1
|
Marty V, Butler JJ, Coutens B, Chargui O, Chagraoui A, Guiard BP, De Deurwaerdère P, Cavaillé J. Deleting Snord115 genes in mice remodels monoaminergic systems activity in the brain toward cortico-subcortical imbalances. Hum Mol Genet 2023; 32:244-261. [PMID: 35951020 DOI: 10.1093/hmg/ddac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023] Open
Abstract
The neuronal-specific SNORD115 has gathered interest because its deficiency may contribute to the pathophysiology of Prader-Willi syndrome (PWS), possibly by altering post-transcriptional regulation of the gene encoding the serotonin (HTR2C) receptor. Yet, Snord115-KO mice do not resume the main symptoms of PWS, and only subtle-altered A-to-I RNA editing of Htr2c mRNAs was uncovered. Because HTR2C signaling fine-tunes the activity of monoaminergic neurons, we addressed the hypothesis that lack of Snord115 alters monoaminergic systems. We first showed that Snord115 was expressed in both monoaminergic and non-monoaminergic cells of the ventral tegmental area (VTA) and the dorsal raphe nucleus (DRN) harboring cell bodies of dopaminergic and serotonergic neurons, respectively. Measuring the tissue level of monoamines and metabolites, we found very few differences except that the content of homovanillic acid-a metabolite of dopamine-was decreased in the orbitofrontal and prefrontal cortex of Snord115-KO mice. The latter effects were, however, associated with a few changes in monoamine tissue content connectivity across the 12 sampled brain regions. Using in vivo single-cell extracellular recordings, we reported that the firing rate of VTA dopaminergic neurons and DRN serotonergic neurons was significantly increased in Snord115-KO mice. These neural circuit dysfunctions were not, however, associated with apparent defects in binge eating, conditioned place preference to cocaine, cocaine-induced hyperlocomotion or compulsive behavior. Altogether, our multiscale study shows that the absence of Snord115 impacts central monoaminergic circuits to an extent that does not elicit gross behavioral abnormalities.
Collapse
Affiliation(s)
- Virginie Marty
- Molecular, Cellular and Developmental Biology (MCD) unit, Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| | - Jasmine J Butler
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS-UMR 5287, 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| | - Basile Coutens
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| | - Oumaima Chargui
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS-UMR 5287, 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| | - Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale (NorDic), INSERM U1239, IRIB, CHU Rouen, 76 000 Rouen, France.,Department of Medical Biochemistry, Rouen University Hospital, 76 000 Rouen, France
| | - Bruno P Guiard
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| | - Philippe De Deurwaerdère
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS-UMR 5287, 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| | - Jérôme Cavaillé
- Molecular, Cellular and Developmental Biology (MCD) unit, Center of Integrative Biology (CBI), CNRS - University of Toulouse; CNRS, UPS, 31 062 Toulouse, France
| |
Collapse
|
2
|
Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin) 2019; 6:271-333. [PMID: 31934603 PMCID: PMC6949027 DOI: 10.1080/23328940.2019.1691896] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that temperature affects the dynamics of all physicochemical processes governing neural activity. It is also known that the brain has high levels of metabolic activity, and all energy used for brain metabolism is finally transformed into heat. However, the issue of brain temperature as a factor reflecting neural activity and affecting various neural functions remains in the shadow and is usually ignored by most physiologists and neuroscientists. Data presented in this review demonstrate that brain temperature is not stable, showing relatively large fluctuations (2-4°C) within the normal physiological and behavioral continuum. I consider the mechanisms underlying these fluctuations and discuss brain thermorecording as an important tool to assess basic changes in neural activity associated with different natural (sexual, drinking, eating) and drug-induced motivated behaviors. I also consider how naturally occurring changes in brain temperature affect neural activity, various homeostatic parameters, and the structural integrity of brain cells as well as the results of neurochemical evaluations conducted in awake animals. While physiological hyperthermia appears to be adaptive, enhancing the efficiency of neural functions, under specific environmental conditions and following exposure to certain psychoactive drugs, brain temperature could exceed its upper limits, resulting in multiple brain abnormalities and life-threatening health complications.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Kiyatkin EA. Brain temperature: from physiology and pharmacology to neuropathology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:483-504. [DOI: 10.1016/b978-0-444-64074-1.00030-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
4
|
Parlikar R, Dinakaran D, Bose A, Rao NP, Venkatasubramanian G. Neural Basis of Delusions in Schizophrenia: Translational Implications for Therapeutic Neuromodulation. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-017-0058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Bola RA, Kiyatkin EA. Inflow of oxygen and glucose in brain tissue induced by intravenous norepinephrine: relationships with central metabolic and peripheral vascular responses. J Neurophysiol 2017; 119:499-508. [PMID: 29118201 DOI: 10.1152/jn.00692.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As an essential part of sympathetic activation that prepares the organism for "fight or flight," peripheral norepinephrine (NE) plays an important role in regulating cardiac activity and the tone of blood vessels, increasing blood flow to the heart and the brain and decreasing blood flow to the organs not as necessary for immediate survival. To assess whether this effect is applicable to the brain, we used high-speed amperometry to measure the changes in nucleus accumbens (NAc) levels of oxygen and glucose induced by intravenous injections of NE in awake freely moving rats. We found that NE at low doses (2-18 μg/kg) induces correlative increases in NAc oxygen and glucose, suggesting local vasodilation and enhanced entry of these substances in brain tissue from the arterial blood. By using temperature recordings from the NAc, temporal muscle, and skin, we show that this central effect is associated with strong skin vasoconstriction and phasic increases in intrabrain heat production, indicative of metabolic neural activation. A tight direct correlation between NE-induced changes in metabolic activity and NAc levels of oxygen and glucose levels suggests that local cerebral vasodilation is triggered via a neurovascular coupling mechanism. Our data suggest that NE, by changing vascular tone and cardiac activity, triggers a visceral sensory signal that rapidly reaches the central nervous system via sensory nerves and induces neural activation. This neural activation leads to a chain of neurovascular events that promote entry of oxygen and glucose in brain tissue, thus preventing any possible metabolic deficit during functional activation. NEW & NOTEWORTHY Using high-speed amperometry and thermorecording in freely moving rats, we demonstrate that intravenous norepinephrine at physiological doses induces rapid correlative increases in nucleus accumbens oxygen and glucose levels coupled with increased intrabrain heat production. Although norepinephrine cannot cross the blood-brain barrier, by changing cardiac activity and vascular tone, it creates a sensory signal that reaches the central nervous system via sensory nerves, induces neural activation, and triggers a chain of neurovascular events that promotes intrabrain entry of oxygen and glucose.
Collapse
Affiliation(s)
- R Aaron Bola
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
6
|
Overton PG, Vautrelle N, Redgrave P. Sensory regulation of dopaminergic cell activity: Phenomenology, circuitry and function. Neuroscience 2014; 282:1-12. [PMID: 24462607 DOI: 10.1016/j.neuroscience.2014.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 01/11/2023]
Abstract
Dopaminergic neurons in a range of species are responsive to sensory stimuli. In the anesthetized preparation, responses to non-noxious and noxious sensory stimuli are usually tonic in nature, although long-duration changes in activity have been reported in the awake preparation as well. However, in the awake preparation, short-latency, phasic changes in activity are most common. These phasic responses can occur to unconditioned aversive and non-aversive stimuli, as well as to the stimuli which predict them. In both the anesthetized and awake preparations, not all dopaminergic neurons are responsive to sensory stimuli, however responsive neurons tend to respond to more than a single stimulus modality. Evidence suggests that short-latency sensory information is provided to dopaminergic neurons by relatively primitive subcortical structures - including the midbrain superior colliculus for vision and the mesopontine parabrachial nucleus for pain and possibly gustation. Although short-latency visual information is provided to dopaminergic neurons by the relatively primitive colliculus, dopaminergic neurons can discriminate between complex visual stimuli, an apparent paradox which can be resolved by the recently discovered route of information flow through to dopaminergic neurons from the cerebral cortex, via a relay in the colliculus. Given that projections from the cortex to the colliculus are extensive, such a relay potentially allows the activity of dopaminergic neurons to report the results of complex stimulus processing from widespread areas of the cortex. Furthermore, dopaminergic neurons could acquire their ability to reflect stimulus value by virtue of reward-related modification of sensory processing in the cortex. At the forebrain level, sensory-related changes in the tonic activity of dopaminergic neurons may regulate the impact of the cortex on forebrain structures such as the nucleus accumbens. In contrast, the short latency of the phasic responses to sensory stimuli in dopaminergic neurons, coupled with the activation of these neurons by non-rewarding stimuli, suggests that phasic responses of dopaminergic neurons may provide a signal to the forebrain which indicates that a salient event has occurred (and possibly an estimate of how salient that event is). A stimulus-related salience signal could be used by downstream systems to reinforce behavioral choices.
Collapse
Affiliation(s)
- P G Overton
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - N Vautrelle
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - P Redgrave
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Bertram C, Dahan L, Boorman LW, Harris S, Vautrelle N, Leriche M, Redgrave P, Overton PG. Cortical regulation of dopaminergic neurons: role of the midbrain superior colliculus. J Neurophysiol 2013; 111:755-67. [PMID: 24225541 PMCID: PMC3921396 DOI: 10.1152/jn.00329.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopaminergic (DA) neurons respond to stimuli in a wide range of modalities, although the origin of the afferent sensory signals has only recently begun to emerge. In the case of vision, an important source of short-latency sensory information seems to be the midbrain superior colliculus (SC). However, longer-latency responses have been identified that are less compatible with the primitive perceptual capacities of the colliculus. Rather, they seem more in keeping with the processing capabilities of the cortex. Given that there are robust projections from the cortex to the SC, we examined whether cortical information could reach DA neurons via a relay in the colliculus. The somatosensory barrel cortex was stimulated electrically in the anesthetized rat with either single pulses or pulse trains. Although single pulses produced small phasic activations in the colliculus, they did not elicit responses in the majority of DA neurons. However, after disinhibitory intracollicular injections of the GABAA antagonist bicuculline, collicular responses were substantially enhanced and previously unresponsive DA neurons now exhibited phasic excitations or inhibitions. Pulse trains applied to the cortex led to phasic changes (excitations to inhibitions) in the activity of DA neurons at baseline. These were blocked or attenuated by intracollicular administration of the GABAA agonist muscimol. Taken together, the results indicate that the cortex can communicate with DA neurons via a relay in the SC. As a consequence, DA neuronal activity reflecting the unexpected occurrence of salient events and that signaling more complex stimulus properties may have a common origin.
Collapse
Affiliation(s)
- C Bertram
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, United Kingdom; and
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Brooks AM, Berns GS. Aversive stimuli and loss in the mesocorticolimbic dopamine system. Trends Cogn Sci 2013; 17:281-6. [PMID: 23623264 DOI: 10.1016/j.tics.2013.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
There is mounting evidence that the mesolimbic dopamine system carries valuation signals not only for appetitive or gain-related stimuli, with which it is traditionally associated, but also for aversive and loss-related stimuli. Cellular-level studies demonstrate that the neuronal architecture to support aversive stimuli encoding in this system does exist. Both cellular-level and human neuroimaging research suggest the co-existence of appetitive and aversive prediction-error signals within the mesocorticolimbic system. These findings shift the view of the mesocorticolimbic system as a singular pathway for reward to a system with multiple signals across a wide range of domains that drive value-based decision making.
Collapse
Affiliation(s)
- Andrew M Brooks
- Center for Neuropolicy, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
9
|
McCutcheon JE, Ebner SR, Loriaux AL, Roitman MF. Encoding of aversion by dopamine and the nucleus accumbens. Front Neurosci 2012; 6:137. [PMID: 23055953 PMCID: PMC3457027 DOI: 10.3389/fnins.2012.00137] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/04/2012] [Indexed: 11/13/2022] Open
Abstract
Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward.
Collapse
Affiliation(s)
- James E McCutcheon
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | | | | | | |
Collapse
|
10
|
Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 2011; 68:815-34. [PMID: 21144997 DOI: 10.1016/j.neuron.2010.11.022] [Citation(s) in RCA: 1438] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2010] [Indexed: 01/18/2023]
Abstract
Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but nonrewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and nonreward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior.
Collapse
Affiliation(s)
- Ethan S Bromberg-Martin
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
11
|
Boureau YL, Dayan P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 2011; 36:74-97. [PMID: 20881948 PMCID: PMC3055522 DOI: 10.1038/npp.2010.151] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 11/08/2022]
Abstract
Affective valence lies on a spectrum ranging from punishment to reward. The coding of such spectra in the brain almost always involves opponency between pairs of systems or structures. There is ample evidence for the role of dopamine in the appetitive half of this spectrum, but little agreement about the existence, nature, or role of putative aversive opponents such as serotonin. In this review, we consider the structure of opponency in terms of previous biases about the nature of the decision problems that animals face, the conflicts that may thus arise between Pavlovian and instrumental responses, and an additional spectrum joining invigoration to inhibition. We use this analysis to shed light on aspects of the role of serotonin and its interactions with dopamine.
Collapse
Affiliation(s)
- Y-Lan Boureau
- The Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, London, UK
| |
Collapse
|
12
|
Abstract
Temporal contiguity between two stimuli is insufficient for the establishment of a predictive relation between those stimuli. Rather, learning about predictive relations is influenced by a prediction error mechanism: the discrepancy between actual and expected outcomes. Although the neural substrates of contiguous stimuli presentation have been the focus of research for decades, relatively little empirical evidence exists with regard to the neural mechanisms of prediction error. Recent work has implicated the neurotransmitter dopamine in regulation of predictive learning. If dopamine modulates prediction error then it should do so despite the nature (appetitive or aversive) of the biological stimuli that serve to drive learning. The exact role of dopamine in appetitive and aversive predictive learning, however, remains the focus of continuous debate. This review focuses on the behavioural, neuropharmacological and electrophysiological evidence implicating dopamine in prediction error in appetitive and aversive predictive learning. In addition, recent work in the area of fear conditioning implicating other neurochemical substrates, namely opioids, in the process of prediction error is discussed. Finally, some predictions are made with regard to the neurochemical circuitry involved in modulating learning and behaviour based on prediction error.
Collapse
|
13
|
Smirnov MS, Kiyatkin EA, Smith Y. Cocaine action on peripheral, non-monoamine neural substrates as a trigger of electroencephalographic desynchronization and electromyographic activation following i.v. administration in freely moving rats. Neuroscience 2010; 165:500-14. [PMID: 19861149 PMCID: PMC2794948 DOI: 10.1016/j.neuroscience.2009.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/22/2009] [Accepted: 10/16/2009] [Indexed: 11/30/2022]
Abstract
Many important physiological, behavioral and subjective effects of i.v. cocaine (COC) are exceptionally rapid and transient, suggesting a possible involvement of peripheral neural substrates in their triggering. In the present study, we used high-speed electroencephalographic (EEG) and electromyographic (EMG) recordings (4-s resolution) in freely moving rats to characterize the central electrophysiological effects of i.v. COC at low doses within a self-administration range (0.25-1.0 mg/kg). We found that COC induces rapid, strong, and prolonged desynchronization of cortical EEG (decrease in alpha and increase in beta and gamma activity) and activation of the neck EMG that begin within 2-6 s following the start of a 10-s injection; immediate components of both effects were dose-independent. The rapid effects of COC were mimicked by i.v. COC methiodide (COC-MET), a derivative that cannot cross the blood-brain barrier. At equimolar doses (0.33-1.33 mg/kg), COC-MET had equally fast and strong effects on EEG and EMG total powers, decreasing alpha and increasing beta and gamma activities. Rapid EEG desynchronization and EMG activation was also induced by i.v. procaine, a structurally similar, short-acting local anesthetic with virtually no effects on monoamine uptake; at equipotential doses (1.25-5.0 mg/kg), these effects were weaker and shorter in duration than those of COC. Surprisingly, i.v. saline injection delivered during slow-wave sleep (but not during quiet wakefulness) also induced a transient EEG desynchronization but without changes in EMG and motor activity; these effects were significantly weaker and much shorter than those induced by all tested drugs. These data suggest that in awake animals, i.v. COC induces rapid cortical activation and a subsequent motor response via its action on peripheral non-monoamine neural elements, involving neural transmission via visceral sensory pathways. By providing a rapid neural signal and triggering neural activation, such an action might play a crucial role in the sensory effects of COC, thus contributing to the learning and development of drug-taking behavior.
Collapse
Affiliation(s)
- Michael S. Smirnov
- Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224
| | - Eugene A. Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224
| | - Y. Smith
- Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224
| |
Collapse
|
14
|
Sensory effects of intravenous cocaine on dopamine and non-dopamine ventral tegmental area neurons. Brain Res 2008; 1218:230-49. [PMID: 18514638 DOI: 10.1016/j.brainres.2008.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/20/2022]
Abstract
Intravenous (iv) cocaine mimics salient somato-sensory stimuli in their ability to induce rapid physiological effects, which appear to involve its action on peripherally located neural elements and fast neural transmission via somato-sensory pathways. To further clarify this mechanism, single-unit recording with fine glass electrodes was used in awake rats to examine responses of ventral tegmental area (VTA) neurons, both presumed dopamine (DA) and non-DA, to iv cocaine and tail-press, a typical somato-sensory stimulus. To exclude the contribution of DA mechanisms to the observed neuronal responses to sensory stimuli and cocaine, recordings were conducted during full DA receptor blockade (SCH23390+eticloptide). Iv cocaine (0.25 mg/kg delivered over 10 s) induced significant excitations of approximately 63% of long-spike (presumed DA) and approximately 70% of short-spike (presumed non-DA) VTA neurons. In both subgroups, neuronal excitations occurred with short latencies (4-8 s), peaked at 10-20 s (30-40% increase over baseline) and disappeared at 30-40 s after the injection onset. Most long-(67%) and short-spike (89%) VTA neurons also showed phasic responses to tail-press (5-s). All responsive long-spike cells were excited by tail-press; excitations were very rapid (peak at 1 s) and strong (100% rate increase over baseline) but brief (2-3 s). In contrast, both excitations (60%) and inhibitions (29%) were seen in short-spike cells. These responses were also rapid and transient, but excitations of short-spike units were more prolonged and sustained (10-15 s) than in long-spike cells. These data suggest that in awake animals iv cocaine, like somato-sensory stimuli, rapidly and transiently excites VTA neurons of different subtypes. Therefore, along with direct action on specific brain substrates, central effects of cocaine may occur, via an indirect mechanism, involving peripheral neural elements, visceral sensory nerves and rapid neural transmission. Via this mechanism, cocaine, like somato-sensory stimuli, can rapidly activate DA neurons and induce phasic DA release, creating the conditions for DA accumulation by a later occurring and prolonged direct inhibiting action on DA uptake. By providing a rapid neural signal and triggering transient neural activation, such a peripherally driven action might play a crucial role in the sensory effects of cocaine, thus contributing to learning and development of drug-taking behavior.
Collapse
|
15
|
Electrophysiological evaluation of the time-course of dopamine uptake inhibition induced by intravenous cocaine at a reinforcing dose. Neuroscience 2007; 151:824-35. [PMID: 18191902 DOI: 10.1016/j.neuroscience.2007.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/19/2007] [Accepted: 11/28/2007] [Indexed: 11/23/2022]
Abstract
Cocaine effectively inhibits dopamine (DA) uptake and this action appears to be the primary cause for increased DA transmission following systemic cocaine administration. Although this action had been reliably demonstrated in vivo with cocaine at high doses, data on the extent and the time-course of DA uptake inhibition induced by i.v. cocaine at low, reinforcing doses remain controversial. To clarify this issue, we examined how cocaine affects striatal neuronal responses to repeated iontophoretic DA applications in urethane-anesthetized rats. Because most striatal neurons during anesthesia have low, sporadic activity, DA tests were performed on cells tonically activated by continuous glutamate application. DA phasically decreased the activity of most dorsal and ventral striatal neurons; these responses in control conditions (i.v. saline) were current (dose) -dependent and remained highly stable following repeated DA applications at the same currents. DA also consistently decreased the activity of striatal neurons after i.v. cocaine (1 mg/kg); the magnitude of DA-induced inhibition slowly increased from approximately 5 min, became significantly larger from approximately 9 min, and peaked at 13-15 min after a single i.v. injection. Then, the difference in the DA response slowly decreased toward the pre-cocaine baseline. A similar enhancement of DA induced-inhibition was also seen after i.p. cocaine administration at a high dose (15 mg/kg). In this case, the DA response became significantly stronger at 7-9 min and remained enhanced vs. a pre-drug control up to 24-26 min after the injection. Both regimens of cocaine treatment did not result in evident changes in either onset or offset of the DA-induced inhibitions. Our data confirm that cocaine at low, reinforcing doses inhibits DA uptake, resulting in potentiation of DA-induced neuronal inhibitions, but they suggest that this effect is relatively weak and delayed from the time of i.v. injection. These slow and prolonged effects of i.v. cocaine on DA-induced neuronal responses are consistent with previous binding and our electrochemical evaluations of DA uptake, presumably reflecting the total time necessary for i.v.-delivered cocaine to reach brain microvessels, cross the blood-brain barrier, passively diffuse within brain tissue, interact with the DA transporters, and finally inhibit DA uptake.
Collapse
|
16
|
Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. BRAIN RESEARCH REVIEWS 2007; 56:27-78. [PMID: 17574681 PMCID: PMC2134972 DOI: 10.1016/j.brainresrev.2007.05.004] [Citation(s) in RCA: 1047] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 01/17/2023]
Abstract
Anatomical and functional refinements of the meso-limbic dopamine system of the rat are discussed. Present experiments suggest that dopaminergic neurons localized in the posteromedial ventral tegmental area (VTA) and central linear nucleus raphe selectively project to the ventromedial striatum (medial olfactory tubercle and medial nucleus accumbens shell), whereas the anteromedial VTA has few if any projections to the ventral striatum, and the lateral VTA largely projects to the ventrolateral striatum (accumbens core, lateral shell and lateral tubercle). These findings complement the recent behavioral findings that cocaine and amphetamine are more rewarding when administered into the ventromedial striatum than into the ventrolateral striatum. Drugs such as nicotine and opiates are more rewarding when administered into the posterior VTA or the central linear nucleus than into the anterior VTA. A review of the literature suggests that (1) the midbrain has corresponding zones for the accumbens core and medial shell; (2) the striatal portion of the olfactory tubercle is a ventral extension of the nucleus accumbens shell; and (3) a model of two dopamine projection systems from the ventral midbrain to the ventral striatum is useful for understanding reward function. The medial projection system is important in the regulation of arousal characterized by affect and drive and plays a different role in goal-directed learning than the lateral projection system, as described in the variation-selection hypothesis of striatal functional organization.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, Maryland 21224, USA.
| |
Collapse
|
17
|
Kiyatkin EA, Brown PL. I.v. cocaine induces rapid, transient excitation of striatal neurons via its action on peripheral neural elements: single-cell, iontophoretic study in awake and anesthetized rats. Neuroscience 2007; 148:978-95. [PMID: 17706878 PMCID: PMC2084066 DOI: 10.1016/j.neuroscience.2007.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 06/29/2007] [Accepted: 07/12/2007] [Indexed: 11/17/2022]
Abstract
Cocaine's (COC) direct interaction with the dopamine (DA) transporter is usually considered the most important action underlying the psychomotor stimulant and reinforcing effects of this drug. However, some physiological, behavioral and psycho-emotional effects of COC are very rapid and brief and they remain intact during DA receptor blockade, suggesting possible involvement of peripheral non-DA neural mechanisms. To assess this issue, single-unit recording with microiontophoresis was used to examine changes in impulse activity of dorsal and ventral striatal neurons to i.v. COC (0.25-0.5 mg/kg) in the same rats under two conditions: awake with DA receptor blockade and anesthetized with urethane. In the awake preparation approximately 70% striatal neurons showed rapid and transient (latency approximately 6 s, duration approximately 15 s) COC-induced excitations. These effects were stronger in ventral than dorsal striatum. During anesthesia, these phasic effects were fully blocked and COC slowly decreased neuronal discharge rate. Cocaine-methiodide (COC-M), a derivative that cannot cross the blood-brain barrier, also caused phasic excitations in the awake, but not anesthetized condition. In contrast to regular COC, COC-M had no tonic effect on discharge rate in either preparation. Most striatal neurons that were phasically excited by both COC forms also showed short-latency excitations during tail-touch and tail-pinch in the awake preparation, an effect strongly attenuated during anesthesia. Finally, most striatal neurons that in awake conditions were phasically excited by somato-sensory stimuli and COC salts were also excited by iontophoretic glutamate (GLU). Although striatal neurons were sensitive to GLU in both preparations, the response magnitude at the same GLU current was higher in awake than anesthetized conditions. These data suggest that in awake animals i.v. COC, like somato-sensory stimuli, transiently excites striatal neurons via its action on peripheral neural elements and rapid neural transmission. While the nature of these neuronal elements needs to be clarified using other analytical techniques, they might involve voltage-gated K(+) and Na(+) channels, which have a high affinity for COC and are located on terminals of visceral sensory nerves that densely innervate peripheral vessels. Therefore, along with direct action on specific brain substrates, central excitatory effects of COC may occur via indirect action, involving afferents of visceral sensory nerves and rapid neural transmission. By providing a rapid sensory signal and triggering transient neural activation, such a peripherally triggered action might play a crucial role in the sensory effects of COC, thus contributing to learning and development of drug-taking behavior.
Collapse
Affiliation(s)
- E A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
18
|
Kiyatkin EA. Brain temperature fluctuations during physiological and pathological conditions. Eur J Appl Physiol 2007; 101:3-17. [PMID: 17429680 DOI: 10.1007/s00421-007-0450-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2007] [Indexed: 12/15/2022]
Abstract
This review discusses brain temperature as a physiological parameter, which is determined primarily by neural metabolism, regulated by cerebral blood flow, and affected by various environmental factors and drugs. First, we consider normal fluctuations in brain temperature that are induced by salient environmental stimuli and occur during motivated behavior at stable normothermic conditions. Second, we analyze changes in brain temperature induced by various drugs that affect brain and body metabolism and heat dissipation. Third, we consider how these physiological and drug-induced changes in brain temperature are modulated by environmental conditions that diminish heat dissipation. Our focus is psychomotor stimulant drugs and brain hyperthermia as a factor inducing or potentiating neurotoxicity. Finally, we discuss how brain temperature is regulated, what changes in brain temperature reflect, and how these changes may affect neural functions under normal and pathological conditions. Although most discussed data were obtained in animals and several important aspects of brain temperature regulation in humans remain unknown, our focus is on the relevance of these data for human physiology and pathology.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS, Baltimore, MD 21224, USA.
| |
Collapse
|
19
|
Nicniocaill B, Gratton A. Medial prefrontal cortical alpha1 adrenoreceptor modulation of the nucleus accumbens dopamine response to stress in Long-Evans rats. Psychopharmacology (Berl) 2007; 191:835-42. [PMID: 17294052 DOI: 10.1007/s00213-007-0723-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/22/2007] [Indexed: 12/01/2022]
Abstract
RATIONALE The medial prefrontal cortex (PFC) receives stress-sensitive dopamine (DA) and noradrenergic (NE) projections from the ventral tegmental area and locus coeruleus, respectively, and evidence from various sources point to a complex functional interaction between these two systems. Stress will also stimulate DA transmission in the nucleus accumbens (NAcc), and our previous work has shown that this response is under the indirect inhibitory control of a DA-sensitive mechanism in PFC. OBJECTIVE We examined the possibility that the NAcc DA stress response is also modulated by prefrontal cortical NE. MATERIALS AND METHODS We used voltammetry to study in freely behaving rats the effects of local applications of alpha(1) (benoxathian 0.1, 1, 10 nmol), alpha(2) (SKF86466), and beta(1/2) (alprenolol) receptor selective antagonists into the PFC on the NAcc DA response to tail-pinch stress. RESULTS The NAcc DA stress response was dose-dependently inhibited by local PFC blockade of alpha(1) receptors. Additional tests revealed, however, that the DA stress response in NAcc is unaffected after local alpha(1) receptor activation with cirazoline. Furthermore, at equivalent doses, neither alpha(2) nor beta(1/2) receptor blockade significantly affected the NAcc DA stress response. CONCLUSIONS These data indicate that stress-induced activation of subcortical DA transmission is modulated by the NE input to PFC acting at alpha(1) receptors. They suggest that, under normal circumstances, this system exerts a facilitatory or enabling influence on the NAcc DA stress response.
Collapse
Affiliation(s)
- Brid Nicniocaill
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Montréal (Verdun), H4H 1R3, Québec, Canada
| | | |
Collapse
|
20
|
Horvitz JC, Choi WY, Morvan C, Eyny Y, Balsam PD. A "good parent" function of dopamine: transient modulation of learning and performance during early stages of training. Ann N Y Acad Sci 2007; 1104:270-88. [PMID: 17360799 PMCID: PMC2827849 DOI: 10.1196/annals.1390.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While extracellular dopamine (DA) concentrations are increased by a wide category of salient stimuli, there is evidence to suggest that DA responses to primary and conditioned rewards may be distinct from those elicited by other types of salient events. A reward-specific mode of neuronal responding would be necessary if DA acts to strengthen behavioral response tendencies under particular environmental conditions or to set current environmental inputs as goals that direct approach responses. As described in this review, DA critically mediates both the acquisition and expression of learned behaviors during early stages of training, however, during later stages, at least some forms of learned behavior become independent of (or less dependent upon) DA transmission for their expression.
Collapse
Affiliation(s)
- Jon C Horvitz
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | | | | | | | | |
Collapse
|
21
|
Doherty M, Gratton A. Differential involvement of ventral tegmental GABA(A) and GABA(B) receptors in the regulation of the nucleus accumbens dopamine response to stress. Brain Res 2007; 1150:62-8. [PMID: 17395162 DOI: 10.1016/j.brainres.2007.02.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 02/20/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
Evidence indicates that dopamine (DA) transmission in nucleus accumbens (NAcc) is modulated by glutamate (GLUT) projections from medial prefrontal cortex (PFC) to NAcc and the ventral tegmental area (VTA). Local NMDA receptor blockade in NAcc has previously been shown to enhance the DA stress response in this region as well as in the VTA. This raises the possibility that the NAcc DA stress response is regulated by GLUT acting at NMDA receptors located on NAcc GABA output neurons that project to the VTA where GABA is known to regulate DA cell activity. Thus, in the present study, we used voltammetry to examine the effects of intra-VTA administration of GABA(A) and GABA(B) agonists and antagonists on restraint stress-induced increases in NAcc DA. The results show that local VTA GABA(B) receptor activation with baclofen (0.01, 0.1 and 1.0 nmol) dose-dependently inhibited the NAcc DA stress response whereas GABA(B) receptor blockade with phaclofen had the opposite effect, resulting in a dose-dependent potentiation of the stress response. A similar potentiation of the NAcc DA stress response was observed following VTA GABA(A) receptor blockade with bicuculline, but only at the highest dose (1.0 nmol). Interestingly, intra-VTA injection of the GABA(A) receptor agonist, muscimol, at the lowest dose (0.01 nmol) but not at the higher doses (0.1 or 1.0 nmol) also potentiated the NAcc DA stress response, suggesting an action mediated primarily at GABA(A) receptors located on non-DA neurons. These results indicate that the NAcc DA stress response is regulated by GABA afferents to VTA DA cells and that this action is differentially mediated by GABA(A) and GABA(B) receptors. The data suggest that the relevant GABA(B) receptors are located on DA neurons whereas the GABA(A) receptors are located on GABA interneurons and perhaps also on DA cells. The present findings are also consistent with the idea that the corticofugal GLUT input to NAcc indirectly regulates stress-induced DA release in this region through the GABA feedback pathway to VTA.
Collapse
Affiliation(s)
- Michael Doherty
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Montréal Verdun, Québec, Canada, H4H 1R3
| | | |
Collapse
|
22
|
Windels F, Kiyatkin EA. Dopamine action in the substantia nigra pars reticulata: iontophoretic studies in awake, unrestrained rats. Eur J Neurosci 2006; 24:1385-94. [PMID: 16987223 DOI: 10.1111/j.1460-9568.2006.05015.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) neurons located in the substantia nigra pars compacta release DA not only via axonal terminals, affecting neurotransmission within the striatum, but also via dendrites, some of which densely protrude into the substantia nigra pars reticulata (SNr). Although the interaction of dendritically released DA with somatodendritic autoreceptors regulates DA cell activity, released DA may also affect SNr neurons. These cells, however, lack postsynaptic DA receptors, making it unclear how locally released DA modulates their activity. Although previous work in brain slices suggests that DA might modulate the activity of GABA inputs, thus affecting SNr neurons indirectly, it remains unclear how increased or decreased DA release might affect these cells exposed to normal afferent inputs. To explore this issue, we examined the effects of iontophoretic DA and amphetamine on SNr neurons in awake, unrestrained rats. DA had no consistent effects on SNr cells but amphetamine, known to induce DA release, dose-dependently inhibited most of them. This effect was blocked by SCH23390, a selective D1 receptor blocker, which itself strongly increased neuronal discharge rate. As GABA input is a major factor regulating the activity of SNr neurons, our data suggest that dendritically released DA, by interacting with D1 receptors on striato-nigral and pallido-nigral afferents, is able to decrease this input, thus releasing SNr neurons from tonic, GABA-mediated inhibition. Surprisingly, a full DA receptor blockade (SCH23390 + eticlopride) did not result in the expected increase in SNr discharge rate, suggesting that other mechanisms are responsible for behavioral abnormalities following acute disruption of DA transmission.
Collapse
Affiliation(s)
- François Windels
- Cellular Neurobiology Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
23
|
Kiyatkin EA, Brown PL. The role of peripheral and central sodium channels in mediating brain temperature fluctuations induced by intravenous cocaine. Brain Res 2006; 1117:38-53. [PMID: 16956595 PMCID: PMC1847334 DOI: 10.1016/j.brainres.2006.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 07/27/2006] [Accepted: 08/04/2006] [Indexed: 11/26/2022]
Abstract
While cocaine's interaction with the dopamine (DA) transporter and subsequent increase in DA transmission are usually considered key factors responsible for its locomotor stimulatory and reinforcing properties, many centrally mediated physiological and psychoemotional effects of cocaine are resistant to DA receptor blockade, suggesting the importance of other non-DA mechanisms. To explore the role of cocaine's interaction with Na+ channels, rats were used to compare locomotor stimulatory and temperature (NAcc, temporal muscle and skin) effects of repeated iv injections of cocaine (1 mg/kg) with those induced by procaine (PRO 5 mg/kg), a short-acting local anesthetic with negligible effect on the DA transporter, and cocaine methiodide (COC-MET 1.31 mg/kg), a quaternary cocaine derivative that is unable to cross the blood-brain barrier. While PRO, unlike cocaine, did not induce locomotor activation, it mimicked cocaine in its ability to increase brain temperature following the initial injection and to induce biphasic, down-up fluctuations following repeated injections. This similarity suggests that both these effects of cocaine may be driven by its action on Na+ channels, a common action of both drugs. While COC-MET also did not affect locomotor activity, it shared with cocaine and PRO their ability to increase brain temperature but failed to induce temperature decreases after repeated injections. These findings point toward activation of peripheral Na+ channels as the primary mechanism of rapid excitatory effects of cocaine and inhibition of centrally located Na+ channels as the primary mechanism for transient inhibitory effects of cocaine. DA receptor blockade (SCH23390+eticlopride) fully eliminated locomotor stimulatory and temperature-increasing effects of cocaine, but its temperature-decreasing effects remained intact. Surprisingly, DA receptor blockade also altered the temperature fluctuations caused by PRO and COC-MET, suggesting that some of the central effects triggered via Na+ channels are in fact DA-dependent. Finally, repeated administration of PRO to animals that had previous cocaine experience led to conditioned locomotion and potentiated temperature-increasing effects of this drug. It appears, therefore, that, in addition to the central effects of cocaine mediated via interaction with the DA transporter and potentiation of DA uptake, interaction with peripheral and central Na+ channels is important for the initial physiological and, perhaps, affective effects of cocaine, likely contributing to the unique abuse potential of this drug.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Cellular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
24
|
Kiyatkin EA. Brain hyperthermia as physiological and pathological phenomena. ACTA ACUST UNITED AC 2006; 50:27-56. [PMID: 15890410 DOI: 10.1016/j.brainresrev.2005.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/04/2005] [Accepted: 04/05/2005] [Indexed: 12/18/2022]
Abstract
Although brain metabolism consumes high amounts of energy and is accompanied by intense heat production, brain temperature is usually considered a stable, tightly "regulated" homeostatic parameter. Current research, however, revealed relatively large and rapid brain temperature fluctuations (3-4 degrees C) in animals during various normal, physiological, and behavioral activities at stable ambient temperatures. This review discusses these data and demonstrates that physiological brain hyperthermia has an intra-brain origin, resulting from enhanced neural metabolism and increased intra-brain heat production. Therefore, brain temperature is an important physiological parameter that both reflects alterations in metabolic neural activity and affects various neural functions. This work also shows that brain hyperthermia may be induced by various drugs of abuse that cause metabolic brain activation and impair heat dissipation. While individual drugs (i.e., heroin, cocaine, methamphetamine, MDMA) have specific, dose-dependent effects on brain and body temperatures, these effects are strongly modulated by an individual's activity state and environmental conditions, and change dramatically during the development of drug self-administration. Thus, brain thermorecording may provide new information on the central effects of various addictive drugs, drug-activity-environment interactions in mediating drugs' adverse effects, and alterations in metabolic neural activity associated with the development of drug-seeking and drug-taking behavior. While ambient temperatures and impairment of heat dissipation may also affect brain temperature, these environmental conditions strongly potentiate thermal effects of psychomotor stimulant drugs, resulting in pathological brain overheating. Since hyperthermia exacerbates drug-induced toxicity and is destructive to neural cells and brain functions, use of these drugs under activated conditions that restrict heat loss may pose a significant health risk, resulting in both acute life-threatening complications and chronic destructive CNS changes.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Cellular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock, Baltimore, MD 21224, USA.
| |
Collapse
|
25
|
Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PEM, Seamans JK. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci 2006; 25:5013-23. [PMID: 15901782 PMCID: PMC5509062 DOI: 10.1523/jneurosci.0557-05.2005] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivo extracellular recording studies have traditionally shown that dopamine (DA) transiently inhibits prefrontal cortex (PFC) neurons, yet recent biophysical measurements in vitro indicate that DA enhances the evoked excitability of PFC neurons for prolonged periods. Moreover, although DA neurons apparently encode stimulus salience by transient alterations in firing, the temporal properties of the PFC DA signal associated with various behaviors is often extraordinarily prolonged. The present study used in vivo electrophysiological and electrochemical measures to show that the mesocortical system produces a fast non-DA-mediated postsynaptic response in the PFC that appears to be initiated by glutamate. In contrast, short burst stimulation of mesocortical DA neurons that produced transient (<4 s) DA release in the PFC caused a simultaneous reduction in spontaneous firing (consistent with extracellular in vivo recordings) and a form of DA-induced potentiation in which evoked firing was increased for tens of minutes (consistent with in vitro measurements). We suggest that the mesocortical system might transmit fast signals about reward or salience via corelease of glutamate, whereas the simultaneous prolonged DA-mediated modulation of firing biases the long-term processing dynamics of PFC networks.
Collapse
Affiliation(s)
- Antonieta Lavin
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wilson DIG, Bowman EM. Neurons in dopamine-rich areas of the rat medial midbrain predominantly encode the outcome-related rather than behavioural switching properties of conditioned stimuli. Eur J Neurosci 2006; 23:205-18. [PMID: 16420430 DOI: 10.1111/j.1460-9568.2005.04535.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Midbrain dopamine neurons are phasically activated by a variety of sensory stimuli. It has been hypothesized that these activations contribute to reward prediction or behavioural switching. To test the latter hypothesis we recorded from 131 single neurons in the ventral tegmental area and retrorubral field of thirsty rats responding during a modified go/no-go task. One-quarter (n = 33) of these neurons responded to conditioned stimuli in the task, which varied according to the outcome with which they were associated (saccharin or quinine solution) and according to whether they triggered a switch in the ongoing sequence of the animal's behaviour ('behavioural switching'). Almost half the neurons (45%) responded differentially to saccharin- vs. quinine-conditioned stimuli; the activity of a minority (15%) correlated with an aspect of behavioural switching (mostly exhibiting changes from baseline activity in the absence of a behavioural switch) and one-third (33%) encoded various outcome-switch combinations. The strongest response was excitation to the saccharin-conditioned stimulus. Additionally, a proportion (38%) of neurons responded during outcome delivery, typically exhibiting inhibition during saccharin consumption. The neurons sampled did not fall into distinct clusters on the basis of their electrophysiological characteristics. However, most neurons that responded to the outcome-related properties of conditioned stimuli had long action potentials (> 1.2 ms), a reported characteristic of dopamine neurons. Moreover, responses to saccharin-conditioned stimuli were functionally akin to dopamine responses found in the macaque and rat nucleus accumbens responses observed within the same task. In conclusion, our data are more consistent with the reward-prediction than the behavioural switching hypothesis.
Collapse
Affiliation(s)
- David I G Wilson
- School of Psychology, University of St Andrews, St Mary's, Quadrangle, South Street, St Andrews, Fife, Scotland KY16 9JP, UK.
| | | |
Collapse
|
27
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1101] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
28
|
Paredes RG, Agmo A. Has dopamine a physiological role in the control of sexual behavior? A critical review of the evidence. Prog Neurobiol 2004; 73:179-226. [PMID: 15236835 DOI: 10.1016/j.pneurobio.2004.05.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 05/14/2004] [Indexed: 11/30/2022]
Abstract
The role of dopaminergic systems in the control of sexual behavior has been a subject of study for at least 40 years. Not surprisingly, reviews of the area have been published at variable intervals. However, the earlier reviews have been summaries of published research rather than a critical analysis of it. They have focused upon the conclusions presented in the original research papers rather than on evaluating the reliability and functional significance of the data reported to support these conclusions. During the last few years, important new knowledge concerning dopaminergic systems and their behavioral functions as well as the possible role of these systems in sexual behavior has been obtained. For the first time, it is now possible to integrate the data obtained in studies of sexual behavior into the wider context of general dopaminergic functions. To make this possible, we first present an analysis of the nature and organization of sexual behavior followed by a summary of current knowledge about the brain structures of crucial importance for this behavior. We then proceed with a description of the dopaminergic systems within or projecting to these structures. Whenever possible, we also try to include data on the electrophysiological actions of dopamine. Thereafter, we proceed with analyses of pharmacological data and release studies, both in males and in females. Consistently throughout this discussion, we make an effort to distinguish pharmacological effects on sexual behavior from a possible physiological role of dopamine. By pharmacological effects, we mean here drug-induced alterations in behavior that are not the result of the normal actions of synaptically released dopamine in the untreated animal. The conclusion of this endeavor is that pharmacological effects of dopaminergic drugs are variable in both males and females, independently of whether the drugs are administered systemically or intracerebrally. We conclude that the pharmacological data basically reinforce the notion that dopamine is important for motor functions and general arousal. These actions could, in fact, explain most of the effects seen on sexual behavior. Studies of dopamine release, in both males and females, have focused on the nucleus accumbens, a structure with at most a marginal importance for sexual behavior. Since accumbens dopamine release is associated with all kinds of events, aversive as well as appetitive, it can have no specific effect on sexual behavior but promotes arousal and activation of non-specific motor patterns. Preoptic and paraventricular nucleus release of dopamine may have some relationship to mechanisms of ejaculation or to the neuroendocrine consequences of sexual activity or they can be related to other autonomic processes associated with copulation. There is no compelling indication in existing experimental data that dopamine is of any particular importance for sexual motivation. There is experimental evidence showing that it is of no importance for sexual reward.
Collapse
Affiliation(s)
- Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Aunónoma de México-Campus Juriquilla, Querétaro, Mexico
| | | |
Collapse
|
29
|
Kiyatkin EA, Brown PL. Brain temperature fluctuations during passive vs. active cocaine administration: clues for understanding the pharmacological determination of drug-taking behavior. Brain Res 2004; 1005:101-16. [PMID: 15044070 DOI: 10.1016/j.brainres.2004.01.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2004] [Indexed: 11/21/2022]
Abstract
While it is generally assumed that cocaine self-administration (SA) is determined and maintained by the pharmacological actions of cocaine in the brain, it is also a drug-motivated and drug-reinforced goal-directed behavior, which is determined by concurrent learning and behavioral performance. To dissociate the contributions of pharmacological and behavioral factors to cocaine SA, it is important to compare cocaine SA with its pharmacological copy, passive intravenous (iv) cocaine administration. This approach was employed in the present study with respect to brain temperatures, a dynamic parameter that reflects metabolic neural activity and shows consistent fluctuations during cocaine SA. Passive cocaine injections performed with the same dose/pattern as SA induced brain temperature fluctuations similar in many ways to those in behaving animals. The initial passive drug administration of a session elevated brain temperature, while subsequent repeated injections were associated with biphasic temperature fluctuations that maintained at a relatively stable plateau. Although the magnitude of these fluctuations was twofold smaller than in behaving animals, passive animals had the same pattern; brain temperatures transiently decreased after cocaine injection, then increased, and were inhibited again by the next cocaine infusion. In contrast to self-administering animals, rats exposed to passive cocaine injections had significantly lower basal temperatures and never showed gradual temperature increases preceding the initial injection. Striking differences in brain temperature dynamics seen in the beginning of a session suggest that during the development of drug-taking behavior the initial cocaine-induced neural activation becomes transformed into behavior-related "anticipatory" neural activation (motivational arousal) that fuels drug seeking and results in the initial drug intake. While this activation is triggered by drug-related cues and enhanced by the initial cocaine intake, subsequent highly cyclical cocaine intakes appear to be primarily pharmacologically determined.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
30
|
Coizet V, Comoli E, Westby GWM, Redgrave P. Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat. Eur J Neurosci 2003; 17:28-40. [PMID: 12534966 DOI: 10.1046/j.1460-9568.2003.02415.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The source of short-latency visual input to midbrain dopaminergic (DA) neurons is not currently known; however, the superior colliculus (SC) is a subcortical visual structure which has response latencies consistently shorter than those recorded for DA neurons in substantia nigra and the ventral tegmental area. To test whether the SC represents a plausible route by which visual information may gain short latency access to the ventral midbrain, the present study examined whether experimental stimulation of the SC can influence the activity of midbrain DA neurons. In urethane-anaesthetized rats, 63 pairs of extracellular recordings were obtained from neurons in the SC and ipsilateral ventral midbrain, before and after local disinhibitory injections of the GABA antagonist bicuculline (20-40 ng/200-400 nL saline) into the SC. Neurons recorded from substantia nigra and the ventral tegmental area were classified as putative DA (25/63, 39.7%) or putative non-DA (38/63, 60.3%). In nearly half the cases (27/63, 42.8%), chemical stimulation of the SC evoked a corresponding increase in neural activity in the ventral midbrain. This excitatory effect did not distinguish between DA and non-DA neurons. In 6/63 cases (9.5%), SC activation elicited a reliable suppression of activity, while the remaining 30/63 cases (47.6%) were unaffected. In almost a third of cases (16/57, 28.1%) intense phasic activation of the SC was associated with correlated phasic activation of neurons in substantia nigra and the ventral tegmental area. These data suggest that the SC is in a position to play an important role in discriminating the appropriate stimulus qualities required to activate DA cells at short latency.
Collapse
Affiliation(s)
- Véronique Coizet
- Department of Psychology, University of Sheffield, Sheffield, S10 2TP, UK
| | | | | | | |
Collapse
|
31
|
Horvitz JC. Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res 2002; 137:65-74. [PMID: 12445716 DOI: 10.1016/s0166-4328(02)00285-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area (VTA) respond to a wide category of salient stimuli. Activation of SN and VTA DA neurons, and consequent release of nigrostriatal and mesolimbic DA, modulates the processing of concurrent glutamate inputs to dorsal and ventral striatal target regions. According to the view described here, this occurs under conditions of unexpected environmental change regardless of whether that change is rewarding or aversive. Nigrostriatal and mesolimbic DA activity gates the input of sensory, motor, and incentive motivational (e.g. reward) signals to the striatum. In light of recent single-unit and brain imaging data, it is suggested that the striatal reward signals originate in the orbitofrontal cortex and basolateral amygdala (BLA), regions that project strongly to the striatum. A DA signal of salient unexpected event occurrence, from this framework, gates the throughput of the orbitofrontal glutamate reward input to the striatum just as it gates the throughput of corticostriatal sensory and motor signals needed for normal response execution. Processing of these incoming signals is enhanced when synaptic DA levels are high, because DA enhances the synaptic efficacy of strong concurrent glutamate inputs while reducing the efficacy of weak glutamate inputs. The impairments in motor performance and incentive motivational processes that follow from nigrostriatal and mesolimbic DA loss can be understood in terms of a single mechanism: abnormal processing of sensorimotor and incentive motivation-related glutamate input signals to the striatum.
Collapse
Affiliation(s)
- Jon C Horvitz
- Department of Psychology, Columbia University, 1190 Amsterdam Ave, Rm 406, New York, NY 10027, USA.
| |
Collapse
|
32
|
Kiyatkin EA. Dopamine in the nucleus accumbens: cellular actions, drug- and behavior-associated fluctuations, and a possible role in an organism's adaptive activity. Behav Brain Res 2002; 137:27-46. [PMID: 12445714 DOI: 10.1016/s0166-4328(02)00283-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review expounds the idea that the analysis of dopamine (DA) action on target cells under behaviorally relevant conditions and behavior-related changes in DA activity can offer new information to clarify the functional significance of mesocorticolimbic DA. In contrast to the traditional association of DA with certain behavioral processes and mechanisms (activation, arousal, conditioning, motivation, reinforcement, sensorimotor integration, etc.), evaluation of DA activity during well-controlled behaviors established by different reinforcers can provide important clues for determining the role of DA in the development and regulation of goal-directed behavior. This review summarizes the results of our microiontophoretic studies of striatal neurons in awake, unrestrained rats, particularly the action of DA on spontaneously active and glutamate (GLU)-stimulated cells, the pattern of DA-GLU interaction, and the role of tonic DA release in regulating the activity and afferent responsiveness of these units. We present the results of our iontophoretic studies of ventral tegmental area (VTA) neurons in freely moving animals suggesting the complexity and limitations in their identification as DA- and non-DA cells under behaviorally relevant conditions. We also consider technical and methodological problems related to electrophysiological and electrochemical evaluation of DA transmission in behaving animals. Finally, we discuss parallels and differences in the activity of presumed DA VTA neurons and changes of nucleus accumbens DA-dependent electrochemical signal during heroin self-administration (SA) behavior.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224 USA.
| |
Collapse
|
33
|
Kiyatkin EA, Rebec GV. Impulse activity of ventral tegmental area neurons during heroin self-administration in rats. Neuroscience 2001; 102:565-80. [PMID: 11226694 DOI: 10.1016/s0306-4522(00)00492-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To assess the pattern of mesocorticolimbic dopamine activity associated with drug-seeking and drug-taking behavior, we recorded impulse activity of ventral tegmental area neurons during intravenous heroin self-administration in trained rats. Although these neurons had considerable variability, two major groups-units with triphasic long-duration spikes and biphasic short-duration spikes-were identified. Relative to a slow and irregular basal activity of long-spike units, the first self-administration of each session was preceded by a phasic neuronal activation and followed by a more sustained drug-induced activation that reached a maximum at the time of the second self-injection. After each subsequent heroin self-injection, the discharge rate transiently decreased, correlating with the blockade of preceding motor activation and the appearance of freezing, but slowly and gradually increased again in parallel with searching behavior, reaching a maximum at the time of the next self-injection. Passive drug injections in either drug-naive, freely moving or drug-experienced, anesthetized rats caused much smaller, tonic increases in activity of long-spike units; these monophasic increases changed into biphasic responses with repeated injections. Although short-spike units had highly varying discharge rate and showed phasic activation during movement, during heroin self-injections they generally mimicked the activity pattern seen in long-spike units. Our results indicate that in behaving animals indirect "identification" of dopamine cells based on their distinctive electrophysiological features is more complex than in vitro and in anesthetized preparations. With respect to long-spike units, a candidate group of presumed dopamine neurons, our data agree with the view that mesocorticolimbic dopamine activation is important for the activational and/or motivational aspects of heroin-taking behavior and suggest the role of an abrupt termination of dopamine activation for drug reinforcement (reward). Although the neurochemical nature of long- and short-spike units is obviously different, similar changes in their activity may indicate that they are regulated by similar afferent inputs and that these inputs change similarly during drug-taking behavior.
Collapse
Affiliation(s)
- E A Kiyatkin
- Program in Neural Science, Department of Psychology, Indiana University, Bloomington, USA.
| | | |
Collapse
|
34
|
Abstract
While it has previously been assumed that mesolimbic dopamine neurons carry a reward signal, recent data from single-unit, microdialysis and voltammetry studies suggest that these neurons respond to a large category of salient and arousing events, including appetitive, aversive, high intensity, and novel stimuli. Elevations in dopamine release within mesolimbic, mesocortical and nigrostriatal target sites coincide with arousal, and the increase in dopamine activity within target sites modulates a number of behavioral functions. However, because dopamine neurons respond to a category of salient events that extend beyond that of reward stimuli, dopamine levels are not likely to code for the reward value of encountered events. The paper (i) examines evidence showing that dopamine neurons respond to salient and arousing change in environmental conditions, regardless of the motivational valence of that change, and (ii) asks how this might shape our thinking about the role of dopamine systems in goal-directed behavior.
Collapse
Affiliation(s)
- J C Horvitz
- Department of Psychology, Columbia University, New York 10027, USA.
| |
Collapse
|
35
|
Striatal neuronal activity and responsiveness to dopamine and glutamate after selective blockade of D1 and D2 dopamine receptors in freely moving rats. J Neurosci 1999. [PMID: 10212318 DOI: 10.1523/jneurosci.19-09-03594.1999] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although striatal neurons receive continuous dopamine (DA) input, little information is available on the role of such input in regulating normal striatal functions. To clarify this issue, we assessed how systemic administration of selective D1 and D2 receptor blockers or their combination alters striatal neuronal processing in freely moving rats. Single-unit recording was combined with iontophoresis to monitor basal impulse activity of dorsal and ventral striatal neurons and their responses to glutamate (GLU), a major source of excitatory striatal drive, and DA. SCH-23390 (0.2 mg/kg), a D1 antagonist, strongly elevated basal activity and attenuated neuronal responses to DA compared with control conditions, but GLU-induced excitations were enhanced relative to control as indicated by a reduction in response threshold, an increase in response magnitude, and a more frequent appearance of apparent depolarization inactivation. In contrast, the D2 antagonist eticlopride (0.2 mg/kg) had a weak depressing effect on basal activity and was completely ineffective in blocking the neuronal response to DA. Although eticlopride reduced the magnitude of the GLU response, the response threshold was lower, and depolarization inactivation occurred more often relative to control. The combined administration of these drugs resembled the effects of SCH-23390, but whereas the change in basal activity and the GLU response was weaker, the DA blocking effect was stronger than SCH-23390 alone. Our data support evidence for DA as a modulator of striatal function and suggest that under behaviorally relevant conditions tonically released DA acts mainly via D1 receptors to provide a continuous inhibiting or restraining effect on both basal activity and responsiveness of striatal neurons to GLU-mediated excitatory input.
Collapse
|
36
|
Kiyatkin EA, Rebec GV. Modulation of striatal neuronal activity by glutamate and GABA: iontophoresis in awake, unrestrained rats. Brain Res 1999; 822:88-106. [PMID: 10082887 DOI: 10.1016/s0006-8993(99)01093-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To examine the effects of glutamate (GLU) and gamma-aminobutyric acid (GABA) and their interactions in the striatum under behaviorally relevant conditions, single-unit recording was combined with microiontophoresis in awake, unrestrained rats. Iontophoretically applied GLU (0-40 nA, 20 s) excited all spontaneously active neurons in dorsal (caudate-putamen) and ventral (accumbens, core) striatum; phasic GLU-induced excitations (mean threshold 19.7 nA) were dose-dependent, inversely correlated with rate of basal activity (excitation limit approximately 65 imp/s), and highly stable during repeated GLU applications. GLU also excited silent and sporadically active units, which greatly outnumbered spontaneously active cells, and enhanced neuronal excitations associated with movement. Both spontaneously active and GLU-stimulated striatal neurons were highly sensitive to GABA (0-40 nA, 20 s); most showed short-latency inhibitions during GABA diffusion from the pipette (0 nA) and the response quickly progressed to complete silence with a small increase in current. The GABA-induced inhibition was current-dependent, equally strong on spontaneously active and GLU-stimulated units, and independent of neuronal discharge rate, but less stable than the GLU-induced excitation during repeated drug applications. Prolonged GABA application (0-20 nA, 2-4 min) reduced basal impulse activity, but was less effective in attenuating the neuronal excitations induced by GLU or associated with movement. Our data support the role of GLU afferents in the phasic activation of striatal neurons and suggest that the effects of GLU strongly depend on the level of ongoing neuronal activity. The ability of GABA to modulate both basal and GLU-evoked activity suggests that GABA, released from efferent collaterals and interneurons, plays a critical role in regulating neuronal activity and responsiveness to phasic changes in excitatory input.
Collapse
Affiliation(s)
- E A Kiyatkin
- Program in Neural Science, Department of Psychology, Psychology Building, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
37
|
Kiyatkin EA, Rebec GV. Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 1998; 85:1285-309. [PMID: 9681963 DOI: 10.1016/s0306-4522(98)00054-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single-unit recording combined with iontophoresis of dopamine, GABA, and glutamate was used in awake, unrestrained rats to characterize the electrophysiological and receptor properties of neurons in the ventral tegmental area under naturally occurring behavioural conditions. All isolated ventral tegmental area units (n=90) were analysed and compared with cells (n=58) recorded from dorsally adjacent areas of the pre-rubral area and red nucleus. Two distinct neuronal groups were identified in the ventral tegmental area: units with triphasic, long-duration spikes (78/90) and units with biphasic, short-duration spikes (12/90). Although all long-spike units discharged in an irregular, bursting pattern with varying degrees of within-burst decrements in spike amplitude, they could be further subdivided into at least three distinct subgroups. Type I long-spike units (36/78) discharged at a relatively slow and stable rate (mean: 6.03 imp/s; range: 0.42-15.78) with no evident fluctuations during movement. These cells were inhibited by dopamine and GABA and responded to glutamate with a low-magnitude excitation accompanied by a pronounced decrement in spike amplitude and a powerful rebound inhibition. Type II long-spike units (23/78) had relatively high and unstable discharge rates (mean: 22.82 imp/s; range: 4.42-59.67) and showed movement-related phasic activations frequently followed by partial or complete cessation of firing. Some Type II cells (4/9) were inhibited by dopamine, but all were excited by glutamate at very low currents (0-10 nA). With an increase in current, the glutamate-induced excitation often (18/22) progressed into a cessation of firing. All these cells were inhibited by GABA followed by a strong rebound excitation (8/9), which also frequently (6/8) resulted in cessation of firing. Type III long-spike units (19/78) had properties that differed from either Type I or Type II cells, including a lack of spontaneous firing (5/19). Short-spike ventral tegmental area units were either silent (4/12) and unresponsive to dopamine and GABA or spontaneously active (range: 0.89-34.13 imp/s) and inhibited by GABA and, in some cases (2/8). by dopamine; all were phasically activated during movement and glutamate iontophoresis. It appears that ventral tegmental area neurons, including those with long-duration spikes, do not comprise a uniform population in awake, unrestrained rats. Type I, long-spike units match the characteristics of histochemically-identified dopamine neurons, and they appear to express dopamine autoreceptors, which may explain the relatively slow, stable rate of activity and the limited responsiveness to excitatory inputs. Although the nature of the other long-spike units in our sample is unclear, they may include dopamine neurons without autoreceptors as well as non-dopamine cells. The heterogeneity of ventral tegmental area neurons is an important consideration for further attempts to assess the role of the mesocorticolimbic dopamine system in motivated behaviour.
Collapse
Affiliation(s)
- E A Kiyatkin
- Department of Psychology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
38
|
Kiyatkin EA, Rebec GV. Modulatory action of dopamine on acetylcholine-responsive striatal and accumbal neurons in awake, unrestrained rats. Brain Res 1996; 713:70-8. [PMID: 8724977 DOI: 10.1016/0006-8993(95)01487-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In ambulant rats, iontophoresis of low concentrations of dopamine (DA) enhances the response of neurons in striatum and nucleus accumbens to iontophoretic glutamate. In an extension of this line of investigation, we tested the effects of acetylcholine (ACh), a presumed modulator of neuronal function in these same brain regions, and assessed possible DA-ACh interactions. Data were obtained from spontaneously active neurons known to respond to ACh (5-30 nA) when the animals rested quietly with no overt movement. ACh iontophoresis either excited or inhibited striatal and accumbal activity but excitatory effects predominated in both areas. With multiple applications of ACh, especially at the lowest currents tested, either response often was interspersed with instances of no change in firing rate. Responsiveness to ACh also diminished during periods of spontaneous movement when basal firing showed phasic increases in activity. In fact, neurons with the highest rates of basal activity showed the smallest magnitude response to ACh. Prolonged applications (120-180 s) of DA attenuated basal firing as well as the iontophoretic effects of ACh both during the DA application itself and for up to 1 min after DA ejection offset. The result of these inhibitory effects was no net change in the relative magnitude of the ACh response. Thus, although ACh can modulate striatal and accumbal neuronal activity, DA does not regulate this effect in the same way that it regulates the neuronal responsiveness to glutamate.
Collapse
Affiliation(s)
- E A Kiyatkin
- Department of Psychology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
39
|
Abstract
Although a large body of neuropharmacological evidence suggests that the mesolimbic dopamine system (ML DA) is critical for goal-directed behaviors, exactly which aspects of behavior are mediated or modulated by this system remains a matter of conjecture. By measuring changes in DA cell firing patterns and extracellular DA concentrations in target areas of ML DA cells during the development and performance of goal-directed behavior, it is possible to directly examine the relationship between ML DA transmission and various stages and components of behavior. This permits tests of hypotheses concerned with the functional significance of ML DA. This review will discuss recent electrophysiological, microdialysis and electrochemical data on behavior-associated changes in firing activity of ML DA cells and fluctuations in DA concentrations in target areas of these cells. Although application of an electrochemical technique to study behavior-associated changes in DA transmission is an area of hot debates, a close correlation between DA-dependent electrochemical signal changes and separate behavioral components, with a generally similar pattern of rapid signal fluctuations found in trained animals during operant lever-pressing behavior maintained by palatable food, cocaine or heroin, suggests that extrasynaptic DA may have some important functions in regulating behavior. This review will discuss possible mechanisms underlying phasic and tonic changes in ML DA transmission accompanying development and performance of positively-reinforced behavior, the contribution of learning, behavioral and pharmacological variables in the mediation of these changes, and their relevance for the organization and regulation of goal-directed behavior.
Collapse
Affiliation(s)
- E A Kiyatkin
- Program in Neural Science, Indiana University, Bloomington 47405, USA
| |
Collapse
|
40
|
Kiyatkin EA, Stein EA. Fluctuations in nucleus accumbens dopamine during cocaine self-administration behavior: an in vivo electrochemical study. Neuroscience 1995; 64:599-617. [PMID: 7715774 DOI: 10.1016/0306-4522(94)00436-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-speed chronoamperometry with Nafion-coated monoamine-sensitive carbon fiber electrodes was used to estimate changes in extracellular dopamine concentration in the nucleus accumbens during cocaine self-administration behavior in rats. In trained animals, time-locked biphasic fluctuations in dopamine-dependent electrochemical signal were found to accompany cocaine self-injections (0.8-0.9 mg/kg/inj). The mean signal gradually increased by the equivalent of 20-30 nM of dopamine during the 60 s preceding the injection, reached a peak value at the lever-press and decreased abruptly by about 20-30 nM for 40-60 s after the injection. This cyclic pattern was repeated with the next lever-press. The post-cocaine signal decreases were most pronounced during the first 30 min of each session, when self-administration behavior was highest (eight to 16 injections), and gradually diminished during the session. In contrast, the pre-injection signal increases became enhanced over time. Lever-presses reinforced by a double cocaine dose were followed by significantly larger and longer lasting signal decreases. These biphasic fluctuations quickly disappeared after several non-reinforced lever-presses. Although experimenter-delivered cocaine injections paced to mimic the pattern of self-administration also induced biphasic signal fluctuations, both the post-drug signal decreases and subsequent pre-injection increases were significantly smaller. It is hypothesized that the increases in signal seen in trained animals are a consequence of cocaine-induced dopamine uptake inhibition following behavior-associated dopamine cell activation. In contrast, the post-cocaine abrupt transient signal depression may be related to a decrease in mesolimbic dopamine release due to inhibition of dopamine cell activity. Signal decreases seen after self-administered procaine suggest that cocaine's local anesthetic action may contribute to this decrease in dopamine release. Additionally, while the latency of response differed somewhat, since apomorphine administration also led to a reduction in signal, autoreceptor activation may also have contributed to the cocaine-induced signal depression. That learning and behavioral mechanisms are also important determinants of the observed cocaine-induced signal changes is suggested by the signal decreases after the first non-reinforced responses, signal differences between self- and passively-administered cocaine and signal increases caused by cocaine-related cues. In light of numerous neuropharmacological studies implicating the significance of the mesolimbic dopamine system in the organization and regulation of goal-directed behaviors, these data suggest that mesolimbic dopamine system activation may mediate motivational and activational components of drug-seeking and drug-taking behavior, while the transient, reward-associated inhibition of the system may be involved in regulating these behaviors.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E A Kiyatkin
- Department of Psychiatry, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
41
|
Grace AA. The tonic/phasic model of dopamine system regulation: its relevance for understanding how stimulant abuse can alter basal ganglia function. Drug Alcohol Depend 1995; 37:111-29. [PMID: 7758401 DOI: 10.1016/0376-8716(94)01066-t] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The changes in dopamine system regulation occurring during stimulant administration are examined in relation to a new model of dopamine system function. This model is based on the presence of a tonic low level of extracellular dopamine that is released by the presynaptic action of corticostriatal afferents. In contrast, spike-dependent dopamine release results in a phasic, high concentration of dopamine in the synaptic cleft that is rapidly inactivated by reuptake. Tonic dopamine has the ability to down-modulate spike-dependent phasic dopamine release via stimulation of the very sensitive dopamine autoreceptors present on dopamine terminals. Stimulants are known to elicit locomotion and stimulate reward sites by releasing dopamine from terminals in the nucleus accumbens, which is followed by a rebound depression. It is proposed that the initial activating action of stimulants is caused by increasing the release of dopamine into the synaptic cleft to activate the phasic dopamine response. However, by interfering with dopamine uptake, stimulants also allow dopamine to escape the synaptic cleft, thereby depressing subsequent spike-dependent phasic dopamine release by increasing the tonic stimulation of the autoreceptor. In contrast, repeated stimulant administration is proposed to cause long-term sensitization by pharmacological disruption of a cascade of homeostatic compensatory processes. Upon drug withdrawal, the fast compensatory systems that were blocked by stimulants rapidly restore homeostasis to the system at a new steady-state level of interaction. As a consequence, the slowly changing but potentially more destabilizing compensatory responses are prevented from returning to their baseline conditions. This results in a permanent change in the responsivity of the system. Homeostatic systems are geared to compensate for unidimensional alterations in a system, and are capable of restoring function even after massive brain lesions or the continuous presence of stimulant drugs. However, the system did not evolve to deal effectively with repetitive introduction and withdrawal of drugs that disrupt dopamine system regulation. As a consequence, repeated insults to a biological system by application and withdrawal of drugs that interfere with its homeostatic regulation may be capable of inducing non-reversible changes in its response to exogenous and endogenous stimuli.
Collapse
Affiliation(s)
- A A Grace
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| |
Collapse
|
42
|
Kiyatkin EA. Behavioral significance of phasic changes in mesolimbic dopamine-dependent electrochemical signal associated with heroin self-injections. J Neural Transm (Vienna) 1994; 96:197-214. [PMID: 7826571 DOI: 10.1007/bf01294787] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
High-speed chronoamperometry with monoamine-selective carbon fiber electrodes was used in rats to monitor, during 5-6 consecutive daily sessions, changes in DA-dependent electrochemical signal in the nucleus accumbens (NAcc) during intravenous heroin (0.1 mg/kg) self-administration (SA) behavior and passive repeated drug injections performed with a temporal scheme similar to that in the SA experiment. In trained animals, biphasic signal fluctuations time-locked to the individual lever-presses were found to accompany all but the first daily SAs. The signal gradually increased by 30-40 nM for the 10 minutes preceding the SA, reached a peak at the moment of lever-press and decreased abruptly by approximately 40 nM for 3-4 min after heroin SA. The cycle then repeated, reaching a new peak at the moment of the next lever-press. Rapid bi-directional fluctuations in signal associated with individual heroin SAs were superimposed on substantial tonic increase in signal baseline (400-500 nM). This increase quickly developed after presentation of heroin-related light cue and the first SA, was relatively stable during all subsequent SAs and decreased towards the baseline after the last SA of a session. Changes in signal baseline induced by repeated heroin SAs depended strongly upon the signal's basal level (r = -0.787); that signal preferentially increased when its basal values were low (0-300 nM), and decreased when signal was tonically elevated (> 600 nM). Repeated passive heroin injections also induced biphasic signal fluctuations and a similar tonic increase in signal baseline. Although a transient signal decrease (25 nM for 2-4 minutes) followed by a prolonged signal increase occurred after each but not the first passive injection, the gradual pre-injection signal acceleration was absent. Although DOPAC, a principal DA metabolite, may significantly contribute to the tonic increase in electrochemical signal seen during SA session, the changes in extracellular DA may be the main contributor to both the rapid signal increases preceding drug-taking and the transient signal decreases following heroin SA. If so, the present findings suggest that activation of mesolimbic DA cells and increase in DA transmission may be involved in the mediation of motivational and/or activational components of drug-seeking and drug-taking behavior. An acute termination of previous drug- and behavior-associated DA activation with a transient inhibition of DA release, immediately following heroin SA may correlate with the drug's rewarding action, representing a part of a mechanism regulating drug-taking behavior.
Collapse
Affiliation(s)
- E A Kiyatkin
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Abstract
The ability of cocaine to induce a compulsive addictive behavior is the most astonishing feature of this drug. Attempting to understand the mechanisms underlying cocaine's addictive properties, two major questions should be considered: a) why and how organism's interaction with cocaine results in the development of new, drug-seeking and drug-taking behavior and b) why and how cocaine maintains this behavior when the drug is available. Since a large body of neuropharmacological evidence suggest that the mesocorticolimbic dopamine (DA) system has exclusive importance for the development and maintenance of cocaine addictive behavior, and cocaine is known to interfere in activity of this brain system, examination of mesocorticolimbic DA activity during cocaine self-administration behavior may provide some clues for understanding the drug's additive properties and regulation of this maladaptive goal-directed behavior. The aim of this paper is to discuss the literature and own experimental data on cocaine's action on the mesocorticolimbic DA system that may be involved in mediating its addictive properties. Based on these data, it is suggested that an inhibiting action of cocaine on reuptake of released DA, although essential, but not sufficient mechanism for the development and maintenance of addictive behavior. It is hypothesized, that coexistence of functionally antagonistic, inhibiting actions of cocaine on the mesolimbic DA release and reuptake of released DA may be responsible for biphasic fluctuations in DA transmission that appear to be a critical component of central oscillatory mechanism which drives and regulates cyclic drug-taking behavior.
Collapse
Affiliation(s)
- E A Kiyatkin
- Laboratory of Neuropharmacology, Scientific Center Elbit, Moscow, Russia
| |
Collapse
|
44
|
Grace AA. Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia. J Neural Transm (Vienna) 1993; 91:111-34. [PMID: 8099795 DOI: 10.1007/bf01245228] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A unique model of DA system regulation is presented, in which tonic steady-state DA levels in the ECF act to down-regulate the response of the system to pulsatile DA released by DA cell action potential generation. This type of regulation is similar in many respects to the phenomenon proposed to mediate the action of norepinephrine on target neurons; i.e., an increase in the "signal-to-noise" ratio as measured by postsynaptic cell firing (Freedman et al., 1977; Woodward et al., 1979). However, in this model the signal and the noise are neurochemical rather than electrophysiological. Furthermore, the "noise" (tonic DA in the ECF) actually down-regulates the "signal" (phasic DA release) directly, and thereby provides a "signal" of its own that affects the system over a longer time-course. Therefore, the difference between signal and noise may also depend on the time frame under which such determinations are made.
Collapse
Affiliation(s)
- A A Grace
- Department of Behavioral Neuroscience, University of Pittsburgh, PA
| |
Collapse
|
45
|
Doherty MD, Gratton A. High-speed chronoamperometric measurements of mesolimbic and nigrostriatal dopamine release associated with repeated daily stress. Brain Res 1992; 586:295-302. [PMID: 1325860 DOI: 10.1016/0006-8993(92)91639-v] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of repeated, once daily exposure to either restraint or tail pinch stress on extracellular levels of dopamine in nucleus accumbens and striatum were electrochemically monitored in conscious rats using high-speed chronoamperometry. Acutely, both tail pinch and restraint increased extracellular dopamine levels in both regions. However, the effect of restraint on mesolimbic and, to some extent, also on nigrostriatal dopamine neurotransmission increased progressively with each daily exposure. While increases in extracellular dopamine elicited by tail pinch varied across test days, no reliable daily enhancement of electrochemical responses to this stress were observed in either of the regions studied. Pretreatment with dopamine autoreceptor-specific doses of apomorphine (50 and 100 micrograms/kg s.c.) potently inhibited stress-elicited responses in nucleus accumbens, indicating that dopamine was the primary electroactive species contributing to the electrochemical signal. The results of this study indicate that the magnitude of stress-elicited increases in levels of extracellular dopamine is determined by the number of previous exposures to stress and are consistent with reports of sensitization to the behavioral effects of stress with repeated testing. The study also provides pharmacological data that are consistent with electrophysiological evidence of increased mesolimbic dopamine cell firing during exposure to stress.
Collapse
Affiliation(s)
- M D Doherty
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montréal, Qué., Canada
| | | |
Collapse
|
46
|
|
47
|
Hentall ID, Kim JL, Gollapudi L. Responses of neurons in the ventromedial midbrain to noxious mechanical stimuli. Neurosci Lett 1991; 133:215-8. [PMID: 1816499 DOI: 10.1016/0304-3940(91)90573-c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurons of the ventromedial midbrain in pentobarbital-anesthetized rats were examined by extracellular recording for responses to mechanical stimulation of the skin. Responses were absent from neurons clearly located in the interpeduncular nucleus (IPN) (n = 20), and from 92% of linear raphe (LR) neurons (n = 26). However, 37% of neurons in the ventral tegmental area of Tsai (VTA) (n = 38) and 63% of neurons in the small interfascicular nucleus (IF) (n = 9) were inhibited, often recovering with a delay of 1-2 min. A few cells (n = 4) were weakly excited in these 4 nuclei; none responded to innocuous mechanical stimulation of the skin. It is concluded that noxious cutaneous stimuli will not modify (by feedback) any influence of the IPN on pain perception, but could dampen behavior-reinforcing effects of the VTA and IF.
Collapse
Affiliation(s)
- I D Hentall
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107-1897
| | | | | |
Collapse
|
48
|
Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991; 41:1-24. [PMID: 1676137 DOI: 10.1016/0306-4522(91)90196-u] [Citation(s) in RCA: 1234] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel mechanism for regulating dopamine activity in subcortical sites and its possible relevance to schizophrenia is proposed. This hypothesis is based on the regulation of dopamine release into subcortical regions occurring via two independent mechanisms: (1) transient or phasic dopamine release caused by dopamine neuron firing, and (2) sustained, "background" tonic dopamine release regulated by prefrontal cortical afferents. Behaviorally relevant stimuli are proposed to cause short-term activation of dopamine cell firing to trigger the phasic component of dopamine release. In contrast, tonic dopamine release is proposed to regulate the intensity of the phasic dopamine response through its effect on extracellular dopamine levels. In this way, tonic dopamine release would set the background level of dopamine receptor stimulation (both autoreceptor and postsynaptic) and, through homeostatic mechanisms, the responsivity of the system to dopamine in these sites. In schizophrenics, a prolonged decrease in prefrontal cortical activity is proposed to reduce tonic dopamine release. Over time, this would elicit homeostatic compensations that would increase overall dopamine responsivity and thereby cause subsequent phasic dopamine release to elicit abnormally large responses.
Collapse
Affiliation(s)
- A A Grace
- Department of Behavioral Neuroscience, University of Pittsburgh, PA 15260
| |
Collapse
|
49
|
Kiyatkin EA. Neurobiological background of pain and analgesia: the attempt at revaluation according to position of the organism's adaptive activity. Int J Neurosci 1990; 52:125-88. [PMID: 2269605 DOI: 10.3109/00207459009000520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The most adequate and successful way to understand the essence of any complex psychophysiological phenomenon, including pain, is obviously the study of its origin, its genesis, i.e., its biological background. Based on critical analysis of recent literature and our own electrophysiological, biochemical and pharmacological data we tried to overcome the difficulties and contradictions derived from the traditional reflex approach and analytical orientation in understanding the experimental investigation of pain-related problems and to determine the neurobiological background of pain and analgesia through the notion of the organism's adaptive activity. Interrelations between the notion of pain and other biological and psychological ideas, the place and functional significance of pain and endogenous analgesic mechanisms in the organization, maintenance and regulation of the organism's adaptive activity, characterization of the involvement of endogenous opioid peptides and monoamines in central processes associated with pain and analgesia, the essence and mechanisms of pain-depressing activity of the opiates are the main stages in our neurobiological consideration of the phenomenon of pain and its natural and pharmacological regulation.
Collapse
Affiliation(s)
- E A Kiyatkin
- Department of Neuropharmacology, USSR Academy of Medical Sciences, Moscow
| |
Collapse
|