1
|
Shirpoor A, Naderi R. Nandrolone decanoate induced kidney injury through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB pathway: The effect of moderate exercise. Steroids 2024; 211:109503. [PMID: 39208922 DOI: 10.1016/j.steroids.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Anabolic-androgenic steroids (AAS) abuse is linked to some abnormalities in several tissues including the kidney. However, the precise molecular mediators involved in AAS-induced kidney disorder remain elusive. The main objective of the present study was to investigate the effect of Nandrolone decanoate on kidney injury alone or in combination with moderate exercise and its related mechanisms. Thirty-two male Wistar rats were subdivided randomly into four groups. control (Con), Nandrolone (10 mg/kg)(N), Exercise (Exe), Nandrolone + Exercise (N+Exe). RESULTS: After 6 weeks, nandrolone treatment led to a significant increase in functional parameters such as serum cystatin c, urea, creatinine, albuminuria and Albumin/ creatinine ratio indicating kidney dysfunction. Moreover, nandrolone treatment increased vacuolization, focal inflammation, hemorragia, cast formation fibrosis in the renal tissue of rats. miRNA-146a increased in kidney tissue after nandrolone exposure by using RT-PCR which may be considered idealtheranomiRNAcandidates for diagnosis and treatment. Western blotting indicated that IRAK1, TRAF6, TNF-α, NF-κB, iNOS and TGF-β protein expressions were considerably elevated in the kidneys of nandrolone treated rats. Moderate exercise could alleviate the renal dysfunction, histological abnormalities and aforementioned proteins. Our findings suggested that nandrolone consumption can cause damage to kidney tissue probably through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB and TGF-β pathway. These results provide future lines of research in the identification of theranoMiRNAs related to nandrolone treatment, which can be ameliorated by moderate exercise.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Wang G, Ma X, Huang W, Wang S, Lou A, Wang J, Tu Y, Cui W, Zhou W, Zhang W, Li Y, Geng S, Meng Y, Li X. Macrophage biomimetic nanoparticle-targeted functional extracellular vesicle micro-RNAs revealed via multiomics analysis alleviate sepsis-induced acute lung injury. J Nanobiotechnology 2024; 22:362. [PMID: 38910259 PMCID: PMC11194988 DOI: 10.1186/s12951-024-02597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.
Collapse
Affiliation(s)
- Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiaoxin Ma
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Weichang Huang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Wanfu Cui
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangmei Zhou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenyong Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command, Southern Medical University, Guangzhou 510515, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Chen Z, Zhang J, Pan Y, Hao Z, Li S. Extracellular vesicles as carriers for noncoding RNA-based regulation of macrophage/microglia polarization: an emerging candidate regulator for lung and traumatic brain injuries. Front Immunol 2024; 15:1343364. [PMID: 38558799 PMCID: PMC10978530 DOI: 10.3389/fimmu.2024.1343364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Jingang Zhang
- Department of Orthopedic, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhongnan Hao
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Shuang Li
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| |
Collapse
|
4
|
Anciuc-Crauciuc M, Cucerea MC, Tripon F, Crauciuc GA, Bănescu CV. Descriptive and Functional Genomics in Neonatal Respiratory Distress Syndrome: From Lung Development to Targeted Therapies. Int J Mol Sci 2024; 25:649. [PMID: 38203821 PMCID: PMC10780183 DOI: 10.3390/ijms25010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.
Collapse
Affiliation(s)
- Mădălina Anciuc-Crauciuc
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Manuela Camelia Cucerea
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
| | - George-Andrei Crauciuc
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| | - Claudia Violeta Bănescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| |
Collapse
|
5
|
Kumar M, Sahoo GC, Das VNR, Singh K, Pandey K. A Review of miRNA Regulation in Japanese Encephalitis (JEV) Virus Infection. Curr Pharm Biotechnol 2024; 25:521-533. [PMID: 37888811 DOI: 10.2174/0113892010241606231003102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023]
Abstract
Japanese encephalitis (JE) is a mosquito-borne disease that causes neuronal damage and inflammation of microglia, and in severe cases, it can be fatal. JE infection can resist cellular immune responses and survive in host cells. Japanese encephalitis virus (JEV) infects macrophages and peripheral blood lymphocytes. In addition to regulating biological signaling pathways, microRNAs in cells also influence virus-host interactions. Under certain circumstances, viruses can change microRNA production. These changes affect the replication and spread of the virus. Host miRNAs can contain viral pathogenicity by downregulating the antiviral immune response pathways. Simultaneous profiling of miRNA and messenger RNA (mRNA) could help us detect pathogenic factors, and dual RNA detection is possible. This work highlights important miRNAs involved in human JE infection. In this study, we have shown the important miRNAs that play significant roles in JEV infection. We found that during JEV infection, miRNA-155, miRNA-29b, miRNA-15b, miRNA-146a, miRNA-125b-5p, miRNA-30la, miRNA-19b-3p, and miRNA-124, cause upregulation of human genes whereas miRNA-432, miRNA-370, miRNA- 33a-5p, and miRNA-466d-3p are responsible for downregulation of human genes respectively. Further, these miRNAs are also responsible for the inflammatory effects. Although several other miRNAs critical to the JEV life cycle are yet unknown, there is currently no evidence for the role of miRNAs in persistence.
Collapse
Affiliation(s)
- Maneesh Kumar
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Ganesh Chandra Sahoo
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Vidya Nand Rabi Das
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Kamal Singh
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| |
Collapse
|
6
|
Tian Y, Wang Y, Wang Z. CIRCESPL1 SILENCING PROTECTS AGAINST LPS-INDUCED LUNG FIBROBLAST DYSFUNCTION PARTLY BY TARGETING THE MIR-146B-3P/TRAF1 AXIS IN PNEUMONIA. Shock 2024; 61:157-164. [PMID: 38010117 DOI: 10.1097/shk.0000000000002268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Background: Neonatal pneumonia is a common disease in the neonatal period with high mortality. The present work concentrated on the role and mechanism of circular RNA extra spindle pole bodies like 1, separase (circESPL1) in LPS-induced dysfunction of lung fibroblasts. Methods: Reverse transcription-quantitative polymerase chain reaction and Western blot assay were conducted to analyze RNA and protein expression, respectively. Cell viability, proliferation, apoptosis, and inflammation were assessed by Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to verify the intermolecular interactions among circESPL1, miR-146b-3p, and TRAF1. Results: CircESPL1 expression was upregulated in the serum samples of pneumonia patients and LPS-induced lung fibroblasts. CircESPL1 silencing protected lung fibroblasts against LPS-induced dysfunction. CircESPL1 bound to microRNA-146b-3p (miR-146b-3p) in lung fibroblasts. CircESPL1 knockdown-mediated protective effects on LPS-induced lung fibroblasts were largely reversed by the silence of miR-146b-3p. miR-146b-3p directly interacted with the 3' untranslated region of TNF receptor associated factor 1 (TRAF1), and TRAF1 expression was regulated by the circESPL1/miR-146b-3p axis in lung fibroblasts. TRAF1 overexpression largely reversed miR-146b-3p accumulation-mediated protective effects on LPS-induced lung fibroblasts. Conclusion: CircESPL1 knockdown protected lung fibroblasts from LPS-induced injury partly by targeting the miR-146b-3p/TRAF1 axis.
Collapse
Affiliation(s)
- Yubo Tian
- Department of Child Health, Women's and Children's Hospital, Zhumadian Central Hospital, Zhumadian, China
| | | | | |
Collapse
|
7
|
Khayati S, Dehnavi S, Sadeghi M, Tavakol Afshari J, Esmaeili SA, Mohammadi M. The potential role of miRNA in regulating macrophage polarization. Heliyon 2023; 9:e21615. [PMID: 38027572 PMCID: PMC10665754 DOI: 10.1016/j.heliyon.2023.e21615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophage polarization is a dynamic process determining the outcome of various physiological and pathological situations through inducing pro-inflammatory responses or resolving inflammation via exerting anti-inflammatory effects. The miRNAs are epigenetic regulators of different biologic pathways that target transcription factors and signaling molecules to promote macrophage phenotype transition and regulate immune responses. Modulating the macrophage activation, differentiation, and polarization by miRNAs is crucial for immune responses in response to microenvironmental signals and under various physiological and pathological conditions. In term of clinical significance, regulating macrophage polarization via miRNAs could be utilized for inflammation control. Also, understanding the role of miRNAs in macrophage polarization can provide insights into diagnostic strategies associated with dysregulated miRNAs and for developing macrophage-centered therapeutic methods. In this case, targeting miRNAs to further regulate of macrophage polarization may become an efficient strategy for treating immune-associated disorders. The current review investigated and categorized various miRNAs directly or indirectly involved in macrophage polarization by targeting different transcription factors and signaling pathways. In addition, prospects for regulating macrophage polarization via miRNA as a therapeutic choice that could be implicated in various pathological conditions, including cancer or inflammation-mediated injuries, were discussed.
Collapse
Affiliation(s)
- Shaho Khayati
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Wang Y, Zou M, Zhao Y, Kabir MA, Peng X. Exosomal microRNA/miRNA Dysregulation in Respiratory Diseases: From Mycoplasma-Induced Respiratory Disease to COVID-19 and Beyond. Cells 2023; 12:2421. [PMID: 37830635 PMCID: PMC10571955 DOI: 10.3390/cells12192421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Respiratory diseases represent a significant economic and health burden worldwide, affecting millions of individuals each year in both human and animal populations. MicroRNAs (miRNAs) play crucial roles in gene expression regulation and are involved in various physiological and pathological processes. Exosomal miRNAs and cellular miRNAs have been identified as key regulators of several immune respiratory diseases, such as chronic respiratory diseases (CRD) caused by Mycoplasma gallisepticum (MG), Mycoplasma pneumoniae pneumonia (MMP) caused by the bacterium Mycoplasma pneumoniae, coronavirus disease 2019 (COVID-19), chronic obstructive pulmonary disease (COPD), asthma, and acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Consequently, miRNAs seem to have the potential to serve as diagnostic biomarkers and therapeutic targets in respiratory diseases. In this review, we summarize the current understanding of the functional roles of miRNAs in the above several respiratory diseases and discuss the potential use of miRNAs as stable diagnostic biomarkers and therapeutic targets for several immune respiratory diseases, focusing on the identification of differentially expressed miRNAs and their targeting of various signaling pathways implicated in disease pathogenesis. Despite the progress made, unanswered questions and future research directions are discussed to facilitate personalized and targeted therapies for patients with these debilitating conditions.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.W.); (M.Z.); (Y.Z.); (M.A.K.)
| |
Collapse
|
9
|
Zhang J, Tian W, Wang F, Liu J, Huang J, Duangmano S, Liu H, Liu M, Zhang Z, Jiang X. Advancements in understanding the role of microRnas in regulating macrophage polarization during acute lung injury. Cell Cycle 2023; 22:1694-1712. [PMID: 37415386 PMCID: PMC10446815 DOI: 10.1080/15384101.2023.2230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical and life-threatening illness that causes severe dyspnea, and respiratory distress and is often caused by a variety of direct or indirect factors that damage the alveolar epithelium and capillary endothelial cells, leading to inflammation factors and macrophage infiltration. Macrophages play a crucial role in the progression of ALI/ARDS, exhibiting different polarized forms at different stages of the disease that control the disease outcome. MicroRNAs (miRNA) are conserved, endogenous, short non-coding RNAs composed of 18-25 nucleotides that serve as potential markers for many diseases and are involved in various biological processes, including cell proliferation, apoptosis, and differentiation. In this review, we provide a brief overview of miRNA expression in ALI/ARDS and summarize recent research on the mechanism and pathways by which miRNAs respond to macrophage polarization, inflammation, and apoptosis. The characteristics of each pathway are also summarized to provide a comprehensive understanding of the role of miRNAs in regulating macrophage polarization during ALI/ARDS.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wanyi Tian
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiao Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiang Huang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Luzhou People’s Hospital, Luzhou, China
| |
Collapse
|
10
|
Bukreieva T, Kyryk V, Nikulina V, Svitina H, Vega A, Chybisov O, Shablii I, Mankovska O, Lobyntseva G, Nemtinov P, Skrypkina I, Shablii V. Dynamic changes in radiological parameters, immune cells, selected miRNAs, and cytokine levels in peripheral blood of patients with severe COVID‑19. Biomed Rep 2023; 18:33. [PMID: 37034572 PMCID: PMC10074022 DOI: 10.3892/br.2023.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
The present study aimed to investigate the dynamic changes in peripheral blood leucocyte subpopulations, cytokine and miRNA levels, and changes in computed tomography (CT) scores in patients with severe coronavirus disease 2019 (COVID-19) (n=14) and age-matched non-COVID-19 volunteers (n=17), which were included as a reference control group. All data were collected on the day of patient admission (day 0) and on the 7th, 14th and 28th days of follow-up while CT of the lungs was performed on weeks 2, 8, 24 and 48. On day 0, lymphopenia and leucopenia were detected in most patients with COVID-19, as well as an increase in the percentage of banded neutrophils, B cells, and CD4+ Treg cells, and a decrease in the content of PD-1low T cells, classical, plasmacytoid, and regulatory dendritic cells. On day 7, the percentage of T and natural killer cells decreased with a concurrent increase in B cells, but returned to the initial level after treatment discharge. The content of different T and dendritic cell subsets among CD45+ cells increased during two weeks and remained elevated, suggesting the activation of an adaptive immune response. The increase of PD-1-positive subpopulations of T and non-T cells and regulatory CD4 T cells in patients with COVID-19 during the observation period suggests the development of an inflammation control mechanism. The levels of interferon γ-induced protein 10 (IP-10), tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 decreased on day 7, but increased again on days 14 and 28. C-reactive protein and granulocyte colony-stimulating factor (G-CSF) levels decreased gradually throughout the observation period. The relative expression levels of microRNA (miR)-21-5p, miR-221-3p, miR-27a-3p, miR-146a-5p, miR-133a-3p, and miR-126-3p were significantly higher at the beginning of hospitalization compared to non-COVID-19 volunteers. The plasma levels of all miRs, except for miR-126-3p, normalized within one week of treatment. At week 48, CT scores were most prominently correlated with the content of lymphocytes, senescent memory T cells, CD127+ T cells and CD57+ T cells, and increased concentrations of G-CSF, IP-10, and macrophage inflammatory protein-1α.
Collapse
Affiliation(s)
- Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Vitalii Kyryk
- Laboratory of Cell and Tissue Cultures, Department of Cell and Tissue Technologies, State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
- Laboratory of Pathophysiology and Immunology, D.F. Chebotarev State Institute of Gerontology of The National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Viktoriia Nikulina
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Hanna Svitina
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Alyona Vega
- Department of Infectious Diseases, Shupyk National Healthcare University of Ukraine, Kyiv 04112, Ukraine
| | - Oleksii Chybisov
- Endoscopic Unit, CNE Kyiv City Clinical Hospital No. 4, Kyiv 03110, Ukraine
| | - Iuliia Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Oksana Mankovska
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Galyna Lobyntseva
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Petro Nemtinov
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Inessa Skrypkina
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| |
Collapse
|
11
|
Bukreieva T, Svitina H, Nikulina V, Vega A, Chybisov O, Shablii I, Ustymenko A, Nemtinov P, Lobyntseva G, Skrypkina I, Shablii V. Treatment of Acute Respiratory Distress Syndrome Caused by COVID-19 with Human Umbilical Cord Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24054435. [PMID: 36901868 PMCID: PMC10003440 DOI: 10.3390/ijms24054435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
This study aimed to identify the impact of mesenchymal stem cell transplantation on the safety and clinical outcomes of patients with severe COVID-19. This research focused on how lung functional status, miRNA, and cytokine levels changed following mesenchymal stem cell transplantation in patients with severe COVID-19 pneumonia and their correlation with fibrotic changes in the lung. This study involved 15 patients following conventional anti-viral treatment (Control group) and 13 patients after three consecutive doses of combined treatment with MSC transplantation (MCS group). ELISA was used to measure cytokine levels, real-time qPCR for miRNA expression, and lung computed tomography (CT) imaging to grade fibrosis. Data were collected on the day of patient admission (day 0) and on the 7th, 14th, and 28th days of follow-up. A lung CT assay was performed on weeks 2, 8, 24, and 48 after the beginning of hospitalization. The relationship between levels of biomarkers in peripheral blood and lung function parameters was investigated using correlation analysis. We confirmed that triple MSC transplantation in individuals with severe COVID-19 was safe and did not cause severe adverse reactions. The total score of lung CT between patients from the Control and MSC groups did not differ significantly on weeks 2, 8, and 24 after the beginning of hospitalization. However, on week 48, the CT total score was 12 times lower in patients in the MSC group (p ≤ 0.05) compared to the Control group. In the MSC group, this parameter gradually decreased from week 2 to week 48 of observation, whereas in the Control group, a significant drop was observed up to week 24 and remained unchanged afterward. In our study, MSC therapy improved lymphocyte recovery. The percentage of banded neutrophils in the MSC group was significantly lower in comparison with control patients on day 14. Inflammatory markers such as ESR and CRP decreased more rapidly in the MSC group in comparison to the Control group. The plasma levels of surfactant D, a marker of alveocyte type II damage, decreased after MSC transplantation for four weeks in contrast to patients in the Control group, in whom slight elevations were observed. We first showed that MSC transplantation in severe COVID-19 patients led to the elevation of the plasma levels of IP-10, MIP-1α, G-CSF, and IL-10. However, the plasma levels of inflammatory markers such as IL-6, MCP-1, and RAGE did not differ between groups. MSC transplantation had no impact on the relative expression levels of miR-146a, miR-27a, miR-126, miR-221, miR-21, miR-133, miR-92a-3p, miR-124, and miR-424. In vitro, UC-MSC exhibited an immunomodulatory impact on PBMC, increasing neutrophil activation, phagocytosis, and leukocyte movement, activating early T cell markers, and decreasing effector and senescent effector T cell maturation.
Collapse
Affiliation(s)
- Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Hanna Svitina
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Viktoriia Nikulina
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Alyona Vega
- Department of Infectious Diseases, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine
| | - Oleksii Chybisov
- Endoscopic Unit, CNE Kyiv City Clinical Hospital # 4, 03110 Kyiv, Ukraine
| | - Iuliia Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
| | - Alina Ustymenko
- Laboratory of Cell and Tissue Cultures, Department of Cell and Tissue Technologies, Institute of Genetic and Regenerative Medicine, State Institution, 04114 Kyiv, Ukraine
- National Scientific Center “Institute of Cardiology, Clinical and Regenerative Medicine n.a. M. D. Strazhesko”, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine
- Laboratory of Pathophysiology and Immunology, D. F. Chebotarev State Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 04114 Kyiv, Ukraine
| | - Petro Nemtinov
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
- Coordination Center for Transplantation of Organs, Tissues and Cells, Ministry of Health of Ukraine, 01021 Kyiv, Ukraine
| | - Galyna Lobyntseva
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Inessa Skrypkina
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Correspondence: (I.S.); (V.S.)
| | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
- Correspondence: (I.S.); (V.S.)
| |
Collapse
|
12
|
Ho D, Lynd TO, Jun C, Shin J, Millican RC, Estep BK, Chen J, Zhang X, Brott BC, Kim DW, Sherwood JA, Hwang PTJ. MiR-146a encapsulated liposomes reduce vascular inflammatory responses through decrease of ICAM-1 expression, macrophage activation, and foam cell formation. NANOSCALE 2023; 15:3461-3474. [PMID: 36723042 DOI: 10.1039/d2nr03280e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vascular insults can create an inflammatory cascade involving endothelial cell, smooth muscle cell, and macrophage activation which can eventually lead to vascular disease such as atherosclerosis. Several studies have identified microRNA 146a's (miR-146a) anti-inflammatory potential based on its role in regulating the nuclear factor kappa beta (NF-κβ) pathway. Therefore, in this study, we introduced exogenous miR-146a encapsulated by liposomes to lipopolysaccharide (LPS) stimulated vascular cells and macrophages to reduce inflammatory responses. First, the miR-146a encapsulated liposomes showed uniform size (radius 96.4 ± 4.22 nm) and round shape, long term stability (at least two months), high encapsulation efficiency (69.73 ± 0.07%), and were well transfected to human aortic endothelial cells (HAECs), human aortic smooth muscle cells (SMCs), and human differentiated monocytes (U937 cells). In addition, we demonstrated that miR-146a encapsulated liposomes reduced vascular inflammation responses in HAECs and SMCs through inhibition of ICAM-1 expression and decreased monocyte adhesion. In macrophages, miR-146a liposome treatment demonstrated decreased production of proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), as well as reduced oxidized low-density lipoprotein (ox-LDL) uptake and foam cell formation. Thus, based on these results, miR-146a encapsulated liposomes may be promising for reducing vascular inflammation by targeting its multiple associated mediators.
Collapse
Affiliation(s)
- Donald Ho
- Department of Pediatric Dentistry, University of Alabama at Birmingham, AL, 35294, USA
| | - Tyler O Lynd
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
| | - Claire Jun
- School of Arts and Sciences, University of Pennsylvania, PA, 19104, USA
| | - Juhee Shin
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | | | - Benjamin K Estep
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
| | - Xixi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
| | - Brigitta C Brott
- Endomimetics, LLC, Birmingham, AL, 35242, USA.
- Department of Medicine and Division of Cardiovascular Disease, University of Alabama at Birmingham, AL, 35233, USA
| | - Dong Woon Kim
- Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | | | - Patrick T J Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA
- Endomimetics, LLC, Birmingham, AL, 35242, USA.
| |
Collapse
|
13
|
Li J, Chen L, Sun H, Zhan M, Laurent R, Mignani S, Majoral JP, Shen M, Shi X. Cationic phosphorus dendron nanomicelles deliver microRNA mimics and microRNA inhibitors for enhanced anti-inflammatory therapy of acute lung injury. Biomater Sci 2023; 11:1530-1539. [PMID: 36607143 DOI: 10.1039/d2bm01807a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of efficient nanomedicines to repress the repolarization of M1 phenotype macrophages and therefore inhibit pro-inflammatory cytokine overexpression for anti-inflammatory therapy is still a challenging task. We report here an original gene delivery nanoplatform based on pyrrolidinium-modified amphiphilic generation 1 phosphorus dendron (C12G1) nanomicelles with a rigid phosphorous dendron structure. The nanomicelles display higher gene delivery efficiency than the counterpart materials of pyrrolidinium-modified G1 phosphorus dendrimers, and meanwhile exhibit excellent cytocompatibility. The C12G1 nanomicelles can be employed to co-deliver the miRNA-146a mimic (miR-146a mimic) and miRNA-429 inhibitor (miR-429i) to inhibit the Toll-like receptor-4 signaling pathway and p38 mitogen-activated protein kinase signaling pathway, respectively, thus causing repression of M1 phenotype alveolar macrophage polarization. The developed C12G1/miR-mixture polyplexes enable efficient therapy of lipopolysaccharide-activated alveolar macrophages in vitro and an acute lung injury mouse model in vivo. The generated cationic phosphorus dendron nanomicelles may hold promising potential for anti-inflammatory gene therapy of other inflammatory diseases.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China. .,Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China. .,Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Regis Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France.,Université de Toulouse, UPS, INPT, 31077 Toulouse CEDEX 4, France
| | - Serge Mignani
- Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, 45, rue des Saints Pères, 75006 Paris, France.,CQM-Centro de Quimica da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099, 31077 Toulouse CEDEX 4, France.,Université de Toulouse, UPS, INPT, 31077 Toulouse CEDEX 4, France
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China. .,CQM-Centro de Quimica da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal
| |
Collapse
|
14
|
Li Q, Hu W, Huang Q, Yang J, Li B, Ma K, Wei Q, Wang Y, Su J, Sun M, Cui S, Yang R, Li H, Fu X, Zhang C. MiR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. Signal Transduct Target Ther 2023; 8:62. [PMID: 36775818 PMCID: PMC9922687 DOI: 10.1038/s41392-022-01263-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 02/14/2023] Open
Abstract
Unhealable diabetic wounds need to be addressed with the help of newer, more efficacious strategies. Exosomes combined with biomaterials for sustained delivery of therapeutic agents are expected to bring new hope for chronic wound treatment. Here, the engineered exosomes modified for efficiently loading miR146a and attaching to silk fibroin patch (SFP) were demonstrated to promote diabetic wound healing. Silk fibroin binding peptide (SFBP) was screened through phage display, and SFBP-Gluc-MS2 (SGM) and pac-miR146a-pac fusion protein were constructed. The designed exosomes (SGM-Exos, miR146a-Exos, and SGM-miR146a-Exos) were isolated from the engineered placental mesenchymal stem cells (PMSCs) transduced with SGM or/and pac-miR146a-pac protein. Gluc signals indicated SGM-Exo@SFP markedly increased the binding rate and the stability of SGM-Exo. Moreover, the loading efficiency of miR146a in SGM-miR146a-Exos was ten-fold higher than that in miR146a-Exos. Superior to untreated, SGM-miR146a-Exo-only treated, and SFP-only treated groups, SGM-miR146a-Exo@SFP drived wound healing associated with less inflammation, collagen deposition, and neovascularization. The transcriptomics analysis suggested anti-inflammatory and regenerative effects with SGM-miR146a-Exo@SFP treatment. Here, we show efficient exosome@biomaterial-based miRNA delivery systems for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Qiankun Li
- Department of Tissue Repair and Regeneration, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jie Yang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Bingmin Li
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.,Dermatology Department, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Yaxi Wang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jianlong Su
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.,School of Medicine, NanKai University, Tianjing, 300071, China
| | - Mengli Sun
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Rungong Yang
- Department of Tissue Repair and Regeneration, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Xiaobing Fu
- Department of Tissue Repair and Regeneration, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China. .,Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China.
| |
Collapse
|
15
|
Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
|
16
|
Xiong Y, Tang R, Xu J, Jiang W, Gong Z, Zhang L, Ning Y, Huang P, Xu J, Chen G, Li X, Hu M, Xu J, Wu C, Jin C, Li X, Qian H, Yang Y. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway. Stem Cell Res Ther 2022; 13:289. [PMID: 35799283 PMCID: PMC9264662 DOI: 10.1186/s13287-022-02969-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Bone marrow cells (BMCs), especially mesenchymal stem cells (MSCs), have shown attractive application prospects in acute myocardial infarction (AMI). However, the weak efficacy becomes their main limitation in clinical translation. Based on the anti-inflammation and anti-apoptosis effects of a Chinese medicine-Tongxinluo (TXL), we aimed to explore the effects of TXL-pretreated MSCs (MSCsTXL) in enhancing cardiac repair and further investigated the underlying mechanism. Methods MSCsTXL or MSCs and the derived exosomes (MSCsTXL-exo or MSCs-exo) were collected and injected into the infarct zone of rat hearts. In vivo, the anti-apoptotic and anti-inflammation effects, and cardiac functional and histological recovery were evaluated. In vitro, the apoptosis was evaluated by western blotting and flow cytometry. miRNA sequencing was utilized to identify the significant differentially expressed miRNAs between MSCsTXL-exo and MSCs-exo, and the miRNA mimics and inhibitors were applied to explore the specific mechanism. Results Compared to MSCs, MSCsTXL enhanced cardiac repair with reduced cardiomyocytes apoptosis and inflammation at the early stage of AMI and significantly improved left ventricular ejection fraction (LVEF) with reduced infarct size in an exosome-dependent way. Similarly, MSCsTXL-exo exerted superior therapeutic effects in anti-apoptosis and anti-inflammation, as well as improving LVEF and reducing infarct size compared to MSCs-exo. Further exosomal miRNA analysis demonstrated that miR-146a-5p was the candidate effector of the superior effects of MSCsTXL-exo. Besides, miR-146a-5p targeted and decreased IRAK1, which inhibited the nuclear translocation of NF-κB p65 thus protecting H9C2 cells from hypoxia injury. Conclusions This study suggested that MSCsTXL markedly facilitated cardiac repair via a new mechanism of the exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway, which has great potential for clinical translation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02969-y.
Collapse
Affiliation(s)
- Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Ruijie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Junyan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Zhaoting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Lili Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Peisen Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Mengjin Hu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Chunxiao Wu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Xiangdong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Haiyan Qian
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China.
| |
Collapse
|
17
|
Poe AJ, Shah R, Khare D, Kulkarni M, Phan H, Ghiam S, Punj V, Ljubimov AV, Saghizadeh M. Regulatory role of miR-146a in corneal epithelial wound healing via its inflammatory targets in human diabetic cornea. Ocul Surf 2022; 25:92-100. [PMID: 35690236 DOI: 10.1016/j.jtos.2022.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE MiR-146a upregulated in limbus vs. central cornea and in diabetic vs. non-diabetic limbus has emerged as an important immune and inflammatory signaling mediator in corneal epithelial wound healing. Our aim was to investigate the potential inflammation-related miR-146a target genes and their roles in normal and impaired diabetic corneal epithelial wound healing. METHODS Our previous data from RNA-seq combined with quantitative proteomics of limbal epithelial cells (LECs) transfected with miR-146a mimic vs. mimic control were analyzed. Western blot and immunostaining were used to confirm the expression of miR-146a inflammatory target proteins in LECs and organ-cultured corneas. Luminex assay was performed on conditioned media at 6- and 20-h post-wounding in miR-146a mimic/inhibitor transfected normal and diabetic cultured LECs. RESULTS Overexpression of miR-146a decreased the expression of pro-inflammatory TRAF6 and IRAK1 and downstream target NF-κB after challenge with lipopolysaccharide (LPS) or wounding. Additionally, miR-146a overexpression suppressed the production of downstream inflammatory mediators including secreted cytokines IL-1α, IL-1β, IL-6 and IL-8, and chemokines CXCL1, CXCL2 and CXCL5. These cytokines and chemokines were upregulated in normal but not in diabetic LEC during wounding. Furthermore, we achieved normalized levels of altered secreted cytokines and chemokines in diabetic wounded LEC via specific inhibition of miR-146a. CONCLUSION Our study documented significant impact of miR-146a on the expression of inflammatory mediators at the mRNA and protein levels during acute inflammatory responses and wound healing, providing insights into the regulatory role of miR-146a in corneal epithelial homeostasis in normal and diabetic conditions.
Collapse
Affiliation(s)
- Adam J Poe
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Drirh Khare
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mangesh Kulkarni
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hong Phan
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sean Ghiam
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vasu Punj
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Lu Q, Yu S, Meng X, Shi M, Huang S, Li J, Zhang J, Liang Y, Ji M, Zhao Y, Fan H. MicroRNAs: Important Regulatory Molecules in Acute Lung Injury/Acute Respiratory Distress Syndrome. Int J Mol Sci 2022; 23:5545. [PMID: 35628354 PMCID: PMC9142048 DOI: 10.3390/ijms23105545] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an overactivated inflammatory response caused by direct or indirect injuries that destroy lung parenchymal cells and dramatically reduce lung function. Although some research progress has been made in recent years, the pathogenesis of ALI/ARDS remains unclear due to its heterogeneity and etiology. MicroRNAs (miRNAs), a type of small noncoding RNA, play a vital role in various diseases. In ALI/ARDS, miRNAs can regulate inflammatory and immune responses by targeting specific molecules. Regulation of miRNA expression can reduce damage and promote the recovery of ALI/ARDS. Consequently, miRNAs are considered as potential diagnostic indicators and therapeutic targets of ALI/ARDS. Given that inflammation plays an important role in the pathogenesis of ALI/ARDS, we review the miRNAs involved in the inflammatory process of ALI/ARDS to provide new ideas for the pathogenesis, clinical diagnosis, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Siyu Huang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jianfeng Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
19
|
Association of Polymorphisms in miR146a, an Inflammation-Associated MicroRNA, with the Risk of Idiopathic Recurrent Spontaneous Miscarriage: A Case-Control Study. DISEASE MARKERS 2022; 2022:1495082. [PMID: 35535334 PMCID: PMC9078850 DOI: 10.1155/2022/1495082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022]
Abstract
It has been established that microRNAs (miRNAs) are involved in the regulation of immune responses and serve as biomarkers of inflammatory diseases as well as recurrent spontaneous miscarriage (RSM). Herein, we aimed to study the relationship between three functional miR146a gene polymorphisms with idiopathic RSM (IRSM) susceptibility. We recruited 161 patients with IRSM and 177 healthy women with at least one live birth and without a history of abortion. Genotyping was performed using RFLP-PCR and ARMS-PCR methods. We found that the rs6864584 T/C decreased the risk of IRSM under dominant TT+TC vs. CC (OR = 0.029) and allelic C vs. T (OR = 0.028) contrast models. Regarding rs2961920 A/C and rs57095329 A/G polymorphisms, the enhanced risk of IRSM was observed under different genetic contrasted models, including the codominant CC vs. AA (OR = 2.81 for rs2961920) and codominant GG vs. AA (OR = 2.36 for rs57095329). After applying a Bonferroni correction, haplotype analysis revealed a 51% decreased risk of IRSM regarding the ACA genotype combination. This is the first study reporting that miR146a rs57095329 A/G, rs2961920A/C, and rs6864584 T/C polymorphisms are associated with the risk of IRSM in a southern Iranian population. Performing replicated case-control studies on other ethnicities is warranted to outline the precise effects of the studied variants on the risk of gestational trophoblastic disorders.
Collapse
|
20
|
Characterization of the Biological Activity of the Ethanolic Extract from the Roots of Cannabis sativa L. Grown in Aeroponics. Antioxidants (Basel) 2022; 11:antiox11050860. [PMID: 35624724 PMCID: PMC9137677 DOI: 10.3390/antiox11050860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Cannabis sativa var. Kompolti, a variety routinely used for food production purposes, is characterized by a low concentration of psychoactive molecules, although containing many other biologically attractive metabolites in all parts of the plant, including the roots. In the present work, we evaluate the specific biological activities of the roots’ extract from plants cultivated through aeroponics, an affordable and reliable method facilitating the isolation and processing of roots, with the advantage of being suitable for industrial scale-up. Furthermore, aeroponics results in an increased net accumulation of the most biologically attractive constituents (β-sitosterol, friedelin and epi-friedelanol) found in the roots. The ethanolic extract of the aeroponic roots of C. sativa (APEX) and its separate components are studied to evaluate their anti-inflammatory (modulation of the expression level of specific markers upon LPS stimulation in U937 cells, such as IL-6, IL-8, TNF-α, IkB-α, iNOS, IRAK-1 and miR-146a) and antioxidant (in either acellular or cellular settings) activities. The APEX anti-inflammatory and antioxidant capacities are also functionally benchmarked using the wound-healing assay. On the whole, the data obtained show that APEX and its main components showed significant anti-inflammatory and antioxidant activities, which may render the exploitation of roots as a source of natural antioxidants and anti-inflammatory agents highly attractive, with the additional technical and economic advantages of aeroponics compared to soil cultivation.
Collapse
|
21
|
Li W, Huang Q, Yu J, Yang Y, Yu J, Liu Y, Song H, Cui L, Niu X. Schisandrin improves lipopolysaccharide‐induced acute lung injury by inhibiting the inflammatory response in vivo and in vitro. J Food Biochem 2022; 46:e14141. [DOI: 10.1111/jfbc.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Weifeng Li
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Qiuxia Huang
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jinjin Yu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Yajie Yang
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Jiabao Yu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Yang Liu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Huixin Song
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| | - Langjun Cui
- School of Life Sciences Shaanxi Normal University Xi'an China
| | - Xiaofeng Niu
- School of Pharmacy Xi'an Jiaotong University Xi'an China
| |
Collapse
|
22
|
Ajoolabady A, Aslkhodapasandhokmabad H, Zhou Y, Ren J. Epigenetic modification in alcohol‐related liver diseases. Med Res Rev 2022; 42:1463-1491. [DOI: 10.1002/med.21881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Amir Ajoolabady
- School of Pharmacy University of Wyoming College of Health Sciences Laramie Wyoming USA
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | | | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences Peking University Beijing China
| | - Jun Ren
- School of Pharmacy University of Wyoming College of Health Sciences Laramie Wyoming USA
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine and Pathology University of Washington Seattle Washington USA
| |
Collapse
|
23
|
Telocytes reduce oxidative stress by downregulating DUOX2 expression in inflamed lungs of mice. Acta Biochim Biophys Sin (Shanghai) 2022; 54:574-582. [PMID: 35607956 PMCID: PMC9828416 DOI: 10.3724/abbs.2022017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telocytes (TCs), a novel type of interstitial cells, have been found to participate in tissue protection and repair. In this study, we investigated the antioxidative effects of TCs in inflamed lungs of mice. Acute respiratory distress syndrome (ARDS) mice were used as models of inflamed lungs of mice. Gene sequencing was used to screen the differentially expressed miRNAs in TCs after lipopolysaccharide (LPS) stimulation. AntagomiR-146a-5p-pretreated TCs were first injected into mice, and antioxidant activity of TCs was estimated. TCs, RAW264.7 cells, and MLE-12 cells were collected for the detection of expressions of NOX1-4, DUOX1-2, SOD1-3, GPX1-2, CAT, Nrf2, miR-146a-5p, and miR-21a-3p after LPS stimulation. Silencing miRNAs were delivered to examine the involved signaling pathways. Oxidative stress was examined by measuring malondialdehyde (MDA) levels. We found that microRNA-146a-5p and microRNA-21a-3p were upregulated in TCs after LPS stimulation. ARDS mice that were preinfused with TCs had lower lung tissue injury scores, lung wet-dry ratios, white blood cell counts in alveolar lavage fluid and lower MDA concentrations in lung tissue. However, in antagomiR-146a-5p-pretreated ARDS mice, the infusion of TCs caused no corresponding changes. After LPS stimulation, DUOX2 and MDA concentrations were downregulated in TCs, while DUOX2 was restored by antagomiR-146a-5p in TCs. Dual-luciferase reporter assay confirmed that CREB1 was downregulated by miR-146a-5p, while DUOX2 was downregulated by CREB1, which was confirmed by treating TCs with a specific CREB1 inhibitor. This study demonstrates that LPS stimulation upregulates miR-146a-5p in TCs, which downregulates the CREB1/DUOX2 pathway, resulting in a decrease in oxidative stress in cultured TCs. TCs reduce LPS-induced oxidative stress by decreasing DUOX2 in inflamed lungs of mice.
Collapse
|
24
|
Li J, Xu H, Li N, Du W, Ti J, Chen J. Long non-coding RNA growth arrest specific 5 is downregulated in sepsis-ALI and inhibits apoptosis by up-regulating miR-146a. Bioengineered 2022; 13:4146-4152. [PMID: 35112981 PMCID: PMC8974100 DOI: 10.1080/21655979.2021.2014619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) growth arrest specific 5 (GAS5) and microRNA (miR)-146a both have inhibitory effects on LPS-induced inflammation, suggesting the crosstalk between them. In this study, the expression of GAS5 and miR-146a in patients with sepsis-induced acute lung injury (sepsis-ALI), sepsis patients without obvious complications (sepsis) and healthy controls were studied by RT-qPCR. The role of GAS5 in the expression and methylation of miR-146a in human bronchial epithelial cells (HBEpCs) were studied by RT-qPCR and methylation-specific PCR (MSP), respectively. Cell apoptosis was analyzed by flow cytometry. We found that GAS5 and miR-146a were downregulated in sepsis-ALI and the expression of these two were correlated. LPS induced the downregulation of GAS5 and miR-146a in HBEpCs. In HBEpCs, overexpression of GAS5 increased the expression levels of miR-146a and reduced the methylation of miR-146a gene. Under lipopolysaccharide (LPS) treatment, overexpression of GAS5 and miR-146a decreased the apoptotic rate of HBEpCs. Moreover, the combined overexpression of GAS5 and miR-146a showed stronger effects. Therefore, GAS5 is downregulated in sepsis-ALI and inhibits cell apoptosis by up-regulating the expression of miR-146a.
Collapse
Affiliation(s)
- Jiaqiong Li
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinic School of Nanjing Medical University, Xuzhou City, Jiangsu Province, China
| | - Hongyang Xu
- Department of Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi City, Jiangsu Province, China
| | - Na Li
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinic School of Nanjing Medical University, Xuzhou City, Jiangsu Province, China
| | - Wenjing Du
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinic School of Nanjing Medical University, Xuzhou City, Jiangsu Province, China
| | - Junxiang Ti
- Department of Critical Care Medicine, Xuzhou Central Hospital, Xuzhou Clinic School of Nanjing Medical University, Xuzhou City, Jiangsu Province, China
| | - Jingyu Chen
- Department of Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi City, Jiangsu Province, China
| |
Collapse
|
25
|
Lung function improves after delayed treatment with CNP-miR146a following acute lung injury. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2022; 40:102498. [PMID: 34838994 PMCID: PMC8616767 DOI: 10.1016/j.nano.2021.102498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/09/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a highly morbid pulmonary disease characterized by hypoxic respiratory failure. Its pathogenesis is characterized by unrestrained oxidative stress and inflammation, with long-term sequelae of pulmonary fibrosis and diminished lung function. Unfortunately, prior therapeutic ARDS trials have failed and therapy is limited to supportive measures. Free radical scavenging cerium oxide nanoparticles (CNP) conjugated to the anti-inflammatory microRNA-146a (miR146a), termed CNP-miR146a, have been shown to prevent acute lung injury in a pre-clinical model. In this study, we evaluated the potential of delayed treatment with CNP-miR146a at three or seven days after injury to rescue the lung from acute injury. We found that intratracheal CNP-miR146a administered three days after injury lowers pulmonary leukocyte infiltration, reduce inflammation and oxidative stress, lower pro-fibrotic gene expression and collagen deposition in the lung, and ultimately improve pulmonary function.
Collapse
|
26
|
The Expression of miR-23a and miR-146a in the Saliva of Patients with Periodontitis and Its Clinical Significance. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5135278. [PMID: 34888382 PMCID: PMC8651402 DOI: 10.1155/2021/5135278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022]
Abstract
Background This study is aimed at exploring the significance of the expression of miR-23a and miR-146a in patients with periodontitis and their correlations with inflammatory factors. Methods A total of 120 patients with chronic periodontitis admitted to the department of stomatology in Yantai Yuhuangding Hospital from August 2017 to December 2018 were enrolled as a study group, and 80 healthy volunteers in physical examination during the same period were enrolled as a control group. The expression of miR-23a, miR-146a, interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-17 (IL-17) in the saliva of people in the two groups was determined using the quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Results The study group showed significantly higher relative expression of saliva miR-23a and miR-146a than the control group. The area under the curve (AUC) of saliva miR-23a and miR-146a for diagnosing periodontitis was 0.857 and 0.886, respectively. The expression of saliva miR-23a and miR-146a increased with the deterioration of periodontitis in the patients. After basic treatment, the study group showed significantly decreased expression of saliva miR-23a and miR-146a. Patients in the study group showed significantly higher levels of saliva IL-1β, IL-6, and IL-17 than those in the control group, and their saliva miR-23a and miR-146a were positively correlated with their saliva IL-1β, IL-6, and IL-17, respectively. Conclusion Saliva miR-23a and miR-146a can be used as biomarkers for the diagnosis and assessment of periodontitis, and they may have regulatory relationships with IL-1β, IL-6, and IL-17.
Collapse
|
27
|
Liu S, Gao S, Yang Z, Zhang P. miR-128-3p reduced acute lung injury induced by sepsis via targeting PEL12. Open Med (Wars) 2021; 16:1109-1120. [PMID: 34430706 PMCID: PMC8345018 DOI: 10.1515/med-2021-0258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 01/01/2023] Open
Abstract
Objective Acute lung injury (ALI) caused by sepsis is clinically a syndrome, which is featured by damage to the alveolar epithelium and endothelium. In this study, we employed mice models of cecal ligation and puncture (CLP) and primary mice pulmonary microvascular endothelial cells (MPVECs) in vitro to investigate the effect of miR-128-3p in ALI caused by sepsis. Methods miR-128-3p agomir or randomized control were injected into adult male C57BL/6 mice 1 week before the CLP surgery. We used miR-128-3p agomir or scrambled control to transfect MPVECs and then employed lipopolysaccharide (LPS) stimulation on the cells. Pellino homolog 2 (PELI2) was predicted to be a direct target of miR-128-3p via luciferase reporter assay. MPVECs were cotransfected with lentiviral vector that expressed PELI2 (or empty vector) as well as miR-128-3p-mimics 1 day before LPS stimulation in rescue experiment. Transcriptional activity of caspase-3, cell apoptosis rate, and the expression levels of miR-128-3p, interleukin-1β (IL-1β), interleukin-6 (IL-6), and PELI2 were analyzed. Results Compared with the sham group, the lung of mice in the CLP group showed pulmonary morphological abnormalities, and the expression of IL-6 and IL-1β, caspase-3 activity, and apoptosis rate were significantly upregulated in the CLP group. Inflammatory factor levels and apoptosis rate were also significantly induced by LPS stimulation on MPVECs. Upregulation of miR-128-3p effectively inhibited sepsis-induced ALI, apoptosis as well as inflammation. miR-128-3p also played a role in antiapoptosis and anti-inflammation in MPVECs with LPS treatment. PEL12 upregulation in MPVECs alleviated miR-128-3p-induced caspase-3 activity inhibition and pro-inflammatory factor production. Conclusions miR-128-3p enabled to alleviate sepsis-induced ALI by inhibiting PEL12 expression, indicating a novel treatment strategy of miR-128-3p for sepsis-induced ALI.
Collapse
Affiliation(s)
- Shinan Liu
- Department of Thoracic Surgery, China Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Gao
- Department of Thoracic Surgery, China Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyu Yang
- Department of Thoracic Surgery, China Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Thoracic Surgery, China Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
28
|
Donyavi T, Bokharaei-Salim F, Baghi HB, Khanaliha K, Alaei Janat-Makan M, Karimi B, Sadri Nahand J, Mirzaei H, Khatami A, Garshasbi S, Khoshmirsafa M, Jalal Kiani S. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC. Int Immunopharmacol 2021; 97:107641. [PMID: 33895478 PMCID: PMC8023203 DOI: 10.1016/j.intimp.2021.107641] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND When a new pathogen, such as severe acute respiratory syndrome coronavirus 2, appears all novel information can aid in the process of monitoring and in the diagnosis of the coronavirus disease (COVID-19). The aim of the current study is to elucidate the specific miRNA profile which can act as new biomarkers for distinguishing acute COVID-19 disease from the healthy group and those in the post-acute phase of the COVID-19 disease. METHODS The expression level of selected miRNAs including let-7b-3p, miR-29a-3p, miR-146a-3p and miR-155-5p were evaluated in peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, in both the acute and post-acute COVID-19 phase of the disease and healthy groups, by real-time PCR assays. Specificity and sensitivity of miRNAs was tested by receiver operating characteristic (ROC) analysis in COVID-19 patients. RESULTS The expression level of all miRNAs in COVID-19 patients was significantly higher than in the healthy group. Therefore, the expression pattern of miR-29a-3p, miR-146a-3p and let-7b-3p in the post-acute COVID-19 phase was significantly different from the acute COVID-19 phase. ROC analyses demonstrated that miR-29a-3p, -155-5p and -146a-3p may serve as the novel biomarker for COVID-19 diagnosis with high specificity and sensitivity. In addition, miR-29a-3p, and -146a-3p can maybe act as novel biomarkers for distinguishing acute from post-acute phase of COVID-19 disease. DISCUSSION The difference in miRNA expression pattern between COVID-19 patients and those in the healthy group, and between acute COVID-19 with post-acute COVID-19, suggested that cellular miRNAs could be used as promising biomarkers for diagnosis and monitoring of COVID-19.
Collapse
Affiliation(s)
- Tahereh Donyavi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | | | - Bahareh Karimi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Garshasbi
- Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Donyavi T, Bokharaei-Salim F, Baghi HB, Khanaliha K, Alaei Janat-Makan M, Karimi B, Sadri Nahand J, Mirzaei H, Khatami A, Garshasbi S, Khoshmirsafa M, Jalal Kiani S. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC. Int Immunopharmacol 2021. [DOI: 10.1016/j.intimp.2021.107641 order by 26881--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Li HY, Yang HG, Wu HM, Yao QQ, Zhang ZY, Meng QS, Fan LL, Wang JQ, Zheng N. Inhibitory effects of lactoferrin on pulmonary inflammatory processes induced by lipopolysaccharide by modulating the TLR4-related pathway. J Dairy Sci 2021; 104:7383-7392. [PMID: 33838887 DOI: 10.3168/jds.2020-19232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022]
Abstract
This study tested the ability of lactoferrin to modulate pulmonary inflammation. To construct in vitro and in vivo inflammatory lung models, cells from the human lung adenocarcinoma cell line (A549) were exposed to lipopolysaccharide (LPS, 1 µg/mL), and mice (CD-1) were intratracheally administered LPS [10 mg/kg of body weight (BW), tracheal lumen injection], respectively. The A549 cells were preincubated with lactoferrin (10 mg/mL), and the mice were intraperitoneally injected with lactoferrin (100 mg/kg of BW), followed by LPS treatment. The concentrations of proinflammatory cytokines (IL-1β and TNF-α) in culture medium of A549 cells and in bronchoalveolar lavage fluid of the mice were determined using enzyme-linked immunosorbent assays. The toll-like receptor 4-related pathway (TLR4/MyD88/IRAK1/TRAF6/NFκB) was determined at gene and protein expression levels in A549 cells and mouse lung tissue. Results showed that LPS treatment significantly elevated the concentrations of IL-1β and TNF-α in the A549 cell culture medium and in bronchoalveolar lavage fluid of the mice; it also elevated both the mRNA and protein expressions of TLR4 and the TLR4 downstream factors in A549 cells and mouse lung tissue. Nevertheless, lactoferrin apparently depressed the releases of IL-1β and TNF-α from A549 cells and lung tissues stimulated by LPS, and significantly suppressed the TLR4 signaling pathway. Lactoferrin also promoted the enhancement of miR-146a expression in A549 cells and mouse lung tissue. Moreover, 100°C heating for 3 min caused total loss of the previously listed bioactivity of lactoferrin. Collectively, we proved that lactoferrin intervened in LPS-induced inflammation in the pulmonary cell model and in the mouse model, through inhibiting the TLR4-related pathway.
Collapse
Affiliation(s)
- H Y Li
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - H G Yang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, P. R. China
| | - H M Wu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Q Q Yao
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Z Y Zhang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Q S Meng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - L L Fan
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - J Q Wang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| | - N Zheng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| |
Collapse
|
31
|
Li G, Xu M, Wang H, Qi X, Wang X, Li Y, Sun J, Li Y. MicroRNA-146a overexpression alleviates intestinal ischemia/reperfusion-induced acute lung injury in mice. Exp Ther Med 2021; 22:937. [PMID: 34335886 PMCID: PMC8290461 DOI: 10.3892/etm.2021.10369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that microRNAs (miRs), such as miR-146a play an important role in the pathogenesis of intestinal ischemia/reperfusion (I/R)-induced injury; however, the role of miR-146a in intestinal I/R-induced acute lung injury has not been elucidated. An intestinal I/R-induced injury mouse model was established in the present study by clamping the superior mesenteric artery and expression levels of miR-146a in intestinal and lung tissue samples were evaluated using reverse transcription-quantitative PCR (RT-qPCR). Intestinal and lung histopathological characteristics in mice with intestinal I/R-induced injury were assessed by hematoxylin and eosin staining, and mRNA and protein expression levels in intestinal and lung tissue samples were evaluated using RT-qPCR and western blotting, respectively. miR-146a expression was significantly downregulated in the intestinal and lung tissue samples of mice with intestinal I/R-induced injury. Intestinal I/R injury-induced histopathological changes in the lung and intestines, and pulmonary edema in mice transduced with an adenoviral miR-146a-overexpression vector (the miR-146a overexpression group) were alleviated. mRNA expression levels of TNF-α, IL-1β, IFN-γ and TGF-β1, and protein expression levels of TNF receptor-associated factor 6, phosphorylated-p65 NF-κB, cleaved caspase-3 and cleaved caspase-9 in lung and intestinal tissue samples were downregulated in I/R-miR-146a-overexpressing mice, compared with those from the I/R-negative control group. Thus, the present study identified that pre-treatment with the miR-146a overexpression vector alleviated intestinal I/R-induced acute lung injury in mice.
Collapse
Affiliation(s)
- Gehui Li
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Min Xu
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Hao Wang
- Department of Food Safety, Market Supervision Administration of Shenzhen Municipality, Shenzhen, Guangdong 518040, P.R. China
| | - Xiaofei Qi
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Xiaoguang Wang
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Yong Li
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Jing Sun
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Yuantao Li
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| |
Collapse
|
32
|
Lv S, Qu X, Qu Y, Wang Y. LncRNA NEAT1 Knockdown Alleviates Lipopolysaccharide-Induced Acute Lung Injury by Modulation of miR-182-5p/WISP1 Axis. Biochem Genet 2021; 59:1631-1647. [PMID: 34046810 DOI: 10.1007/s10528-021-10081-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
Accumulating evidence has demonstrated the vital roles of long non-coding RNAs (lncRNAs) in acute lung injury (ALI). In this study, we aimed to explore the effect of Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) on ALI development. The ALI mice and cell models were constructed using lipopolysaccharide (LPS)-induced method. The concentrations of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were measured by enzyme-linked immunosorbent assay (ELISA). The levels of TNF-α mRNA, IL-6 mRNA, IL-1β mRNA, NEAT1, miR-182-5p, and WNT-inducible secreted protein 1 (WISP1) mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay. The level of lactate dehydrogenase (LDH) and the activity of caspase-3 were measured by specific kits. The interaction between miR-182-5p and NEAT1 or WISP1 was investigated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Protein levels were measured by Western blot assay. NEAT1 level was elevated in LPS-induced ALI mice and LPS-stimulated MH-S cells. LPS treatment repressed MH-S cell viability and promoted apoptosis and inflammation, while NEAT1 silencing restored the impacts. For mechanism analysis, NEAT1 was identified as the sponge for miR-182-5p to positively regulate WISP1 expression. Moreover, NEAT1 knockdown could accelerate cell viability and inhibit cell apoptosis and inflammation in LPS-induced MH-S cells by elevating miR-182-5p and decreasing WISP1 in LPS-exposed MH-S cells. In addition, NEAT1 deficiency blocked the activation of NF-κB pathway caused by LPS in MH-S cells. NEAT1 overexpression restrained cell viability and facilitated cell apoptosis and inflammation in LPS-exposed MH-S cells through miR-182-5p/WISP1 axis.
Collapse
Affiliation(s)
- Sensen Lv
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital (Headquarters), No.1 Jiaozhou Road, Shibei District, Qingdao, 266011, Shandong, China
| | - Xiaolu Qu
- Department of Critical Care Medicine, Qingdao Municipal Hospital (East Brach), No.5 Donghai Middle Road, Shinan District, Qingdao, 266071, Shandong, China
| | - Yan Qu
- Department of Critical Care Medicine, Qingdao Municipal Hospital (East Brach), No.5 Donghai Middle Road, Shinan District, Qingdao, 266071, Shandong, China.
| | - Yun Wang
- Department of Respiratory and Critical Care Medicine, Qingdao Municipal Hospital (Headquarters), No.1 Jiaozhou Road, Shibei District, Qingdao, 266011, Shandong, China.
| |
Collapse
|
33
|
Zhang W, Li J, Yao H, Li T. Restoring microRNA-499-5p Protects Sepsis-Induced Lung Injury Mice Via Targeting Sox6. NANOSCALE RESEARCH LETTERS 2021; 16:89. [PMID: 34019224 PMCID: PMC8140057 DOI: 10.1186/s11671-021-03534-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND MicroRNAs (miRs) are known to participate in sepsis; hence, we aim to discuss the protective effect of miR-499-5p targeting sex-determining region Y-related high-mobility-group box 6 (Sox6) on sepsis-induced lung injury in mice. METHODS The sepsis-induced lung injury model was established by cecal ligation and puncture. The wet/dry weight (W/D) ratio, miR-499-5p, Sox6, Caspase-3 and Caspase-9 expression in lung tissues of mice were tested. Lung injury score, collagen fibers and the degree of pulmonary fibrosis in lung tissues were determined. Further, the cell apoptosis in lung tissues was measured. The inflammatory factors contents and oxidative stress indices in bronchoalveolar lavage fluid (BALF) and lung tissues were detected via loss- and gain-of-function assays. The targeting relation between miR-499-5p and Sox6 was verified. RESULTS W/D ratio and Sox6 were increased while miR-499-5p was decreased in lung tissues of sepsis-induced lung injury mice. Restored miR-499-5p or depleted Sox6 alleviated lung tissues pathology, reduced lung injury score, collagen fibers, the degree of pulmonary fibrosis, TUNEL positive cells, Caspase-3 and Caspase-9 protein expression and inflammatory factors contents in BALF and lung tissues as well as oxidative stress response in lung tissues of sepsis-induced lung injury mice. miR-499-5p targeted Sox6. CONCLUSION High expression of miR-499-5p can attenuate cell apoptosis in lung tissues and inhibit inflammation of sepsis-induced lung injury mice via depleting Sox6, and it is a potential candidate marker and therapeutic target for sepsis-induced lung injury.
Collapse
Affiliation(s)
- Wenjie Zhang
- Intensive Care Unit (ICU), Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Weihai, 264200, Shandong, China
| | - Jing Li
- Preventive Medicine Ward, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Hui Yao
- Intensive Care Unit (ICU), Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Weihai, 264200, Shandong, China
| | - Tianmin Li
- Intensive Care Unit (ICU), Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, No. 70, Heping Road, Weihai, 264200, Shandong, China.
| |
Collapse
|
34
|
Okamoto N, Ohama H, Matsui M, Fukunishi S, Higuchi K, Asai A. Hepatic F4/80 + CD11b + CD68 - cells influence the antibacterial response in irradiated mice with sepsis by Enterococcus faecalis. J Leukoc Biol 2021; 109:943-952. [PMID: 33899953 DOI: 10.1002/jlb.4a0820-550rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Gut-associated sepsis is a major problem in patients undergoing abdominal radiation therapy; the majority of pathogens causing this type of sepsis are translocated from the gut microbiota. While treating sepsis, bacterial clearance must be achieved to ensure patient survival, and the hepatic immune response is responsible for this process. In particular, Kupffer cells play a crucial role in the hepatic immune response against infectious agents. Recently, two populations of Kupffer cells have been described: liver-resident macrophages (Mϕ) (F4/80+ CD11b- CD68+ cells) and hepatic Mϕ derived from circulating monocytes (F4/80+ CD11b+ CD68- cells). We examined the properties of both types of hepatic Mϕ obtained from irradiated and normal mice and their role in sepsis. Hepatic F4/80+ CD11b- CD68+ cells from both normal and irradiated mice did not show any antibacterial activity. However, F4/80+ CD11b+ CD68- cells from normal mice behaved as effector cells against sepsis by Enterococcus faecalis, although those from irradiated mice lost this ability. Moreover, hepatic F4/80+ CD11b+ CD68- cells from normal infected mice were shown to be IL-12+ IL-10- CD206- CCL1- (considered M1Mϕ), and hepatic F4/80+ CD11b- CD68+ cells from the same mice were shown to be IL-12- IL-10+ CD206+ CCL1- (considered M2aMϕ). When normal mice were exposed to radiation, hepatic F4/80+ CD11b+ CD68- cells altered their phenotype to IL-12- IL-10+ CD206- CCL1+ (considered M2bMϕ), independent of infection, but hepatic F4/80+ CD11b- CD68+ cells remained IL-12- IL-10+ CD206+ CCL1- (M2aMϕ). In addition, hepatic F4/80+ CD11b+ CD68- cells from irradiated mice acquired antibacterial activity upon treatment with CCL1 antisense oligodeoxynucleotides. Therefore, the characteristics of hepatic F4/80+ CD11b+ CD68- cells play a key role in the antibacterial response against gut-associated sepsis.
Collapse
Affiliation(s)
- Norio Okamoto
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Hideko Ohama
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Masahiro Matsui
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Shinya Fukunishi
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Kazuhide Higuchi
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | - Akira Asai
- 2nd Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
35
|
Jiang Y, Zhang W. LncRNA ZFAS1 plays a role in regulating the inflammatory responses in sepsis-induced acute lung injury via mediating miR-193a-3p. INFECTION GENETICS AND EVOLUTION 2021; 92:104860. [PMID: 33848686 DOI: 10.1016/j.meegid.2021.104860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To explore the role of lncRNA ZFAS1-mediated miR-193a-3p in the regulation of inflammatory responses in rats with sepsis-induced acute lung injury (ALI). METHODS Sepsis-induced ALI models were constructed by LPS induction and then injected with ZFAS1 overexpression plasmid. Thereafter, lung injury score and the W/D weight ratio were calculated. Besides, bronchoalveolar lavage fluid (BALF) was isolated from rats to perform the cell count and protein quantification, while qRT-PCR and ELISA were performed to detect the inflammatory cytokines expressions. In vitro, NR8383 cells were transfected and then treated with LPS, followed by the measurement of inflammatory cytokines, cell viability and cell apoptosis. RESULTS In comparison with the Control group, rats in the LPS group presented sharp increases in the W/D weight ratio and injury score of lung, total protein concentration and the count of neutrophils and macrophages in BALF. Besides, rats in LPS group also resulted in a decrease in ZFAS1 expression and increase in miR-193a-3p expression in lung tissues, with the increased pro-inflammatory cytokines. Dual luciferase reporter gene assay confirmed a target relation between miR-193a-3p and ZFAS1. As compared to the Blank group, NR8383 cells in the LPS group had up-regulated pro-inflammatory cytokines with declined cell viability and elevated cell apoptosis; and meanwhile, ZFAS1 and Bcl-2 were decreased but miR-193a-3p and Bax were increased. Overexpression of ZFAS1 could significantly improve LPS-induced ALI in vivo and in vitro with reduced levels of pro-inflammatory cytokines. CONCLUSION Overexpression of ZFAS1, possibly via targeting the expression of miR-193a-3p, could inhibit the apoptosis and ameliorate the inflammatory responses of ALI in sepsis.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Critical Care Medicine, Yantaishan Hospital, Yantai 264001, China
| | - Wei Zhang
- Department of Critical Care Medicine, Yantaishan Hospital, Yantai 264001, China.
| |
Collapse
|
36
|
Luo Q, Zhu J, Zhang Q, Xie J, Yi C, Li T. MicroRNA-486-5p Promotes Acute Lung Injury via Inducing Inflammation and Apoptosis by Targeting OTUD7B. Inflammation 2021; 43:975-984. [PMID: 31940107 DOI: 10.1007/s10753-020-01183-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this article is to study the effect of miR-486-5p in acute lung injury (ALI). MiR-486-5p expression in peripheral blood was determined in ALI patients and healthy volunteers by qRT-PCR. ALI mouse model were reproduced by LPS treatment, and miR-486-5p NC and miRNA-486 inhibitors were injected through trachea. ALI patients' peripheral blood and LPS-induced acute lung injury in mice had significantly higher miR-486-5p levels than control subjects. Inhibition of miR-486-5p by injection with antagomiR-486-5p markedly reduced LPS-induced lung inflammation. Moreover, knockdown of miR-486-5p can reduce protects A549 cell against LPS-induced injury and its corresponding inflammatory response. In addition, Mechanistic analysis indicated that miR-486-5p on the occurrence of ALI is related to the inhibition of OTUD7B activity, which induces the downregulation of inflammatory in ALI. Our results identified miR-486-5p independently associated with ALI. miR-486-5p can mediate the formation of ALI by promoting inflammation.
Collapse
Affiliation(s)
- Qiang Luo
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhu
- Department of Anesthesiology, The Fourth Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xie
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Mormile R. Diabetes and susceptibility to COVID-19: may miR-146a make the difference between life and death? Minerva Endocrinol (Torino) 2021; 46:363-365. [PMID: 33792241 DOI: 10.23736/s2724-6507.21.03395-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Caserta, Italy -
| |
Collapse
|
38
|
Chen G, Ge D, Zhu B, Shi H, Ma Q. Upregulation of matrix metalloproteinase 9 (MMP9)/tissue inhibitor of metalloproteinase 1 (TIMP1) and MMP2/TIMP2 ratios may be involved in lipopolysaccharide-induced acute lung injury. J Int Med Res 2021; 48:300060520919592. [PMID: 32339071 PMCID: PMC7219017 DOI: 10.1177/0300060520919592] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective This study aimed to examine the changes and significance of matrix metalloproteinase 9 (MMP9), MMP2, tissue inhibitor of metalloproteinase 1 (TIMP1), and TIMP2 in rats with lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Wistar rats were randomly divided into a control group (injected with saline) and an ALI group (injected with LPS), then subdivided into four time points (2, 6, 12, and 24 hours). Serum tumor necrosis factor alpha and interleukin-6 levels were detected by ELISA to investigate the inflammatory reaction after LPS injection. The degree of ALI was determined by hematoxylin–eosin staining of lung tissue, the lung wet/dry weight ratio, and pulmonary permeability index. Changes in lung MMP and TIMP protein and mRNA levels were detected by western blotting and quantitative real-time polymerase chain reaction. Results Changes in the ratios of MMP9/TIMP1 and MMP2/TIMP2 were consistent with and strongly positively associated with the lung wet/dry weight ratio, the pulmonary permeability index, and serum tumor necrosis factor alpha and interleukin-6 levels in the ALI group. Conclusion ALI induced by LPS may be related to upregulation of MMP9/TIMP1 and MMP2/TIMP2 ratios.
Collapse
Affiliation(s)
- Guobing Chen
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dandan Ge
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Pediatric Key Laboratory of Xiamen, Xiamen, Fujian, China
| | - Bizhen Zhu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Huixuan Shi
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qilin Ma
- School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
39
|
Mu X, Wang H, Li H. Silencing of long noncoding RNA H19 alleviates pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome through regulating the microRNA-423-5p/FOXA1 axis. Exp Lung Res 2021; 47:183-197. [PMID: 33629893 DOI: 10.1080/01902148.2021.1887967] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE This study aimed to explore the regulatory effects and mechanisms of long noncoding RNA H19 (H19) on pulmonary injury, inflammation, and fibrosis of acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS A rat model of ARDS was established by intratracheal instillation of 2 mg/kg lipopolysaccharide (LPS). qRT-PCR was performed to detect the expression of H19, miR-423-5p, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF). Histology score was assessed by hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of proinflammatory cytokines and the content of VEGF in bronchoalveolar lavage fluid (BALF). The lung fibrosis was evaluated using western blot and Masson's trichrome staining. Dual-luciferase reporter gene assay was used for confirming the relationship between miR-423-5p and H19/FOXA1 in alveolar macrophage cells (MH-S) and alveolar epithelial cells (MLE-12). The regulatory effects of H19/miR-423-5p/FOXA1 axis on the inflammation and fibrosis were further analyzed in LPS-induced MH-S cells. RESULTS The expression of H19 and FOXA1 was significantly up-regulated, while the expression of miR-423-5p was down-regulated in LPS-induced ARDS rats. Silencing of H19 decreased the mRNA expression of TNF-α, IL-1β, IL-6, MCP-1, and VEGF, the contents of TNF-α, IL-1β, IL-6, and VEGF in BALF, and histology score in LPS-induced ARDS rats. H19 knockdown also reduced the fibrosis scores and the protein expression of vimentin and α-SMA, and elevated the protein expression of E-cadherin in LPS-induced ARDS rats. Furthermore, silencing of miR-423-5p and overexpression of FOXA1 reversed the inhibitory effects of si-H19 on the inflammation and fibrosis of LPS-induced MH-S cells. CONCLUSIONS Silencing of H19 relieved the pulmonary injury, inflammation and fibrosis of LPS-induced ARDS in rats. Silencing of H19 also alleviated the inflammation and fibrosis of LPS-induced MH-S cells through regulating the miR-423-5p/FOXA1 axis.
Collapse
Affiliation(s)
- Xianyu Mu
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai City, China Shandong Province, China
| | - Hongrong Wang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai City, China Shandong Province, China
| | - Haiyong Li
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai City, China Shandong Province, China
| |
Collapse
|
40
|
Miranda-Duarte A, Borgonio-Cuadra VM, González-Huerta NC, Rojas-Toledo EX, Ahumada-Pérez JF, Morales-Hernández E, Pérez-Hernández N, Rodríguez-Pérez JM, Vargas-Alarcón G. Are functional variants of the microRNA-146a gene associated with primary knee OA? Evidence in Mexican mestizo population. Mol Biol Rep 2021; 48:1549-1557. [PMID: 33590413 DOI: 10.1007/s11033-021-06207-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023]
Abstract
MicroRNA-146a (miR-146a) is an inflammatory response regulator whose expression is deregulated in osteoarthritis (OA); variations in the miR-146a gene could affect OA risk. This study aimed to analyze the association between two functional variants of the miR-146a gene and primary knee OA in Mexican mestizo population. Methods and Results. A case-control study was conducted with cases defined as individuals aged ≥ 40 years with primary knee OA grade ≥ 2, according to the Kellgren-Lawrence system. Controls were volunteers with no primary knee OA with radiographic grade < 2. TaqMan allelic discrimination assays genotyped the rs2910164 and rs57095329. Allelic and genotypic frequencies, as well as the Hardy-Weinberg equilibrium (HWE), were calculated. The genetic association was tested under codominant, dominant, and recessive models. Non-conditional logistic regressions were carried out to estimate the association magnitude. We included 310 cases and 379 controls. Despite rs2910164 being in HWE, there was no association under codominant, dominant, and recessive models. In women with OA grade 2, the codominant model found a trend between the CC genotype and increased risk [OR (95% CI) 1.6 (0.7-3.5)]; the same trend was found in OA grade 4 in the codominant and recessive models [1.8 (0.6-5.4) and 2.0 (0.7-5.9)]. Conversely, in men with OA grade 4, the CC genotype tended to be associated with a lower risk in the codominant and recessive models [0.6 (0.1-6.0) and 0.5 (0.1-5.1)]. Conclusion. Our results show that miR-146a gene variants are not significantly associated with primary knee OA in Mexican mestizos.
Collapse
Affiliation(s)
- Antonio Miranda-Duarte
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico.
| | - Verónica Marusa Borgonio-Cuadra
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Norma Celia González-Huerta
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Emma Xochitl Rojas-Toledo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Juan Francisco Ahumada-Pérez
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Eugenio Morales-Hernández
- Servicio de Radiología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico City, Mexico
| |
Collapse
|
41
|
Gao Q, Chang N, Liu D. In vitro and in vivo assessment of the protective effect of sufentanil in acute lung injury. J Int Med Res 2021; 49:300060520986351. [PMID: 33535837 PMCID: PMC7869068 DOI: 10.1177/0300060520986351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objectives To investigate the mechanisms underlying the protective effect of sufentanil
against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation
to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The
targets and promoter activities of IκB were assessed using a luciferase
reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal
deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue,
pulmonary edema and secretion of inflammatory factors associated with ALI
in vivo and in vitro. In addition,
sufentanil suppressed apoptosis induced by LPS and activated NF-κB both
in vivo and in vitro. Furthermore,
upregulation of high mobility group box protein 1 (HMGB1) protein levels and
downregulation of miR-129-5p levels were observed in vivo
and in vitro following sufentanil treatment. miR-129-5p
targeted the 3ʹ untranslated region and its inhibition decreased promoter
activities of IκB-α. miR-129-5p inhibition significantly weakened the
protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression,
suggesting that sufentanil represents a candidate drug for ALI protection
and providing avenues for clinical treatment.
Collapse
Affiliation(s)
- Qi Gao
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Ningqing Chang
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Donglian Liu
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|
42
|
Sepsis plasma-derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting SERP1. Clin Sci (Lond) 2021; 135:347-365. [PMID: 33416075 PMCID: PMC7843403 DOI: 10.1042/cs20200573] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is the leading cause of death in sepsis patients. Exosomes participate in the occurrence and development of ALI by regulating endothelial cell inflammatory response, oxidative stress and apoptosis, causing serious pulmonary vascular leakage and interstitial edema. The current study investigated the effect of exosomal miRNAs on endothelial cells during sepsis. We found a significant increase in miR-1-3p expression in cecal ligation and puncture (CLP) rats exosomes sequencing and sepsis patients' exosomes, and lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs) in vitro. However, the specific biological function of miR-1-3p in ALI remains unknown. Therefore, mimics or inhibitors of miR-1-3p were transfected to modulate its expression in HUVECs. Cell proliferation, apoptosis, contraction, permeability, and membrane injury were examined via cell counting kit-8 (CCK-8), flow cytometry, phalloidin staining, Transwell assay, lactate dehydrogenase (LDH) activity, and Western blotting. The miR-1-3p target gene was predicted with miRNA-related databases and validated by luciferase reporter. Target gene expression was blocked by siRNA to explore the underlying mechanisms. The results illustrated increased miR-1-3p and decreased stress-associated endoplasmic reticulum protein 1 (SERP1) expression both in vivo and in vitro. SERP1 was a direct target gene of miR-1-3p. Up-regulated miR-1-3p inhibits cell proliferation, promotes apoptosis and cytoskeleton contraction, increases monolayer endothelial cell permeability and membrane injury by targeting SERP1, which leads to dysfunction of endothelial cells and weakens vascular barrier function involved in the development of ALI. MiR-1-3p and SERP1 may be promising therapeutic candidates for sepsis-induced lung injury.
Collapse
|
43
|
Yang Y, Li L. Depleting microRNA-146a-3p attenuates lipopolysaccharide-induced acute lung injury via up-regulating SIRT1 and mediating NF-κB pathway. J Drug Target 2021; 29:420-429. [PMID: 33185125 DOI: 10.1080/1061186x.2020.1850738] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The role of microRNAs (miRs) in acute lung injury (ALI) has been discussed. This study is to uncover the effects of miR-146a-3p/Sirtuin-1 (SIRT1)/Nuclear factor-kappa B (NF-κB) axis on ALI. METHODS Human normal lung epithelial cell line BEAS-2B was exposed to lipopolysaccharide (LPS) to establish an in vitro model of ALI. NF-κB expression, cell activity, apoptosis, inflammatory factors, oxidative stress indices were detected in LPS-induced BEAS-2B cells after miR-146a-3p was down-regulated or SIRT1 was up-regulated. ALI rat model was established and the NF-κB expression, wet/dry weight (W/D) ratio, pathological changes, pneumonocyte apoptosis, inflammatory factors, oxidative stress indices were detected in ALI rats after miR-146a-3p was down-regulated or SIRT1 was up-regulated. The target relationship between miR-146a-3p and SIRT1 was confirmed. RESULTS Reduced SIRT1 and raised miR-146a-3p were found in LPS-induced BEAS-2B cells and ALI rats. SIRT1-overexpressing or miR-146a-3p-underexpressing up-regulated NF-κB expression, promoted viability and inhibited apoptosis of LPS-induced BEAS-2B cells in vitro, and increased NF-κB expression, down-regulated the W/D ratio, attenuated pathological changes, suppressed apoptosis, and alleviated inflammatory response and oxidative stress in the lung of ALI rats. MiR-146a-3p directly binds to the 3'UTR of SIRT1 mRNA. CONCLUSION Depleting miR-146a-3p improves ALI through up-regulating SIRT1 and mediating NF-κB pathway.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Emergency Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
44
|
Roganović JR. microRNA-146a and -155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate SARS-CoV-2 oral receptor genes. J Periodontol 2021; 92:35-43. [PMID: 33336412 DOI: 10.1002/jper.20-0623] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Type 2 diabetes and periodontitis predispose to a higher risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recent studies show upregulation of innate immuno-regulatory microRNA-146a and -155 in oral fluids of patients with type 2 diabetes as well as of patients with periodontitis. The aim was to investigate whether upregulation of these microRNAs may relate to patient susceptibility to the infection via modulation of SARS-CoV-2 cellular entry factors expression. METHODS Due to limited experimental feasibility and health risks in Coronavirus Disease 2019, bioinformatic analyses combining with system biology were used as initial investigation of interaction between microRNA-146 and -155 and genes encoding SARS-CoV-2 entry factors. RESULTS SARS-CoV-2 cellular entry factors are expressed in salivary glands and masticatory mucosa (tongue) at different expression levels, comparable with those measured in lungs and tonsil. MicroRNA-146 and -155 are widely involved in the regulation of SARS-CoV-2 oral cellular entry factors and may enhance expression of ACE2 and modulate genes involved in host immunity. CONCLUSIONS Diabetes- and periodontitis-induced increase in microRNA-146a and -155 in oral cavity is predicted to upregulate angiotensin-converting enzyme 2 expression, essential SARS-CoV-2 entry receptors, and modulate host antiviral response. As it could suggest increased infectivity of diabetes and periodontitis patients, additional protective measures for periodontists are recommended.
Collapse
Affiliation(s)
- Jelena R Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
45
|
Roganović JR. microRNA‐146a and ‐155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate SARS‐CoV‐2 oral receptor genes. J Periodontol 2021. [DOI: 10.1002/jper.20-0623 doi:10.1002/jper.20-0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jelena R. Roganović
- Department of Pharmacology in Dentistry School of Dental Medicine University of Belgrade Belgrade Serbia
| |
Collapse
|
46
|
Sanders J, Schneider EM. How severe RNA virus infections such as SARS-CoV-2 disrupt tissue and organ barriers—Reconstitution by mesenchymal stem cell-derived exosomes. TISSUE BARRIERS IN DISEASE, INJURY AND REGENERATION 2021. [PMCID: PMC8225928 DOI: 10.1016/b978-0-12-818561-2.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The host tissue barriers arrange numerous lines of resistance to influx and cell-to-cell spread of pathogenic viruses. However, the highly virulent pathogens are equipped with diverse molecular mechanisms that can subvert the host countermeasures and/or exaggerate the host cell responses to toxic levels leading to severe illnesses. In his review, we discuss the immune-mediated pathogenesis of COVID-19 disease induced by the SARS-Cov-2 coronavirus. SARS-Cov-2 primarily infects type II alveolar epithelial cells. These cells are highly abundant with the ACE2 receptor protein, which occurs to be counterpart of the viral Spike protein and thus facilitates internalization of the virus. Following infection onset, the rapid clinical deterioration occurs about in a week suggesting that the respiratory failure in COVID-19 could result from a unique pattern of immune impairment characterized by severe Cytokine Release Syndrome (known as cytokine storm) leading to macrophage activation syndrome. In addition, the SARS-Cov-2 infection can induce a profound depletion of CD4 lymphocytes, CD19 lymphocytes, and natural killer cells, i.e., all major guardians cell components of the host immune barrier. However, while the numbers of that cells decline in the sequelae of the disease, the presence of persistent hyper-inflammation driving progressive tissue injury, suggests that the deteriorating impact of the systemic reactive responses can be more significant than the virus-induced cytopathic effects on the immunocompetent cells. In this respect, the authors discuss the emerging evidence of beneficial effects of administration of exosomes derived from mesenchymal stem cells—another sentinel-type cells—in management of the hyper-inflammatory response to SARS-CoV-2. Moreover, they also discuss the exosomes-originated mechanisms, which sustain regeneration of the damaged pulmonary lining cells and the vascular endothelial cells in various organs, including the brain.
Collapse
|
47
|
Yan Z, Huang QL, Chen J, Liu F, Wei Y, Chen SL, Wu CY, Li Z, Lin XP. Chicoric acid alleviates LPS-induced inflammatory response through miR-130a-3p/IGF-1pathway in human lung A549 epithelial cells. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211038244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To investigate the effects and potential mechanisms of chicoric acid (CA) on LPS-induced inflammatory response in A549 cells. 0–800 μM CA was added to A549 cells to determine the toxicity of CA using MTT assay. Then, 2 μg/mL LPS and 50 μM CA were simultaneously added to A549 cells to investigate the effects of CA. In order to investigate the effects of miR-130a-3p and IGF-1 on LPS-induced A549 cells, cells were infected with inhibitor of miR-130a-3p and si RNA IGF-1. The levels of inflammatory cytokines such as IL-1β, IL-6, and TNF-α were measured by real-time RT-PCR and enzyme-linked immunosorbent (ELISA) assay. The IGF-1 pathway and NF-κB expression were measured using immunoblot assay. Moreover, a luciferase activity assay was used to indicate the binding site of miR-130a-3p on the 3′UTR of IGF-1. 0–50 μM CA had no toxicity on A549 cells. Thus, we chose 50 μM CA for the following study. CA attenuated the inflammatory response by LPS through decreasing IL-1β, IL-6, and TNF-α levels and increasing IGF-1/IGF-1R expression. Inhibition of miR-130a-3p reduced the inflammatory response and restored IGF-1/IGF-1R pathway induced by LPS. Furthermore, luciferase activity results indicated that miR-130a-3p directly targeted IGF-1 to regulate inflammatory response. CA alleviates LPS-induced inflammatory response through miR-130a-3p/IGF-1pathway in A549 cells.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Qing-Lan Huang
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Jun Chen
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Fan Liu
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Yi Wei
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Shu-Li Chen
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Chun-Yan Wu
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Zhen Li
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| | - Xiao-Ping Lin
- Department of Neonatal Medicine, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, P. R. China
| |
Collapse
|
48
|
Yang G, Zhao Y. MicroRNA-490-3p inhibits inflammatory responses in LPS-induced acute lung injury of neonatal rats by suppressing the IRAK1/TRAF6 pathway. Exp Ther Med 2020; 21:152. [PMID: 33456519 PMCID: PMC7792502 DOI: 10.3892/etm.2020.9584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a main reason for neonatal death. Studying the molecular mechanism behind neonatal ALI is critical for the development of therapeutic strategies. The present study explored microRNA (miR)-490-3p-mediated regulatory effects on lipopolysaccharide (LPS)-induced neonatal ALI. Initially, LPS (10 mg/kg body weight) was injected to 3-8 day old neonatal SD rats to induce ALI, and LPS (100 ng/ml) was used to treat lung epithelial cells to construct an ALI model in vitro. Next, miR-490-3p, pro-inflammatory factors (that included IL-1β, IL-6 and TNFα), interleukin 1 receptor associated kinase 1 (IRAK1) and TNF receptor associated factor 6 (TRAF6) mRNA expression levels in lung tissues and epithelial cells were assessed via reverse transcription-quantitative PCR. In addition, miR-490-3p mimics were adopted to construct its overexpressed cell model, and Cell Counting Kit-8 and BrdU assays were conducted to assess cell viability. Furthermore, the miR-490-3p target, IRAK was predicted by bioinformatics analysis and verified via Dual-luciferase reporter gene assay. The results revealed that miR-490-3p was markedly downregulated in an LPS-induced rat ALI model, while IL-1β, IL-6, TNFα, IRAK1 and TRAF6 were all upregulated and negatively correlated with miR-490-3p expression. Moreover, overexpressed miR-490-3p significantly inhibited LPS-induced lung epithelial cell injury and inflammatory response. Mechanistically, miR-490-3p targeted and attenuated IRAK1 expression, which thus inactivated the LPS-mediated TRAF6/NF-κB pathway. Overall, the present study indicated that miR-490-3p overexpression significantly inhibited LPS-induced ALI and inflammatory responses by restricting the IRAK1/TRAF6 pathway.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuan Zhao
- Department of Neonatal Internal Medicine, Shanxi Children's Hospital, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
49
|
Zheng L, Su J, Zhang Z, Jiang L, Wei J, Xu X, Lv S. Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Sci Rep 2020; 10:20750. [PMID: 33247202 PMCID: PMC7695860 DOI: 10.1038/s41598-020-77448-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to explore the investigative mechanism of salidroside (SAL) on LPS-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The exosomes from RLE-6TN are extracted and identified by transmission electron microscopy, particle size analysis and protein marker detection, and co-cultured with NR8383 cells. The ALI/ARDS model of SD rats was established by LPS (10 mg/kg) intratracheal instillation. Following a four-hour intratracheal instillation of LPS, 50 μl of RLE-6TN exosomes were injected through the tail vein. After that, SAL and miR-146a antagomir were injected into the tail vein for 72 h, respectively. As the changes of HE stain, body weight and ALI score are observed. The expression of miR-146a, TLR4, NF-kB, IRAK1, TRAF6 and their related proteins were detected by RT-PCR and Western blot, respectively. TNF-α, IL-6, IL-8 and IL-1 β inflammatory factors were detected by ELISA. The expression of miR-146a, NF-kB, IRAK, TRAF6 and related inflammatory factors in LPS-induced NR8383 was significantly higher than that in the control group, while SAL has greatly reduced the expression of TLR4 mediated NF-kB inflammatory pathway and related inflammatory factors. SAL can significantly improve the LPS-induced lung morphological abnormalities, slowed down the rate of weight loss in rats, and reducing the ALI score. The expression trend of NF-kB, IRAK, TRAF6 and related inflammatory factors in rats’ lung tissues was consistent with that in NR8383 cells. SAL has a protective effect on ALI/ARDS caused by sepsis, which is likely to be developed to a potential treatment for the disease. To sum up, this study provides a new theoretical basis for the treatment of ALI/ARDS with SAL.
Collapse
Affiliation(s)
- Lanzhi Zheng
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Jianming Su
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Zhuoyi Zhang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Lu Jiang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Jinling Wei
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Xiaoyang Xu
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Shumin Lv
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China.
| |
Collapse
|
50
|
He L, Wang Z, Zhou R, Xiong W, Yang Y, Song N, Qian J. Dexmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway. Biomed Pharmacother 2020; 133:110993. [PMID: 33220608 DOI: 10.1016/j.biopha.2020.110993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myocardial ischemia/reperfusion (I/R) injury is a common cause of mortality. Cardiac miR-146a is emerging as a potent regulator of myocardial function. Dexmedetomidine preconditioning provides cardioprotective effects, of which mechanisms related to miR-146a-3p are unclear. METHODS A myocardial I/R model in rats and a cellular anoxia/reoxygenation (A/R) model in H9C2 cells were established and preconditioned with dexmedetomidine or not. H9C2 cells were transfected with mimics, inhibitor, or negative controls of miR-146a-3p, and siRNAs of IRAK1 or TRAF6. Relative expressions of miR-146a-3p were determined by quantitative real-time polymerase chain reaction. The apoptosis rates and reactive oxygen species (ROS) levels in H9C2 cells were examined by flow cytometry. Protein expressions of IRAK1, TRAF6, cleaved Caspase-3, BAX, BCL-2, NF-κB p65, phosphorylated NF-κB p65 (p-NF-κB p65), IκBα, and phosphorylated IκBα (p-IκBα) in H9C2 cells were detected by Western blot. RESULTS Dexmedetomidine decreased myocardial infarction size and apoptosis rates of H9C2 cells. Dexmedetomidine upregulated expression of miR-146a-3p. Dexmedetomidine significantly decreased protein expressions of IRAK1, TRAF6, cleaved Caspase-3, BAX, and NF-κB p65, but increased expressions of BCL-2 in H9C2 cells. miR-146a-3p overexpression strengthened the anti-apoptotic effect induced by dexmedetomidine in H9C2 cells via decreasing protein levels of IRAK1, TRAF6, cleaved Caspase-3, BAX, NF-κB p65, p-NF-κB p65, and p-IκBα and increasing protein level of BCL-2. Downregulation of miR-146a-3p reversed the changes in these proteins in H9C2 cells. Expressions of NF-κB p65 and p-NF-κB p65 were further decreased following knockdown of IRAK1 or TRAF6. ROS emission was significantly increased after A/R, while significantly decreased following dexmedetomidine preconditioning in H9C2 cells transfected with siIRAK1 or siTRAF6. CONCLUSION miR-146a-3p targeting IRAK1 and TRAF6 through inhibition of NF-κB signaling pathway and ROS emission is involved in cardioprotection induced by dexmedetomidine pretreatment.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China; Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming Medical University, Kunming, Yunnan Province, 650051, China
| | - Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Rui Zhou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Wei Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Ning Song
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China.
| |
Collapse
|