1
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
2
|
Improved Activation and Hemodynamic Response Function of Olfactory fMRI Using Simultaneous Multislice with Reduced TR Acquisition. BIOMED RESEARCH INTERNATIONAL 2022; 2021:9965756. [PMID: 35005024 PMCID: PMC8731284 DOI: 10.1155/2021/9965756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Objectives The respiration could decrease the time synchronization between odor stimulation and data acquisition, consequently deteriorating the functional activation and hemodynamic response function (HRF) in olfactory functional magnetic resonance imaging (fMRI) with a conventional repetition time (TR). In this study, we aimed to investigate whether simultaneous multislice (SMS) technology with reduced TR could improve the blood oxygen level-dependent (BOLD) activation and optimize HRF modeling in olfactory fMRI. Methods Sixteen young healthy subjects with normal olfaction underwent olfactory fMRI on a 3T MRI scanner using a 64 channel head coil. FMRI data were acquired using SMS acceleration at three different TRs: 3000 ms, 1000 ms, and 500 ms. Both metrics of BOLD activation (activated voxels, mean, and maximum t-scores) and the HRF modeling (response height and time to peak) were calculated in the bilateral amygdalae, hippocampi, and insulae. Results The 500 ms and 1000 ms TRs both significantly improved the number of activated voxels, mean, and maximum t-score in the amygdalae and insulae, compared with a 3000 ms TR (all P < 0.05). But the increase of these metrics in the hippocampi did not reach a statistical significance (all P > 0.05). No significant difference in any BOLD activation metrics between TR 500 ms and 1000 ms was observed in all regions of interest (ROIs) (all P > 0.05). The HRF curves showed that higher response height and shorter time to peak in all ROIs were obtained at 500 ms and 1000 ms TRs compared to 3000 ms TR. TR 500 ms had a more significant effect on response height than TR 1000 ms in the amygdalae (P = 0.017), and there was no significant difference in time to peak between TR 500 ms and 1000 ms in all ROIs (all P > 0.05). Conclusions The fast image acquisition technique of SMS with reduced TR could significantly improve the functional activation and HRF curve in olfactory fMRI.
Collapse
|
3
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Emotion Processing Dysfunction in Alzheimer's Disease: An Overview of Behavioral Findings, Systems Neural Correlates, and Underlying Neural Biology. Am J Alzheimers Dis Other Demen 2022; 37:15333175221082834. [PMID: 35357236 PMCID: PMC9212074 DOI: 10.1177/15333175221082834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We described behavioral studies to highlight emotional processing deficits in Alzheimer's disease (AD). The findings suggest prominent deficit in recognizing negative emotions, pronounced effect of positive emotion on enhancing memory, and a critical role of cognitive deficits in manifesting emotional processing dysfunction in AD. We reviewed imaging studies to highlight morphometric and functional markers of hippocampal circuit dysfunction in emotional processing deficits. Despite amygdala reactivity to emotional stimuli, hippocampal dysfunction conduces to deficits in emotional memory. Finally, the reviewed studies implicating major neurotransmitter systems in anxiety and depression in AD supported altered cholinergic and noradrenergic signaling in AD emotional disorders. Overall, the studies showed altered emotions early in the course of illness and suggest the need of multimodal imaging for further investigations. Particularly, longitudinal studies with multiple behavioral paradigms translatable between preclinical and clinical models would provide data to elucidate the time course and underlying neurobiology of emotion processing dysfunction in AD.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H. Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA,Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Feng C, Gu R, Li T, Wang L, Zhang Z, Luo W, Eickhoff SB. Separate neural networks of implicit emotional processing between pictures and words: A coordinate-based meta-analysis of brain imaging studies. Neurosci Biobehav Rev 2021; 131:331-344. [PMID: 34562542 DOI: 10.1016/j.neubiorev.2021.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/02/2023]
Abstract
Both pictures and words are frequently employed as experimental stimuli to investigate the neurocognitive mechanisms of emotional processing. However, it remains unclear whether emotional picture processing and emotional word processing share neural underpinnings. To address this issue, we focus on neuroimaging studies examining the implicit processing of affective words and pictures, which require participants to meet cognitive task demands under the implicit influence of emotional pictorial or verbal stimuli. A coordinate-based activation likelihood estimation meta-analysis was conducted on these studies, which revealed no common activation maximum between the picture and word conditions. Specifically, implicit negative picture processing (35 experiments, 393 foci, and 932 subjects) engages the bilateral amygdala, left hippocampus, fusiform gyri, and right insula, which are mainly located in the subcortical network and visual network associated with bottom-up emotional responses. In contrast, implicit negative word processing (34 experiments, 316 foci, and 799 subjects) engages the default mode network and fronto-parietal network including the ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, and dorsomedial prefrontal cortex, indicating the involvement of top-down semantic processing and emotion regulation. Our findings indicate that affective pictures (that intrinsically have an affective valence) and affective words (that inherit the affective valence from their object) modulate implicit emotional processing in different ways, and therefore recruit distinct brain systems.
Collapse
Affiliation(s)
- Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China.
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Ting Li
- Institute of Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou, China
| | - Li Wang
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, China
| | - Zhixing Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
5
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Keiser AA, Wood MA. Examining the contribution of histone modification to sex differences in learning and memory. Learn Mem 2019; 26:318-331. [PMID: 31416905 PMCID: PMC6699407 DOI: 10.1101/lm.048850.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
The epigenome serves as a signal integration platform that encodes information from experience and environment that adds tremendous complexity to the regulation of transcription required for memory, beyond the directions encoded in the genome. To date, our understanding of how epigenetic mechanisms integrate information to regulate gene expression required for memory is primarily obtained from male derived data despite sex-specific life experiences and sex differences in consolidation and retrieval of memory, and in the molecular mechanisms that mediate these processes. In this review, we examine the contribution of chromatin modification to learning and memory in both sexes. We provide examples of how exposure to a number of internal and external factors influence the epigenome in sex-similar and sex-specific ways that may ultimately impact transcription required for memory processes. We also pose a number of key open questions and identify areas requiring further investigation as we seek to understand how histone modifying mechanisms shape memory in females.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
7
|
Quevedo K, Harms M, Sauder M, Scott H, Mohamed S, Thomas KM, Schallmo MP, Smyda G. The neurobiology of self face recognition among depressed adolescents. J Affect Disord 2018; 229:22-31. [PMID: 29304386 PMCID: PMC5898821 DOI: 10.1016/j.jad.2017.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Accepted: 12/16/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Depression is linked to alterations in both emotion and self-processing. The current study used functional magnetic resonance imaging (fMRI) to assess neural activation in healthy and depressed youth to a novel task that combined emotion processing with self-face recognition. METHODS An fMRI study involving 81 adolescents (50.6% females; Mage=14.61, SD=1.65) comprised of depressed (DEP, n=43), and healthy controls (HC, n=38). Participants completed a clinical interview and self-report measures during an initial assessment. In the scanner, adolescents completed a face recognition task, viewing emotional (happy, sad, neutral) images of their own face (self) or the face of another youth (other). RESULTS DEP youth showed higher activity in the cuneus (F=26.29) and post and precentral gyri (F=20.76), across all conditions compared to HC. Sad faces elicited higher posterior cingulate cortex, precuneus (F=10.36) and inferior parietal cortex activity (F=11.0), and self faces elicited higher precuneus, fusiform (F=16.39), insula and putamen (F=16.82) activity in all youth. DEP showed higher middle temporal activity to neutral faces but lower activity to sad faces compared to HC, who showed the opposite pattern (F=12.86). DEP also showed hypoactive mid-temporal limbic activity relative to controls when identifying their self happy face vs. neutral face, yet showed hyperactivity when identifying the other happy face vs. neutral face, and HC showed the opposite pattern (F=10.94). CONCLUSIONS The neurophysiology of self-face recognition is altered in adolescent depression. Specifically, depression was associated with decreased activity in neural areas that support emotional and associative processing for positive self-faces and increased processing for neutral self-faces. These results suggest that depression in adolescents is associated with hypoactive emotional processing and encoding of positive self-related visual information. This abnormal neural activity at the intersection of reward and self-processing among depressed youth might have long lasting impact in self-formation and future adult self-representations, given that adolescence is a sensitive period for self-development.
Collapse
Affiliation(s)
- Karina Quevedo
- University of Minnesota, Department of Psychiatry, MN, USA.
| | - Madeline Harms
- University of Minnesota, Institute of Child Development, 51 East River Road, Minneapolis, MN 55455, USA.
| | | | - Hannah Scott
- University of Minnesota, Department of Psychiatry, MN, USA.
| | - Sumaya Mohamed
- University of Minnesota, Department of Psychiatry, MN, USA
| | - Kathleen M Thomas
- University of Minnesota, Institute of Child Development, 51 East River Road, Minneapolis, MN 55455, USA.
| | | | - Garry Smyda
- University of Pittsburgh, School of Public Health, 130 De Soto Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
8
|
Adjunctive selective estrogen receptor modulator increases neural activity in the hippocampus and inferior frontal gyrus during emotional face recognition in schizophrenia. Transl Psychiatry 2016; 6:e795. [PMID: 27138794 PMCID: PMC5070055 DOI: 10.1038/tp.2016.59] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 12/18/2022] Open
Abstract
Estrogen has been implicated in the development and course of schizophrenia with most evidence suggesting a neuroprotective effect. Treatment with raloxifene, a selective estrogen receptor modulator, can reduce symptom severity, improve cognition and normalize brain activity during learning in schizophrenia. People with schizophrenia are especially impaired in the identification of negative facial emotions. The present study was designed to determine the extent to which adjunctive raloxifene treatment would alter abnormal neural activity during angry facial emotion recognition in schizophrenia. Twenty people with schizophrenia (12 men, 8 women) participated in a 13-week, randomized, double-blind, placebo-controlled, crossover trial of adjunctive raloxifene treatment (120 mg per day orally) and performed a facial emotion recognition task during functional magnetic resonance imaging after each treatment phase. Two-sample t-tests in regions of interest selected a priori were performed to assess activation differences between raloxifene and placebo conditions during the recognition of angry faces. Adjunctive raloxifene significantly increased activation in the right hippocampus and left inferior frontal gyrus compared with the placebo condition (family-wise error, P<0.05). There was no significant difference in performance accuracy or reaction time between active and placebo conditions. To the best of our knowledge, this study provides the first evidence suggesting that adjunctive raloxifene treatment changes neural activity in brain regions associated with facial emotion recognition in schizophrenia. These findings support the hypothesis that estrogen plays a modifying role in schizophrenia and shows that adjunctive raloxifene treatment may reverse abnormal neural activity during facial emotion recognition, which is relevant to impaired social functioning in men and women with schizophrenia.
Collapse
|
9
|
Schienle A, Ille R, Wabnegger A. Experience of negative emotions in Parkinson's disease: An fMRI investigation. Neurosci Lett 2015; 609:142-6. [PMID: 26497912 PMCID: PMC4681091 DOI: 10.1016/j.neulet.2015.10.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Amygdala abnormalities have been discussed as a possible mechanism underlying reduced reactivity to negative stimuli in Parkinson's disease (PD). METHODS The present investigation used functional magnetic resonance imaging (fMRI) in order to test this hypothesis. We compared brain activation of 17 nondepressed and nondemented PD patients with 22 healthy controls during the elicitation of negative affective states. The patients suffered from moderate motor symptoms for an average of 75 months and had stopped their antiparkinson medication 10-12h prior to the fMRI testing. All participants were shown images which depicted disgusting, fear-relevant and neutral contents and they answered self-report scales for the assessment of disgust proneness and trait anxiety. RESULTS Both groups did not differ from each other in affective state and trait ratings. In line with the self-report, the fMRI data showed similar activation (including the amygdala) in both groups during disgust and fear elicitation. CONCLUSION This fMRI investigation found no indication of diminished disgust and fear experience in PD. SIGNIFICANCE Previously reported affective processing deficits in PD might be due to insufficiently controlled confounding variables (medication, depression, cognitive impairment).
Collapse
Affiliation(s)
- Anne Schienle
- Clinical Psychology, University of Graz, BioTechMed, Graz, Austria.
| | - Rottraut Ille
- Clinical Psychology, University of Graz, BioTechMed, Graz, Austria
| | - Albert Wabnegger
- Clinical Psychology, University of Graz, BioTechMed, Graz, Austria
| |
Collapse
|
10
|
Bangasser DA, Valentino RJ. Sex differences in stress-related psychiatric disorders: neurobiological perspectives. Front Neuroendocrinol 2014; 35:303-19. [PMID: 24726661 PMCID: PMC4087049 DOI: 10.1016/j.yfrne.2014.03.008] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/26/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022]
Abstract
Stress is associated with the onset and severity of several psychiatric disorders that occur more frequently in women than men, including posttraumatic stress disorder (PTSD) and depression. Patients with these disorders present with dysregulation of several stress response systems, including the neuroendocrine response to stress, corticolimbic responses to negatively valenced stimuli, and hyperarousal. Thus, sex differences within their underlying circuitry may explain sex biases in disease prevalence. This review describes clinical studies that identify sex differences within the activity of these circuits, as well as preclinical studies that demonstrate cellular and molecular sex differences in stress responses systems. These studies reveal sex differences from the molecular to the systems level that increase endocrine, emotional, and arousal responses to stress in females. Exploring these sex differences is critical because this research can reveal the neurobiological underpinnings of vulnerability to stress-related psychiatric disorders and guide the development of novel pharmacotherapies.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States.
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|