscera and their manifestations. Previous studies have shown that thyroxin, aldosterone, calcium and iron might be the material basis of the correlation between the kidney and the ears. Due to restriction in research techniques and methods, there has been no further progress in this research field, whose modern biological mechanisms and scientific connotations have not been explained clearly. In recent years, the progress of biological techniques and research on kidney essence provided promising opportunities for research of the association between the kidney and the ears. This article summarized the study progress of "association of the kidney with the ears" theory and posed some meaningful study thoughts. Presbycusis is a kind of degenerative disease caused by aging, which is one aspect of aging of the human body. Because aging is considered as physiological "kidney deficiency", presbycusis can be regarded as a model of "kidney deficiency" deafness. In conclusion, investigating the correlation between "kidney deficiency" and presbycusis using biotechnology systems combined with "essence of kidney", should provide a sound basis for study of the theory of the relationship between the kidney and the ears. This will provide new and valuable information for the modern biological research about the theory of visceral associations in TCM.
Collapse
Affiliation(s)
- Yang Dong
- Experimental Teaching Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | |
Collapse
|
19
|
Noise-Induced Inner Hair Cell Ribbon Loss Disturbs Central Arc Mobilization: A Novel Molecular Paradigm for Understanding Tinnitus. Mol Neurobiol 2012; 47:261-79. [DOI: 10.1007/s12035-012-8372-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/29/2012] [Indexed: 11/27/2022]
|
20
|
Mazurek B, Haupt H, Olze H, Szczepek AJ. Stress and tinnitus-from bedside to bench and back. Front Syst Neurosci 2012; 6:47. [PMID: 22701404 PMCID: PMC3371598 DOI: 10.3389/fnsys.2012.00047] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/26/2012] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to focus the attention of clinicians and basic researchers on the association between psycho-social stress and tinnitus. Although tinnitus is an auditory symptom, its onset and progression often associates with emotional strain. Recent epidemiological studies have provided evidence for a direct relationship between the emotional status of subjects and tinnitus. In addition, studies of function, morphology, and gene and protein expression in the auditory system of animals exposed to stress support the notion that the emotional status can influence the auditory system. The data provided by clinical and basic research with use of animal stress models offers valuable clues for an improvement in diagnosis and more effective treatment of tinnitus.
Collapse
Affiliation(s)
- Birgit Mazurek
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Abstract
According to current knowledge, it must be assumed that temporary idiopathic hearing loss and its spontaneous remission are based on mechanical and/or pathological alterations in the inner ear. The causal mechanisms might be based on inter-individual variations. Induced by dose-dependent activators, temporary as well as permanent damage might occur. Sudden hearing loss may be initiated by an increase in the local nitric oxide (NO) concentration. Spontaneous remission, i.e. functional restoration, can be explained by a local decrease in the NO concentration. In this context, regulatory systems such as the gap-junction system, blood vessels or synapses might be affected. In addition, alterations in the hormone level of estrogen and mineralocorticoids, as well as cellular glutathione and vitamin levels, might lead to temporary alterations in the inner ear. Recent experimental findings indicate a role for the shuttle protein Survivin in the spontaneous remission of sudden hearing loss.
Collapse
|
22
|
Maruska KP, Fernald RD. Steroid receptor expression in the fish inner ear varies with sex, social status, and reproductive state. BMC Neurosci 2010; 11:58. [PMID: 20433748 PMCID: PMC2876163 DOI: 10.1186/1471-2202-11-58] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/30/2010] [Indexed: 11/28/2022] Open
Abstract
Background Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR) and aromatase in the main hearing organ of the inner ear (saccule) in the highly social African cichlid fish Astatotilapia burtoni, and tested whether these receptor levels were correlated with circulating steroid concentrations. Results We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes. Conclusions This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral auditory system of any single vertebrate. Our data suggest that changes in steroid receptor mRNA expression in the inner ear could be a regulatory mechanism for physiological state-dependent auditory plasticity across vertebrates.
Collapse
|
23
|
Trune DR, Kempton JB. Blocking the glucocorticoid receptor with RU-486 does not prevent glucocorticoid control of autoimmune mouse hearing loss. Audiol Neurootol 2009; 14:423-31. [PMID: 19923812 DOI: 10.1159/000241899] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/10/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Glucocorticoids effectively manage autoimmune hearing loss, although the cochlear mechanisms involved are unknown. Previous studies of steroid-responsive hearing loss in autoimmune (lupus) mice showed glucocorticoids and mineralocorticoids were equally effective, suggesting the ion homeostasis functions of glucocorticoids may be as relevant as immunosuppression for control of autoimmune-induced inner ear disease. Therefore, to better characterize the role of the glucocorticoid receptor in autoimmune hearing loss therapy, its function was blocked with the antagonist RU-486 (mifepristone) during glucocorticoid (prednisolone) treatments. METHODS Following baseline auditory brainstem response (ABR) thresholds, MRL/MpJ-Fas(lpr) autoimmune mice were implanted with pellets providing combinations of 1.25 mg/kg of RU-486, 4 mg/kg of prednisolone, or their respective placebos. After 1 month, animals were retested with ABR and blood was collected for immune complex analyses. RESULTS Mice receiving no prednisolone (placebo + placebo and placebo + RU-486) showed continued declines in hearing. On the other hand, mice receiving prednisolone (prednisolone + placebo and prednisolone + RU-486) had significantly better hearing (p < 0.05) than the non-prednisolone groups. Immune complexes were significantly elevated in the placebo + RU-486 group, suggesting RU-486 effectively blocked glucocorticoid receptor-mediated immune suppression. These results showed that blockage of the glucocorticoid receptor with RU-486 did not prevent prednisolone's effects in the ear, suggesting its ion homeostasis actions via the mineralocorticoid receptor were more relevant in hearing control. CONCLUSION The mineralocorticoid receptor-mediated actions of glucocorticoids are potentially relevant in steroid-responsive hearing disorders, implying disrupted cochlear ion transport functions may underlie the vascular problems proposed in some forms of immune-mediated hearing loss.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, OR 97239-3098, USA. truned @ ohsu.edu
| | | |
Collapse
|
24
|
Zhong SX, Liu ZH. Expression patterns of Nedd4 isoforms and SGK1 in the rat cochlea. Acta Otolaryngol 2009; 129:935-9. [PMID: 19051070 DOI: 10.1080/00016480802552501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION Our findings suggest that there exists a Na(+) transport system in the cochlea consisting of SGK1, Nedd4 isoforms and ENaC, which may work in concert to transport Na(+) and to maintain homeostasis in the inner ear as they do in other tight epithelia. OBJECTIVES It has been well demonstrated that the epithelial sodium channel (ENaC) plays important roles in regulation of Na(+) reabsorption in the tight epithelia of kidney, colon and lung. Recent studies have provided multiple evidence that the serum glucocorticoid-inducible kinase1(SGK1) and the ubiquitin-protein ligase neural precursor cell-expressed, developmentally downregulated isoforms Nedd4 are involved in ENaC regulation in response to hormones such as aldosterone, vasopressin and insulin. The authors aimed to investigate the cellular localization of Nedd4 isoforms, Nedd4-1/2 and Nedd4-2, and SGK1 in the rat cochlea. MATERIALS AND METHODS The expression patterns of Nedd4-1/2, Nedd4-2 and SGK1 in the rat cochlea were studied by immunohistochemistry with the specific polyclonal rabbit antibodies against the rat Nedd4-1/2, Nedd4-2 and SGK1. RESULTS All three proteins were extensively expressed in various regions of the rat cochlea. They were found in the stria vascularis, spiral ligament, organ of Corti, spiral limbus, spiral ganglion and Reissner's membrane.
Collapse
|
25
|
Jin DX, Lin Z, Lei D, Bao J. The role of glucocorticoids for spiral ganglion neuron survival. Brain Res 2009; 1277:3-11. [PMID: 19233145 PMCID: PMC2700197 DOI: 10.1016/j.brainres.2009.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids, which are steroidal stress hormones, have a broad array of biological functions. Synthetic glucocorticoids are frequently used therapeutically for many pathologic conditions, including diseases of the inner ear; however, their exact functions in the cochlea are not completely understood. Recent work has clearly demonstrated the presence of glucocorticoid signaling pathways in the cochlea and elucidated their protective roles against noise-induced hearing loss. Furthermore, indirect evidence suggests the involvement of glucocorticoids in age-related loss of spiral ganglion neurons and extensive studies in the central nervous system demonstrate profound effects of glucocorticoids on neuronal functions. With the advancement of recent pharmacologic and genetic tools, the role of these pathways in the survival of spiral ganglion neurons after noise exposure and during aging should be revealed.
Collapse
Affiliation(s)
- David Xu Jin
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Zhaoyu Lin
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Debin Lei
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Jianxin Bao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110
- Center for Aging, Washington University School of Medicine, St. Louis, Missouri, 63110
- The Division of Biology & Biomedical Science and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri, 63110
| |
Collapse
|
26
|
|
27
|
Teixeira M, Viengchareun S, Butlen D, Ferreira C, Cluzeaud F, Blot-Chabaud M, Lombès M, Ferrary E. Functional IsK/KvLQT1 potassium channel in a new corticosteroid-sensitive cell line derived from the inner ear. J Biol Chem 2006; 281:10496-507. [PMID: 16478723 DOI: 10.1074/jbc.m512254200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endolymph, a high K(+)/low Na(+) fluid, participates in mechanoelectrical transduction in inner ear. Molecular mechanisms controlling endolymph ion homeostasis remain elusive, hampered by the lack of appropriate cellular models. We established an inner ear cell line by targeted oncogenesis. The expression of SV40 T antigen was driven by the proximal promoter of the human mineralocorticoid receptor (MR) gene, a receptor expressed in the inner ear. The EC5v cell line, microdissected from the semicircular canal, grew as a monolayer of immortalized epithelial cells forming domes. EC5v cells exhibited on filters of high transepithelial resistance and promoted K(+) secretion and Na(+) absorption. Functional MR and the 11beta-hydroxysteroid dehydrogenase type 2, a key enzyme responsible for MR selectivity were identified. Expression of the epithelial sodium channel and serum glucocorticoid-regulated kinase 1 was shown to be up-regulated by aldosterone, indicating that EC5v represents a novel corticosteroid-sensitive cell line. Ionic measurements and (86)Rb transport assays revealed an apical secretion of K(+) at least in part through the I(sK)/KvLQT1 potassium channel under standard culture conditions. However, when cells were exposed to high apically K(+)/low Na(+) fluid, mimicking endolymph exposure, I(sK)/KvLQT1 actually functioned as a strict apical to basolateral K(+) channel inhibited by clofilium. Quantitative reverse transcriptase-PCR further demonstrated that expression of KvLQT1 but not of I(sK) was down-regulated by high K(+) concentration. This first vestibular cellular model thus constitutes a valuable system to further investigate the molecular mechanisms controlling ionic transports in the inner ear and the pathophysiological consequences of their dysfunctions in vertigo and hearing loss.
Collapse
MESH Headings
- 11-beta-Hydroxysteroid Dehydrogenases/metabolism
- Adrenal Cortex Hormones/metabolism
- Animals
- Antigens, Polyomavirus Transforming/metabolism
- Biological Transport
- Blotting, Western
- Catalysis
- Cell Culture Techniques/methods
- Cell Line
- Cells, Cultured
- DNA Primers/chemistry
- Ear, Inner/cytology
- Ear, Inner/metabolism
- Endolymph/metabolism
- Immunohistochemistry
- Ions
- KCNQ1 Potassium Channel/metabolism
- KCNQ1 Potassium Channel/physiology
- Kinetics
- Mice
- Mice, Transgenic
- Microscopy, Electron
- Microscopy, Fluorescence
- Models, Biological
- Potassium/chemistry
- Potassium/metabolism
- Potassium Channels, Voltage-Gated/metabolism
- Potassium Channels, Voltage-Gated/physiology
- Protein Binding
- Quaternary Ammonium Compounds/chemistry
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sodium/chemistry
- Time Factors
- Transgenes
Collapse
Affiliation(s)
- Marie Teixeira
- INSERM EMI-U 0112, Faculté de Médecine Xavier Bichat, Université Paris 7, 16 rue Henri Huchard, 75870 Paris cedex 18, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Trune DR, Kempton JB, Gross ND. Mineralocorticoid receptor mediates glucocorticoid treatment effects in the autoimmune mouse ear. Hear Res 2005; 212:22-32. [PMID: 16307853 DOI: 10.1016/j.heares.2005.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 10/07/2005] [Indexed: 11/24/2022]
Abstract
The standard treatment for many hearing disorders is glucocorticoid therapy, although the cochlear mechanisms involved in steroid-responsive hearing loss are poorly understood. Cochlear dysfunction in autoimmune mice has recently been shown to be controlled with the mineralocorticoid aldosterone as effectively as with the glucocorticoid prednisolone. Because aldosterone regulates sodium, potassium, and other electrolyte homeostasis, this implied the restoration of hearing with the mineralocorticoid was due to its impact on cochlear ion transport, particularly in the stria vascularis. This also suggested glucocorticoids may be controlling hearing recovery in part through their binding to the mineralocorticoid receptor in addition to their glucocorticoid receptor-mediated anti-inflammatory and immunosuppressive functions. Therefore, the aim of the present study was to better delineate the role of the mineralocorticoid receptor in steroid control of hearing in the autoimmune mouse. Spironolactone, a mineralocorticoid receptor antagonist, was administered to MRL/MpJ-Fas(lpr) autoimmune mice in combination with either aldosterone or prednisolone to compare their hearing and systemic disease with mice that received either steroid alone. ABR thresholds showed either aldosterone or prednisolone alone preserved hearing in the mice, but spironolactone prevented both steroids from maintaining normal cochlear function. This suggested both steroids are preserving hearing through the mineralocorticoid receptor within the ear to regulate endolymph homeostasis. The spironolactone treatment did not block normal glucocorticoid receptor-mediated immune-suppression functions because mice receiving prednisolone, either with or without spironolactone, maintained normal body weights, hematocrits, and serum immune complexes. Thus, reducing systemic autoimmune disease was not sufficient to control hearing if mineralocorticoid receptor-mediated functions were blocked. It was concluded the inner ear mineralocorticoid receptor is a significant target of glucocorticoids and a factor that should be considered in therapeutic treatments for steroid-responsive hearing loss.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery; Oregon Health and Science University, Mail Code NRC04, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
29
|
Abstract
Stress of some kind is encountered everyday and release of stress hormones is essential for adaptation to change. Stress can be physical (pain, noise exposure, etc.), psychological (apprehension to impending events, acoustic conditioning, etc.) or due to homeostatic disturbance (hunger, blood pressure, inner ear pressure, etc.). Persistent elevated levels of stress hormones can lead to disease states. The aim of the present review is to bring together data describing morphological or functional evidence for hormones of stress within the inner ear. The present review describes possible multiple interactions between the sympathetic and the complex feed-back neuroendocrine systems which interact with the immune system and so could contribute to various inner ear dysfunctions such as tinnitus, vertigo, hearing losses. Since there is a rapidly expanding list of genes specifically expressed within the inner ear this clearly allows for possible genomic and non-genomic local action of steroid hormones. Since stress can be encountered at any time throughout the life-time, the effects might be manifested starting from in-utero. These are avenues of research which remain relatively unexplored which merit further consideration. Progress in this domain could lead towards integration of stress concept into the overall clinical management of various inner ear pathologies.
Collapse
Affiliation(s)
- K C Horner
- Equipe Inserm EMI 9902, Laboratoire d'Otologie NeuroOtologie, Faculté de Médecine Nord, Université la Méditerranée Aix-Marseille II, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France.
| |
Collapse
|
30
|
Abstract
OBJECTIVE Steroid hormones, and particularly mineralocorticoids, are candidates for controlling the homeostasis of endolymph as steroid receptors are widely expressed in the cochlea. In contrast, experiments on adrenalectomized animals have shown that an absence of steroids had little effect on the ionic composition of endolymph and hearing ability. We thus hypothesized that local production of steroids in the inner ear may regulate cochlear fluid exchanges. RESULTS Using reverse transcription-polymerase chain reaction techniques, we showed that transcripts encoding the P450 side-chain cleavage, the 3beta hydroxysteroid dehydrogenase (3beta HSD) and the 17alpha hydroxylase (P450 C17) were expressed in the lateral wall, organ of Corti and modiolus. The mRNA encoding aldosterone synthase was expressed in the modiolus and lateral wall while the P450 11beta1 hydroxylase was not detected at all in any of these tissues. In situ hybridization experiments on cochlear sections confirmed that the 3beta HSD transcripts were expressed in the spiral ligament and modiolus and possibly in the hair cells of the organ of Corti. However, it was not possible to detect P450 C17 transcripts. Immunohistochemistry performed with an antibody raised against the various 3beta HSD isoforms confirmed the localization found using in situ hybridization. CONCLUSIONS These results suggest that enzymes of the steroid pathway leading to mineralocorticoids and sex steroid hormones, but not glucocorticoids, may be expressed in the rat cochlea. This work is in line with the recent description of local production of steroid hormones in the brain (neurosteroids), heart and skin. In the cochlea, the local production of mineralo and sex steroids could account for a paracrine role and could induce specific gene expression through steroid receptors or act via a non-genomic mechanism on membrane receptors or ionic exchangers. Experiments aimed at demonstrating enzymatic activities within cochlea tissues are in progress.
Collapse
Affiliation(s)
- Eric Lecain
- LNRS, UMR 7060, Faculté Lariboisière, Hôpital Lariboisière, Paris, France
| | | | | |
Collapse
|
31
|
Nathan CA, Kim TS, Harris JP, Koutnouyan HA, Ryan AF. Absence of mRNA encoding estrogen receptor in the rat cochlea. Acta Otolaryngol 2000; 119:853-7. [PMID: 10728922 DOI: 10.1080/00016489950180162] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Based on changes in hearing thresholds and tinnitus that are co-related with the menstrual cycle, it has been suggested that the cochlea may respond directly to estrogen. For this to occur, the cochlea should express estrogen receptors. In situ mRNA hybridization was performed on normal female rat cochleas, using radiolabeled RNA probes complementary to mRNA encoding estrogen receptor, to determine whether estrogen receptors are present in the cochlea. Strong hybridization of the riboprobes to sections of uterus and hypothalamus indicated that the technique detected estrogen receptor mRNA. No hybridization to any cochlear tissues was observed. The results indicate that estrogen receptors are not expressed on cochlear cells, at least in rats. This in turn suggests that variation in cochlear responses during the estrus cycle are not the result of the direct effect of estrogen on the cochlea. Such variation may, however, be caused by systemic changes in fluid regulation induced by estrogen receptors at a distant site, or by other hormone receptors.
Collapse
Affiliation(s)
- C A Nathan
- Department of Otolaryngology/Head and Neck Sugery, Louisiana State University Medical Center, Shreveport 71130, USA.
| | | | | | | | | |
Collapse
|
32
|
Lohuis PJ, Börjesson PK, Klis SF, Smoorenburg GF. The rat cochlea in the absence of circulating adrenal hormones: an electrophysiological and morphological study. Hear Res 2000; 143:189-96. [PMID: 10771196 DOI: 10.1016/s0378-5955(00)00043-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Circulating adrenal hormones affect strial function. Removal of endogenous levels of adrenal steroids by bilateral adrenalectomy (ADX) in rats causes a decrease of Na(+)/K(+)-ATPase activity in the cochlear lateral wall [Rarey et al., 1989. Arch. Otolaryngol. Head Neck Surg. 115, 817-821] and a decrease of the volume of the marginal cells in the stria vascularis [Lohuis et al., 1990. Acta Otolaryngol. (Stockh.) 110, 348-356]. To study further the effect of absence of circulating adrenocorticosteroids on cochlear function, 18 male Long Evans rats underwent either an ADX or a SHAM operation. Electrocochleography was performed 1 week after surgery for tone bursts in a frequency range of 1-16 kHz. Thereafter, the cochleas were harvested and examined histologically. No significant changes in the amplitude growth curves of the summating potential (SP), the compound action potential (CAP) and the cochlear microphonics (CM) were detected after ADX. However, visually, there appeared to be a decrease of endolymphatic volume (tentatively called imdrops). Reissner's membrane (RM) extended less into scala vestibuli in ADX animals than in SHAM-operated animals. The ratio between the length of RM and the straight distance between the medial and lateral attachment points of RM were used as an objective measure to quantify this effect in each sub-apical half turn of the cochlea. The decrease in length of RM was statistically significant. Thus, circulating adrenal hormones appear to be necessary for normal cochlear fluid homeostasis. Absence of one or more of these hormones leads to shrinkage of the scala media (imdrops). However, the absence of adrenal hormones does not affect the gross cochlear potentials. Apparently, the cochlea is capable of compensating for the absence of circulating adrenal hormones to sustain the conditions necessary for proper cochlear transduction.
Collapse
Affiliation(s)
- P J Lohuis
- Hearing Research Laboratories, Department of Otorhinolaryngology, University Medical Center, Room G.02.531, Heidelberglaan 100, NL-3584 CX, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|