1
|
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, Roostaee M, Sargazi S, Barani M, Malahat Shadman S, Althomali RH, Rahman MM. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658:124226. [PMID: 38744414 DOI: 10.1016/j.ijpharm.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran.
| | - Hasan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran.
| | - Foroozan Narooie-Noori
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | | | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Nirbhavane P, Sharma G, Sharma R, Katare OP. Steroidal nanoformulations for the treatment of uveitis: potential, promises and future perspectives. Int Ophthalmol 2024; 44:58. [PMID: 38342799 DOI: 10.1007/s10792-024-03000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Intraocular inflammation, commonly referred to as uveitis, is a prevalent ocular disease. The categorization of uveitis may be based on the prevailing anatomical site, which includes anterior, intermediate, and posterior uveitis. There exists a significant body of evidence indicating that T cells play a pivotal role in the pathogenesis of autoimmune uveitis. In addition to the presence of T cells, an elevation in levels of inflammatory cytokines and a reduction in regulatory cytokines were also noted. The primary pharmacological interventions for uveitis comprise of corticosteroids, methotrexate, anti-vascular endothelial growth factor (VEGF) agents, anti-tumor necrosis factor-alpha (TNF-α) antibodies, and sirolimus. These medications offer prompt alleviation for inflammation. Nevertheless, prolonged administration of corticosteroids invariably leads to unfavorable adverse reactions. The traditional topical corticosteroids exhibit certain limitations, including inadequate transcorneal permeation and low corneal retention, leading to reduced ocular bioavailability. Consequently, there is a growing inclination towards the creation of innovative steroid drug delivery systems with the aim of reducing the potential for adverse effects, while simultaneously enhancing the drug's corneal permeation and retention. CONCLUSION This review is an attempt to compile all the research work done so far in this field and provides a brief overview of the global efforts to develop innovative nanocarrier-based systems for corticosteroids.
Collapse
Affiliation(s)
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Rajeev Sharma
- Amity University, Gwalior, Madhya Pradesh, 474005, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
3
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
4
|
De Gaetano F, Celesti C, Paladini G, Venuti V, Cristiano MC, Paolino D, Iannazzo D, Strano V, Gueli AM, Tommasini S, Ventura CA, Stancanelli R. Solid Lipid Nanoparticles Containing Morin: Preparation, Characterization, and Ex Vivo Permeation Studies. Pharmaceutics 2023; 15:1605. [PMID: 37376054 DOI: 10.3390/pharmaceutics15061605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, bioactive compounds have been the focus of much interest in scientific research, due to their low toxicity and extraordinary properties. However, they possess poor solubility, low chemical stability, and unsustainable bioavailability. New drug delivery systems, and among them solid lipid nanoparticles (SLNs), could minimize these drawbacks. In this work, morin (MRN)-loaded SLNs (MRN-SLNs) were prepared using a solvent emulsification/diffusion method, using two different lipids, Compritol® 888 ATO (COM) or Phospholipon® 80H (PHO). SLNs were investigated for their physical-chemical, morphological, and technological (encapsulation parameters and in vitro release) properties. We obtained spherical and non-aggregated nanoparticles with hydrodynamic radii ranging from 60 to 70 nm and negative zeta potentials (about -30 mV and -22 mV for MRN-SLNs-COM and MRN-SLNs-PHO, respectively). The interaction of MRN with the lipids was demonstrated via μ-Raman spectroscopy, X-ray diffraction, and DSC analysis. High encapsulation efficiency was obtained for all formulations (about 99%, w/w), particularly for the SLNs prepared starting from a 10% (w/w) theoretical MRN amount. In vitro release studies showed that about 60% of MRN was released within 24 h and there was a subsequent sustained release within 10 days. Finally, ex vivo permeation studies with excised bovine nasal mucosa demonstrated the ability of SLNs to act as a penetration enhancer for MRN due to the intimate contact and interaction of the carrier with the mucosa.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Giuseppe Paladini
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Vincenza Strano
- National Council of Research, Institute of Microelectronics and Microsystems (CNR-IMM), University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Anna M Gueli
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Silvana Tommasini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosanna Stancanelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, Mehra NK, Singh PK. Core-Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 2023; 24:50. [PMID: 36703085 DOI: 10.1208/s12249-023-02504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Nikita Walke
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
6
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
7
|
Alsmadi MM, AL-Daoud NM, Obaidat RM, Abu-Farsakh NA. Enhancing Atorvastatin In Vivo Oral Bioavailability in the Presence of Inflammatory Bowel Disease and Irritable Bowel Syndrome Using Supercritical Fluid Technology Guided by wbPBPK Modeling in Rat and Human. AAPS PharmSciTech 2022; 23:148. [PMID: 35585214 DOI: 10.1208/s12249-022-02302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) are common disorders that can change the body's physiology and drugs pharmacokinetics. Solid dispersion (SD) preparation using supercritical fluid technology (SFT) has many advantages. Our study aimed to explore the effect of IBS and IBD on atorvastatin (ATV) pharmacokinetics, enhance ATV oral bioavailability (BCS II drug) using SFT, and analyze drug-disease-formulation interaction using a whole-body physiologically based pharmacokinetic (wbPBPK) model in rat and human. A novel ATV formulation was prepared using SFT and characterized in vitro and in vivo in healthy, IBS, and IBD rats. The resulting ATV plasma levels were analyzed using a combination of conventional and wbPBPK approaches. The novel formulation increased ATV solubility by 20-fold and resulted in a zero-order release of up to 95%. Both IBS and IBD increased ATV exposure after oral and intravenous administration by more than 30%. The novel SFT formulation increased ATV bioavailability by 28, 14, and 18% in control, IBD, and IBD rat groups and resulted in more consistent exposure as compared to raw ATV solution. Higher improvements in ATV bioavailability of more than 2-fold upon receiving the novel SFT formulation were predicted by the human wbPBPK model as compared to receiving the conventional tablets. Finally, the established wbPBPK model could describe ATV ADME in the presence of IBS and IBD after oral administration of raw ATV and using the novel SFT formula and can help scale the optimized ATV dosing regimens in the presence of IBS and IBD from rats to humans.
Collapse
|
8
|
Akhter MH, Ahmad I, Alshahrani MY, Al-Harbi AI, Khalilullah H, Afzal O, Altamimi ASA, Najib Ullah SNM, Ojha A, Karim S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022; 8:82. [PMID: 35200463 PMCID: PMC8871777 DOI: 10.3390/gels8020082] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood-retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood-retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46477, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | | | - Abhijeet Ojha
- Six Sigma Institute of Technology and Science, College of Pharmacy, Rudrapur 263153, India;
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
9
|
Characterization, Cytotoxicity and Anti-Inflammatory Effect Evaluation of Nanocapsules Containing Nicotine. Bioengineering (Basel) 2021; 8:bioengineering8110172. [PMID: 34821738 PMCID: PMC8614771 DOI: 10.3390/bioengineering8110172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Nanotechnology is an emerging field that can be applied in the biomedical area. In this study, Eudragit nanocapsules (NCs) containing nicotine were produced. Nicotine is the main alkaloid found in tobacco and has anti-inflammatory properties. NCs containing nicotine may be used as an adjuvant therapy in the treatment of inflammation in the central nervous system. (2) Methods: Nanocapsules were prepared by the interfacial deposition of the pre-formed polymer method and characterized in terms of zeta potential, diameter, polydispersity index, pH, encapsulation efficiency (EE), stability and sustained release profile. In vitro tests with the PC12 cell line were performed, such as MTT, LIVE/DEAD and ELISA assays, to verify their cytotoxic and anti-inflammatory effects. (3) Results: The nanocapsules presented satisfactory values of the characterization parameters; however, poor encapsulation was obtained for nicotine (8.17% ± 0.47). The in vitro tests showed that the treatment with nanocapsules reduced cell viability, which suggests that the Eudragit or the amount of polymer on top of the cells may be detrimental to them, as the cells were able to survive when treated with bulk nicotine. ELISA showed an increment in the expression of IL-6 and IL-1β, corroborating the hypothesis that NCs were toxic to the cells because of the increase in the levels of these pro-inflammatory cytokines. (4) Conclusions: This study demonstrates that NCs of Eudragit present toxicity. It is therefore necessary to improve NC formulation to obtain better values for the encapsulation efficiency and reduce toxicity of these nanodevices.
Collapse
|
10
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
11
|
Grambow E, Sorg H, Sorg CGG, Strüder D. Experimental Models to Study Skin Wound Healing with a Focus on Angiogenesis. Med Sci (Basel) 2021; 9:medsci9030055. [PMID: 34449673 PMCID: PMC8395822 DOI: 10.3390/medsci9030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
A large number of models are now available for the investigation of skin wound healing. These can be used to study the processes that take place in a phase-specific manner under both physiological and pathological conditions. Most models focus on wound closure, which is a crucial parameter for wound healing. However, vascular supply plays an equally important role and corresponding models for selective or parallel investigation of microcirculation regeneration and angiogenesis are also described. In this review article, we therefore focus on the different levels of investigation of skin wound healing (in vivo to in virtuo) and the investigation of angiogenesis and its parameters.
Collapse
Affiliation(s)
- Eberhard Grambow
- Department of General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Correspondence:
| | - Heiko Sorg
- Department of Health, University of Witten/Herdecke, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany;
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Klinikum Westfalen, Am Knappschaftskrankenhaus 1, 44309 Dortmund, Germany
| | - Christian G. G. Sorg
- Chair of Management and Innovation in Health Care, Department of Management and Entrepreneurship, Faculty of Management, Economics and Society, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany;
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, 18057 Rostock, Germany;
| |
Collapse
|
12
|
Dennyson Savariraj A, Salih A, Alam F, Elsherif M, AlQattan B, Khan AA, Yetisen AK, Butt H. Ophthalmic Sensors and Drug Delivery. ACS Sens 2021; 6:2046-2076. [PMID: 34043907 PMCID: PMC8294612 DOI: 10.1021/acssensors.1c00370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed.
Collapse
Affiliation(s)
| | - Ahmed Salih
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fahad Alam
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Elsherif
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bader AlQattan
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ammar A. Khan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Ali K. Yetisen
- Department
of Physics, Lahore University of Management
Sciences, Lahore Cantonment 54792, Lahore, Pakistan
| | - Haider Butt
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Peter M, Panonnummal R. A Review on Newer Ocular Drug Delivery Systems with an Emphasis on Glaucoma. Adv Pharm Bull 2021; 11:399-413. [PMID: 34513615 PMCID: PMC8421633 DOI: 10.34172/apb.2021.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is an irreversible condition resulting from the increase in intraocular pressure (IOP); which leads to permanent loss of vision with the destruction of retinal ganglion cells (RGCs). The IOP elevations are controlled in normal by the physiological flow of aqueous humour. A population with age above 40 is more susceptible to glaucoma. Other factors like gender, genetics, race etc. plays major roles in the development of the disease. Current treatment methods available for the disease includes drugs come under the classes of beta receptor blockers, carbonic anhydrase inhibitors, cholinergic agonists, prostaglandins etc. N-methyl-D-aspartate (NMDA) antagonists, inducible nitric oxide synthase (iNOS) inhibition, cytoskeletal agents, Rho-kinase inhibitors etc are few novel targets sites which are in research focus for the treatment of the disease. Developments in nanomedicine are also being evaluated for their potential in treating the growing glaucomatous population. Nanosystems are suggested to avoid the difficulties in tackling the various ocular barriers to a limit, help to decrease the instillation frequency of topical medication and can provide drug delivery in a sustained or controlled manner. This review focuses on the current and emerging treatment methods for glaucoma along with some of the nanoformulations for ocular drug delivery.
Collapse
Affiliation(s)
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| |
Collapse
|
14
|
Nanocapsules containing Saussurea lappa essential oil: Formulation, characterization, antidiabetic, anti-cholinesterase and anti-inflammatory potentials. Int J Pharm 2020; 593:120138. [PMID: 33278497 DOI: 10.1016/j.ijpharm.2020.120138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023]
Abstract
Plant-based remedies have been widely used for the management of variable diseases due to their safety and less side effects. In the present study, we investigated Saussurea lappa CB. Clarke. (SL) given its largely reported medicinal effects. Specifically, our objective was to provide an insight into a new polymethyl methacrylate based nanocapsules as carriers of SL essential oil and characterize their biologic functions. The nanoparticles were prepared by nanoprecipitation technique, characterized and analyzed for their cytotoxicity, anti-inflammatory, anti-Alzheimer and antidiabetic effects. The results revealed that the developed nanoparticles had a diameter around 145 nm, a polydispersity index of 0.18 and a zeta potential equal to +45 mV and they did not show any cytotoxicity at 25 μg·mL-1. The results also showed an anti-inflammatory activity (reduction in metalloprotease MMP-9 enzyme activity and RNA expression of inflammatory cytokines: TNF-α, GM-CSF and IL1β), a high anti-Alzheimer's effect (IC50 around 25.0 and 14.9 μg·mL-1 against acetylcholinesterase and butyrylcholinesterase, respectively), and a strong antidiabetic effect (IC50 were equal to 22.9 and 75.8 μg·mL-1 against α-amylase and α-glucosidase, respectively). Further studies are required including the in vivo studies (e.g., preclinical), the pharmacokinetic properties, the bioavailability and the underlying associated metabolic pathways.
Collapse
|
15
|
Szegedi Á, Trendafilova I, Mihály J, Lázár K, Németh P, Momekov G, Momekova D, Marinov L, Nikolova I, Popova M. New insight on prednisolone polymorphs in mesoporous silica/maghemite nanocomposites. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Buhr CR, Wiesmann N, Tanner RC, Brieger J, Eckrich J. The Chorioallantoic Membrane Assay in Nanotoxicological Research-An Alternative for In Vivo Experimentation. NANOMATERIALS 2020; 10:nano10122328. [PMID: 33255445 PMCID: PMC7760845 DOI: 10.3390/nano10122328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials unveil many applicational possibilities for technical and medical purposes, which range from imaging techniques to the use as drug carriers. Prior to any human application, analysis of undesired effects and characterization of their toxicological profile is mandatory. To address this topic, animal models, and rodent models in particular, are most frequently used. However, as the reproducibility and transferability to the human organism of animal experimental data is increasingly questioned and the awareness of animal welfare in society increases at the same time, methodological alternatives are urgently required. The chorioallantoic membrane (CAM) assay is an increasingly popular in ovo experimental organism suitable for replacement of rodent experimentation. In this review, we outline several application fields for the CAM assay in the field of nanotoxicology. Furthermore, analytical methods applicable with this model were evaluated in detail. We further discuss ethical, financial, and bureaucratic aspects and benchmark the assay with other established in vivo models such as rodents.
Collapse
Affiliation(s)
- Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Department of Oral and Maxillofacial Surgery, -Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany
| | - Rachel C. Tanner
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Correspondence: ; Tel.: +49-(0)-6131-17-3354
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| |
Collapse
|
17
|
Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J Control Release 2020; 328:895-916. [PMID: 33069743 DOI: 10.1016/j.jconrel.2020.10.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
The eye is the specialized part of the body and is comprised of numerous physiological ocular barriers that limit the drug absorption at the action site. Regardless of various efforts, efficient topical ophthalmic drug delivery remains unsolved, and thus, it is extremely necessary to advance the contemporary treatments of ocular disorders affecting the anterior and posterior cavities. Nowadays, the advent of nanotechnology-based multicomponent nanoemulsions for ophthalmic drug delivery has gained popularity due to the enhancement of ocular penetrability, improve bioavailability, increase solubility, and stability of lipophilic drugs. Nanoemulsions offer the sustained/controlled drug release and increase residence time which depend on viscosity, compositions, and stabilization process, etc.; hence, decrease the instillation frequency and improve patient compliance. Further, due to the nanosized of nanoemulsions, the sterilization process is easy as conventional solutions and cause no blur vision. The review aims to summarizes the various ocular barriers, manufacturing techniques, possible mechanisms to the retention and deep penetration into the eye, and appropriate excipients with their under-lying selection principles to prevent destabilization of nanoemulsions. This review also discusses the characterization parameters of ocular drug delivery to spike the interest of those contemplating a foray in this field. Here, in short, nanoemulsions are abridged with concepts to design clinically advantageous ocular drug delivery.
Collapse
Affiliation(s)
- Mahendra Singh
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiv Bharadwaj
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sang Gu Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
18
|
Pawar P, Duduskar A, Waydande S. Design and Evaluation of Eudragit RS-100 Based Itraconazole Nanosuspension for Ophthalmic Application. Curr Drug Res Rev 2020; 13:36-48. [PMID: 32990554 DOI: 10.2174/2589977512666200929111952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Poor water soluble compounds are difficult to develop as drug products using conventional formulation techniques. OBJECTIVE In the present study, the potential of Eudragit RS-100 nanosuspension as a new vehicle for the improvement of the delivery of drugs to the intraocular level was investigated. METHODS Solvent evaporation technique has been employed for nanosuspension preparation. Surfactant concentration and drug to polymer ratio has been optimized using 3<SUP>2</SUP> factorial design to achieve desired particle size, entrapment efficiency and percent permeation responses as dependent variables. All the formulations were characterized for particle size, zeta potential, polydispersity index (PDI), Fourier Transform Infrared Spectroscopy (FTIR), Differential scanning calorimetery (DSC), X-ray Diffraction (XRD) analysis, viscosity, antifungal study and Transmission Electron Microscopy (TEM). Secondly, itraconazole eye drop was prepared by using sulfobuty ether-β-cyclodextrin and comparatively studying its antifungal efficacy. RESULTS The nanosuspension had a particle size range of 332.7-779.2nm, zeta potential +0.609-16.3, entrapment efficiency 61.32 ± 1.36%-76.34 ± 2.04%. Ex vitro corneal permeability study showed that optimized itraconazole nanosuspension produced higher permeation as compared to the market formulation and Itraconazole eye drop. Moreover, optimized nanosuspension was found as more active against Candida albicans & Aspergillus flavus compared to the market formulation and Itraconazole eye drop. CONCLUSION The nanosuspension approach could be an ideal, promising approach to increase the solubility and dissolution of Itraconazole.
Collapse
Affiliation(s)
- Pravin Pawar
- Department of Pharmaceutics, Annasaheb Dange College of B Pharmacy, Ashta, Tal-Walwa, Dist-Sangli, MS 415301, India
| | - Anita Duduskar
- Department of Pharmaceutics (PG), Gourishankar Institute of Pharmaceutical Education & Research, Limb, NH-4, Satara, MS 415015, India
| | - Swati Waydande
- Departemnt of Microbiology, Miraj Mahavidyalaya, Miraj, Sangli, MS 416410, India
| |
Collapse
|
19
|
Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv Transl Res 2020; 11:866-893. [PMID: 32901367 DOI: 10.1007/s13346-020-00843-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Corticosteroids remain the mainstay of the treatment for various ocular conditions affecting the ocular surface, anterior and posterior segments of the eye due to their anti-inflammatory, anti-oedematous, and anti-neovascularization properties. Prednisolone, prednisolone acetate, dexamethasone, triamcinolone acetonide, fluocinolone acetonide, and loteprednol etabonate are amongst the most widely used ophthalmic corticosteroids. Corticosteroids differ in their activity and potency in the eye due to their inherent pharmacological and pharmaceutical differences. Different routes and regimens are available for ocular administration of corticosteroids. Conventional topical application to the eye is the route of choice when targeting diseases affecting the ocular surface and anterior segment, while periocular, intravitreal, and suprachoroidal injections can be potentially effective for posterior segment diseases. Corticosteroid-induced intraocular pressure elevation and cataract formation remain the most significant local risks following topical as well as systemic corticosteroid administration. Invasive drug administration via intracameral, subconjunctival, and intravitreal injection can enhance ocular bioavailability and minimize dose and dosing frequency of administration, yet may exacerbate ocular side effects of corticosteroids. This review provides a critical appraisal of the ophthalmic uses of corticosteroid, routes of administration, drug delivery fundamentals and novel ocular implantable steroid delivery systems, factors influencing side effects, and future perspectives for ocular corticosteroid therapy.
Collapse
|
20
|
Mazet R, Yaméogo JBG, Wouessidjewe D, Choisnard L, Gèze A. Recent Advances in the Design of Topical Ophthalmic Delivery Systems in the Treatment of Ocular Surface Inflammation and Their Biopharmaceutical Evaluation. Pharmaceutics 2020; 12:pharmaceutics12060570. [PMID: 32575411 PMCID: PMC7356360 DOI: 10.3390/pharmaceutics12060570] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular inflammation is one of the most common symptom of eye disorders and diseases. The therapeutic management of this inflammation must be rapid and effective in order to avoid deleterious effects for the eye and the vision. Steroidal (SAID) and non-steroidal (NSAID) anti-inflammatory drugs and immunosuppressive agents have been shown to be effective in treating inflammation of the ocular surface of the eye by topical administration. However, it is well established that the anatomical and physiological ocular barriers are limiting factors for drug penetration. In addition, such drugs are generally characterized by a very low aqueous solubility, resulting in low bioavailability as only 1% to 5% of the applied drug permeates the cornea. The present review gives an updated insight on the conventional formulations used in the treatment of ocular inflammation, i.e., ointments, eye drops, solutions, suspensions, gels, and emulsions, based on the commercial products available on the US, European, and French markets. Additionally, sophisticated formulations and innovative ocular drug delivery systems will be discussed. Promising results are presented with micro- and nanoparticulated systems, or combined strategies with polymers and colloidal systems, which offer a synergy in bioavailability and sustained release. Finally, different tools allowing the physical characterization of all these delivery systems, as well as in vitro, ex vivo, and in vivo evaluations, will be considered with regards to the safety, the tolerance, and the efficiency of the drug products.
Collapse
Affiliation(s)
- Roseline Mazet
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Grenoble University Hospital, 38043 Grenoble, France
| | | | - Denis Wouessidjewe
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Luc Choisnard
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Annabelle Gèze
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Correspondence: ; Tel.: +33-476-63-53-01
| |
Collapse
|
21
|
Merckx G, Tay H, Lo Monaco M, van Zandvoort M, De Spiegelaere W, Lambrichts I, Bronckaers A. Chorioallantoic Membrane Assay as Model for Angiogenesis in Tissue Engineering: Focus on Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:519-539. [PMID: 32220219 DOI: 10.1089/ten.teb.2020.0048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering aims to structurally and functionally regenerate damaged tissues, which requires the formation of new blood vessels that supply oxygen and nutrients by the process of angiogenesis. Stem cells are a promising tool in regenerative medicine due to their combined differentiation and paracrine angiogenic capacities. The study of their proangiogenic properties and associated potential for tissue regeneration requires complex in vivo models comprising all steps of the angiogenic process. The highly vascularized extraembryonic chorioallantoic membrane (CAM) of fertilized chicken eggs offers a simple, easy accessible, and cheap angiogenic screening tool compared to other animal models. Although the CAM assay was initially primarily performed for evaluation of tumor growth and metastasis, stem cell studies using this model are increasing. In this review, a detailed summary of angiogenic observations of different mesenchymal, cardiac, and endothelial stem cell types and derivatives in the CAM model is presented. Moreover, we focus on the variation in experimental setup, including the benefits and limitations of in ovo and ex ovo protocols, diverse biological and synthetic scaffolds, imaging techniques, and outcome measures of neovascularization. Finally, advantages and disadvantages of the CAM assay as a model for angiogenesis in tissue engineering in comparison with alternative in vivo animal models are described. Impact statement The chorioallantoic membrane (CAM) assay is an easy and cheap screening tool for the angiogenic properties of stem cells and their associated potential in the tissue engineering field. This review offers an overview of all published angiogenic studies of stem cells using this model, with emphasis on the variation in used experimental timeline, culture protocol (in ovo vs. ex ovo), stem cell type (derivatives), scaffolds, and outcome measures of vascularization. The purpose of this overview is to aid tissue engineering researchers to determine the ideal CAM experimental setup based on their specific study goals.
Collapse
Affiliation(s)
- Greet Merckx
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Hanna Tay
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Melissa Lo Monaco
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.,Department of Veterinary Medicine, Faculty of Sciences, Integrated Veterinary Research Unit-Namur Research Institute for Life Science (IVRU-NARILIS), University of Namur, Namur, Belgium
| | - Marc van Zandvoort
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases CARIM and School for Oncology and Development GROW, Maastricht University, Maastricht, the Netherlands
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
22
|
Surface modified electrospun poly(lactic acid) fibrous scaffold with cellulose nanofibrils and Ag nanoparticles for ocular cell proliferation and antimicrobial application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110767. [PMID: 32279789 DOI: 10.1016/j.msec.2020.110767] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Corneal and conjunctival infections are common ocular diseases, sometimes, causing severe and refractory drug-resistant bacteria infections. Fungal keratitis is a leading cause for blindness and traditional medical treatment is unsatisfactory. Thus, there is an urge to develop a new therapy to deal with these cases. In this study, we developed surface modified poly(lactic acid) (PLA) electrospun nanofibrous membranes (EFMs) with silver nanoparticles (AgNPs) and cellulose nanofibrils (CNF) as scaffolds for cell proliferation and antimicrobial application. The AgNPs with a very low content (below 0.1%) were easily anchored on the surface of PLA EFMs by CNF, which endowed the scaffold with hydrophilicity and antibacterial ability. The in-vitro cell co-culture experiments showed that the scaffold had great biocompatibility to ocular epithelial cells, especially the scaffolds coated by CNF, which significantly proliferated cells. Furthermore, the antibacterial activity could reach >95% inhibiting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) due to the implantation of AgNPs, and the antifungal activity was also outstanding with most of the Fusarium spp. inhibited. Hence, the developed PLA EFMs with CNF and AgNPs are promising ocular bandages to promote cell proliferation and kill infectious pathogens, exhibiting potential applications in ocular wound healing in the future.
Collapse
|
23
|
Prozorovskii VN, Ipatova OM, Tikhonova EG, Zakharova TS, Druzhilovskaya OS, Korotkevich EI, Torkhovskaya TI. [Prednisolone in phospholipid nanoparticles: prolonged circulation and increased antiinflammatory effect]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:222-226. [PMID: 31258145 DOI: 10.18097/pbmc20196503222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Along with modern new drugs, many therapeutic schemes also include known effective drugs, particularly, glucocorticoids. One of the most distributed of them is prednisolone that has pronounced anti-inflammatory properties. Its disadvantage is short-term circulation, resulting in a number of side effects. For this reason the development of its more effective and safe formulations is carried out. We have obtained the formulation of prednisolone included in nanoparticles from soy phosphatidylcholine with an average diameter of 20 nm. With oral administration to rats and analysis by HPLC an increase in prednisolone maximal concentration in of plasma and the duration of circulation as compared with free drug administration were shown. The experiment with mice with conconavalin A induced inflammation was also carried out: conconavalin A was injected subplantary in an hour after oral administration of both prednisolone formulations in several doses. The index of the inflammatory reaction (determined by the edema degree) was suppressed more effectively in the case of prednisolone in nanoparticles. Maximal suppression (62.2% as compared with 49.6% for free prednisolone) was observed even at a minimal dose (2.5 mg/kg), at which the free drug did not act at all. The results indicate an increase in the efficiency of prednisolone included in phospholipid nanoparticles, that makes it possible to diminish its administered doses and thereby reduce the risk of side effects.
Collapse
Affiliation(s)
| | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
24
|
Qelliny MR, Aly UF, Elgarhy OH, Khaled KA. Budesonide-Loaded Eudragit S 100 Nanocapsules for the Treatment of Acetic Acid-Induced Colitis in Animal Model. AAPS PharmSciTech 2019; 20:237. [PMID: 31243601 DOI: 10.1208/s12249-019-1453-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles for colon-drug delivery were designed and evaluated to solve many discrepancy issues as insufficient drug amount at diseased regions, high adverse effects of released drugs, and unintentionally premature drug release to noninflamed gastrointestinal regions. Herein, the prepared budesonide-loaded Eudragit S 100/Capryol 90 nanocapsules for the treatment of inflammatory bowel disease. Nanocapsules were prepared efficiently by nanoprecipitation technique and composed mainly of the pH-sensitive Eudragit S 100 polymeric coat with a semisynthetic Capryol 90 oily core. Full 31 × 21 factorial design was applied to obtain optimized nanocapsules. Optimal nanocapsules showed mean particle size of 171 nm with lower polydispersity index indicating the production of monodispersed system and negative zeta-potential of - 37.6 mV. Optimized nanocapsules showed high encapsulation efficiency of 83.4% with lower initial rapid release of 10% for first 2 h and higher rapid cumulative release of 72% after 6 h. The therapeutic activity of the prepared budesonide-loaded nanocapsules was evaluated using a rat colitis model. Disease activity score, macroscopical examination, blood glucose level, and histopathological assessment showed marked improvements over that free drug suspension. Obtained results demonstrate that the budesonide-loaded Eudragit S 100 nanocapsules are an effective colon-targeting nanosystem for the treatment of inflammatory bowel disease. Capryol 90 was found to be a successful, and even preferred, alternative to benzyl benzoate, which is commonly employed as the oil core of such nanocapsules.
Collapse
|
25
|
Panotopoulos GP, Haidar ZS. Mathematical Modeling for Pharmaco-Kinetic and -Dynamic Predictions from Controlled Drug Release NanoSystems: A Comparative Parametric Study. SCIENTIFICA 2019; 2019:9153876. [PMID: 30723572 PMCID: PMC6339717 DOI: 10.1155/2019/9153876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Predicting pharmacokinetics, based on the theory of dynamic systems, for an administered drug (whether intravenously, orally, intramuscularly, etc.), is an industrial and clinical challenge. Often, mathematical modeling of pharmacokinetics is preformed using only a measured concentration time profile of a drug administered in plasma and/or in blood. Yet, in dynamic systems, mathematical modeling (linear) uses both a mathematically described drug administration and a mathematically described body response to the administered drug. In the present work, we compare several mathematical models well known in the literature for simulating controlled drug release kinetics using available experimental data sets obtained in real systems with different drugs and nanosized carriers. We employed the χ 2 minimization method and concluded that the Korsmeyer-Peppas model (or power-law model) provides the best fit, in all cases (the minimum value of χ 2 per degree of freedom; χ min 2/d.o.f. = 1.4183, with 2 free parameters or m = 2). Hence, (i) better understanding of the exact mass transport mechanisms involved in drugs release and (ii) quantitative prediction of drugs release can be computed and simulated. We anticipate that this work will help devise optimal pharmacokinetic and dynamic release systems, with measured variable properties, at nanoscale, characterized to target specific diseases and conditions.
Collapse
Affiliation(s)
| | - Ziyad S. Haidar
- BioMAT'X, Universidad de Los Andes, Santiago, Chile
- CIIB, Universidad de Los Andes, Santiago, Chile
- Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
| |
Collapse
|
26
|
Dalcin AJF, Vizzotto BS, Bochi GV, Guarda NS, Nascimento K, Sagrillo MR, Moresco RN, Schuch AP, Ourique AF, Gomes P. Nanoencapsulation of the flavonoid dihydromyricetin protects against the genotoxicity and cytotoxicity induced by cationic nanocapsules. Colloids Surf B Biointerfaces 2019; 173:798-805. [DOI: 10.1016/j.colsurfb.2018.10.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023]
|
27
|
Polymer-based carriers for ophthalmic drug delivery. J Control Release 2018; 285:106-141. [DOI: 10.1016/j.jconrel.2018.06.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
|
28
|
Choi SW, Kim J. Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1125. [PMID: 29966397 PMCID: PMC6073408 DOI: 10.3390/ma11071125] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
The eye has many barriers with specific anatomies that make it difficult to deliver drugs to targeted ocular tissues, and topical administration using eye drops or ointments usually needs multiple instillations to maintain the drugs’ therapeutic concentration because of their low bioavailability. A drug-eluting contact lens is one of the more promising platforms for controllable ocular drug delivery, and, among various manufacturing methods for drug-eluting contact lenses, incorporation of novel polymeric vehicles with versatile features makes it possible to deliver the drugs in a sustained and extended manner. Using the diverse physicochemical properties of polymers for nanoparticles or implants that are selected according to the characteristics of drugs, enhancement of encapsulation efficiency and prolonged drug release are possible. Even though therapeutic contact lenses with polymeric vehicles allow us to achieve sustained ocular drug delivery, drug leaching during storage and distribution and the possibility of problems related to surface roughness due to the incorporated vehicles still need to be discussed before application in a real clinic. This review highlights the overall trends in methodology to develop therapeutic contact lenses with polymeric vehicles and discusses the limitations including comparison to cosmetically tinted soft contact lenses.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jaeyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| |
Collapse
|
29
|
Chaves PDS, Frank LA, Frank AG, Pohlmann AR, Guterres SS, Beck RCR. Mucoadhesive Properties of Eudragit®RS100, Eudragit®S100, and Poly(ε-caprolactone) Nanocapsules: Influence of the Vehicle and the Mucosal Surface. AAPS PharmSciTech 2018; 19:1637-1646. [PMID: 29500762 DOI: 10.1208/s12249-018-0968-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/27/2018] [Indexed: 11/30/2022] Open
Abstract
The use of polymers as mucoadhesive materials has been explored in several drug delivery systems. It is well known that the resulting mucoadhesiveness not only depends on the polymers by themselves, but also on the way they are delivered and on the application target. However, little attention has been given to the combined effect of such characteristics. Therefore, the objective of this study is to analyze the mucoadhesion resulting from combined effects of nanocapsules produced with polymers of different ionic properties, Eudragit®RS100, Eudragit®S100, or poly(ε-caprolactone), when they are incorporated into different vehicles (suspension, hydrogel, and powder) and applied on different mucosal surfaces (mucin, porcine vaginal, and buccal mucosa). Mucoadhesion was measured by a tensile stress tester. Our findings show that polymeric self-assembling as nanocapsules improved the mucoadhesion of the polymers. Eudragit®RS100 nanocapsules have the best performance, independently of the vehicle and surface used. Regarding the vehicle, hydrogels showed higher adhesion when compared to suspensions and powders. When considering different types of surfaces, mucin presented a similar pattern like the animal mucosa, but it overestimated the mucoadhesiveness of all formulations. In conclusion, this study demonstrated that the best strategy to achieve high mucoadhesive formulations is by incorporating Eudragit®RS100 nanocapsules in hydrogels. Moreover, mucin is a suitable substrate to compare and screen different formulations but not as a conclusive estimation of the mucoadhesion values that can be achieved. These results are summarized in a decision tree that can help to understand different strategies of combination of these factors and the expected outcomes.
Collapse
|
30
|
Abstract
The complexity of the structure and nature of the eye emanates a challenge for drug delivery to formulation scientists. Lower bioavailability concern of conventional ocular formulation provokes the interest of researchers in the development of novel drug delivery system. Nanotechnology-based formulations have been extensively investigated and found propitious in improving bioavailability of drugs by overcoming ocular barriers prevailing in the eye. The advent of nanocrystals helped in combating the problem of poorly soluble drugs specifically for oral and parenteral drug delivery and led to development of various marketed products. Nanocrystal-based formulations explored for ocular drug delivery have been found successful in achieving increase in retention time, bioavailability, and permeability of drugs across the corneal and conjunctival epithelium. In this review, we have highlighted the ocular physiology and barriers in drug delivery. A comparative analysis of various nanotechnology-based ocular formulations is done with their pros and cons. Consideration is also given to various methods of preparation of nanocrystals with their patented technology. This article highlights the success achieved in conquering various challenges of ocular delivery by the use of nanocrystals while emphasizing on its advantages and application for ocular formulation. The perspectives of nanocrystals as an emerging flipside to explore the frontiers of ocular drug delivery are discussed.
Collapse
Affiliation(s)
- Om Prakash Sharma
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India
| | - Viral Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India
| | - Tejal Mehta
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
31
|
Katara R, Sachdeva S, Majumdar DK. Enhancement of ocular efficacy of aceclofenac using biodegradable PLGA nanoparticles: formulation and characterization. Drug Deliv Transl Res 2017; 7:632-641. [DOI: 10.1007/s13346-017-0416-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int J Pharm 2017; 528:268-279. [DOI: 10.1016/j.ijpharm.2017.05.074] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022]
|
33
|
Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. Int J Pharm 2017; 527:92-102. [PMID: 28499793 DOI: 10.1016/j.ijpharm.2017.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 11/22/2022]
Abstract
Treatment of bacterial airway infections is essential for cystic fibrosis therapy. However, effectiveness of antibacterial treatment is limited as bacteria inside the mucus are protected from antibiotics and immune response. To overcome this biological barrier, ciprofloxacin was loaded into lipid-core nanocapsules (LNC) for high mucus permeability, sustained release and antibacterial activity. Ciprofloxacin-loaded LNC with a mean size of 180nm showed a by 50% increased drug permeation through mucus. In bacterial growth assays, the drug in the LNC had similar minimum inhibitory concentrations as the free drug in P. aeruginosa and S. aureus. Interestingly, formation of biofilm-like aggregates, which were observed for S. aureus treated with free ciprofloxacin, was avoided by exposure to LNC. With the combined advantages over the non-encapsulated drug, ciprofloxacin-loaded LNC represent a promising drug delivery system with the prospect of an improved antibiotic therapy in cystic fibrosis.
Collapse
|
34
|
Liu R, Wang S, Fang S, Wang J, Chen J, Huang X, He X, Liu C. Liquid Crystalline Nanoparticles as an Ophthalmic Delivery System for Tetrandrine: Development, Characterization, and In Vitro and In Vivo Evaluation. NANOSCALE RESEARCH LETTERS 2016; 11:254. [PMID: 27188974 PMCID: PMC4870510 DOI: 10.1186/s11671-016-1471-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/06/2016] [Indexed: 05/29/2023]
Abstract
The purpose of this study was to develop novel liquid crystalline nanoparticles (LCNPs) that display improved pre-ocular residence time and ocular bioavailability and that can be used as an ophthalmic delivery system for tetrandrine (TET). The delivery system consisted of three primary components, including glyceryl monoolein, poloxamer 407, and water, and two secondary components, including Gelucire 44/14 and amphipathic octadecyl-quaternized carboxymethyl chitosan. The amount of TET, the amount of glyceryl monoolein, and the ratio of poloxamer 407 to glyceryl monoolein were selected as the factors that were used to optimize the dependent variables, which included encapsulation efficiency and drug loading. A three-factor, five-level central composite design was constructed to optimize the formulation. TET-loaded LCNPs (TET-LCNPs) were characterized to determine their particle size, zeta potential, entrapment efficiency, drug loading capacity, particle morphology, inner crystalline structure, and in vitro drug release profile. Corneal permeation in excised rabbit corneas was evaluated. Pre-ocular retention was determined using a noninvasive fluorescence imaging system. Finally, pharmacokinetic study in the aqueous humor was performed by microdialysis technique. The optimal formulation had a mean particle size of 170.0 ± 13.34 nm, a homogeneous distribution with polydispersity index of 0.166 ± 0.02, a positive surface charge with a zeta potential of 29.3 ± 1.25 mV, a high entrapment efficiency of 95.46 ± 4.13 %, and a drug loading rate of 1.63 ± 0.07 %. Transmission electron microscopy showed spherical particles that had smooth surfaces. Small-angle X-ray scattering profiles revealed an inverted hexagonal phase. The in vitro release assays showed a sustained drug release profile. A corneal permeation study showed that the apparent permeability coefficient of the optimal formulation was 2.03-fold higher than that of the TET solution. Pre-ocular retention capacity study indicated that the retention of LCNPs was significantly longer than that of the solution (p < 0.01). In addition, a pharmacokinetic study of rabbit aqueous humors demonstrated that the TET-LCNPs showed 2.65-fold higher ocular bioavailability than that of TET solution. In conclusion, a LCNP system could be a promising method for increasing the ocular bioavailability of TET by enhancing its retention time and permeation into the cornea.
Collapse
Affiliation(s)
- Rui Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 312 Anshanwest Road, Nankai District, Tianjin, 300193, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanwest Road, Nankai District, Tianjin, 300193, China
| | - Shuangshuang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 312 Anshanwest Road, Nankai District, Tianjin, 300193, China
| | - Shiming Fang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanwest Road, Nankai District, Tianjin, 300193, China
| | - Jialu Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 312 Anshanwest Road, Nankai District, Tianjin, 300193, China
| | - Jingjing Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 312 Anshanwest Road, Nankai District, Tianjin, 300193, China
| | - Xingguo Huang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 312 Anshanwest Road, Nankai District, Tianjin, 300193, China
| | - Xin He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 312 Anshanwest Road, Nankai District, Tianjin, 300193, China.
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanwest Road, Nankai District, Tianjin, 300193, China.
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, 308 Anshanwest Road, Nankai District, Tianjin, 300193, China
| |
Collapse
|
35
|
Pereira RL, Leites FI, Paese K, Sponchiado RM, Michalowski CB, Guterres SS, Schapoval EES. Hydrogel containing adapalene- and dapsone-loaded lipid-core nanocapsules for cutaneous application: development, characterization, in vitro irritation and permeation studies. Drug Dev Ind Pharm 2016; 42:2001-2008. [PMID: 27161601 DOI: 10.1080/03639045.2016.1188110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipid-core polymeric nanocapsule suspensions containing adapalene and dapsone (AD-LCNC) were developed and incorporated in a Carbopol 940® hydrogel (AD-LCNC HG). A nanoemulsion (AD-NE), similarly prepared but omitting the polymer, was developed and also incorporated in a Carbopol 940® hydrogel (AD-NE HG) to evaluate the polymer effect. Physicochemical characteristics were evaluated. AD-LCNC suspensions containing 0.07% of dapsone and 0.025% of adapalene presented an average size of 194.9 ± 0.42 nm, zeta potential of -15 ± 1.2 mV and polydispersity index of 0.12 ± 0.02, using electrophoretic light scattering (n = 3). The granulometric profiles showed unimodal size distributions for AD-LCNC suspensions, demonstrating that no microscopic population is present in the formulation. No instability phenomena were observed by multiple light-scattering analysis. Photomicrographs obtained by TEM showed homogeneous- and spherical-shaped particles. The encapsulation efficiency was 99.99% for dapsone and 100% for adapalene. The pH values for AD-LCNC suspensions were 5.1 and 7.6 for AD-LCNC HG. Formulations were classified as nonirritant in the HET-CAM test. Rheological analysis demonstrated a non-Newtonian pseudoplastic profile. The in vitro skin permeation studies showed a higher amount of adapalene in epidermis (130.52 ± 25.72 ng/mg) and dermis (4.66 ± 2.5 ng/mg) for AD-NE HG. The AD-LCNC HG presented higher amount of dapsone in both the skin layers (73.91 ± 21.64 ng/mg in epidermis and 4.08 ± 0.85 ng/mg in dermis). The assay showed significant difference between AD-LCNC HG and AD-NE HG (p < 0.05), and drug was not found in the receptor medium.
Collapse
Affiliation(s)
- Rubia L Pereira
- a Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre - RS , Brazil
| | - Fernanda I Leites
- a Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre - RS , Brazil
| | - Karina Paese
- a Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre - RS , Brazil
| | - Rafaela M Sponchiado
- a Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre - RS , Brazil
| | - Cecília B Michalowski
- a Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre - RS , Brazil
| | - Silvia S Guterres
- a Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre - RS , Brazil
| | - Elfrides E S Schapoval
- a Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre - RS , Brazil
| |
Collapse
|
36
|
Skin penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm 2016; 507:12-20. [PMID: 27130364 DOI: 10.1016/j.ijpharm.2016.03.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/23/2022]
Abstract
For an improved understanding of the relevant particle features for cutaneous use, we studied the effect of the surface charge of acrylic nanocapsules (around 150nm) and the effect of a chitosan gel vehicle on the particle penetration into normal and stripped human skin ex vivo as well as local tolerability (cytotoxicity and irritancy). Rhodamin-tagged nanocapsules penetrated and remained in the stratum corneum. Penetration of cationic nanocapsules exceeded the penetration of anionic nanocapsules. When applied on stripped skin, however, the fluorescence was also recorded in the viable epidermis and dermis. Cationic surface charge and embedding the particles into chitosan gel favored access to deeper skin. Keratinocytes took up the nanocapsules rapidly. Cytotoxicity (viability<80%), following exposure for ≥24h, appears to be due to the surfactant polysorbate 80, used for nanocapsuleś stabilization. Uptake by fibroblasts was low and no cytotoxicity was observed. No irritant reactions were detected in the HET-CAM test. In conclusion, the surface charge and chitosan vehicle, as well as the skin barrier integrity, influence the skin penetration of acrylic nanocapsules. Particle localization in the intact stratum corneum of normal skin and good tolerability make the nanocapsules candidates for topical use on the skin, provided that the polymer wall allows the release of the active encapsulated substance.
Collapse
|
37
|
de Andrade DF, Zuglianello C, Pohlmann AR, Guterres SS, Beck RCR. Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System. AAPS PharmSciTech 2015; 16:1409-17. [PMID: 25986595 DOI: 10.1208/s12249-015-0330-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
The in vitro assessment of drug release from polymeric nanocapsules suspensions is one of the most studied parameters in the development of drug-loaded nanoparticles. Nevertheless, official methods for the evaluation of drug release from submicrometric carriers are not available. In this work, a new approach to assess the in vitro drug release profile from drug-loaded lipid-core nanocapsules (LNC) was proposed. A continuous-flow system (open system) was designed to evaluate the in vitro drug release profiles from different LNC formulations containing prednisolone or clobetasol propionate (LNC-CP) as drug model (LNC-PD) using a homemade apparatus. The release medium was constantly renewed throughout the experiment. A dialysis bag containing 5 mL of formulation (0.5 mg mL(-1)) was maintained inside the apparatus, under magnetic stirring and controlled temperature (37°C). In parallel, studies based on the conventional dialysis sac technique (closed system) were performed. It was possible to discriminate the in vitro drug release profile of different formulations using the open system. The proposed strategy improved the sink condition, by constantly renewing the release medium, thus maintaining the drug concentration farther from the saturated concentration in the release medium. Moreover, problems due to sampling errors can be easily overcome using this semi-automated system, since the collection is done automatically without interference from the analyst. The system proposed in this paper brings important methodological and analytical advantages, becoming a promising prototype semi-automated apparatus for performing in vitro drug release studies from drug-loaded lipid-core nanocapsules and other related nanoparticle drug delivery systems.
Collapse
|
38
|
Felice B, Prabhakaran MP, Zamani M, Rodríguez AP, Ramakrishna S. Electrosprayed poly(vinyl alcohol) particles: preparation and evaluation of their drug release profile. POLYM INT 2015. [DOI: 10.1002/pi.4972] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Betiana Felice
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería; Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán; Tucumán Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO); CONICET 4000 Tucumán Argentina
- START - Thrust 3, Create Research Wing 03-08, 1 Create Way; National University of Singapore; Singapore 138602
| | - Molamma P Prabhakaran
- START - Thrust 3, Create Research Wing 03-08, 1 Create Way; National University of Singapore; Singapore 138602
- Department of Mechanical Engineering; National University of Singapore; Singapore
| | - Maedeh Zamani
- START - Thrust 3, Create Research Wing 03-08, 1 Create Way; National University of Singapore; Singapore 138602
- Department of Mechanical Engineering; National University of Singapore; Singapore
| | - Andrea P Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería; Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán; Tucumán Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO); CONICET 4000 Tucumán Argentina
| | - Seeram Ramakrishna
- START - Thrust 3, Create Research Wing 03-08, 1 Create Way; National University of Singapore; Singapore 138602
- Department of Mechanical Engineering; National University of Singapore; Singapore
| |
Collapse
|
39
|
Contri RV, Soares RMD, Pohlmann AR, Guterres SS. Structural analysis of chitosan hydrogels containing polymeric nanocapsules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:234-42. [PMID: 25063115 DOI: 10.1016/j.msec.2014.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/31/2014] [Accepted: 05/03/2014] [Indexed: 11/26/2022]
Abstract
The incorporation of different concentrations of polymeric nanocapsule suspensions into chitosan hydrogels is proposed, in order to study the structure of a formulation with the properties of great tissue adhesion and controlled release of the nanoencapsulated drugs, represented here by capsaicinoids. The gels presented acceptable acid pH values and the nanoparticles were visually observed in the system. A transition from the micrometer to the nanometer scales suggested that the nanocapsules are initially agglomerated in the hydrogel. A sedimentation tendency of the nanocapsules in the system was observed and only physical interaction between the chitosan chains and polymeric nanocapsules was verified. The hydrogels, despite the presence of nanocapsules, presented shear-thinning properties and an elastic behavior under low and high frequencies, showing a very structured gel network. The observed variation in the elasticity of the hydrogels may arise from a decrease in the number of interactions and degree of entanglement between the chitosan chains, caused by the presence of nanoparticles.
Collapse
Affiliation(s)
- Renata V Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Rosane M D Soares
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Adriana R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Silvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|