1
|
Mohamed MME, Amrani Y. Obesity Enhances Non-Th2 Airway Inflammation in a Murine Model of Allergic Asthma. Int J Mol Sci 2024; 25:6170. [PMID: 38892358 PMCID: PMC11172812 DOI: 10.3390/ijms25116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Obese patients with asthma present with aggravated symptoms that are also harder to treat. Here, we used a mouse model of allergic asthma sensitised and challenged to house dust mite (HDM) extracts to determine whether high-fat-diet consumption would exacerbate the key features of allergic airway inflammation. C57BL/6 mice were intranasally sensitised and challenged with HDM extracts over a duration of 3 weeks. The impact of high-fat-diet (HFD) vs. normal diet (ND) chow was studied on HDM-induced lung inflammation and inflammatory cell infiltration as well as cytokine production. HFD-fed mice had greater inflammatory cell infiltration around airways and blood vessels, and an overall more severe degree of inflammation than in the ND-fed mice (semiquantitative blinded evaluation). Quantitative assessment of HDM-associated Th2 responses (numbers of lung CD4+ T cells, eosinophils, serum levels of allergen-specific IgE as well as the expression of Th2 cytokines (Il5 and Il13)) did not show significant changes between the HFD and ND groups. Interestingly, the HFD group exhibited a more pronounced neutrophilic infiltration within their lung tissues and an increase in non-Th2 cytokines (Il17, Tnfa, Tgf-b, Il-1b). These findings provide additional evidence that obesity triggered by a high-fat-diet regimen may exacerbate asthma by involving non-Th2 and neutrophilic pathways.
Collapse
Affiliation(s)
| | - Yassine Amrani
- Department of Respiratory Sciences, Clinical Sciences, Glenfield Hospital, University of Leicester, Leicester LE3 9QP, UK;
| |
Collapse
|
2
|
Yang Y, Pan X, Chen S. Effect of Semaglutide and Empagliflozin on Pulmonary Structure and Proteomics in Obese Mice. Diabetes Metab Syndr Obes 2024; 17:1217-1233. [PMID: 38496002 PMCID: PMC10942255 DOI: 10.2147/dmso.s456336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Objective This study utilized proteomics to investigate changes in protein expression associated with lung health in obese mice exposed to semaglutide and empagliflozin through a high-fat diet. Methods Twenty-eight male C57BL/6JC mice were randomly assigned to two groups: a control diet group (n = 7) and a high-fat diet group (n = 21). The HFD group was further divided into three groups: HFD group (n = 7), Sema group (n = 7), and Empa group (n = 7). Post-treatment, mice underwent assessments including glucose tolerance, lipids, oxidative stress markers, body weight, lung weight, and structure. Proteomics identified differentially expressed proteins (DEPs) in lung tissue, and bioinformatics analyzed the biological processes and functions of these proteins. Results Semaglutide and empagliflozin significantly attenuated obesity-induced hyperglycemia, abnormal lipid metabolism, oxidative stress response, and can decrease alveolar wall thickness, enlarge alveolar lumen, and reduce collagen content in lung tissue. Both medications also attenuated lung elastic fibre cracking and disintegration. In the HFD/NCD group, there were 66 DEPs, comprising 30 proteins that were increased and 36 that were decreased. Twenty-three DEPs overlapped between Sema/HFD and Empa/HFD, with 11 up-regulated and 12 down-regulated simultaneously. After analysing DEPs in different groups, four proteins - LYVE1, BRAF, RGCC, and CHMP5 - were all downregulated in the HFD group and upregulated by semaglutide and empagliflozin treatment. Conclusion This study demonstrates that obesity induced by a high-fat diet causes a reduction in the expression of LYVE1, BRAF, RGCC, and CHMP5 proteins, potentially affecting lung function and structure in mice. Significantly, the administration of semaglutide and empagliflozin elevates the levels of these proteins, potentially offering therapeutic benefits against lung injury caused by obesity. Merging semaglutide with empagliflozin may exert a more pronounced impact.
Collapse
Affiliation(s)
- Yu Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Pan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shuchun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
3
|
Cheng X, Jiang S, Pan B, Xie W, Meng J. Ectopic and visceral fat deposition in aging, obesity, and idiopathic pulmonary fibrosis: an interconnected role. Lipids Health Dis 2023; 22:201. [PMID: 38001499 PMCID: PMC10668383 DOI: 10.1186/s12944-023-01964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is considered an age-related disease. Age-related changes, along with other factors such as obesity, hormonal imbalances, and various metabolic disorders, lead to ectopic fat deposition (EFD). This accumulation of fat outside of its normal storage sites is associated with detrimental effects such as lipotoxicity, oxidative stress, inflammation, and insulin resistance. This narrative review provides an overview of the connection between ectopic and visceral fat deposition in aging, obesity, and IPF. It also elucidates the mechanism by which ectopic fat deposition in the airways and lungs, pericardium, skeletal muscles, and pancreas contributes to lung injury and fibrosis in patients with IPF, directly or indirectly. Moreover, the review discusses the impact of EFD on the severity of the disease, quality of life, presence of comorbidities, and overall prognosis in IPF patients. The review provides detailed information on recent research regarding representative lipid-lowering drugs, hypoglycemic drugs, and lipid-targeting drugs in animal experiments and clinical studies. This may offer new therapeutic directions for patients with IPF.
Collapse
Affiliation(s)
- Xiaoyun Cheng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Shuhan Jiang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China
| | - Boyu Pan
- Departments of Orthopedics, The Third Hospital of Changsha, Laodong West Road 176, Tianxin District, Changsha, 410000, China
| | - Wei Xie
- Department of Cardiology, Xiangya Hospital of Central South University, Furong Middle Road 36, Kaifu District, Changsha, 410000, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Tongzipo Road 138, Yuelu District, Changsha, 410000, China.
- Hunan Key Laboratory of Organ Fibrosis, Tongzipo Road 138, Yuelu District, Changsha, 410000, China.
| |
Collapse
|
4
|
Yang J, Liang C, Liu L, Wang L, Yu G. High-Fat Diet Related Lung Fibrosis-Epigenetic Regulation Matters. Biomolecules 2023; 13:biom13030558. [PMID: 36979493 PMCID: PMC10046645 DOI: 10.3390/biom13030558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Pulmonary fibrosis (PF) is an interstitial lung disease characterized by the destruction of the pulmonary parenchyma caused by excessive extracellular matrix deposition. Despite the well-known etiological factors such as senescence, aberrant epithelial cell and fibroblast activation, and chronic inflammation, PF has recently been recognized as a metabolic disease and abnormal lipid signature was observed both in serum and bronchoalveolar lavage fluid (BALF) of PF patients and mice PF model. Clinically, observational studies suggest a significant link between high-fat diet (HFD) and PF as manifested by high intake of saturated fatty acids (SFAs) and meat increases the risk of PF and mice lung fibrosis. However, the possible mechanisms between HFD and PF remain unclear. In the current review we emphasize the diversity effects of the epigenetic dysregulation induced by HFD on the fibrotic factors such as epithelial cell injury, abnormal fibroblast activation and chronic inflammation. Finally, we discuss the potential ways for patients to improve their conditions and emphasize the prospect of targeted therapy based on epigenetic regulation for scientific researchers or drug developers.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Chenxi Liang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Lulu Liu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Cellular and Molecular Control of Lipid Metabolism in Idiopathic Pulmonary Fibrosis: Clinical Application of the Lysophosphatidic Acid Pathway. Cells 2023; 12:cells12040548. [PMID: 36831215 PMCID: PMC9954511 DOI: 10.3390/cells12040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a representative disease that causes fibrosis of the lungs. Its pathogenesis is thought to be characterized by sustained injury to alveolar epithelial cells and the resultant abnormal tissue repair, but it has not been fully elucidated. IPF is currently difficult to cure and is known to follow a chronic progressive course, with the patient's survival period estimated at about three years. The disease occasionally exacerbates acutely, leading to a fatal outcome. In recent years, it has become evident that lipid metabolism is involved in the fibrosis of lungs, and various reports have been made at the cellular level as well as at the organic level. The balance among eicosanoids, sphingolipids, and lipid composition has been reported to be involved in fibrosis, with particularly close attention being paid to a bioactive lipid "lysophosphatidic acid (LPA)" and its pathway. LPA signals are found in a wide variety of cells, including alveolar epithelial cells, vascular endothelial cells, and fibroblasts, and have been reported to intensify pulmonary fibrosis via LPA receptors. For instance, in alveolar epithelial cells, LPA signals reportedly induce mitochondrial dysfunction, leading to epithelial damage, or induce the transcription of profibrotic cytokines. Based on these mechanisms, LPA receptor inhibitors and the metabolic enzymes involved in LPA formation are now considered targets for developing novel means of IPF treatment. Advances in basic research on the relationships between fibrosis and lipid metabolism are opening the path to new therapies targeting lipid metabolism in the treatment of IPF.
Collapse
|
6
|
Ihrie MD, McQuade VL, Womble JT, Hegde A, McCravy MS, Lacuesta CVG, Tighe RM, Que LG, Walker JKL, Ingram JL. Exogenous leptin enhances markers of airway fibrosis in a mouse model of chronic allergic airways disease. Respir Res 2022; 23:131. [PMID: 35610699 PMCID: PMC9131622 DOI: 10.1186/s12931-022-02048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma patients with comorbid obesity exhibit increased disease severity, in part, due to airway remodeling, which is also observed in mouse models of asthma and obesity. A mediator of remodeling that is increased in obesity is leptin. We hypothesized that in a mouse model of allergic airways disease, mice receiving exogenous leptin would display increased airway inflammation and fibrosis. METHODS Five-week-old male and female C57BL/6J mice were challenged with intranasal house dust mite (HDM) allergen or saline 5 days per week for 6 weeks (n = 6-9 per sex, per group). Following each HDM exposure, mice received subcutaneous recombinant human leptin or saline. At 48 h after the final HDM challenge, lung mechanics were evaluated and the mice were sacrificed. Bronchoalveolar lavage was performed and differential cell counts were determined. Lung tissue was stained with Masson's trichrome, periodic acid-Schiff, and hematoxylin and eosin stains. Mouse lung fibroblasts were cultured, and whole lung mRNA was isolated. RESULTS Leptin did not affect mouse body weight, but HDM+leptin increased baseline blood glucose. In mixed-sex groups, leptin increased mouse lung fibroblast invasiveness and increased lung Col1a1 mRNA expression. Total lung resistance and tissue damping were increased with HDM+leptin treatment, but not leptin or HDM alone. Female mice exhibited enhanced airway responsiveness to methacholine with HDM+leptin treatment, while leptin alone decreased total respiratory system resistance in male mice. CONCLUSIONS In HDM-induced allergic airways disease, administration of exogenous leptin to mice enhanced lung resistance and increased markers of fibrosis, with differing effects between males and females.
Collapse
Affiliation(s)
- Mark D Ihrie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Victoria L McQuade
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Jack T Womble
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, USA
| | - Matthew S McCravy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | | | - Robert M Tighe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Julia K L Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
- School of Nursing, Duke University, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA.
- , Durham, USA.
| |
Collapse
|
7
|
Farzan S, Coyle T, Coscia G, Rebaza A, Santiago M. Clinical Characteristics and Management Strategies for Adult Obese Asthma Patients. J Asthma Allergy 2022; 15:673-689. [PMID: 35611328 PMCID: PMC9124473 DOI: 10.2147/jaa.s285738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
The rates of asthma and obesity are increasing concurrently in the United States. Epidemiologic studies demonstrate that the incidence of asthma increases with obesity. Furthermore, obese individuals have asthma that is more severe, harder to control, and resistant to standard medications. In fact, specific asthma-obesity phenotypes have been identified. Various pathophysiologic mechanisms, including mechanical, inflammatory, metabolic and microbiome-associated, are at play in promulgating the obese-asthma phenotypes. While standard asthma medications, such as inhaled corticosteroids and biologics, are currently used to treat obese asthmatics, they may have limited effectiveness. Targeting the underlying aberrant processes, such as addressing steroid resistance, microbiome, metabolic and weight loss approaches, may be helpful.
Collapse
Affiliation(s)
- Sherry Farzan
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Correspondence: Sherry Farzan, Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, 865 Northern Blvd, Suite 101, Great Neck, NY, 11021, USA, Tel +1 516-622-5070, Fax +1 516-622-5060, Email
| | - Tyrone Coyle
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Gina Coscia
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Andre Rebaza
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| | - Maria Santiago
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| |
Collapse
|
8
|
Guo X, Sunil C, Qian G. Obesity and the Development of Lung Fibrosis. Front Pharmacol 2022; 12:812166. [PMID: 35082682 PMCID: PMC8784552 DOI: 10.3389/fphar.2021.812166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is an epidemic worldwide and the obese people suffer from a range of respiratory complications including fibrotic changes in the lung. The influence of obesity on the lung is multi-factorial, which is related to both mechanical injury and various inflammatory mediators produced by excessive adipose tissues, and infiltrated immune cells. Adiposity causes increased production of inflammatory mediators, for example, cytokines, chemokines, and adipokines, both locally and in the systemic circulation, thereby rendering susceptibility to respiratory diseases, and altered responses. Lung fibrosis is closely related to chronic inflammation in the lung. Current data suggest a link between lung fibrosis and diet-induced obesity, although the mechanism remains incomplete understood. This review summarizes findings on the association of lung fibrosis with obesity, highlights the role of several critical inflammatory mediators (e.g., TNF-α, TGF-β, and MCP-1) in obesity related lung fibrosis and the implication of obesity in the outcomes of idiopathic pulmonary fibrosis patients.
Collapse
Affiliation(s)
- Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, The University of Texas at Tyler, Tyler, TX, United States
| | - Christudas Sunil
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, The University of Texas at Tyler, Tyler, TX, United States
| | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, The University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
9
|
Pinkerton JW, Kim RY, Brown AC, Rae BE, Donovan C, Mayall JR, Carroll OR, Khadem Ali M, Scott HA, Berthon BS, Baines KJ, Starkey MR, Kermani NZ, Guo YK, Robertson AAB, O'Neill LAJ, Adcock IM, Cooper MA, Gibson PG, Wood LG, Hansbro PM, Horvat JC. Relationship between type 2 cytokine and inflammasome responses in obesity-associated asthma. J Allergy Clin Immunol 2021; 149:1270-1280. [PMID: 34678326 DOI: 10.1016/j.jaci.2021.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Obesity is a risk factor for asthma, and obese asthmatic individuals are more likely to have severe, steroid-insensitive disease. How obesity affects the pathogenesis and severity of asthma is poorly understood. Roles for increased inflammasome-mediated neutrophilic responses, type 2 immunity, and eosinophilic inflammation have been described. OBJECTIVE We investigated how obesity affects the pathogenesis and severity of asthma and identified effective therapies for obesity-associated disease. METHODS We assessed associations between body mass index and inflammasome responses with type 2 (T2) immune responses in the sputum of 25 subjects with asthma. Functional roles for NLR family, pyrin domain-containing (NLRP) 3 inflammasome and T2 cytokine responses in driving key features of disease were examined in experimental high-fat diet-induced obesity and asthma. RESULTS Body mass index and inflammasome responses positively correlated with increased IL-5 and IL-13 expression as well as C-C chemokine receptor type 3 expression in the sputum of subjects with asthma. High-fat diet-induced obesity resulted in steroid-insensitive airway hyperresponsiveness in both the presence and absence of experimental asthma. High-fat diet-induced obesity was also associated with increased NLRP3 inflammasome responses and eosinophilic inflammation in airway tissue, but not lumen, in experimental asthma. Inhibition of NLRP3 inflammasome responses reduced steroid-insensitive airway hyperresponsiveness but had no effect on IL-5 or IL-13 responses in experimental asthma. Depletion of IL-5 and IL-13 reduced obesity-induced NLRP3 inflammasome responses and steroid-insensitive airway hyperresponsiveness in experimental asthma. CONCLUSION We found a relationship between T2 cytokine and NLRP3 inflammasome responses in obesity-associated asthma, highlighting the potential utility of T2 cytokine-targeted biologics and inflammasome inhibitors.
Collapse
Affiliation(s)
- James W Pinkerton
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Brittany E Rae
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Olivia R Carroll
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Md Khadem Ali
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Hayley A Scott
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Bronwyn S Berthon
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia; Priority Research Centre GrowUpWell, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Nazanin Z Kermani
- Data Science Institute, Department of Computing, Imperial College London, London, United Kingdom
| | - Yi-Ke Guo
- Data Science Institute, Department of Computing, Imperial College London, London, United Kingdom
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ian M Adcock
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia.
| |
Collapse
|
10
|
Hegab AE, Ozaki M, Kagawa S, Fukunaga K. Effect of High Fat Diet on the Severity and Repair of Lung Fibrosis in Mice. Stem Cells Dev 2021; 30:908-921. [PMID: 34269615 DOI: 10.1089/scd.2021.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lung fibrosis is a progressive fatal disease, and the underlying mechanisms remain unclear. These involve a combination of altered fibroblasts, excessive accumulation of extracellular matrix, inflammation, and aberrant activation of epithelial cells. Previously, we showed that high-fat diet (HFD) induces lung inflammation, aberrant activation of stem cells, and lung mitochondria impairment. Therefore, we hypothesized that HFD-induced changes would influence lung fibrosis. Mice were fed standard diet (SD) or HFD, administered bleomycin, then examined for fibrosis severity and the start of repair 3 weeks after injury, and for fibrosis repair/resolution 6-9 weeks after injury. At 3 weeks, no significant differences in inflammation and fibrosis severity were observed between SD- and HFD-fed mice. However, infiltration of alveolar type (AT)-2 cells and bronchioalveolar stem cells (BASCs) into the fibrotic areas (the start of repair) was impaired in HFD-fed mice. At 6 weeks, SD-fed mice showed near-complete resolution/repair of fibrosis and inflammation, while HFD-fed mice still showed residual fibrosis and inflammation. Infiltration of the fibrotic areas with AT2 cells was observed, but very few BASCs were detectable. At 9 weeks, mice from both groups showed complete resolution/repair of fibrosis and inflammation, indicating that HFD induced delayed, rather than failed, resolution of fibrosis and alveolar repair. To further confirm the direct role of enhanced fatty-acid oxidation (FAO) in delayed resolution/repair, we administered etomoxir, a FAO inhibitor, to HFD-fed mice for 3-6 weeks after bleomycin injury. Inhibition of FAO abolished the HFD-induced delay in alveolar repair and fibrosis resolution at both time points. In conclusion, after a fibrosis-inducing injury, HFD slows resolution of fibrosis/inflammation and delays alveolar repair by slowing the contribution of AT2 stem cells and abolishing the contribution of BASCs in the repair process. FAO activation appears to be involved in this delay mechanism; thus, inhibiting FAO may be useful in the treatment of lung injury and fibrosis.
Collapse
Affiliation(s)
- Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Japan.,Faculty of Medicine, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Mari Ozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| |
Collapse
|
11
|
Percopo CM, McCullough M, Limkar AR, Druey KM, Rosenberg HF. Impact of controlled high-sucrose and high-fat diets on eosinophil recruitment and cytokine content in allergen-challenged mice. PLoS One 2021; 16:e0255997. [PMID: 34383839 PMCID: PMC8360545 DOI: 10.1371/journal.pone.0255997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Despite an ongoing focus on the role of diet in health and disease, we have only a limited understanding of these concepts at the cellular and molecular levels. While obesity has been clearly recognized as contributing to metabolic syndrome and the pathogenesis of adult asthma, recent evidence has linked high sugar intake alone to an increased risk of developing asthma in childhood. In this study, we examined the impact of diet in a mouse model of allergic airways inflammation with a specific focus on eosinophils. As anticipated, male C57BL/6 mice gained weight on a high-calorie, high-fat diet. However, mice also gained weight on an isocaloric high-sucrose diet. Elevated levels of leptin were detected in the serum and airways of mice maintained on the high-fat, but not the high-sucrose diets. We found that diet alone had no impact on eosinophil numbers in the airways at baseline or their recruitment in response to allergen (Alternaria alternata) challenge in either wild-type or leptin-deficient ob/ob mice. However, both bronchoalveolar lavage fluid and eosinophils isolated from lung tissue of allergen-challenged mice exhibited profound diet-dependent differences in cytokine content. Similarly, while all wild-type mice responded to allergen challenge with significant increases in methacholine-dependent total airway resistance (Rrs), airway resistance in mice maintained on the isocaloric high-sucrose (but not the high-calorie/high-fat) diet significantly exceeded that of mice maintained on the basic diet. In summary, our findings revealed that mice maintained on an isocaloric high-sucrose diet responded to allergen challenge with significant changes in both BAL and eosinophil cytokine content together with significant increases in Rrs. These results provide a model for further exploration of the unique risks associated with a high-sugar diet and its impact on allergen-associated respiratory dysfunction.
Collapse
Affiliation(s)
- Caroline M. Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ajinkya R. Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
He Z, Wu J, Zeng X, Bao H, Liu X. Role of the Notch ligands Jagged1 and Delta4 in Th17/Treg immune imbalance in a mouse model of chronic asthma. Exp Lung Res 2021; 47:289-299. [PMID: 34096812 DOI: 10.1080/01902148.2021.1933653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Asthma is associated with a T helper (Th)17/regulatory T (Treg) cells immune imbalance where the Notch signaling pathway contributes vitally. This study aimed to explore the role of Notch ligands Jagged1 and Delta4 in the Th17/Treg immune imbalance of chronic asthmatic mice. METHODS The experimental animals were randomly assigned to the Saline, ovalbumin (OVA), and OVA + γ-secretase inhibitor (GSI) groups. A mouse model of chronic asthma was induced by OVA sensitization and challenge. GSI was injected intraperitoneally before the OVA challenge in the OVA + GSI group. Lung function, lung histopathology and immunohistochemistry to assess airway inflammation, enzyme-linked immunosorbent assay to measure cytokines levels, flow cytometry to measure the proportions of Th17 (Th17%) and Treg% in CD4+T cells, quantitative real-time polymerase chain reaction and western blot to measure mRNA and protein levels of Jagged1 and Delta4 in lung tissue, and correlation analysis were performed. RESULTS Lung function and histopathology and IL-4, IL-13, and IFN-γ levels in the bronchoalveolar lavage fluid (BALF) of chronic asthmatic mice showed characteristic changes of asthma. The Th17%, Th17/Treg ratio, BALF and serum IL-17 levels, and IL-17/IL-10 ratio increased significantly in the OVA group, while the Treg% and IL-10 level significantly decreased. mRNA and protein expression levels of Jagged1 and Delta4 increased significantly. GSI could reduce the Th17%, Th17/Treg ratio, IL-17, IL-17/IL-10 ratio, and Jagged1 expression in chronic asthmatic mice. The mRNA and protein levels of Jagged1 and Delta4 were positively correlated with the Th17/Treg ratio in the OVA group, while only those of Jagged1 were positively correlated with the Th17/Treg ratio in the OVA + GSI group. CONCLUSIONS In chronic asthmatic mice, the Th17/Treg ratio increased, and the Notch ligands Jagged1 and Delta4 were overactive and positively regulated the Th17/Treg imbalance. GSI partially inhibited Jagged1 and relieved the Th17/Treg imbalance.
Collapse
Affiliation(s)
- Zhen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jirong Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoli Zeng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hairong Bao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoju Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Pediatric obese asthma is a complex disease that remains poorly understood. The increasing worldwide incidence of both asthma and obesity over the last few decades, their current high prevalence and the challenges in treating obese asthmatic patients all highlight the importance of a better understanding of the pathophysiological mechanisms in obese asthma. While it is well established that patients with obesity are at an increased risk of developing asthma, the mechanisms by which obesity drives the onset of asthma, and modifies existing asthma, remain unclear. Here, we will focus on mechanisms by which obesity alters immune function in asthma. RECENT FINDINGS Lung parenchyma has an altered structure in some pediatric obese asthmatics, known as dysanapsis. Central adiposity is linked to reduced pulmonary function and a better predictor of asthma risk in children than BMI. Obesity in young children is associated with an increased risk of developing asthma, as well as early puberty, and hormonal alterations are implicated in obese asthma. Obesity and asthma each yield immunometabolic dysregulation separately and we are learning more about alterations in these pathways in pediatric obese asthma and the potential impact of bariatric surgery on those processes. SUMMARY The recent progress in clarifying the connections between childhood obesity and asthma and their combined impacts on immune function moves us closer to the goals of improved understanding of the pathophysiological mechanisms underpinning obese asthma and improved therapeutic target selection. However, this common inflammatory disease remains understudied, especially in children, and much remains to be learned.
Collapse
Affiliation(s)
- Ceire Hay
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
| | - Sarah E. Henrickson
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Rao SP, Rastle-Simpson S, Dileepan M, Sriramarao P. Procedures to Evaluate Inflammatory and Pathological Changes During Allergic Airway Inflammation. Methods Mol Biol 2021; 2223:217-236. [PMID: 33226598 DOI: 10.1007/978-1-0716-1001-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellular inflammation, with elevated levels of Th1/Th2 cytokines, airway mucus hypersecretion, and thickening of the airway smooth muscle, are characteristic features of the allergic lung. Assessment of pathophysiological changes in allergic lungs serves as an important tool to determine disease progression and understand the underlying mechanisms of pathogenesis. This can be achieved by evaluating the lung tissue for inflammation and airway structural changes along with the measurement of important pro-inflammatory mediators such as Th1/Th2 cytokines and eotaxins. This chapter describes procedures to histologically evaluate inflammatory and pathological changes observed during allergic airway inflammation using lung tissue from mice.
Collapse
Affiliation(s)
- Savita P Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.
| | | | - Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - P Sriramarao
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
15
|
Woo J, Koziol-White C, Panettieri R, Jude J. TGF-β: The missing link in obesity-associated airway diseases? CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100016. [PMID: 34909651 PMCID: PMC8663968 DOI: 10.1016/j.crphar.2021.100016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Obesity is emerging as a global public health epidemic. The co-morbidities associated with obesity significantly contribute to reduced quality of life, mortality, and global healthcare burden. Compared to other asthma comorbidities, obesity prominently engenders susceptibility to inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), contributes to greater disease severity and evokes insensitivity to current therapies. Unlike in other metabolic diseases associated with obesity, the mechanistic link between obesity and airway diseases is only poorly defined. Transforming growth factor-β (TGF-β) is a pleiotropic inflammatory cytokine belonging to a family of growth factors with pivotal roles in asthma. In this review, we summarize the role of TGF-β in major obesity-associated co-morbidities to shed light on mechanisms of the diseases. Literature evidence shows that TGF-β mechanistically links many co-morbidities with obesity through its profibrotic, remodeling, and proinflammatory functions. We posit that TGF-β plays a similar mechanistic role in obesity-associated inflammatory airway diseases such as asthma and COPD. Concerning the role of TGF-β on metabolic effects of obesity, we posit that TGF-β has a similar mechanistic role in obesity-associated inflammatory airway diseases in interplay with different comorbidities such as hypertension, metabolic diseases like type 2 diabetes, and cardiomyopathies. Future studies in TGF-β-dependent mechanisms in obesity-associated inflammatory airway diseases will advance our understanding of obesity-induced asthma and help find novel therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Joanna Woo
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Reynold Panettieri
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Corresponding author. Rutgers Institute for Translational Medicine & Science, Rm# 4276, 89 French Street, New Brunswick, NJ08901, United States.
| |
Collapse
|
16
|
Insights into the Role of Bioactive Food Ingredients and the Microbiome in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21176051. [PMID: 32842664 PMCID: PMC7503951 DOI: 10.3390/ijms21176051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease mainly associated with aging and, to date, its causes are still largely unknown. It has been shown that dietary habits can accelerate or delay the occurrence of aging-related diseases; however, their potential role in IPF development has been underestimated so far. The present review summarizes the evidence regarding the relationship between diet and IPF in humans, and in animal models of pulmonary fibrosis, in which we discuss the bioactivity of specific dietary food ingredients, including fatty acids, peptides, amino acids, carbohydrates, vitamins, minerals and phytochemicals. Interestingly, many animal studies reveal preventive and therapeutic effects of particular compounds. Furthermore, it has been recently suggested that the lung and gut microbiota could be involved in IPF, a relationship which may be linked to changes in immunological and inflammatory factors. Thus, all the evidence so far puts forward the idea that the gut-lung axis could be modulated by dietary factors, which in turn have an influence on IPF development. Overall, the data reviewed here support the notion of identifying food ingredients with potential benefits in IPF, with the ultimate aim of designing nutritional approaches as an adjuvant therapeutic strategy.
Collapse
|
17
|
Dileepan M, Ha SG, Rastle-Simpson S, Ge XN, Greenberg YG, Wijesinghe DS, Contaifer D, Rao SP, Sriramarao P. Pulmonary delivery of ORMDL3 short hairpin RNA - a potential tool to regulate allergen-induced airway inflammation. Exp Lung Res 2020; 46:243-257. [PMID: 32578458 DOI: 10.1080/01902148.2020.1781297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aim/Purpose: Exposure to various allergens has been shown to increase expression of ORMDL3 in the lung in models of allergic asthma. Studies using genetically modified (transgenic or knock out) mice have revealed some of the functions of ORMDL3 in asthma pathogenesis, although amid debate. The goal of this study was to use targeted post-transcriptional downregulation of ORMDL3 in allergen-challenged wild-type (WT) mice by RNA interference to further elucidate the functional role of ORMDL3 in asthma pathogenesis and evaluate a potential therapeutic option.Methods: Allergen (ovalbumin [OVA])-challenged WT mice were administered intranasally (i.n) with a single dose of five short hairpin RNA (shRNA) constructs with different target sequence for murine ORMDL3 cloned in a lentiviral vector or with the empty vector (control). Mice were evaluated for allergen-induced airway hyperresponsiveness (AHR) and various features of airway inflammation after 72 hours.Results: I.n administration of a single dose of ORMDL3 shRNAs to OVA-challenged mice resulted in reduction of ORMDL3 gene expression in the lungs associated with a significant reduction in AHR to inhaled methacholine and in the number of inflammatory cells recruited in the airways, specifically eosinophils, as well as in airway mucus secretion compared to OVA-challenged mice that received the empty vector. Administration of ORMDL3 shRNAs also significantly inhibited levels of IL-13, eotaxin-2 and sphingosine in the lungs. Additionally, ORMDL3 shRNAs significantly inhibited the allergen-mediated increase in monohexyl ceramides C22:0 and C24:0.Conclusions: Post-transcriptional down regulation of ORMDL3 in allergic lungs using i.n-delivered ORMDL3 shRNA (akin to inhaled therapy) attenuates development of key features of airway allergic disease, confirming the involvement of ORMDL3 in allergic asthma pathogenesis and serving as a model for a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Sung Gil Ha
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | - Xiao Na Ge
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA.,Merck & Co., Inc, Palo Alto, CA, USA
| | - Yana G Greenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Savita P Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - P Sriramarao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
18
|
Meurs H, Zaagsma J, Maarsingh H, Duin M. Reply to: "Arginase inhibitors: An alternative in treatment of obese asthma?". Allergy 2020; 75:1527-1528. [PMID: 32470221 DOI: 10.1111/all.14211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Herman Meurs
- Department of Molecular Pharmacology Groningen Research Institute for Asthma and COPD University of Groningen Groningen The Netherlands
| | - Johan Zaagsma
- Department of Molecular Pharmacology Groningen Research Institute for Asthma and COPD University of Groningen Groningen The Netherlands
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences Lloyd L. Gregory School of Pharmacy Palm Beach Atlantic University West Palm Beach FL USA
| | | |
Collapse
|
19
|
Chu SG, Villalba JA, Liang X, Xiong K, Tsoyi K, Ith B, Ayaub EA, Tatituri RV, Byers DE, Hsu FF, El-Chemaly S, Kim EY, Shi Y, Rosas IO. Palmitic Acid-Rich High-Fat Diet Exacerbates Experimental Pulmonary Fibrosis by Modulating Endoplasmic Reticulum Stress. Am J Respir Cell Mol Biol 2019; 61:737-746. [PMID: 31461627 PMCID: PMC6890409 DOI: 10.1165/rcmb.2018-0324oc] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/24/2019] [Indexed: 12/11/2022] Open
Abstract
The impact of lipotoxicity on the development of lung fibrosis is unclear. Saturated fatty acids, such as palmitic acid (PA), activate endoplasmic reticulum (ER) stress, a cellular stress response associated with the development of idiopathic pulmonary fibrosis (IPF). We tested the hypothesis that PA increases susceptibility to lung epithelial cell death and experimental fibrosis by modulating ER stress. Total liquid chromatography and mass spectrometry were used to measure fatty acid content in IPF lungs. Wild-type mice were fed a high-fat diet (HFD) rich in PA or a standard diet and subjected to bleomycin-induced lung injury. Lung fibrosis was determined by hydroxyproline content. Mouse lung epithelial cells were treated with PA. ER stress and cell death were assessed by Western blotting, TUNEL staining, and cell viability assays. IPF lungs had a higher level of PA compared with controls. Bleomycin-exposed mice fed an HFD had significantly increased pulmonary fibrosis associated with increased cell death and ER stress compared with those fed a standard diet. PA increased apoptosis and activation of the unfolded protein response in lung epithelial cells. This was attenuated by genetic deletion and chemical inhibition of CD36, a fatty acid transporter. In conclusion, consumption of an HFD rich in saturated fat increases susceptibility to lung fibrosis and ER stress, and PA mediates lung epithelial cell death and ER stress via CD36. These findings demonstrate that lipotoxicity may have a significant impact on the development of lung injury and fibrosis by enhancing pro-death ER stress pathways.
Collapse
Affiliation(s)
- Sarah G. Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Julian A. Villalba
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
- Department of Pathology, Massachusetts General Hospital, and
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | - Xiaoliang Liang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Kevin Xiong
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Bonna Ith
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Ehab A. Ayaub
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Raju V. Tatituri
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| | - Edy Y. Kim
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
- Department of Pathology, Massachusetts General Hospital, and
| | - Yuanyuan Shi
- Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | - Ivan O. Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital
| |
Collapse
|
20
|
Dileepan M, Rastle-Simpson S, Greenberg Y, Wijesinghe DS, Kumar NG, Yang J, Hwang SH, Hammock BD, Sriramarao P, Rao SP. Effect Of Dual sEH/COX-2 Inhibition on Allergen-Induced Airway Inflammation. Front Pharmacol 2019; 10:1118. [PMID: 31611798 PMCID: PMC6777353 DOI: 10.3389/fphar.2019.01118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Arachidonic acid metabolites resulting from the cyclooxygenase (COX), lipoxygenase, and cytochrome P450 oxidase enzymatic pathways play pro- and anti-inflammatory roles in allergic airway inflammation (AAI) and asthma. Expression of COX-2 and soluble epoxide hydrolase (sEH) are elevated in allergic airways and their enzymatic products (e.g., prostaglandins and diols of epoxyeicosatrienoic acids, respectively) have been shown to participate in the pathogenesis of AAI. Here, we evaluated the outcome of inhibiting the COX-2 and sEH enzymatic pathways with a novel dual inhibitor, PTUPB, in A. alternata-induced AAI. Allergen-challenged mice were administered with 10 or 30 mg/kg of PTUPB, celecoxib (selective COX-2 inhibitor), t-TUCB (selective sEH inhibitor) or vehicle daily by gavage and evaluated for various features of AAI. PTUPB and t-TUCB at 30 mg/kg, but not celecoxib, inhibited eosinophilic infiltration and significantly increased levels of anti-inflammatory EETs in the lung tissue of allergen-challenged mice. t-TUCB significantly inhibited allergen-induced IL-4 and IL-13, while a less pronounced reduction was noted with PTUPB and celecoxib. Additionally, t-TUCB markedly inhibited eotaxin-2, an eosinophil-specific chemokine, which was only marginally reduced by PTUPB and remained elevated in celecoxib-treated mice. PTUPB or t-TUCB administration reversed allergen-induced reduction in levels of various lipid mediators in the lungs, with only a minimal effect noted with celecoxib. Despite the anti-inflammatory effects, PTUPB or t-TUCB did not reduce allergen-induced airway hyperresponsiveness (AHR). However, development of structural changes in the allergic airways, such as mucus hypersecretion and smooth muscle hypertrophy, was significantly inhibited by both inhibitors. Celecoxib, on the other hand, inhibited only airway smooth muscle hypertrophy, but not mucus hypersecretion. In conclusion, dual inhibition of COX-2 and sEH offers no additional advantage relative to sEH inhibition alone in attenuating various features associated with A. alternata-induced AAI, while COX-2 inhibition exerts only moderate or no effect on several of these features. Dual sEH/COX-2 inhibition may be useful in treating conditions where eosinophilic inflammation co-exists with pain-associated inflammation.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Stephanie Rastle-Simpson
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Yana Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Naren Gajenthra Kumar
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Jun Yang
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, CA, United States
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
21
|
Park YH, Oh EY, Han H, Yang M, Park HJ, Park KH, Lee JH, Park JW. Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway. Exp Mol Med 2019; 51:1-12. [PMID: 31133649 PMCID: PMC6536500 DOI: 10.1038/s12276-019-0258-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/31/2018] [Accepted: 01/23/2019] [Indexed: 12/23/2022] Open
Abstract
Prior studies have reported the presence of lung fibrosis and enhanced airway hyperresponsiveness (AHR) in mice with high-fat-diet (HFD)-induced obesity. This study evaluated the role of TGF-β1 in HFD-induced AHR and lung fibrosis in a murine model. We generated HFD-induced obesity mice and performed glucose and insulin tolerance tests. HFD mice with or without ovalbumin sensitization and challenge were also treated with an anti-TGF-β1 neutralizing antibody. AHR to methacholine, inflammatory cells in the bronchoalveolar lavage fluid (BALF), and histological features were evaluated. Insulin was intranasally administered to normal diet (ND) mice, and in vitro insulin stimulation of BEAS-2b cells was performed. HFD-induced obesity mice had increased insulin resistance, enhanced AHR, peribronchial and perivascular fibrosis, and increased numbers of macrophages in the BALF. However, they did not have meaningful eosinophilic or neutrophilic inflammation in the lungs compared with ND mice. The HFD enhanced TGF-β1 expression in the bronchial epithelium, but we found no differences in the expression of interleukin (IL)-4 or IL-5 in lung homogenates. Administration of the anti-TGF-β1 antibody attenuated HFD-induced AHR and lung fibrosis. It also attenuated goblet cell hyperplasia, but did not affect the AHR and inflammatory cell infiltration induced by OVA challenge. The intranasal administration of insulin enhanced TGF-β1 expression in the bronchial epithelium and lung fibrosis. Stimulating BEAS-2b cells with insulin also increased TGF-β1 production by 24 h. We concluded that HFD-induced obesity-associated insulin resistance enhances TGF-β1 expression in the bronchial epithelium, which may play an important role in the development of lung fibrosis and AHR in obesity.
Collapse
Affiliation(s)
- Yoon Hee Park
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Yi Oh
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Heejae Han
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Misuk Yang
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Jung Park
- Department of Internal Medicine and Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hyun Lee
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Won Park
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Korea.
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Ha SG, Dileepan M, Ge XN, Kang BN, Greenberg YG, Rao A, Muralidhar G, Medina-Kauwe L, Thompson MA, Pabelick CM, O'Grady SM, Rao SP, Sriramarao P. Knob protein enhances epithelial barrier integrity and attenuates airway inflammation. J Allergy Clin Immunol 2018; 142:1808-1817.e3. [PMID: 29522849 PMCID: PMC6126992 DOI: 10.1016/j.jaci.2018.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 12/12/2017] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Altered epithelial physical and functional barrier properties along with TH1/TH2 immune dysregulation are features of allergic asthma. Regulation of junction proteins to improve barrier function of airway epithelial cells has the potential for alleviation of allergic airway inflammation. OBJECTIVE We sought to determine the immunomodulatory effect of knob protein of the adenoviral capsid on allergic asthma and to investigate its mechanism of action on airway epithelial junction proteins and barrier function. METHODS Airway inflammation, including junction protein expression, was evaluated in allergen-challenged mice with and without treatment with knob. Human bronchial epithelial cells were exposed to knob, and its effects on expression of junction proteins and barrier integrity were determined. RESULTS Administration of knob to allergen-challenged mice suppressed airway inflammation (eosinophilia, airway hyperresponsiveness, and IL-5 levels) and prevented allergen-induced loss of airway epithelial occludin and E-cadherin expression. Additionally, knob decreased expression of TH2-promoting inflammatory mediators, specifically IL-33, by murine lung epithelial cells. At a cellular level, treatment of human bronchial epithelial cells with knob activated c-Jun N-terminal kinase, increased expression of occludin and E-cadherin, and enhanced epithelial barrier integrity. CONCLUSION Increased expression of junction proteins mediated by knob leading to enhanced epithelial barrier function might mitigate the allergen-induced airway inflammatory response, including asthma.
Collapse
Affiliation(s)
- Sung Gil Ha
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Mythili Dileepan
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Xiao Na Ge
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Bit Na Kang
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Yana G Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - Amrita Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | | | - Lali Medina-Kauwe
- Department of Biomedical Sciences, Cedars-Sinai Medical Center and Geffen School of Medicine, University of California-Los Angeles, Los Angeles, Calif
| | | | - Christina M Pabelick
- Departments of Anesthesiology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minn
| | - Scott M O'Grady
- Departments of Animal Science and Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, Minn; Department of Medicine, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
23
|
Ge XN, Bastan I, Dileepan M, Greenberg Y, Ha SG, Steen KA, Bernlohr DA, Rao SP, Sriramarao P. FABP4 regulates eosinophil recruitment and activation in allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 315:L227-L240. [PMID: 29696987 PMCID: PMC6139653 DOI: 10.1152/ajplung.00429.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Fatty acid binding protein 4 (FABP4), a member of a family of lipid-binding proteins, is known to play a role in inflammation by virtue of its ability to regulate intracellular events such as lipid fluxes and signaling. Studies have indicated a proinflammatory role for FABP4 in allergic asthma although its expression and function in eosinophils, the predominant inflammatory cells recruited to allergic airways, were not investigated. We examined expression of FABP4 in murine eosinophils and its role in regulating cell recruitment in vitro as well as in cockroach antigen (CRA)-induced allergic airway inflammation. CRA exposure led to airway recruitment of FABP4-expressing inflammatory cells, specifically eosinophils, in wild-type (WT) mice. FABP4 expression in eosinophils was induced by TNF-α as well as IL-4 and IL-13. FABP4-deficient eosinophils exhibited markedly decreased cell spreading/formation of leading edges on vascular cell adhesion molecule-1 and significantly decreased adhesion to intercellular adhesion molecule-1 associated with reduced β2-integrin expression relative to WT cells. Furthermore, FABP4-deficient eosinophils exhibited decreased migration, F-actin polymerization, calcium flux, and ERK(1/2) phosphorylation in response to eotaxin-1. In vivo, CRA-challenged FABP4-deficient mice exhibited attenuated eosinophilia and significantly reduced airway inflammation (improved airway reactivity, lower IL-5, IL-13, TNF-α, and cysteinyl leukotriene C4 levels, decreased airway structural changes) compared with WT mice. In conclusion, expression of FABP4 in eosinophils is induced during conditions of inflammation and plays a proinflammatory role in the development of allergic asthma by promoting eosinophil adhesion and migration and contributing to the development of various aspects of airway inflammation.
Collapse
Affiliation(s)
- Xiao Na Ge
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, Saint Paul, Minnesota
| | - Idil Bastan
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, Saint Paul, Minnesota
| | - Mythili Dileepan
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, Saint Paul, Minnesota
| | - Yana Greenberg
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, Saint Paul, Minnesota
| | - Sung Gil Ha
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, Saint Paul, Minnesota
| | - Kaylee A. Steen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota
| | - Savita P. Rao
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, Saint Paul, Minnesota
| | - P. Sriramarao
- Laboratory of Allergic Diseases and Inflammation, Department of Veterinary and Biomedical Sciences, Saint Paul, Minnesota
| |
Collapse
|
24
|
Everaere L, Ait Yahia S, Bouté M, Audousset C, Chenivesse C, Tsicopoulos A. Innate lymphoid cells at the interface between obesity and asthma. Immunology 2017; 153:21-30. [PMID: 28880992 DOI: 10.1111/imm.12832] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity and asthma prevalence has dramatically and concomitantly increased over the last 25 years, and many epidemiological studies have highlighted obesity as an important risk factor for asthma. Although many studies have been performed, the underlying mechanisms remain poorly understood. Innate mechanisms have been involved in both diseases, in particular through the recently described innate lymphoid cells (ILCs). ILCs are subdivided into three groups that are defined by their cytokine production and by their master transcription factor expression, in sharp correlation with their T helper counterparts. However, unlike T helper cells, ILCs do not express antigen-specific receptors, but respond to damage-induced signals. ILCs have been found in target tissues of both diseases, and data have implicated these cells in the pathogenesis of both diseases. In particular group 2 ILCs (ILC2) are activated in both the adipose and lung tissues under the effect of interleukin-33 and interleukin-25 expression. However, counter-intuitively to the well-known association between obesity and asthma, ILC2 are beneficial for obesity but deleterious for asthma. This review will examine the roles of ILCs in each disease and recent data highlighting ILCs as a putative link between obesity and asthma.
Collapse
Affiliation(s)
- Laetitia Everaere
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France
| | - Saliha Ait Yahia
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France
| | - Mélodie Bouté
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France
| | - Camille Audousset
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France.,Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Cécile Chenivesse
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France.,Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Anne Tsicopoulos
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France.,Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| |
Collapse
|
25
|
Dixon AE, Poynter ME. Mechanisms of Asthma in Obesity. Pleiotropic Aspects of Obesity Produce Distinct Asthma Phenotypes. Am J Respir Cell Mol Biol 2017; 54:601-8. [PMID: 26886277 DOI: 10.1165/rcmb.2016-0017ps] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The majority of patients with severe or difficult-to-control asthma in the United States are obese. Epidemiological studies have clearly established that obese patients tend to have worse asthma control and increased hospitalizations and do not respond to standard controller therapy as well as lean patients with asthma. Less clear are the mechanistic underpinnings for the striking clinical differences between lean and obese patients with asthma. Because obesity is principally a disorder of metabolism and energy regulation, processes fundamental to the function of every cell and system within the body, it is not surprising that it affects the respiratory system; it is perhaps surprising that it has taken so long to appreciate how dysfunctional metabolism and energy regulation lead to severe airway disease. Although early investigations focused on identifying a common factor in obesity that could promote airway disease, an appreciation has emerged that the asthma of obesity is a manifestation of multiple anomalies related to obesity affecting all the different pathways that cause asthma, and likely also to de novo airway dysfunction. Consequently, all the phenotypes of asthma currently recognized in lean patients (which are profoundly modified by obesity), as well as those unique to one's obesity endotype, likely contribute to obese asthma in a particular individual. This perspective reviews what we have learned from clinical studies and animal models about the phenotypes of asthma in obesity, which show how specific aspects of obesity and altered metabolism might lead to de novo airway disease and profoundly modify existing airway disease.
Collapse
Affiliation(s)
- Anne E Dixon
- Department of Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
26
|
Park HJ, Lee JH, Park YH, Han H, Sim DW, Park KH, Park JW. Roflumilast Ameliorates Airway Hyperresponsiveness Caused by Diet-Induced Obesity in a Murine Model. Am J Respir Cell Mol Biol 2017; 55:82-91. [PMID: 26756251 DOI: 10.1165/rcmb.2015-0345oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obese patients with asthma respond poorly to conventional asthma medications, resulting in severe symptoms and poor prognosis. Roflumilast, a phosphodiesterase-4 inhibitor that lowers the levels of various substances that are implicated in obese subjects with asthma, may be effective in the treatment of those subjects. We evaluated the potential of roflumilast as a novel therapeutic agent for obese subjects with asthma. We designed three models: diet-induced obesity (DIO); DIO with ovalbumin (OVA); and OVA. We fed C57BL/6J mice a high-fat diet for 3 months with or without OVA sensitization and challenge. Roflumilast or dexamethasone was administered orally three times at 2-day intervals in the last experimental week. Airway hyperresponsiveness resulting from DIO significantly improved in the roflumilast-treated group compared with the dexamethasone-treated groups. Although DIO did not affect the cell proliferation in bronchoalveolar lavage fluid, increased fibrosis was seen in the DIO group, which significantly improved from treatment with roflumilast. DIO-induced changes in adiponectin and leptin levels were improved by roflumilast, whereas dexamethasone aggravated them. mRNA levels and proteins of TNF-α, transforming growth factor-β, IL-1β, and IFN-γ increased in the DIO group and decreased with roflumilast. The reactive oxygen species levels were also increased in the DIO group and decreased by roflumilast. In the DIO plus OVA and OVA models, roflumilast improved Th1 and Th2 cell activation to a greater extent than dexamethasone. Roflumilast is significantly more effective than dexamethasone against airway hyperresponsiveness caused by DIO in the murine model. Roflumilast may represent a promising therapeutic agent for the treatment of obese patients with asthma.
Collapse
Affiliation(s)
- Hye Jung Park
- 1 Department of Internal Medicine, Division of Allergy and Immunology, and.,2 Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hyun Lee
- 1 Department of Internal Medicine, Division of Allergy and Immunology, and.,2 Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Hee Park
- 2 Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Heejae Han
- 2 Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Da Woon Sim
- 1 Department of Internal Medicine, Division of Allergy and Immunology, and.,2 Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- 1 Department of Internal Medicine, Division of Allergy and Immunology, and.,2 Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Won Park
- 1 Department of Internal Medicine, Division of Allergy and Immunology, and.,2 Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity. J Allergy Clin Immunol 2016; 138:1309-1318.e11. [PMID: 27177781 DOI: 10.1016/j.jaci.2016.03.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 03/06/2016] [Accepted: 03/21/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Epidemiologic and clinical observations identify obesity as an important risk factor for asthma exacerbation, but the underlying mechanisms remain poorly understood. Type 2 innate lymphoid cells (ILC2s) and type 3 innate lymphoid cells (ILC3s) have been implicated, respectively, in asthma and adipose tissue homeostasis and in obesity-associated airway hyperresponsiveness (AHR). OBJECTIVE We sought to determine the potential involvement of innate lymphoid cells (ILCs) in allergic airway disease exacerbation caused by high-fat diet (HFD)-induced obesity. METHODS Obesity was induced by means of HFD feeding, and allergic airway inflammation was subsequently induced by means of intranasal administration of house dust mite (HDM) extract. AHR, lung and visceral adipose tissue inflammation, humoral response, cytokines, and innate and adaptive lymphoid populations were analyzed in the presence or absence of ILCs. RESULTS HFD feeding exacerbated allergic airway disease features, including humoral response, airway and tissue eosinophilia, AHR, and TH2 and TH17 pulmonary profiles. Notably, nonsensitized obese mice already exhibited increased lung ILC counts and tissue eosinophil infiltration compared with values in lean mice in the absence of AHR. The numbers of total and cytokine-expressing lung ILC2s and ILC3s further increased in HDM-challenged obese mice compared with those in HDM-challenged lean mice, and this was accompanied by high IL-33 and IL-1β levels and decreased ILC markers in visceral adipose tissue. Furthermore, depletion of ILCs with an anti-CD90 antibody, followed by T-cell reconstitution, led to a profound decrease in allergic airway inflammatory features in obese mice, including TH2 and TH17 infiltration. CONCLUSION These results indicate that HFD-induced obesity might exacerbate allergic airway inflammation through mechanisms involving ILC2s and ILC3s.
Collapse
|
28
|
Dixon AE, Poynter ME. A common pathway to obesity and allergic asthma. Am J Respir Crit Care Med 2015; 191:721-2. [PMID: 25830513 DOI: 10.1164/rccm.201502-0217ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Anne E Dixon
- 1 Department of Medicine University of Vermont Burlington, Vermont
| | | |
Collapse
|
29
|
Ather JL, Poynter ME, Dixon AE. Immunological characteristics and management considerations in obese patients with asthma. Expert Rev Clin Immunol 2015; 11:793-803. [PMID: 25914932 DOI: 10.1586/1744666x.2015.1040394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with severe, poorly controlled asthma that does not respond as well to therapy as asthma in leaner asthmatics. Important insights gained from animal models of obesity and asthma suggests that different forms of obesity may lead to different manifestations of airway disease: obesity is associated with both innate increased airway reactivity and altered responses to aeroallergen and pollutant challenges. In humans, at least two broad groups of obese asthmatics have been recognized: one that is likely unique to obesity and another that is likely lean allergic asthma much complicated by obesity. This article will discuss what we have learned about the immunological and pathophysiological basis of asthma in obesity from animal and human studies, and how this might guide therapy.
Collapse
Affiliation(s)
- Jennifer L Ather
- Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Given D208, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | |
Collapse
|
30
|
Song Y, Yu Y, Wang D, Chai S, Liu D, Xiao X, Huang Y. Maternal high-fat diet feeding during pregnancy and lactation augments lung inflammation and remodeling in the offspring. Respir Physiol Neurobiol 2015; 207:1-6. [DOI: 10.1016/j.resp.2014.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/19/2023]
|
31
|
Cho Y, Chung HK, Kim SS, Shin MJ. Dietary patterns and pulmonary function in Korean women: findings from the Korea National Health and Nutrition Examination Survey 2007-2011. Food Chem Toxicol 2014; 74:177-83. [PMID: 25290855 DOI: 10.1016/j.fct.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/01/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022]
Abstract
In the present study, we evaluated the association between dietary patterns and pulmonary functions in Korean women older than 40 years. This study analyzed the data from the Korea National Health and Nutrition Examination Survey IV and V (2007-2010). In total, 7615 women were included in the analysis. Using principal component analysis, two dietary patterns were identified, namely a balanced diet pattern (vegetables, fish, meat, seaweed, and mushrooms) and a refined diet (snacks, bread, milk, dairy products, and fast food). The refined diet pattern was positively associated with energy from fat but negatively associated with vitamin A, β-carotene, niacin, and fiber. After adjusting for potential confounders, the refined diet pattern was negatively associated with levels of predicted forced vital capacity (odds ratio (OR): 0.84, 95% confidence intervals (CIs): 0.70, 0.99) and predicted forced expiratory volume in 1 second (OR: 0.79, 95% CIs: 0.66, 0.93). In conclusion, the refined diet pattern was associated with decreased pulmonary function in Korean women. This information may be useful toward the development of nutritional guidelines for improving pulmonary function in Korean women.
Collapse
Affiliation(s)
- Yoonsu Cho
- Department of Food and Nutrition, Korea University, Seoul 136-703, Republic of Korea; Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, Republic of Korea
| | - Hye-Kyung Chung
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 120-749, Republic of Korea
| | - Seung-Sup Kim
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, Republic of Korea
| | - Min-Jeong Shin
- Department of Food and Nutrition, Korea University, Seoul 136-703, Republic of Korea; Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, Republic of Korea; Korea University Guro Hospital, Korea University, Seoul 152-703, Republic of Korea.
| |
Collapse
|