1
|
Kurniawan DA, Leo S, Inamatsu M, Funaoka S, Aihara T, Aiko M, Rei I, Sakura T, Arakawa H, Kato Y, Matsugi T, Esashika K, Shiraki N, Kume S, Shinha K, Kimura H, Nishikawa M, Sakai Y. Gut-liver microphysiological systems revealed potential crosstalk mechanism modulating drug metabolism. PNAS NEXUS 2024; 3:pgae070. [PMID: 38384383 PMCID: PMC10879850 DOI: 10.1093/pnasnexus/pgae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
The small intestine and liver play important role in determining oral drug's fate. Both organs are also interconnected through enterohepatic circulation, which imply there are crosstalk through circulating factors such as signaling molecules or metabolites that may affect drug metabolism. Coculture of hepatocytes and intestinal cells have shown to increase hepatic drug metabolism, yet its crosstalk mechanism is still unclear. In this study, we aim to elucidate such crosstalk by coculturing primary human hepatocytes harvested from chimeric mouse (PXB-cells) and iPSc-derived intestinal cells in a microphysiological systems (MPS). Perfusion and direct oxygenation from the MPS were chosen and confirmed to be suitable features that enhanced PXB-cells albumin secretion, cytochrome P450 (CYP) enzymes activity while also maintaining barrier integrity of iPSc-derived intestine cells. Results from RNA-sequencing showed significant upregulation in gene ontology terms related to fatty acids metabolism in PXB-cells. One of such fatty acids, arachidonic acid, enhanced several CYP enzyme activity in similar manner as coculture. From the current evidences, it is speculated that the release of bile acids from PXB-cells acted as stimuli for iPSc-derived intestine cells to release lipoprotein which was ultimately taken by PXB-cells and enhanced CYP activity.
Collapse
Affiliation(s)
- Dhimas Agung Kurniawan
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Sylvia Leo
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Mutsumi Inamatsu
- PhoenixBio Co. Ltd., Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | | | | | - Mizuno Aiko
- Sumitomo Bakelite Co. Ltd., Tokyo 140-0002, Japan
| | - Inoue Rei
- Sumitomo Bakelite Co. Ltd., Tokyo 140-0002, Japan
| | | | - Hiroshi Arakawa
- Faculty of Pharmacy Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa 920-1192, Japan
| | | | | | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Kenta Shinha
- Micro/Nano Technology Center, Tokai University, Kanagawa 259-1292, Japan
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Kanagawa 259-1292, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Feng B, Pemberton R, Dworakowski W, Ye Z, Zetterberg C, Wang G, Morikawa Y, Kumar S. Evaluation of the Utility of PXB Chimeric Mice for Predicting Human Liver Partitioning of Hepatic Organic Anion-Transporting Polypeptide Transporter Substrates. Drug Metab Dispos 2020; 49:254-264. [PMID: 33376106 DOI: 10.1124/dmd.120.000276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is important to estimate unbound liver concentration for drugs that are substrates of hepatic organic anion-transporting peptide (OATP) transporters with asymmetric distribution into the liver relative to plasma. Herein, we explored the utility of PXB chimeric mice with humanized liver that are highly repopulated with human hepatocytes to predict human hepatic disposition of OATP substrates, including rosuvastatin, pravastatin, pitavastatin, valsartan, and repaglinide. In vitro total uptake clearance and transporter-mediated active uptake clearance in C57 mouse hepatocytes were greater than in PXB chimeric mouse hepatocytes for rosuvastatin, pravastatin, pitavastatin, and valsartan. Consistent with in vitro uptake data, enhanced hepatic uptake and resulting total systemic clearance were observed with the above four compounds in severely compromised immune-deficient (SCID) control mice compared with the PXB chimeric mice, which suggest that mouse has a stronger transporter-mediated hepatic uptake than human. In vivo liver-to-plasma Kpuu from PXB chimeric and SCID control mice were also compared, and rosuvastatin and pravastatin Kpuu in SCID mice were more than 10-fold higher than that in PXB chimeric mice, whereas pitavastatin, valsartan, and repaglinide Kpuu in SCID mice were comparable with Kpuu in PXB chimeric mice. Finally, PXB chimeric mouse liver-to-plasma Kpuu values were compared with the reported human Kpuu, and a good correlation was observed as the PXB Kpuu vales were within 3-fold of human Kpuu Our results indicate that PXB mice could be a useful tool to delineate hepatic uptake and enable prediction of human liver-to-plasma Kpuu of hepatic uptake transporter substrates. SIGNIFICANCE STATEMENT: We evaluated PXB mouse with humanized liver for its ability to predict human liver disposition of five organic anion-transporting polypeptide transporter substrates. Both in vitro and in vivo data suggest that mouse liver has a stronger transporter-mediated hepatic uptake than the humanized liver in PXB mouse. More importantly, PXB liver-to-plasma unbound partition coefficient (Kpuu) values were compared with the reported human Kpuu, and a good correlation was observed. PXB mice could be a useful tool to project human liver-to-plasma Kpuu of hepatic uptake transporter substrates.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Wojciech Dworakowski
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Zhengqi Ye
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Guanyu Wang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| |
Collapse
|
3
|
Kim Y, Jo JJ, Cho P, Shrestha R, Kim KM, Ki SH, Song KS, Liu KH, Song IS, Kim JH, Lee JM, Lee S. Characterization of red ginseng-drug interaction by CYP3A activity increased in high dose administration in mice. Biopharm Drug Dispos 2020; 41:295-306. [PMID: 32557706 DOI: 10.1002/bdd.2246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/08/2022]
Abstract
Ginseng (Panax ginseng Meyer) is a popular traditional herbal medicine used worldwide. Patients often take ginseng preparations with other medicines where the ginseng dose could exceed the recommended dose during long-term administration. However, ginseng-drug interactions at high doses of ginseng are poorly understood. This study showed the possibility of herb-drug interactions between the Korean red ginseng (KRG) extract and cytochrome P450 (CYP) substrates in higher administration in mice. The CYP activities were determined in vivo after oral administration of KRG extract doses of 0.5, 1.0, and 2.0 g/kg for 2 or 4 weeks by monitoring the concentration of five CYP substrates/metabolites in the blood. The area under the curve for OH-midazolam/midazolam catalysed by CYP3A was increased significantly by the administration of 2.0 g/kg KRG extract for 2 and 4 weeks. CYP3A-catalysed midazolam 1'-hydroxylation also increased significantly in a dose- and time-dependent manner in the S9 fraction of mouse liver which was not related to induction by transcription. Whereas CYP2D-catalysed dextromethorphan O-deethylation decreased in a dose- and time-dependent manner in vivo. In conclusion, interactions were observed between KRG extract and CYP2D and CYP3A substrates at subchronic-high doses of KRG administration in mice.
Collapse
Affiliation(s)
- Younah Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Jae Jo
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Piljoung Cho
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Riya Shrestha
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Kyung-Sik Song
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Im-Sook Song
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
5
|
A Semi-Physiologically Based Pharmacokinetic Model Describing the Altered Metabolism of Midazolam Due to Inflammation in Mice. Pharm Res 2018; 35:162. [PMID: 29931580 DOI: 10.1007/s11095-018-2447-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate influence of inflammation on metabolism and pharmacokinetics (PK) of midazolam (MDZ) and construct a semi-physiologically based pharmacokinetic (PBPK) model to predict PK in mice with inflammatory disease. METHODS Glucose-6-phosphate isomerase (GPI)-mediated inflammation was used as a preclinical model of arthritis in DBA/1 mice. CYP3A substrate MDZ was selected to study changes in metabolism and PK during the inflammation. The semi-PBPK model was constructed using mouse physiological parameters, liver microsome metabolism, and healthy animal PK data. In addition, serum cytokine, and liver-CYP (cytochrome P450 enzymes) mRNA levels were examined. RESULTS The in vitro metabolite formation rate was suppressed in liver microsomes prepared from the GPI-treated mice as compared to the healthy mice. Further, clearance of MDZ was reduced during inflammation as compared to the healthy group. Finally, the semi-PBPK model was used to predict PK of MDZ after GPI-mediated inflammation. IL-6 and TNF-α levels were elevated and liver-cyp3a11 mRNA was reduced after GPI treatment. CONCLUSION The semi-PBPK model successfully predicted PK parameters of MDZ in the disease state. The model may be applied to predict PK of other drugs under disease conditions using healthy animal PK and liver microsomal data as inputs.
Collapse
|
6
|
Uchida M, Tajima Y, Kakuni M, Kageyama Y, Okada T, Sakurada E, Tateno C, Hayashi R. Organic Anion–Transporting Polypeptide (OATP)–Mediated Drug-Drug Interaction Study between Rosuvastatin and Cyclosporine A in Chimeric Mice with Humanized Liver. Drug Metab Dispos 2017; 46:11-19. [DOI: 10.1124/dmd.117.075994] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/13/2017] [Indexed: 01/13/2023] Open
|
7
|
Lipiski M, Arras M, Jirkof P, Cesarovic N. Premedication with fentanyl-midazolam improves sevoflurane anesthesia for surgical intervention in laboratory mice. Exp Biol Med (Maywood) 2017; 242:1287-1298. [PMID: 28474988 PMCID: PMC5476341 DOI: 10.1177/1535370217707730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/11/2017] [Indexed: 01/04/2023] Open
Abstract
Balanced anesthesia allows for a reduced dosage of each component, while inducing general anesthesia of sufficient depth with potentially fewer side effects. Here, we compare two anesthetic protocols combining sevoflurane anesthesia with pre-medication (ketamine [K] or fentanyl-midazolam [FM]) to a sevoflurane monoanesthesia (S) concerning their ability to provide reliable anesthesia suitable for moderate surgery in laboratory mice. Twenty-one female C57BL/6J mice assigned randomly to one of three protocols underwent a 50-min anesthesia and a sham embryo transfer. Heart rate and core body temperature were continuously recorded by telemetry intra-operatively and for three days pre- and three days post-surgery. Intra-operative respiratory rate was determined by counting thorax movements. Body weight, food, and water intake were measured daily for three days pre- and three days post-surgery. The heart rate in the KS group remained at baseline level throughout the 50-min of anesthesia and surgery. FMS caused a lower heart rate and S alone caused a higher heart rate compared to baseline values. Intra-operative body temperature was at baseline levels in all groups. A decreased respiratory rate was observed in all groups compared to baseline values obtained from resting mice of the same strain, sex and age-distribution. Surgical stimuli induced no significant changes in heart rate and respiratory rate in the KS or FMS group but significant respiratory alteration in the S group compared to baseline values obtained 10 s before applying the stimulus. Post-operative heart rate was above baseline values in all groups; with a significant deviation in the S group. There were no changes in body weight, food, and water intake. In summary, FMS was superior to KS and S for moderate surgery in laboratory mice resulting in less inter-individual variability in response to painful stimuli. Fentanyl and midazolam reduced the depressant effect of sevoflurane on the respiratory rate and the negative post-anesthetic effects on the heart rate. Impact statement With approximately 65 million animals used per year mice are still the most prevalent laboratory mammal species worldwide. In course of biomedical research projects approximately 40% of mice will undergo one or more short or long-term anesthesia. Sufficient anesthetic depth, cardiovascular stability, adequate analgesia, and short recovery times are essential requirements of anesthetic protocols to meet animal welfare. Anesthesia in mice and rats are only to be performed by personnel with appropriate basic training and experience. However, more and more adapted and advanced anesthetic protocols, required to answer very specific scientific questions, often exceed the skills acquired through basic training and present a major challenge to researchers. It is therefore of great importance to further develop and evaluate safe and reliable anesthetic protocols as presented in this study to provide new perspectives on this challenging problem.
Collapse
Affiliation(s)
- Miriam Lipiski
- Division of Surgical Research, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Margarete Arras
- Division of Surgical Research, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Paulin Jirkof
- Division of Surgical Research, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
8
|
Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today 2015; 21:250-63. [PMID: 26360054 DOI: 10.1016/j.drudis.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.
Collapse
Affiliation(s)
| | - Ian D Wilson
- Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
9
|
Zhuang X, Wang X, Wang J, Li J, Zheng A, Lu C, Zhang Z. Comparative pharmacokinetics and bioavailability of intranasal and rectal midazolam formulations relative to buccal administration in rabbits. RSC Adv 2015. [DOI: 10.1039/c5ra10549h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rectal and intranasal formulations under current development demonstrated comparative potential for administering midazolam in treating seizures in a medical emergency service.
Collapse
Affiliation(s)
- XiaoMei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing 100850
- China
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
| | - XiaoYing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing 100850
- China
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
| | - Juan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing 100850
- China
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
| | - JingLai Li
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing 100850
- China
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
| | - AiPing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing 100850
- China
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
| | - Chuang Lu
- Millennium Pharmaceuticals
- Takeda
- Cambridge
- USA
| | - ZhenQing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing 100850
- China
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
| |
Collapse
|
10
|
Grimsley A, Foster A, Gallagher R, Hutchison M, Lundqvist A, Pickup K, Wilson ID, Samuelsson K. A comparison of the metabolism of midazolam in C57BL/6J and hepatic reductase null (HRN) mice. Biochem Pharmacol 2014; 92:701-11. [DOI: 10.1016/j.bcp.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 01/10/2023]
|
11
|
Gallagher R, Dillon L, Grimsley A, Murphy J, Samuelsson K, Douce D. The application of a new microfluidic device for the simultaneous identification and quantitation of midazolam metabolites obtained from a single micro-litre of chimeric mice blood. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1293-1302. [PMID: 24760570 DOI: 10.1002/rcm.6902] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/12/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Improvements in the design of low-flow highly sensitive chromatographic ion source interfaces allow the detection and characterisation of drugs and metabolites from smaller sample volumes. This in turn improves the ethical treatment of animals by reducing both the number of animals needed and the blood sampling volumes required. METHODS A new microfluidic device combining an ultra-high pressure liquid chromatography (UHPLC) analytical column with a nano-flow electrospray source is described. All microfluidic, gas and electrical connections are automatically engaged when the ceramic microfluidic device is inserted into the source enclosure. The system was used in conjunction with a hybrid quadrupole-time-of-flight mass spectrometer. RESULTS The improved sensitivity of the system is highlighted in its application in the quantification and qualification of midazolam and its metabolites detected in whole blood from chimeric and wild-type mice. Metabolite identification and full pharmacokinetic profiles were obtained from a single micro-litre of whole blood at each sampling time and significant pharmacokinetic differences were observed between the two types of mice. CONCLUSIONS Improvements in the enhanced ionisation efficiency from the microfluidic device in conjunction with nanoUHPLC/MS was sufficiently sensitive for the identification and quantification of midazolam metabolites from a single micro-litre of whole blood. Detection of metabolites not previously recorded from the chimeric mouse in vivo model was made.
Collapse
Affiliation(s)
- Richard Gallagher
- Oncology iMed DMPK, AstraZeneca UK Ltd., Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | | | | | | | | | | |
Collapse
|
12
|
Kitamura S, Sugihara K. Current status of prediction of drug disposition and toxicity in humans using chimeric mice with humanized liver. Xenobiotica 2013; 44:123-34. [PMID: 24329499 DOI: 10.3109/00498254.2013.868062] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Human-chimeric mice with humanized liver have been constructed by transplantation of human hepatocytes into several types of mice having genetic modifications that injure endogenous liver cells. Here, we focus on liver urokinase-type plasminogen activator-transgenic severe combined immunodeficiency (uPA/SCID) mice, which are the most widely used human-chimeric mice. Studies so far indicate that drug metabolism, drug transport, pharmacological effects and toxicological action in these mice are broadly similar to those in humans. 2. Expression of various drug-metabolizing enzymes is known to be different between humans and rodents. However, the expression pattern of cytochrome P450, aldehyde oxidase and phase II enzymes in the liver of human-chimeric mice resembles that in humans, not that in the host mice. 3. Metabolism of various drugs, including S-warfarin, zaleplon, ibuprofen, naproxen, coumarin, troglitazone and midazolam, in human-chimeric mice is mediated by human drug-metabolizing enzymes, not by host mouse enzymes, and thus resembles that in humans. 4. Pharmacological and toxicological effects of various drugs in human-chimeric mice are also similar to those in humans. 5. The current consensus is that chimeric mice with humanized liver are useful to predict drug metabolism catalyzed by cytochrome P450, aldehyde oxidase and phase II enzymes in humans in vivo and in vitro. Some remaining issues are discussed in this review.
Collapse
Affiliation(s)
- Shigeyuki Kitamura
- Department of Environmental Science, Nihon Pharmaceutical University , Saitama , Japan and
| | | |
Collapse
|
13
|
Foster JR, Lund G, Sapelnikova S, Tyrrell DL, Kneteman NM. Chimeric rodents with humanized liver: bridging the preclinical/clinical trial gap in ADME/toxicity studies. Xenobiotica 2013; 44:109-22. [DOI: 10.3109/00498254.2013.867553] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Sanoh S, Ohta S. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics. Biopharm Drug Dispos 2013; 35:71-86. [DOI: 10.1002/bdd.1864] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/09/2013] [Accepted: 09/21/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| |
Collapse
|
15
|
Grimsley A, Gallagher R, Hutchison M, Pickup K, Wilson ID, Samuelsson K. Drug-drug interactions and metabolism in cytochrome P450 2C knockout mice: application to troleandomycin and midazolam. Biochem Pharmacol 2013; 86:529-38. [PMID: 23732297 DOI: 10.1016/j.bcp.2013.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Drug-drug interactions (DDIs) may cause serious drug toxicity and delay development of candidate drugs. Screening using human liver microsomes and hepatocytes can help predict DDIs but do not always provide the degree of certainty required for confident progression of a candidate drug. Thus a suitable in vivo test system could be of great value. Here a Cyp2c knockout (KO) mouse was investigated for studying DDIs using midazolam (MDZ) a standard human CYP3A4 substrate and troleandomycin (TAO) a potent human CYP3A4 inhibitor. Pharmacokinetics (PK) and biotransformation of MDZ were investigated following dosing to Cyp2c KO and wild type mice before and after TAO treatment. The noteworthy differences in the metabolism of MDZ in Cyp2c KO compared to wild type mice confirms the important role that Cyp2c enzymes play in the murine metabolism of MDZ in vivo. The impact of Cyp3a inhibition produced a further increase in circulating MDZ concentrations in all individuals from both strains of mice though the impact of the elimination of the Cyp2c pathway in the KO mice on the AUC was less than perhaps expected. We have shown that TAO produces an increase in the MDZ concentration and a reduction in the 1'hydroxymidazolam/midazolam formation ratio but the expected difference in the magnitude of this effect between the wild type and the Cyp2c KO mice was not seen. The magnitude of the TAO effect was also smaller than is reported in humans. Hence further work is required before this animal model could be used to predict clinical interactions.
Collapse
Affiliation(s)
- Aidan Grimsley
- Global DMPK, AstraZeneca UK Ltd., Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | | | | | | | | | | |
Collapse
|
16
|
Tanoue C, Sugihara K, Uramaru N, Tayama Y, Watanabe Y, Horie T, Ohta S, Kitamura S. Prediction of human metabolism of the sedative-hypnotic zaleplon using chimeric mice transplanted with human hepatocytes. Xenobiotica 2013; 43:956-62. [DOI: 10.3109/00498254.2013.788232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|