1
|
Palmiotti A, Berk KA, Koehorst M, Hovingh MV, Pranger AT, van Faassen M, de Boer JF, van der Valk ES, van Rossum EFC, Mulder MT, Kuipers F. Reversal of insulin resistance in people with obesity by lifestyle-induced weight loss does not impact the proportion of circulating 12α-hydroxylated bile acids. Diabetes Obes Metab 2024; 26:4019-4029. [PMID: 38957937 DOI: 10.1111/dom.15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
AIM Bile acids (BAs) are implicated in the pathogenesis of several metabolic syndrome-related diseases, including insulin resistance (IR) and type 2 diabetes (T2D). It has been reported that IR and T2D are associated with an increased ratio of 12α/non-12α-hydroxylated BAs in the circulating BA pool. It is, however, unknown whether the improvement of insulin sensitivity inversely affects BA composition in humans. Therefore, we assessed whether lifestyle-induced weight loss induces changes in BA metabolism in people with obesity, with or without T2D, and if these changes are associated with metabolic parameters. MATERIALS AND METHODS Individual BAs and C4 were quantified by ultra-high-performance liquid chromatography-tandem mass spectrometry in plasma samples collected from two cohorts of people with obesity (OB) and with T2D and obesity (T2D), before and after a lifestyle intervention. RESULTS Lifestyle-induced weight loss improved glycaemic control in both cohorts, with plasma BA concentrations not affected by the lifestyle interventions. The ratio of 12α/non-12α-hydroxylated BAs remained unchanged in OB (p = .178) and even slightly increased upon intervention in T2D (p = .0147). Plasma C4 levels were unaffected in OB participants (p = .20) but significantly reduced in T2D after intervention (p = .0003). There were no significant correlations between the ratio of 12α/non-12α-hydroxylated BAs and glucose, insulin, or homeostatic model assessment-IR, nor in plasma triglycerides, low-density lipoprotein cholesterol, lipoprotein (a) in the T2D cohort. CONCLUSIONS Lifestyle-induced weight loss did improve glycaemic control but did not affect BA concentrations. Improvements in insulin sensitivity were not associated with changes in BA parameters in people with obesity, with or without T2D.
Collapse
Affiliation(s)
- Anna Palmiotti
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kirsten A Berk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Milaine V Hovingh
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alle T Pranger
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eline S van der Valk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Obesity Centre CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Obesity Centre CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department for the Biology of Ageing, European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Jiao L, Gan-Schreier H, Tuma-Kellner S, Stremmel W, Chamulitrat W. Sensitization to autoimmune hepatitis in group VIA calcium-independent phospholipase A2-null mice led to duodenal villous atrophy with apoptosis, goblet cell hyperplasia and leaked bile acids. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1646-57. [PMID: 25957555 DOI: 10.1016/j.bbadis.2015.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Chronic bowel disease can co-exist with severe autoimmune hepatitis (AIH) in an absence of primary sclerosing cholangitis. Genetic background may contribute to this overlap syndrome. We previously have shown that the deficiency of iPLA2β causes an accumulation of hepatocyte apoptosis, and renders susceptibility for acute liver injury. We here tested whether AIH induction in iPLA2β-null mice could result in intestinal injury, and whether bile acid metabolism was altered. Control wild-type (WT) and female iPLA2β-null (iPLA2β(-/-)) mice were intravenously injected with 10mg/kg concanavalinA (ConA) or saline for 24h. ConA treatment of iPLA2β(-/-) mice caused massive liver injury with increased liver enzymes, fibrosis, and necrosis. While not affecting WT mice, ConA treatment of iPLA2β(-/-) mice caused severe duodenal villous atrophy concomitant with increased apoptosis, cell proliferation, globlet cell hyperplasia, and endotoxin leakage into portal vein indicating a disruption of intestinal barrier. With the greater extent than in WT mice, ConA treatment of iPLA2β(-/-) mice increased jejunal expression of innate response cytokines CD14, TNF-α, IL-6, and SOCS3 as well as chemokines CCL2 and the CCL3 receptor CCR5. iPLA2β deficiency in response to ConA-induced AIH caused a significant decrease in hepatic and biliary bile acids, and this was associated with suppression of hepatic Cyp7A1, Ntcp and ABCB11/Bsep and upregulation of intestinal FXR/FGF15 mRNA expression. The suppression of hepatic Ntcp expression together with the loss of intestinal barrier could account for the observed bile acid leakage into peripheral blood. Thus, enteropathy may result from acute AIH in a susceptible host such as iPLA2β deficiency.
Collapse
Affiliation(s)
- Li Jiao
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany; Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Wan MH, Huang W, Latawiec D, Jiang K, Booth DM, Elliott V, Mukherjee R, Xia Q. Review of experimental animal models of biliary acute pancreatitis and recent advances in basic research. HPB (Oxford) 2012; 14:73-81. [PMID: 22221567 PMCID: PMC3277048 DOI: 10.1111/j.1477-2574.2011.00408.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acute pancreatitis (AP) is a formidable disease, which, in severe forms, causes significant mortality. Biliary AP, or gallstone obstruction-associated AP, accounts for 30-50% of all clinical cases of AP. In biliary AP, pancreatic acinar cell (PAC) death (the initiating event in the disease) is believed to occur as acinar cells make contact with bile salts when bile refluxes into the pancreatic duct. Recent advances have unveiled an important receptor responsible for the major function of bile acids on acinar cells, namely, the cell surface G-protein-coupled bile acid receptor-1 (Gpbar1), located in the apical pole of the PAC. High concentrations of bile acids induce cytosolic Ca(2+) overload and inhibit mitochondrial adenosine triphosphate (ATP) production, resulting in cell injury to both PACs and pancreatic ductal epithelial cells. Various bile salts are employed to induce experimental AP, most commonly sodium taurocholate. Recent characterization of taurolithocholic acid 3-sulphate on PACs has led researchers to focus on this bile salt because of its potency in causing acinar cell injury at relatively low, sub-detergent concentrations, which strongly implicates action via the receptor Gpbar1. Improved surgical techniques have enabled the infusion of bile salts into the pancreatic duct to induce experimental biliary AP in mice, which allows the use of these transgenic animals as powerful tools. This review summarizes recent findings using transgenic mice in experimental biliary AP.
Collapse
Affiliation(s)
- Mei H Wan
- Pancreatic Diseases Research Group, Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan UniversityChengdu, China
| | - Wei Huang
- Pancreatic Diseases Research Group, Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan UniversityChengdu, China,Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Diane Latawiec
- Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Kun Jiang
- Pancreatic Diseases Research Group, Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan UniversityChengdu, China
| | - David M Booth
- Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Victoria Elliott
- Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Rajarshi Mukherjee
- Liverpool National Institute of Health Research (NIHR) Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of LiverpoolLiverpool, UK
| | - Qing Xia
- Pancreatic Diseases Research Group, Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan UniversityChengdu, China
| |
Collapse
|
4
|
Voronina SG, Gryshchenko OV, Gerasimenko OV, Green AK, Petersen OH, Tepikin AV. Bile acids induce a cationic current, depolarizing pancreatic acinar cells and increasing the intracellular Na+ concentration. J Biol Chem 2004; 280:1764-70. [PMID: 15536077 DOI: 10.1074/jbc.m410230200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Biliary disease is a major cause of acute pancreatitis. In this study we investigated the electrophysiological effects of bile acids on pancreatic acinar cells. In perforated patch clamp experiments we found that taurolithocholic acid 3-sulfate depolarized pancreatic acinar cells. At low bile acid concentrations this occurred without rise in the cytosolic calcium concentration. Measurements of the intracellular Na(+) concentration with the fluorescent probe Sodium Green revealed a substantial increase upon application of the bile acid. We found that bile acids induce Ca(2+)-dependent and Ca(2+)-independent components of the Na(+) concentration increase. The Ca(2+)-independent component was resolved in conditions when the cytosolic Ca(2+) level was buffered with a high concentration of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). The Ca(2+)-dependent component of intracellular Na(+) increase was clearly seen during stimulation with the calcium-releasing agonist acetylcholine. During acetylcholine-induced Ca(2+) oscillations the recovery of cytosolic Na(+) was much slower than the recovery of Ca(2+), creating a possibility for the summation of Na(+) transients. The bile-induced Ca(2+)-independent current was found to be carried primarily by Na(+) and K(+), with only small Ca(2+) and Cl(-) contributions. Measurable activation of such a cationic current could be produced by a very low concentration of taurolithocholic acid 3-sulfate (10 microm). This bile acid induced a cationic current even when applied in sodium- and bicarbonate-free solution. Other bile acids, taurochenodeoxycholic acid, taurocholic acid, and bile itself also induced cationic currents. Bile-induced depolarization of acinar cells should have a profound effect on acinar fluid secretion and, consequently, on transport of secreted zymogens.
Collapse
Affiliation(s)
- Svetlana G Voronina
- Physiological Laboratory, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | | | | | | | | | | |
Collapse
|
5
|
King L, Barnes S, Glufke U, Henz ME, Kirk M, Merkler KA, Vederas JC, Wilcox BJ, Merkler DJ. The enzymatic formation of novel bile acid primary amides. Arch Biochem Biophys 2000; 374:107-17. [PMID: 10666288 DOI: 10.1006/abbi.1999.1611] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the copper-, ascorbate-, and O(2)-dependent cleavage of C-terminal glycine-extended peptides and N-acylglycines to the corresponding amides and glyoxylate. The alpha-amidated peptides and the long-chain acylamides are hormones in humans and other mammals. Bile acid glycine conjugates are also substrates for PAM leading to the formation of bile acid amides. The (V(MAX)/K(m))(app) values for the bile acid glycine conjugates are comparable to other known PAM substrates. The highest (V(MAX)/K(m))(app) value, 3.1 +/- 0.12 x 10(5) M(-1) s(-1) for 3-sulfolithocholylglycine, is 6.7-fold higher than that for d-Tyr-Val-Gly, a representative peptide substrate. The time course for O(2) consumption and glyoxylate production indicates that bile acid glycine conjugate amidation is a two-step reaction. The bile acid glycine conjugate is first converted to an N-bile acyl-alpha-hydroxyglycine intermediate which is ultimately dealkylated to the bile acid amide and glyoxylate. The enzymatically produced bile acid amides and the carbinolamide intermediates were characterized by mass spectrometry and two-dimensional (1)H-(13)C heteronuclear multiple quantum coherence NMR.
Collapse
Affiliation(s)
- L King
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Belli DC, Roy CC, Fournier LA, Tuchweber B, Giguère R, Yousef IM. The effect of taurine on the cholestatic potential of sulfated lithocholate and its conjugates. LIVER 1991; 11:162-9. [PMID: 1886461 DOI: 10.1111/j.1600-0676.1991.tb00510.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study was aimed at determining whether the protection by taurine of lithocholate-sulfate-induced cholestasis is mediated by conjugation or by direct effect of the amino acid on bile formation. Injection of free and conjugated (glycine and taurine) sulfated lithocholate in guinea pigs significantly reduced the secretion rate of non-sulfated bile acids in bile. There was no decrease in bile flow after the injection of taurine-conjugated sulfated lithocholate, which was completely recovered in bile within 60 min. In contrast, injection of sulfated lithocholate and its glycine conjugate led to a marked decrease in bile flow, and neither one was significantly recovered in bile. In addition, both caused morphological changes in the liver, characterized by the accumulation of cytoplasmic vacuoles with lamellated myelin figures characteristic of phospholipidosis. Pretreatment with taurine (0.5% in drinking water for 3 days) prevented both the drop in bile flow and the histological changes in the liver, suggesting that conjugation with taurine removed the cholestatic potential of sulfated lithocholate. However, since taurine was effective not only in preventing cholestasis induced by the free form of sulfated lithocholate but also against its glycine conjugate, these results suggest that other mechanisms in addition to conjugate must be involved.
Collapse
Affiliation(s)
- D C Belli
- Department of Pediatrics, University of Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Inhibition of glutathione-conjugate secretion from isolated hepatocytes by dipolar bile acids and other organic anions. Biochem J 1991; 274 ( Pt 1):281-6. [PMID: 2001244 PMCID: PMC1149950 DOI: 10.1042/bj2740281] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of a spectrum of organic compounds on the secretion of a model organic anion, dinitrophenylglutathione (GS-DNP), by hepatocytes was tested. Previous experiments have demonstrated that the secretion of GS-DNP from isolated rat hepatocytes is predominantly mediated by a canalicular transport system for this compound. Preincubation of isolated rat hepatocytes with the bile acids cholic acid (C), taurocholic acid (TC), tauroursodeoxycholic acid (TUDC) and glyco- or tauro-lithocholic acid (GLC or TLC) had no effect on the initial efflux rate of GS-DNP. In contrast, the 3-sulphates of GLC (SGLC) and TLC (STLC) did inhibit GS-DNP efflux; half-maximal inhibition with SGLC was reached with 10 microM. The 3-O-glucuronides of both cholate and lithocholate (GlucLC) were even more potent inhibitors of transport; 10 microM-GlucLC inhibited GS-DNP transport by 89%. Other cholephilic organic anions also inhibited GS-DNP secretion, albeit at higher concentrations; at 100 microM, bilirubin ditaurate, an analogue of bilirubin diglucuronide, inhibited transport by 48%. On the other hand, a number of cholephilic cationic and neutral compounds had no effect on GS-DNP efflux. The hepatobiliary secretion of oxidized glutathione (GSSG) was also investigated. In normal isolated perfused rat liver, extensive biliary secretion of GSSG was observed upon intracellular oxidation of reduced glutathione (GSH). GSSG was also actively secreted from isolated normal hepatocytes, and this secretion could be inhibited by 95% by incubation of the cells with 100 microM-SGLC. In contrast, biliary secretion was absent in the isolated perfused liver and in isolated hepatocytes from TR- mutant rats with a hereditary conjugated hyperbilirubinaemia. These results show that the canalicular efflux of GSSG and GS conjugates can be inhibited by a wide variety of polyvalent organic anions, but not by cations, neutral compounds and unianionic bile acids. This suggests that a multispecific organic-anion transporter is responsible for transport of these polyvalent anions, which is in close agreement with the fact that the biliary transport of all these compounds is defective in the mutant TR4 rat.
Collapse
|
8
|
|
9
|
Bijleveld CM, Vonk RJ, Kuipers F, Havinga R, Boverhof R, Koopman BJ, Wolthers BG, Fernandes J. Benign recurrent intrahepatic cholestasis: altered bile acid metabolism. Gastroenterology 1989; 97:427-32. [PMID: 2744357 DOI: 10.1016/0016-5085(89)90079-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Altered bile acid metabolism has been claimed to play a role in the etiology of benign recurrent intrahepatic cholestasis (BRIC). Therefore, we studied bile acid metabolism in detail in 10 patients with this syndrome. Pool sizes of both primary bile acids were estimated simultaneously, using deuterated cholic acid and chenodeoxycholic acid. The pool sizes of cholic acid and chenodeoxycholic acid, expressed in micromoles per kilogram body weight, were significantly contracted in BRIC patients during a cholestasis-free period: 8.0 +/- 4.2 and 11.7 +/- 4.7, respectively, versus 24.1 +/- 11.7 and 22.9 +/- 7.8 in controls. Fractional turnover rates (per day) for cholic acid and chenodeoxycholic acid were increased: 0.70 +/- 0.29 and 0.58 +/- 0.27, respectively, versus 0.29 +/- 0.12 and 0.23 +/- 0.10 in controls. Bile acid pool composition expressed as percentages in BRIC patients was cholic acid 34 +/- 17, chenodeoxycholic acid 38 +/- 9, deoxycholic acid 27 +/- 18, and lithocholic acid 1 +/- 1, with a glycine to taurine conjugation ratio of 6.7 +/- 4.9. Corresponding values for 32 controls were cholic acid 57 +/- 13, chenodeoxycholic acid 29 +/- 9, deoxycholic acid 14 +/- 9, and lithocholic acid less than 1, with a glycine to taurine conjugation ratio of 2.4 +/- 1.3. Fecal bile acid loss, in micromoles per kilogram body weight per day, was 11.2 +/- 9.0 in BRIC patients compared with 2.8 +/- 1.4 in controls. The serum 7 alpha-hydroxycholesterol level (nanomoles per liter) was significantly increased in BRIC patients: 326 +/- 179 versus 171 +/- 90 in controls. These results suggest that in BRIC patients spillover of bile acids into the colon occurs, which leads to increased fecal bile acid loss and a reduced bile acid pool size. Increased serum 7 alpha-hydroxycholesterol is probably indicative of an accelerated bile acid synthesis rate due to increased activity of cholesterol 7 alpha-hydroxylase, the enzyme catalyzing the first step in the major pathway of bile acid synthesis. The results of our study suggest that in BRIC patients a contracted bile acid pool increases the susceptibility of the liver for cholestatic agents.
Collapse
Affiliation(s)
- C M Bijleveld
- Department of Pediatrics, University Hospital, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bijleveld CM, Vonk RJ, Kuipers F, Havinga R, Fernandes J. Benign recurrent intrahepatic cholestasis: a long-term follow-up study of two patients. Hepatology 1989; 9:532-7. [PMID: 2925156 DOI: 10.1002/hep.1840090404] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two brothers with benign recurrent intrahepatic cholestasis were studied over a period of 6 years. During this period, 11 episodes of cholestasis were observed, with a mean duration of 2.6 months (range: 2 weeks to 6 months). Once, both brothers developed cholestasis simultaneously. There was a prevalence for episodes of cholestasis in wintertime. The postprandial rise in serum sulfated glycolithocholic acid was increased in the patients, and the bile acid pool was enriched with secondary bile acids. In periods prior to cholestasis, the urinary 3 alpha OH-bile acid concentration was often elevated (greater than 50 mumoles per liter) without a clear correlation with the clinical prodromata. However, it could not be used as a predictor of cholestasis. In contrast, the postprandial rise in serum 3 alpha OH-bile acids was always grossly elevated in periods just before cholestasis. An increase both in fecal bile acid excretion as well as secondary bile acids in the bile acid pool indicated an increased spillover of bile acids into the large bowel. Cholestyramine administered directly after the first signs of cholestasis appeared to shorten an episode of cholestasis. On the other hand, withdrawal of cholestyramine in a cholestasis-free period may have resulted in an episode of cholestasis. Neither taurine supplementation for 3 and 7 weeks nor calcium phosphate, which binds sulfated bile acids in vitro, for 3 weeks could prevent an episode of cholestasis, although the latter normalized the bile acid pool composition. There is a rationale for a fat-restricted diet and cholestyramine therapy only as maintenance treatment.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C M Bijleveld
- Department of Pediatrics, State University Hospital, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Kuipers F, Derksen JP, Gerding A, Scherphof GL, Vonk RJ. Biliary lipid secretion in the rat. The uncoupling of biliary cholesterol and phospholipid secretion from bile acid secretion by sulfated glycolithocholic acid. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 922:136-44. [PMID: 3676338 DOI: 10.1016/0005-2760(87)90147-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycolithocholic acid and its sulfated derivative are major metabolites of the secondary bile acid lithocholic acid in man. Both compounds are known to induce cholestasis in experimental animals. We compared the effects of these endogenous hepatotoxins on bile production and biliary lipid composition in rats with chronic biliary drainage. The compounds were administered enterally at relatively low rates (5-50% of the rats' endogenous bile acid secretion in these experiments) to simulate enterohepatic circulation. Both compounds were substantially secreted into bile (more than 90% of dose); sulfated glycolithocholic acid unchanged and glycolithocholic acid after hepatic hydroxylation predominantly in the form of glyco-beta-muricholic acid (cf. Kuipers et al. (1986) Am. J. Physiol. 251, G189-G194). Neither glycolithocholic acid nor its sulfated derivative affected the biliary excretion of endogenous bile acids or bile flow in these experiments. In spite of this, phospholipid and cholesterol secretion were significantly reduced by sulfated glycolithocholic acid but were not altered by glycolithocholic acid. Phospholipid and cholesterol secretion rapidly decreased to 25 and 50% of their initial values, respectively, at biliary output rates of sulfated glycolithocholic acid up to 2 mumol/h, and did not further decrease when this output was increased to 6 mumol/h. Small unilamellar liposomes consisting of cholesterol, [Me-14C]choline-labeled phosphatidylcholine, phosphatidylserine and [3H]cholesteryl oleate in a 5:4:1:0.1 molar ratio were employed to label intrahepatic lipid pools. Administration of sulfated glycolithocholic acid slightly reduced bile acid synthesis from [3H]cholesteryl oleate, but significantly reduced the biliary secretion of [14C]phospholipid. Glycolithocholic acid did not affect the hepatic processing of liposomal lipids. It is concluded that sulfated glycolithocholic acid at low doses causes the uncoupling of biliary lipid secretion from that of bile acids, which might represent in initiating event in sulfated glycolithocholic acid hepatotoxicity.
Collapse
Affiliation(s)
- F Kuipers
- Department of Pediatrics, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|