1
|
Roy S. Emerging strategies targeting genes and cells in glaucoma. Vision Res 2024; 227:108533. [PMID: 39644708 DOI: 10.1016/j.visres.2024.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Glaucoma comprises a heterogeneous set of eye conditions that cause progressive vision loss. Glaucoma has a complex etiology, with different genetic and non-genetic risk factors that differ across populations. Although difficult to diagnose in early stages, compromised cellular signaling, dysregulation of genes, and homeostatic imbalance are common precursors to injury and subsequent death of retinal ganglion cells (RGCs). Lowering intraocular pressure (IOP) remains the primary approach for managing glaucoma but IOP alone does not explain all glaucoma risks. Orthogonal approaches such as large-scale genetic screening, combined with studies of animal models have been instrumental in identifying genes and molecular pathways involved in glaucoma pathogenesis. Cell type dependent vulnerability among RGCs can reveal genetic basis for specific visual deficits. A growing body of knowledge and availability of modern tools to perform targeted assessments of cellular health in different animal models facilitate development of effective and timely interventions for vision rescue. This review highlights recent findings on genes, molecules, and cell types in the context of glaucoma pathophysiology and treatment.
Collapse
Affiliation(s)
- Suva Roy
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Salkar A, Wall RV, Basavarajappa D, Chitranshi N, Parilla GE, Mirzaei M, Yan P, Graham S, You Y. Glial Cell Activation and Immune Responses in Glaucoma: A Systematic Review of Human Postmortem Studies of the Retina and Optic Nerve. Aging Dis 2024; 15:2069-2083. [PMID: 38502591 PMCID: PMC11346413 DOI: 10.14336/ad.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 03/21/2024] Open
Abstract
Although researched extensively the understanding regarding mechanisms underlying glaucoma pathogenesis remains limited. Further, the exact mechanism behind neuronal death remains elusive. The role of neuroinflammation in retinal ganglion cell (RGC) death has been prominently theorised. This review provides a comprehensive summary of neuroinflammatory responses in glaucoma. A systematic search of Medline and Embase for articles published up to 8th March 2023 yielded 32 studies using post-mortem tissues from glaucoma patients. The raw data were extracted from tables and text to calculate the standardized mean differences (SMDs). These studies utilized post-mortem tissues from glaucoma patients, totalling 490 samples, compared with 380 control samples. Among the included studies, 27 reported glial cell activation based on changes to cellular morphology and molecular staining. Molecular changes were predominantly attributed to astrocytes (62.5%) and microglia (15.6%), with some involvement of Muller cells. These glial cell changes included amoeboid microglial cells with increased CD45 or HLA-DR intensity and hypertrophied astrocytes with increased glial fibrillary acidic protein labelling. Further, changes to extracellular matrix proteins like collagen, galectin, and tenascin-C suggested glial cells' influence on structural changes in the optic nerve head. The activation of DAMPs-driven immune response and the classical complement cascade was reported and found to be associated with activated glial cells in glaucomatous tissue. Increased pro-inflammatory markers such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were also linked to glial cells. Glial cell activation was also associated with mitochondrial, vascular, metabolic and antioxidant component disruptions. Association of the activated glial cells with pro-inflammatory responses, dysregulation of homeostatic components and antigen presentation indicates that glial cell responses influence glaucoma progression. However, the exact mechanism triggering these responses and underlying interactions remains unexplored. This necessitates further research using human samples for an increased understanding of the precise role of neuroinflammation in glaucoma progression.
Collapse
Affiliation(s)
- Akanksha Salkar
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Roshana Vander Wall
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Devaraj Basavarajappa
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Gabriella E. Parilla
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Peng Yan
- Department of Ophthalmology & Vision Sciences, University of Toronto, Kensington Eye Institute/UHN, Canada.
| | - Stuart Graham
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Human, Health, and Medical Science, Macquarie University. Sydney, NSW, Australia.
- Save Sight Institute, University of Sydney. Sydney, NSW, Australia.
| |
Collapse
|
3
|
Sejournet L, Mathis T, Vermot-Desroches V, Serra R, Fenniri I, Denis P, Kodjikian L. Efficacy and Safety of Fluocinolone Acetonide Implant in Diabetic Macular Edema: Practical Guidelines from Reference Center. Pharmaceutics 2024; 16:1183. [PMID: 39339219 PMCID: PMC11435168 DOI: 10.3390/pharmaceutics16091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic macular edema (DME) is a common complication of diabetic retinopathy. Treatment with intravitreal injections is effective in most cases but is associated with a high therapeutic burden for patients. This implies the need for long-term treatments, such as the fluocinolone acetonide (FAc) implant. A review of basic science, pharmacology, and clinical data was conducted to provide a state-of-the-art view of the FAc implant in 2024. Although generally well tolerated, the FAc implant has been associated with ocular hypertension and cataract, and caution should be advised to the patients in this regard. By synthesizing information across these domains, a comprehensive evaluation can be attained, facilitating informed decision-making regarding the use of the FAc implant in the management of DME. The main objective of this review is to provide clinicians with guidelines on how to introduce and use the FAc implant in a patient with DME.
Collapse
Affiliation(s)
- Lucas Sejournet
- Department of Ophthalmology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France; (T.M.); (V.V.-D.); (I.F.); (P.D.); (L.K.)
- Laboratoire MATEIS, UMR-CNRS 5510, INSA, Université Lyon 1, 69100 Villeurbanne, France
| | - Thibaud Mathis
- Department of Ophthalmology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France; (T.M.); (V.V.-D.); (I.F.); (P.D.); (L.K.)
- Laboratoire MATEIS, UMR-CNRS 5510, INSA, Université Lyon 1, 69100 Villeurbanne, France
- Centre de Recherche Clinique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| | - Victor Vermot-Desroches
- Department of Ophthalmology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France; (T.M.); (V.V.-D.); (I.F.); (P.D.); (L.K.)
| | - Rita Serra
- Ophthalmology Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Ines Fenniri
- Department of Ophthalmology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France; (T.M.); (V.V.-D.); (I.F.); (P.D.); (L.K.)
| | - Philippe Denis
- Department of Ophthalmology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France; (T.M.); (V.V.-D.); (I.F.); (P.D.); (L.K.)
| | - Laurent Kodjikian
- Department of Ophthalmology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France; (T.M.); (V.V.-D.); (I.F.); (P.D.); (L.K.)
- Laboratoire MATEIS, UMR-CNRS 5510, INSA, Université Lyon 1, 69100 Villeurbanne, France
- Centre de Recherche Clinique, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| |
Collapse
|
4
|
Sripinun P, See LP, Nikonov S, Chavali VRM, Vrathasha V, He J, O'Brien JM, Xia J, Lu W, Mitchell CH. Piezo1 and Piezo2 channels in retinal ganglion cells and the impact of Piezo1 stimulation on light-dependent neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599602. [PMID: 38979351 PMCID: PMC11230181 DOI: 10.1101/2024.06.25.599602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Piezo channels are associated with neuropathology in diseases like traumatic brain injury and glaucoma, but pathways linking tissue stretch to aberrant neural signaling remain unclear. The present study demonstrates that Piezo1 activation increases action potential frequency in response to light and the spontaneous dark signal from mouse retinal explants. Piezo1 stimulation was sufficient to increase cytoplasmic Ca 2+ in soma and neurites, while stretch increased spiking activity in current clamp recordings from of isolated retinal ganglion cells (RGCs). Axon-marker beta-tubulin III colocalized with both Piezo1 and Piezo2 protein in the mouse optic nerve head, while RGC nuclear marker BRN3A colocalized with Piezo channels in the soma. Piezo1 was also present on GFAP-positive regions in the optic nerve head and colocalized with glutamine synthetase in the nerve fiber layer, suggesting expression in optic nerve head astrocytes and Müller glia end feet, respectively. Human RGCs from induced pluripotent stem cells also expressed Piezo1 and Piezo2 in soma and axons, while staining patterns in rats resembled those in mice. mRNA message for Piezo1 was greatest in the RPE/choroid tissue, while Piezo2 levels were highest in the optic nerve, with both channels also expressed in the retina. Increased expression of Piezo1 and Piezo2 occurred both 1 and 10 days after a single stretch in vivo; this increase suggests a potential role in rising sensitivity to repeated nerve stretch. In summary, Piezo1 and Piezo2 were detected in the soma and axons of RGCs, and stimulation affected the light-dependent output of RGCs. The rise in RGCs excitability induced by Piezo stimulation may have parallels to the early disease progression in models of glaucoma and other retinal degenerations. Highlights Activation of Piezo1 excites retinal ganglion cells, paralleling the early neurodegenerative progression in glaucoma mouse models and retinal degeneration.Piezo1 and Piezo2 were expressed in axons and soma of retinal ganglion cells in mice, rats, and human iPSC-RGCs.Functional assays confirmed Piezo1 in soma and neurites of neurons. Sustained elevation of Piezo1 and Piezo2 occurred after a single transient stretch may enhance damage from repeated traumatic nerve injury. Abstract Figure
Collapse
|
5
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
So C, Zhang T, Wang Q, Qiu C, Elie DLA, Pan F. The response of retinal ganglion cells to optical defocused visual stimuli in mouse retinas. Exp Eye Res 2024; 241:109834. [PMID: 38382575 DOI: 10.1016/j.exer.2024.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Myopia and astigmatism are two primary types of refractive errors characterized by inaccurate focusing images on the retina. This study aimed to investigate the response characteristics of Retinal Ganglion Cells (RGCs), represented by alpha (α) RGCs, when exposed to focused, simulated spherically defocused images and astigmatically defocused images projected onto mouse retinas. Negative pressure was applied to stretch the soma of RGC in vitro to simulate myopia using a 7-8 μm diameter glass microelectrode, resulting in a 5% increase in the cell's diameter. A custom-made device was utilized to project spherically (equal to ±10 and ± 20 D) and astigmatically (+6.00 D) defocused images onto the retinas. As a control for a deficient intact retinal circuit, αRGCs of connexin 36 knockout (Cx36 KO) mice were used. The response of αRGCs varied significantly in terms of spikes, excitatory postsynaptic currents (EPSCs) and capacitances under stretching conditions to mimic myopia. Significant differences in the amplitudes of EPSCs were observed in the majority of αRGCs when exposed to focused and spherically defocused images in normal and mechanically simulated myopic retinas. However, this difference was not observed in αRGCs of Cx36 KO mice. αRGCs demonstrated significant differences in response between focused and astigmatically defocused images. Once again, αRGCs of Cx36 KO mice did not display differences. αRGCs have the ability to detect focused, spherically, and astigmatically defocused images and exhibit differential responses ex vivo. Gap junction subunit Cx36 may play a crucial role in transmitting visual signals associated with developing and perceiving refractive errors.
Collapse
Affiliation(s)
- Chunghim So
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ting Zhang
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Qin Wang
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Chunting Qiu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | - Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong; Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong; Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
7
|
Lin CR, Toychiev A, Ablordeppey RK, Srinivas M, Benavente-Perez A. Sustained Retinal Defocus Increases the Effect of Induced Myopia on the Retinal Astrocyte Template. Cells 2024; 13:595. [PMID: 38607034 PMCID: PMC11011523 DOI: 10.3390/cells13070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
The aim of this article is to describe sustained myopic eye growth's effect on astrocyte cellular distribution and its association with inner retinal layer thicknesses. Astrocyte density and distribution, retinal nerve fiber layer (RNFL), ganglion cell layer, and inner plexiform layer (IPL) thicknesses were assessed using immunochemistry and spectral-domain optical coherence tomography on seventeen common marmoset retinas (Callithrix jacchus): six induced with myopia from 2 to 6 months of age (6-month-old myopes), three induced with myopia from 2 to 12 months of age (12-month-old myopes), five age-matched 6-month-old controls, and three age-matched 12-month-old controls. Untreated marmoset eyes grew normally, and both RNFL and IPL thicknesses did not change with age, with astrocyte numbers correlating to RNFL and IPL thicknesses in both control age groups. Myopic marmosets did not follow this trend and, instead, exhibited decreased astrocyte density, increased GFAP+ spatial coverage, and thinner RNFL and IPL, all of which worsened over time. Myopic changes in astrocyte density, GFAP+ spatial coverage and inner retinal layer thicknesses suggest astrocyte template reorganization during myopia development and progression which increased over time. Whether or not these changes are constructive or destructive to the retina still remains to be assessed.
Collapse
Affiliation(s)
| | | | | | | | - Alexandra Benavente-Perez
- Department of Biological Sciences, State University of New York College of Optometry, New York, NY 10036, USA; (C.R.L.); (A.T.); (R.K.A.); (M.S.)
| |
Collapse
|
8
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Hoppe C, Gregory-Ksander M. The Role of Complement Dysregulation in Glaucoma. Int J Mol Sci 2024; 25:2307. [PMID: 38396986 PMCID: PMC10888626 DOI: 10.3390/ijms25042307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma is a progressive neurodegenerative disease characterized by damage to the optic nerve that results in irreversible vision loss. While the exact pathology of glaucoma is not well understood, emerging evidence suggests that dysregulation of the complement system, a key component of innate immunity, plays a crucial role. In glaucoma, dysregulation of the complement cascade and impaired regulation of complement factors contribute to chronic inflammation and neurodegeneration. Complement components such as C1Q, C3, and the membrane attack complex have been implicated in glaucomatous neuroinflammation and retinal ganglion cell death. This review will provide a summary of human and experimental studies that document the dysregulation of the complement system observed in glaucoma patients and animal models of glaucoma driving chronic inflammation and neurodegeneration. Understanding how complement-mediated damage contributes to glaucoma will provide opportunities for new therapies.
Collapse
Affiliation(s)
- Cindy Hoppe
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
- Animal Physiology/Neurobiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
10
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Liu HH, Cullen PF, Sivak JM, Gronert K, Flanagan JG. Protective Effects of Lipoxin A 4 and B 4 Signaling on the Inner Retina in a Mouse Model of Experimental Glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.575414. [PMID: 38293224 PMCID: PMC10827219 DOI: 10.1101/2024.01.17.575414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Glaucoma is a common neurodegenerative disease characterized by progressive degeneration of retinal ganglion cells (RGCs) and the retinal nerve fiber layer (RNFL), resulting in a gradual decline of vision. A recent study by our groups indicated that the levels of lipoxins A4 (LXA4) and B4 (LXB4) in the retina and optic nerve decrease following acute injury, and that restoring their function is neuroprotective. Lipoxins are members of the specialized pro-resolving mediator (SPM) family and play key roles to mitigate and resolve chronic inflammation and tissue damage. Yet, knowledge about lipoxin neuroprotective activity remains limited. Here we investigate the in vivo efficacy of exogenous LXA4 and LXB4 administration on the inner retina in a mouse model of chronic experimental glaucoma. To investigate the contribution of LXA4 signaling we used transgenic knockout (KO) mice lacking the two mouse LXA4 receptors (Fpr2/Fpr3-/-). Functional and structural changes of inner retinal neurons were assessed longitudinally using electroretinogram (ERG) and optical coherence tomography (OCT). At the end of the experiment, retinal samples were harvested for immunohistological assessment. While both lipoxins generated protective trends, only LXB4 treatment was significant, and consistently more efficacious than LXA4 in all endpoints. Both lipoxins also appeared to dramatically reduce Müller glial reactivity following injury. In comparison, Fpr2/Fpr3 deletion significantly worsened inner retinal injury and function, consistent with an essential protective role for endogenous LXA4. Together, these results support further exploration of lipoxin signaling as a treatment for glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Hsin-Hua Liu
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, California, United States
| | - Paul F. Cullen
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, California, United States
| | - Jeremy M. Sivak
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, California, United States
| | - John G. Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, California, United States
| |
Collapse
|
12
|
Spurlock M, An W, Reshetnikova G, Wen R, Wang H, Braha M, Solis G, Kurtenbach S, Galindez OJ, de Rivero Vaccari JP, Chou TH, Porciatti V, Shestopalov VI. The Inflammasome-Dependent Dysfunction and Death of Retinal Ganglion Cells after Repetitive Intraocular Pressure Spikes. Cells 2023; 12:2626. [PMID: 37998361 PMCID: PMC10670000 DOI: 10.3390/cells12222626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1β (IL-1β) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1-/-, Casp1-/-, and GsdmD-/- knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death.
Collapse
Affiliation(s)
- Markus Spurlock
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Weijun An
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Galina Reshetnikova
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Rong Wen
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Hua Wang
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Michelle Braha
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Gabriela Solis
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Orlando J. Galindez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Juan Pablo de Rivero Vaccari
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Sheth VS, Singer M, MacCumber M, Cutino A, Kasper J, Coughlin BA, Riemann CD. Long-Term Control of Retinal Thickness Variability and Vision Following the 0.19 mg Fluocinolone Acetonide Implant. JOURNAL OF VITREORETINAL DISEASES 2023; 7:490-497. [PMID: 37974917 PMCID: PMC10649457 DOI: 10.1177/24741264231201314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Purpose: To assess the impact of retinal thickness variability (RTV) control on visual and treatment burden outcomes in patients with diabetic macular edema (DME) who received the 0.19 mg fluocinolone acetonide (FAc) intravitreal implant (Iluvien, Alimera Sciences). Methods: This post hoc analysis examined the outcomes of a 3-year, phase 4, nonrandomized, open-label observational study. Retinal thickness was measured as central subfield thickness (CST). RTV was quantified by CST area under the curve (CST-AUC), retinal thickness amplitude (RTA), and retinal thickness standard deviation (RTSD). Visual outcomes were measured as best-corrected visual acuity (BCVA), and treatment burden was measured as the number of yearly supplemental DME treatments. Results: The percentage of eyes with a CST ≤300 µm fluctuated throughout the study but was significantly increased relative to baseline at 36 months (baseline: 32.9% vs 36 months: 46.8%; P < .05). FAc significantly reduced RTV in all measures more than 36 months (P < .0001). When divided into quartiles, eyes with the best RTV control post FAc had the greatest BCVA gains and improved disease control (ie, reduced need for supplemental therapy). The last-observed BCVA letter score exhibited linear correlations with CST-AUC (R2 = -0.100), RTA (R2 = -0.125), and RTSD (R2 = -0.162). A multivariate linear regression with baseline BCVA as a covariate displayed improved correlations with the last-observed BCVA, CST-AUC (R2 = -0.448), RTA (R2 = -0.432), and RTSD (R2 = -0.436). Conclusions: The sustained corticosteroid release of the 0.19 mg FAc implant reduced RTV in patients with DME, which directly correlated with significantly improved vision and a reduced supplemental treatment burden.
Collapse
Affiliation(s)
| | - Michael Singer
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | | | - Christopher D. Riemann
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Eye Institute, Cincinnati, OH, USA
| |
Collapse
|
15
|
Benowitz LI, Xie L, Yin Y. Inflammatory Mediators of Axon Regeneration in the Central and Peripheral Nervous Systems. Int J Mol Sci 2023; 24:15359. [PMID: 37895039 PMCID: PMC10607492 DOI: 10.3390/ijms242015359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Although most pathways in the mature central nervous system cannot regenerate when injured, research beginning in the late 20th century has led to discoveries that may help reverse this situation. Here, we highlight research in recent years from our laboratory identifying oncomodulin (Ocm), stromal cell-derived factor (SDF)-1, and chemokine CCL5 as growth factors expressed by cells of the innate immune system that promote axon regeneration in the injured optic nerve and elsewhere in the central and peripheral nervous systems. We also review the role of ArmC10, a newly discovered Ocm receptor, in mediating many of these effects, and the synergy between inflammation-derived growth factors and complementary strategies to promote regeneration, including deleting genes encoding cell-intrinsic suppressors of axon growth, manipulating transcription factors that suppress or promote the expression of growth-related genes, and manipulating cell-extrinsic suppressors of axon growth. In some cases, combinatorial strategies have led to unprecedented levels of nerve regeneration. The identification of some similar mechanisms in human neurons offers hope that key discoveries made in animal models may eventually lead to treatments to improve outcomes after neurological damage in patients.
Collapse
Affiliation(s)
- Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Fabbri R, Spennato D, Conte G, Konstantoulaki A, Lazzarini C, Saracino E, Nicchia GP, Frigeri A, Zamboni R, Spray DC, Benfenati V. The emerging science of Glioception: Contribution of glia in sensing, transduction, circuit integration of interoception. Pharmacol Ther 2023; 245:108403. [PMID: 37024060 DOI: 10.1016/j.pharmthera.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Interoception is the process by which the nervous system regulates internal functions to achieve homeostasis. The role of neurons in interoception has received considerable recent attention, but glial cells also contribute. Glial cells can sense and transduce signals including osmotic, chemical, and mechanical status of extracellular milieu. Their ability to dynamically communicate "listening" and "talking" to neurons is necessary to monitor and regulate homeostasis and information integration in the nervous system. This review introduces the concept of "Glioception" and focuses on the process by which glial cells sense, interpret and integrate information about the inner state of the organism. Glial cells are ideally positioned to act as sensors and integrators of diverse interoceptive signals and can trigger regulatory responses via modulation of the activity of neuronal networks, both in physiological and pathological conditions. We believe that understanding and manipulating glioceptive processes and underlying molecular mechanisms provide a key path to develop new therapies for the prevention and alleviation of devastating interoceptive dysfunctions, among which pain is emphasized here with more focused details.
Collapse
Affiliation(s)
- Roberta Fabbri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, viale del Risorgimento 2, 40136 Bologna, Italy.
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Giorgia Conte
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Aikaterini Konstantoulaki
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126 Bologna, BO, Italy
| | - Chiara Lazzarini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Grazia Paola Nicchia
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, BA, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Antonio Frigeri
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| |
Collapse
|
18
|
MicroRNA: Crucial modulator in purinergic signalling involved diseases. Purinergic Signal 2023; 19:329-341. [PMID: 35106737 PMCID: PMC9984628 DOI: 10.1007/s11302-022-09840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Both microRNAs (miRNAs) and purinergic signalling are widely and respectively expressed in various tissues of different organisms and play vital roles in a variety of physiological and pathological processes. Here, we reviewed the current publications contributed to the relationship of miRNAs and purinergic signalling in cardiovascular diseases, gastrointestinal diseases, neurological diseases, and ophthalmic diseases. We tried to decode the miRNAs-purinergic signalling network of purinergic signalling involved diseases. The evidence indicated that more than 30 miRNAs (miR-22, miR-30, miR-146, miR-150, miR-155, miR-187, etc.) directly or indirectly modulate P1 receptors (A1, A2A, A2B, A3), P2 receptors (P2X1, P2X3, P2X4, P2X7, P2Y2, P2Y6, P2Y12), and ecto-enzymes (CD39, CD73, ADA2); P2X7 and CD73 could be modulated by multiple miRNAs (P2X7: miR-21, miR-22, miR-30, miR-135a, miR-150, miR-186, miR-187, miR-216b; CD73: miR-141, miR-101, miR-193b, miR-340, miR-187, miR-30, miR-422a); miR-187 would be the common miRNA to modulate P2X7 and CD73.
Collapse
|
19
|
Svare F, Ghosh F. Beneficial and Detrimental Pressure-Related Effects on Inner Neurons in the Adult Porcine In Vitro Retina. Transl Vis Sci Technol 2023; 12:19. [PMID: 36780140 PMCID: PMC9927757 DOI: 10.1167/tvst.12.2.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Purpose To explore pressure-related effects in the adult porcine retina in vitro. Methods Retinal explants were subjected to 0, 10, 30, or 60 mmHg of pressure for 24 or 48 hours in culture. Overall tissue damage in sections was assessed by lactate dehydrogenase media levels, hematoxylin and eosin staining, and TUNEL staining. Inner retinal neurons were evaluated by protein kinase C alpha (rod bipolar cells), CHX10 (overall bipolar cell population), parvalbumin (amacrine cells), and RBPMS (ganglion cells) immunohistochemistry. Results All retinas kept in culture displayed increased pyknosis and apoptosis compared with directly fixed controls. The 10-mmHg explants displayed attenuation of overall tissue damage compared with the 0-, 30-, and 60-mmHg counterparts. No difference in the number of rod bipolar cells was seen in the 10-mmHg explants compared with directly fixed controls, whereas significantly fewer cells were detected in the remaining pressure groups. No difference in the number of ganglion cells in the 0-, 10-, and 60-mmHg groups was seen compared with directly fixed controls after 24 hours, whereas a lower number was found in the 30-mmHg counterpart. A decline of ganglion cells was found in the 0-, 10-, and 60-mmHg group after 48 hours, but no further decrease was seen in the 30-mmHg group. No differences were detected in overall bipolar and amacrine cells in the pressure groups after 24 hours compared with directly fixed controls. Conclusions A moderate amount of pressure attenuates culture-related retinal neurodegeneration. Rod bipolar cells are specifically vulnerable to excessive pressure. Translational Relevance These findings are relevant for glaucoma-related research.
Collapse
Affiliation(s)
- Frida Svare
- Department of Ophthalmology, Lund University, Lund, Sweden
| | - Fredrik Ghosh
- Department of Ophthalmology, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Abstract
Purpose: Retinal ganglion cell death occurs during the glaucoma pathological process, and it is significant because of the poor regeneration capacity of retinal ganglion cells. With a constantly increasing understanding of retinal cell death mechanisms, we now know that simply blocking a specific mechanism of cell death might not prevent retinal ganglion cell death. This review aimed to summarize the mechanisms of retinal cell death in glaucoma models and discuss the caveats in restoring visual function in these studies.Methods: A literature search was done on PubMed using key words including glaucoma, ocular hypertension, retinal ganglion cell, cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagic cell death, and parthanatos. The literature was reviewed to summarize the information about the lethal pathways of retinal ganglion cell in the glaucoma-like animal models.Results: Based on the purpose, 100 studies were selected and discussed in this review.Conclusions: The damage to ganglion cells in glaucoma-like animals can occur via multiple lethal pathways and the molecular mechanisms are still incompletely understood. Further investigations on the crosstalk between different cell death pathways and the common upstream regulators could augment the development of novel targeting agents for the curative treatment of glaucoma.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
22
|
Lapajne L, Rudzitis CN, Cullimore B, Ryskamp D, Lakk M, Redmon SN, Yarishkin O, Krizaj D. TRPV4: Cell type-specific activation, regulation and function in the vertebrate eye. CURRENT TOPICS IN MEMBRANES 2022; 89:189-219. [PMID: 36210149 PMCID: PMC9879314 DOI: 10.1016/bs.ctm.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The architecture of the vertebrate eye is optimized for efficient delivery and transduction of photons and processing of signaling cascades downstream from phototransduction. The cornea, lens, retina, vasculature, ciliary body, ciliary muscle, iris and sclera have specialized functions in ocular protection, transparency, accommodation, fluid regulation, metabolism and inflammatory signaling, which are required to enable function of the retina-light sensitive tissue in the posterior eye that transmits visual signals to relay centers in the midbrain. This process can be profoundly impacted by non-visual stimuli such as mechanical (tension, compression, shear), thermal, nociceptive, immune and chemical stimuli, which target these eye regions to induce pain and precipitate vision loss in glaucoma, diabetic retinopathy, retinal dystrophies, retinal detachment, cataract, corneal dysfunction, ocular trauma and dry eye disease. TRPV4, a polymodal nonselective cation channel, integrate non-visual inputs with homeostatic and signaling functions of the eye. The TRPV4 gene is expressed in most if not all ocular tissues, which vary widely with respect to the mechanisms of TRPV4 channel activation, modulation, oligomerization, and participation in protein- and lipid interactions. Under- and overactivation of TRPV4 may affect intraocular pressure, maintenance of blood-retina barriers, lens accommodation, neuronal function and neuroinflammation. Because TRPV4 dysregulation precipitates many pathologies across the anterior and posterior eye, the channel could be targeted to mitigate vision loss.
Collapse
Affiliation(s)
- Luka Lapajne
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States; Department of Ophthalmology, University Medical Centre, University of Ljubljana, Ljubljana, Slovenia
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Brenan Cullimore
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Daniel Ryskamp
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Sarah N Redmon
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - David Krizaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States; Department of Neurobiology, University of Utah, Salt Lake City, UT, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
23
|
Jo AO, Lakk M, Rudzitis CN, Križaj D. TRPV4 and TRPC1 channels mediate the response to tensile strain in mouse Müller cells. Cell Calcium 2022; 104:102588. [PMID: 35398674 PMCID: PMC9119919 DOI: 10.1016/j.ceca.2022.102588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
Abstract
Müller glia, a pillar of metabolic, volume regulatory and immune/inflammatory signaling in the mammalian retina, are among the earliest responders to mechanical stressors in the eye. Ocular trauma, edema, detachment and glaucoma evoke early inflammatory activation of Müller cells yet the identity of their mechanotransducers and signaling mechanisms downstream remains unknown. Here, we investigate expression of genes that encode putative stretch-activated calcium channels (SACs) in mouse Müller cells and study their responses to dynamical tensile loading in cells loaded with a calcium indicator dye. Transcript levels in purified glia were Trpc1>Piezo1>Trpv2>Trpv4>>Trpv1>Trpa1. Cyclic radial deformation of matrix-coated substrates produced dose-dependent increases in [Ca2+]i that were suppressed by the TRPV4 channel antagonist HC-067047 and by ablation of the Trpv4 gene. Stretch-evoked calcium responses were also reduced by knockdown and pharmacological inhibition of TRPC1 channels whereas the TRPV2 inhibitor tranilast had no effect. These data demonstrate that Müller cells are intrinsically mechanosensitive, with the response to tensile loading mediated through synergistic activation of TRPV4 and TRPC1 channels. Coupling between mechanical stress and Müller Ca2+ homeostasis has treatment implications, since many neuronal injury paradigms in the retina involve calcium dysregulation associated with inflammatory and immune signaling.
Collapse
Affiliation(s)
- Andrew O Jo
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132; Interdepartmental Program in Neuroscience
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132; Interdepartmental Program in Neuroscience; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112.
| |
Collapse
|
24
|
Lin C, Toychiev A, Ablordeppey R, Slavi N, Srinivas M, Benavente-Perez A. Myopia Alters the Structural Organization of the Retinal Vasculature, GFAP-Positive Glia, and Ganglion Cell Layer Thickness. Int J Mol Sci 2022; 23:6202. [PMID: 35682880 PMCID: PMC9181442 DOI: 10.3390/ijms23116202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
To describe the effect of myopic eye growth on the structure and distribution of astrocytes, vasculature, and retinal nerve fiber layer thickness, which are critical for inner retinal tissue homeostasis and survival. Astrocyte and capillary distribution, retinal nerve fiber (RNFL), and ganglion cell layer (GCL) thicknesses were assessed using immunochemistry and spectral domain optical coherence tomography on eleven retinas of juvenile common marmosets (Callithrix Jacchus), six of which were induced with lens-induced myopia (refraction, Rx: -7.01 ± 1.8D). Five untreated age-matched juvenile marmoset retinas were used as controls (Rx: -0.74 ± 0.4D). Untreated marmoset eyes grew normally, their RNFL thickened and their astrocyte numbers were associated with RNFL thickness. Marmosets with induced myopia did not show this trend and, on the contrary, had reduced astrocyte numbers, increased GFAP-immunopositive staining, thinner RNFL, lower peripheral capillary branching, and increased numbers of string vessels. The myopic changes in retinal astrocytes, vasculature, and retinal nerve fiber layer thickness suggest a reorganization of the astrocyte and vascular templates during myopia development and progression. Whether these adaptations are beneficial or harmful to the retina remains to be investigated.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Benavente-Perez
- Department of Biological Sciences, SUNY College of Optometry, New York, NY 10036, USA; (C.L.); (A.T.); (R.A.); (N.S.); (M.S.)
| |
Collapse
|
25
|
Xu MX, Zhao GL, Hu X, Zhou H, Li SY, Li F, Miao Y, Lei B, Wang Z. P2X7/P2X4 Receptors Mediate Proliferation and Migration of Retinal Microglia in Experimental Glaucoma in Mice. Neurosci Bull 2022; 38:901-915. [PMID: 35254644 PMCID: PMC9352844 DOI: 10.1007/s12264-022-00833-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022] Open
Abstract
Microglia are involved in the inflammatory response and retinal ganglion cell damage in glaucoma. Here, we investigated how microglia proliferate and migrate in a mouse model of chronic ocular hypertension (COH). In COH retinas, the microglial proliferation that occurred was inhibited by the P2X7 receptor (P2X7R) blocker BBG or P2X7R knockout, but not by the P2X4R blocker 5-BDBD. Treatment of primary cultured microglia with BzATP, a P2X7R agonist, mimicked the effects of cell proliferation and migration in COH retinas through the intracellular MEK/ERK signaling pathway. Transwell migration assays showed that the P2X4R agonist CTP induced microglial migration, which was completely blocked by 5-BDBD. In vivo and in vitro experiments demonstrated that ATP, released from activated Müller cells through connexin43 hemichannels, acted on P2X7R to induce microglial proliferation, and acted on P2X4R/P2X7R (mainly P2X4R) to induce microglial migration. Our results suggest that inhibiting the interaction of Müller cells and microglia may attenuate microglial proliferation and migration in glaucoma.
Collapse
|
26
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
27
|
Donau J, Luo H, Virta I, Skupin A, Pushina M, Loeffler J, Haertel FV, Das A, Kurth T, Gerlach M, Lindemann D, Reinach PS, Mergler S, Valtink M. TRPV4 Stimulation Level Regulates Ca2+-Dependent Control of Human Corneal Endothelial Cell Viability and Survival. MEMBRANES 2022; 12:membranes12030281. [PMID: 35323756 PMCID: PMC8952823 DOI: 10.3390/membranes12030281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
The functional contribution of transient receptor potential vanilloid 4 (TRPV4) expression in maintaining human corneal endothelial cells (HCEC) homeostasis is unclear. Accordingly, we determined the effects of TRPV4 gene and protein overexpression on responses modulating the viability and survival of HCEC. Q-PCR, Western blot, FACS analyses and fluorescence single-cell calcium imaging confirmed TRPV4 gene and protein overexpression in lentivirally transduced 12V4 cells derived from their parent HCEC-12 line. Although TRPV4 overexpression did not alter the baseline transendothelial electrical resistance (TEER), its cellular capacitance (Ccl) was larger than that in its parent. Scanning electron microscopy revealed that only the 12V4 cells developed densely packed villus-like protrusions. Stimulation of TRPV4 activity with GSK1016790A (GSK101, 10 µmol/L) induced larger Ca2+ transients in the 12V4 cells than those in the parental HCEC-12. One to ten nmol/L GSK101 decreased 12V4 viability, increased cell death rates and reduced the TEER, whereas 1 µmol/L GSK101 was required to induce similar effects in the HCEC-12. However, the TRPV4 channel blocker RN1734 (1 to 30 µmol/L) failed to alter HCEC-12 and 12V4 morphology, cell viability and metabolic activity. Taken together, TRPV4 overexpression altered both the HCEC morphology and markedly lowered the GSK101 dosages required to stimulate its channel activity.
Collapse
Affiliation(s)
- Jennifer Donau
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Huan Luo
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Iiris Virta
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Annett Skupin
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Margarita Pushina
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Jana Loeffler
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Frauke V. Haertel
- Institute of Physiology, Faculty of Medicine, University Giessen, 35392 Giessen, Germany;
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Anupam Das
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, TU Dresden, 01307 Dresden, Germany;
| | - Michael Gerlach
- Core Facility Cellular Imaging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China;
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
- Correspondence: (S.M.); (M.V.)
| | - Monika Valtink
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Equality and Diversity Unit, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- Correspondence: (S.M.); (M.V.)
| |
Collapse
|
28
|
Wang L, Wei X. T Cell-Mediated Autoimmunity in Glaucoma Neurodegeneration. Front Immunol 2022; 12:803485. [PMID: 34975917 PMCID: PMC8716691 DOI: 10.3389/fimmu.2021.803485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Glaucoma as the leading neurodegenerative disease leads to blindness in 3.6 million people aged 50 years and older worldwide. For many decades, glaucoma therapy has primarily focused on controlling intraocular pressure (IOP) and sound evidence supports its role in delaying the progress of retinal ganglial cell (RGC) damage and protecting patients from vision loss. Meanwhile, accumulating data point to the immune-mediated attack of the neural retina as the underlying pathological process behind glaucoma that may come independent of raised IOP. Recently, some scholars have suggested autoimmune aspects in glaucoma, with autoreactive T cells mediating the chief pathogenic process. This autoimmune process, as well as the pathological features of glaucoma, largely overlaps with other neurodegenerative diseases in the central nervous system (CNS), including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In addition, immune modulation therapy, which is regarded as a potential solution for glaucoma, has been boosted in trials in some CNS neurodegenerative diseases. Thus, novel insights into the T cell-mediated immunity and treatment in CNS neurodegenerative diseases may serve as valuable inspirations for ophthalmologists. This review focuses on the role of T cell-mediated immunity in the pathogenesis of glaucoma and discusses potential applications of relevant findings of CNS neurodegenerative diseases in future glaucoma research.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, Shangjin Nanfu Hospital, Chengdu, China
| |
Collapse
|
29
|
Proteome alterations in the aqueous humor reflect structural and functional phenotypes in patients with advanced normal-tension glaucoma. Sci Rep 2022; 12:1221. [PMID: 35075201 PMCID: PMC8786875 DOI: 10.1038/s41598-022-05273-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022] Open
Abstract
Previous reports have shown possible association between altered protein levels in aqueous humor (AH) and normal-tension glaucoma (NTG), but the underlying pathogenetic mechanism as well as specific molecular biomarkers for NTG remains still elusive. Here, we aimed to identify novel biomarkers for advanced NTG by analyzing the proteome of patient-derived AH and their correlation with various functional and structural parameters from the visual field test (VF), optical coherence tomography (OCT), and OCT angiography (OCTA). We determined differentially expressed proteins (DEPs) of the AH of patients with advanced NTG (n = 20) using label-free quantitative (LFQ) proteomics with pooled samples and data-independent acquisition (DIA) analysis with individual samples, and the roles of AH DEPs in biological pathways were evaluated using bioinformatics. We identified 603 proteins in the AH of patients with advanced NTG, and 61 of them were selected as DEPs via global proteome LFQ profiling. Individual DIA analyses identified a total of 12 DEPs as biomarker candidates, seven of which were upregulated, and five were downregulated. Gene ontology enrichment analysis revealed that those DEPs were mainly involved in the immune response. Moreover, IGFBP2, ENO1, C7, B2M, AMBP, DSP, and DCD showed a significant correlation with the mean deviation of VF and with peripapillary and macular parameters from OCT and OCTA. The present study provides possible molecular biomarkers for the diagnosis of advanced NTG.
Collapse
|
30
|
Zhao M, Li S, Matsubara JA. Targeting Pyroptotic Cell Death Pathways in Retinal Disease. Front Med (Lausanne) 2022; 8:802063. [PMID: 35047535 PMCID: PMC8763245 DOI: 10.3389/fmed.2021.802063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is a gasdermin-mediated, pro-inflammatory form of cell death distinct from apoptosis. In recent years, increasing attention has shifted toward pyroptosis as more studies demonstrate its involvement in diverse inflammatory disease states, including retinal diseases. This review discusses how currently known pyroptotic cell death pathways have been implicated in models of age-related macular degeneration, diabetic retinopathy, and glaucoma. We also identify potential future therapeutic strategies for these retinopathies that target drivers of pyroptotic cell death. Presently, the drivers of pyroptosis that have been studied the most in retinal cells are the nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, caspase-1, and gasdermin D (GSDMD). Targeting these proteins may help us develop new drug therapies, or supplement existing therapies, in the treatment of retinal diseases. As novel mechanisms of pyroptosis come to light, including those involving other inflammatory caspases and members of the gasdermin protein family, more targets for pyroptosis-mediated therapies in retinal disease can be explored.
Collapse
Affiliation(s)
- Mary Zhao
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Siqi Li
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Li S, Qiu Y, Yu J, Shao M, Li Y, Cao W, Sun X. Serum complement component 3, complement component 4 and complement component 1q levels predict progressive visual field loss in older women with primary angle closure glaucoma. Br J Ophthalmol 2022; 107:828-835. [PMID: 35017157 DOI: 10.1136/bjophthalmol-2021-320541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023]
Abstract
AIM To evaluate the association between serum levels of complement component (C) 3, C4 and C1q and visual field (VF) loss in patients with primary angle closure glaucoma (PACG). METHODS In this prospective cohort study, a total of 308 patients with PACG were included. The patients were followed up every 6 months (at least 2 years), with clinical examination and VF testing. Based on their sex and age, the subjects were stratified into male and female subgroups, and by age at <60 and ≥60 years per subgroup. RESULTS One hundred twenty-three (39.94%) patients showed glaucoma VF progression. The serum levels of C3, C4 and C1q were significantly lower (p<0.05) in the progression group compared with the non-progression group in the ≥60 years female subgroup. In female patients with age ≥60 years, (1) lower levels of baseline C3 (HR=0.98, p<0.001), C4 (HR=0.96, p=0.01) and C1q levels (HR=0.99, p=0.003) were associated with a greater risk of VF progression; (2) patients with lower C3 levels had significantly (p<0.05) higher rates of VF loss progression, similar to those with lower C4 and lower C1q levels; and (3) the generalised additive model revealed a negative correlation between baseline C3 (p<0.001), C4 (p<0.001) and C1q (p<0.001) levels with the risk of VF progression. No statistical significance was observed in the male (<60 and ≥60 years) and female (<60 years) subgroups. CONCLUSION Decreased C3, C4 and C1q levels at baseline were significantly associated with a greater risk of VF loss progression only in older women with PACG.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingzhu Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Li J, Du L, He JN, Chu KO, Guo CL, Wong MOM, Pang CP, Chu WK. Anti-inflammatory Effects of GTE in Eye Diseases. Front Nutr 2021; 8:753955. [PMID: 34966770 PMCID: PMC8711650 DOI: 10.3389/fnut.2021.753955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ocular inflammation is a common complication of various eye diseases with wide consequences from irritations to potentially sight-threatening complications. Green tea is a popular beverage throughout the world. One of the proven health benefits of consuming green tea extract (GTE) is anti-inflammation. Catechins are the biologically active constituents of GTE. In in vitro and in vivo studies, GTE and catechins present inhibition of inflammatory responses in the development of ocular inflammation including infectious, non-infectious or autoimmune, and oxidative-induced complications. Research on the ocular inflammation in animal models has made significant progress in the past decades and several key disease mechanisms have been identified. Here we review the experimental investigations on the effects of GTE and catechins on various ocular inflammation related diseases including glaucoma, age-related macular degeneration, uveitis and ocular surface inflammation. We also review the pharmacokinetics of GTE constituents and safety of green tea consumption. We discuss the insights and perspectives of these experimental results, which would be useful for future development of novel therapeutics in human.
Collapse
Affiliation(s)
- Jian Li
- Department of Ophthalmology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lin Du
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing Na He
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Cosmos Liutao Guo
- Bachelor of Medicine and Bachelor of Surgery Programme, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mandy Oi Man Wong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Hong Kong Eye Hospital, Hong Kong, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Zuo C, Wang D, Guo X, Xiao H, Zheng S, Lin M, Fang L, Liu X. Associations Between the Choroidal Vascularity Index and Malignant Glaucoma After Trabeculectomy for Primary Angle Closure Glaucoma. Front Med (Lausanne) 2021; 8:747720. [PMID: 34957140 PMCID: PMC8692757 DOI: 10.3389/fmed.2021.747720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To compare the choroidal vasculature characteristics by using the choroidal vascularity index (CVI) in eyes with malignant glaucoma (MG), fellow eyes with non-MG, and eyes with uncomplicated primary angle-closure glaucoma (PACG) after trabeculectomy by spectral-domain optical coherence tomography (SD-OCT). Methods: This case-control study included 53 patients diagnosed with MG after trabeculectomy. Eyes with MG (n = 53) and the fellow eyes with non-MG (n = 50) were included. Eyes with PACG without MG after trabeculectomy (n = 60) were also enrolled as controls. The choroidal parameters, including CVI and the subfoveal choroidal thickness (SFCT), were measured by using SD-OCT images. Results: Eyes with MG and the fellow eyes showed a significantly lower CVI than eyes with PACG controls (p < 0.001). After adjusting for age, sex, axial length (AL), and intraocular pressure (IOP), eyes with the greater CVI [odds ratio (OR), 0.44] were significantly related to MG. The area under the receiver operating characteristic curve of the CVI was greater than that of the SFCT in the diagnosis of MG (0.911 vs. 0.840, p = 0.034). Conclusion: Eyes with MG showed a significantly lower macular CVI than eyes with PACG controls. A higher macular CVI was an associated factor of eyes with MG. The CVI serves as a more stable and sensitive indicator for MG than the SFCT in this group of patients with PACG.
Collapse
Affiliation(s)
- Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xinxing Guo
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Hui Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shaoyang Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lei Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Herault S, Naser J, Carassiti D, Chooi KY, Nikolopoulou R, Font ML, Patel M, Pedrigi R, Krams R. Mechanosensitive pathways are regulated by mechanosensitive miRNA clusters in endothelial cells. Biophys Rev 2021; 13:787-796. [PMID: 34777618 PMCID: PMC8555030 DOI: 10.1007/s12551-021-00839-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Shear stress is known to affect many processes in (patho-) physiology through a complex, multi-molecular mechanism, termed mechanotransduction. The sheer complexity of the process has raised questions how mechanotransduction is regulated. Here, we comprehensively evaluate the literature about the role of small non-coding miRNA in the regulation of mechanotransduction. Regulation of mRNA by miRNA is rather complex, depending not only on the concentration of mRNA to miRNA, but also on the amount of mRNA competing for a single mRNA. The only mechanism to counteract the latter factor is through overarching structures of miRNA. Indeed, two overarching structures are present miRNA families and miRNA clusters, and both will be discussed in details, regarding the latest literature and a previous conducted study focussed on mechanotransduction. Both the literature and our own data support a new hypothesis that miRNA-clusters predominantly regulate mechanotransduction, affecting 65% of signalling pathways. In conclusion, a new and important mode of regulation of mechanotransduction is proposed, based on miRNA clusters. This finding implicates new avenues for treatment of mechanotransduction and atherosclerosis.
Collapse
Affiliation(s)
- Sean Herault
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Daniele Carassiti
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | - K. Yean Chooi
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Marti Llopart Font
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| | | | - Ryan Pedrigi
- College of Engineering, Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rob Krams
- School of Engineering and Materials Science, Queen Mary University of London, Room 2.14, London, UK
| |
Collapse
|
35
|
Shestopalov VI, Spurlock M, Gramlich OW, Kuehn MH. Immune Responses in the Glaucomatous Retina: Regulation and Dynamics. Cells 2021; 10:1973. [PMID: 34440742 PMCID: PMC8391899 DOI: 10.3390/cells10081973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Glaucoma is a multifactorial disease resulting in progressive vision loss due to retinal ganglion cell (RGC) dysfunction and death. Early events in the pathobiology of the disease include oxidative, metabolic, or mechanical stress that acts upon RGC, causing these to rapidly release danger signals, including extracellular ATP, resulting in micro- and macroglial activation and neuroinflammation. Danger signaling also leads to the formation of inflammasomes in the retina that enable maturation of proinflammatory cytokines such IL-1β and IL-18. Chronic neuroinflammation can have directly damaging effects on RGC, but it also creates a proinflammatory environment and compromises the immune privilege of the retina. In particular, continuous synthesis of proinflammatory mediators such as TNFα, IL-1β, and anaphylatoxins weakens the blood-retina barrier and recruits or activates T-cells. Recent data have demonstrated that adaptive immune responses strongly exacerbate RGC loss in animal models of the disease as T-cells appear to target heat shock proteins displayed on the surface of stressed RGC to cause their apoptotic death. It is possible that dysregulation of these immune responses contributes to the continued loss of RGC in some patients.
Collapse
Affiliation(s)
- Valery I. Shestopalov
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Kharkevich Institute for Information Transmission Problems, RAS, 127051 Moscow, Russia
| | - Markus Spurlock
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Oliver W. Gramlich
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Markus H. Kuehn
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
36
|
Gramlich OW, Godwin CR, Wadkins D, Elwood BW, Kuehn MH. Early Functional Impairment in Experimental Glaucoma Is Accompanied by Disruption of the GABAergic System and Inceptive Neuroinflammation. Int J Mol Sci 2021; 22:7581. [PMID: 34299211 PMCID: PMC8306430 DOI: 10.3390/ijms22147581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, and increased intraocular pressure (IOP) is a major risk factor. We aimed to determine if early functional and molecular differences in the glaucomatous retina manifest before significant retinal ganglion cell (RGC) loss is apparent. Adenoviral vectors expressing a pathogenic form of myocilin (Ad5.MYOC) were used to induce IOP elevation in C57BL/6 mice. IOP and pattern electroretinograms (pERG) were recorded, and retinas were prepared for RNA sequencing, immunohistochemistry, or to determine RGC loss. Ocular injection of Ad5.MYOC leads to reliable IOP elevation, resulting in significant loss of RGC after nine weeks. A significant decrease in the pERG amplitude was evident in eyes three weeks after IOP elevation. Retinal gene expression analysis revealed increased expression for 291 genes related to complement cascade, inflammation, and antigen presentation in hypertensive eyes. Decreased expression was found for 378 genes associated with the γ-aminobutyric acid (GABA)ergic and glutamatergic systems and axon guidance. These data suggest that early functional changes in RGC might be due to reduced GABAA receptor signaling and neuroinflammation that precedes RGC loss in this glaucoma model. These initial changes may offer new targets for early detection of glaucoma and the development of new interventions.
Collapse
Affiliation(s)
- Oliver W. Gramlich
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA 52242, USA
| | - Cheyanne R. Godwin
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - David Wadkins
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - Benjamin W. Elwood
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA 52242, USA; (C.R.G.); (D.W.); (B.W.E.); (M.H.K.)
- VA Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
37
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
38
|
Redmon SN, Yarishkin O, Lakk M, Jo A, Mustafic E, Tvrdik P, Križaj D. TRPV4 channels mediate the mechanoresponse in retinal microglia. Glia 2021; 69:1563-1582. [PMID: 33624376 PMCID: PMC8989051 DOI: 10.1002/glia.23979] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.
Collapse
Affiliation(s)
- Sarah N. Redmon
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Andrew Jo
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Edin Mustafic
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Peter Tvrdik
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville VA 22908
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84132
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84132
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT 84132
| |
Collapse
|
39
|
Krueger K, Boehme E, Klettner AK, Zille M. The potential of marine resources for retinal diseases: a systematic review of the molecular mechanisms. Crit Rev Food Sci Nutr 2021; 62:7518-7560. [PMID: 33970706 DOI: 10.1080/10408398.2021.1915242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We rely on vision more than on any other sense to obtain information about our environment. Hence, the loss or even impairment of vision profoundly affects our quality of life. Diet or food components have already demonstrated beneficial effects on the development of retinal diseases. Recently, there has been a growing interest in resources from marine animals and plants for the prevention of retinal diseases through nutrition. Especially fish intake and omega-3 fatty acids have already led to promising results, including associations with a reduced incidence of retinal diseases. However, the underlying molecular mechanisms are insufficiently explained. The aim of this review was to summarize the known mechanistic effects of marine resources on the pathophysiological processes in retinal diseases. We performed a systematic literature review following the PRISMA guidelines and identified 107 studies investigating marine resources in the context of retinal diseases. Of these, 46 studies described the underlying mechanisms including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective, cytoprotective, metabolic, and retinal function effects, which we critically summarize. We further discuss perspectives on the use of marine resources for human nutrition to prevent retinal diseases with a particular focus on regulatory aspects, health claims, safety, and bioavailability.
Collapse
Affiliation(s)
- Kristin Krueger
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Elke Boehme
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Marine Biotechnology, Fraunhofer Research and Development Center for Marine and Cellular Biotechnology EMB, Lübeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
40
|
Cappelli HC, Guarino BD, Kanugula AK, Adapala RK, Perera V, Smith MA, Paruchuri S, Thodeti CK. Transient receptor potential vanilloid 4 channel deletion regulates pathological but not developmental retinal angiogenesis. J Cell Physiol 2021; 236:3770-3779. [PMID: 33078410 PMCID: PMC7920906 DOI: 10.1002/jcp.30116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels are mechanosensitive ion channels that regulate systemic endothelial cell (EC) functions such as vasodilation, permeability, and angiogenesis. TRPV4 is expressed in retinal ganglion cells, Müller glia, pigment epithelium, microvascular ECs, and modulates cell volume regulation, calcium homeostasis, and survival. TRPV4-mediated physiological or pathological retinal angiogenesis remains poorly understood. Here, we demonstrate that TRPV4 is expressed, functional, and mechanosensitive in retinal ECs. The genetic deletion of TRPV4 did not affect postnatal developmental angiogenesis but increased pathological neovascularization in response to oxygen-induced retinopathy (OIR). Retinal vessels from TRPV4 knockout mice subjected to OIR exhibited neovascular tufts that projected into the vitreous humor and displayed reduced pericyte coverage compared with wild-type mice. These results suggest that TRPV4 is a regulator of retinal angiogenesis, its deletion augments pathological retinal angiogenesis, and that TRPV4 could be a novel target for the development of therapies against neovascular ocular diseases.
Collapse
Affiliation(s)
- Holly C. Cappelli
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | - Brianna D. Guarino
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Anantha K. Kanugula
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Ravi K. Adapala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | - Vidushani Perera
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- Rebbeca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44302
| | | | - Charles K. Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- School of Biomedical Sciences, Kent State University, Kent, OH 44240
| |
Collapse
|
41
|
Feng Y, Prokosch V, Liu H. Current Perspective of Hydrogen Sulfide as a Novel Gaseous Modulator of Oxidative Stress in Glaucoma. Antioxidants (Basel) 2021; 10:antiox10050671. [PMID: 33925849 PMCID: PMC8146617 DOI: 10.3390/antiox10050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a group of diseases characterized by the progressive loss of retinal ganglion cells and their axons. Elevated intraocular pressure (IOP) is the main clinical manifestation of glaucoma. Despite being in the focus of the studies for decades, the characteristic and the exact pathology of neurodegeneration in glaucoma remains unclear. Oxidative stress is believed to be one of the main risk factors in neurodegeneration, especially its damage to the retinal ganglion cells. Hydrogen sulfide (H2S), the recently recognized gas signaling molecule, plays a pivotal role in the nervous system, vascular system, and immune system. It has also shown properties in regulating oxidative stress through different pathways in vivo. In this review, we summarize the distribution and the properties of H2S within the eye with an emphasis on its role in modulating oxidative stress in glaucoma.
Collapse
Affiliation(s)
| | | | - Hanhan Liu
- Correspondence: ; Tel.: +49-(0)-221-478-96996
| |
Collapse
|
42
|
Gosak M, Gojić D, Spasovska E, Hawlina M, Andjelic S. Cataract Progression Associated with Modifications in Calcium Signaling in Human Lens Epithelia as Studied by Mechanical Stimulation. Life (Basel) 2021; 11:life11050369. [PMID: 33919270 PMCID: PMC8143283 DOI: 10.3390/life11050369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Ca2+ homeostasis and signaling disturbances are associated with lens pathophysiology and are involved in cataract formation. Here, we explored the spatiotemporal changes in Ca2+ signaling in lens epithelial cells (LECs) upon local mechanical stimulation, to better understand the LECs’ intercellular communication and its association with cataractogenesis. We were interested in if the progression of the cataract affects the Ca2+ signaling and if modifications of the Ca2+ homeostasis in LECs are associated with different cataract types. Experiments were done on the human postoperative anterior lens capsule (LC) preparations consisting of the monolayer of LECs on the basement membrane. Our findings revealed that the Ca2+ signal spreads radially from the stimulation point and that the amplitude of Ca2+ transients decreases with increasing distance. It is noteworthy that a comparison of signaling characteristics with respect to the degree of cataract progression revealed that, in LCs from more developed cataracts, the Ca2+ wave propagates faster and the amplitudes of Ca2+ signals are lower, while their durations are longer. No differences were identified when comparing LCs with regard to the cataract type. Moreover, experiments with Apyrase have revealed that the Ca2+ signals are not affected by ATP-dependent paracrine communication. Our results indicated that cataract progression is associated with modifications in Ca2+ signaling in LECs, suggesting the functional importance of altered Ca2+ signaling of LECs in cataractogenesis.
Collapse
Affiliation(s)
- Marko Gosak
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia;
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
| | - Dajana Gojić
- Eye Hospital, University Medical Centre, 1000 Ljubljana, Slovenia; (D.G.); (E.S.); (M.H.)
| | - Elena Spasovska
- Eye Hospital, University Medical Centre, 1000 Ljubljana, Slovenia; (D.G.); (E.S.); (M.H.)
| | - Marko Hawlina
- Eye Hospital, University Medical Centre, 1000 Ljubljana, Slovenia; (D.G.); (E.S.); (M.H.)
| | - Sofija Andjelic
- Eye Hospital, University Medical Centre, 1000 Ljubljana, Slovenia; (D.G.); (E.S.); (M.H.)
- Correspondence:
| |
Collapse
|
43
|
Chen J, Sun J, Yu H, Huang P, Zhong Y. Evaluation of the Effectiveness of a Chronic Ocular Hypertension Mouse Model Induced by Intracameral Injection of Cross-Linking Hydrogel. Front Med (Lausanne) 2021; 8:643402. [PMID: 33829024 PMCID: PMC8019751 DOI: 10.3389/fmed.2021.643402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Glaucoma is an irreversible and blinding neurodegenerative disease that is characterized by progressive loss of retinal ganglion cells. The current animal models of glaucoma fail to provide a chronic elevated intraocular pressure and cannot maintain the optical media clarity for a long time, which brings some difficulties to the study of glaucoma. Here, we developed a new chronic ocular hypertension model of mice induced by cross-linking hydrogel intracameral injection. Methods: C57BL/6J mice aged 6–8 weeks were randomly divided into the control group and the operation group. The mice of the operation group were injected with cross-linking hydrogel to induce ocular hypertension. Intraocular pressure was measured preoperatively, 3 days after surgery, and weekly until the end of the study. Flash visual evoked potential (F-VEP) was used to observe optic nerve function at different times (preoperatively and 2, 4, and 6 weeks) after chronic ocular hypertension (COH). Retinal TNF-α, IL-1β, and IL-17A protein expression were measured by western blotting in the control group and in mice at 2, 4, and 6 weeks after COH. Microglial cell activation was evaluated by immunofluorescence staining and western blotting. Apoptosis and loss of retinal ganglion cells after 2, 4, and 6 weeks of intracameral injection of cross-linking hydrogel were observed by the TUNEL assay and Brn3a protein labeling. The loss of optic nerve axons in COH mice was evaluated by neurofilament heavy polypeptide protein labeling. Results: Intracameral injection of the cross-linking hydrogel induces increased intraocular pressure (IOP) to a mean value of 19.3 ± 4.1 mmHg, which was sustained for at least 8 weeks. A significant difference in IOP was noted between COH mice and sham-operation mice (p < 0.0001). The success rate was 75%. The average amplitude of F-VEP in mice with COH was reduced (p = 0.0149, 0.0012, and 0.0009 at 2, 4, and 6 weeks after COH vs. the control group, respectively), and the average latent period in mice with COH was longer (p = 0.0290, <0.0001, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively) compared with that in the control group. TNF-α, IL-1β, IL-17A, Iba-1, and CD68 protein expression increased in COH mice. During the processing of COH, the number of microglial cells increased along with cellular morphological changes of rounder bodies and thicker processes compared with the control group. Apoptosis of retinal ganglion cells (RGCs) was clearly observed in mice at 2, 4, and 6 weeks after COH (p = 0.0061, 0.0012, <0.0001, and 0.0371 at 2, 4, and 6 weeks after COH vs. the control group, respectively). The RGC density decreased significantly in the COH mice compared with the control group (p = 0.0042, 0.0036, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively). There was a significant loss of optic nerve axons in mice after intracameral injection of cross-linking hydrogel (p = 0.0095, 0.0002, and <0.0001 at 2, 4, and 6 weeks after COH vs. the control group, respectively). Conclusions: A single intracameral injection of cross-linking hydrogel can effectively induce chronic ocular hypertension in mice, which causes progressive loss of retinal ganglion cells, increased expression levels of inflammatory cytokines and microglial cell activation, and deterioration of optic nerve function.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Effect of depressive symptom and depressive disorder on glaucoma incidence in elderly. Sci Rep 2021; 11:5888. [PMID: 33723349 PMCID: PMC7961135 DOI: 10.1038/s41598-021-85380-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/18/2021] [Indexed: 12/27/2022] Open
Abstract
Although depression and glaucoma share several common pathophysiology, the risk of glaucoma in patients with depression has not been reported. Thus, we investigated the effect of depressive symptom and depressive disorder on glaucoma incidence. In this nationwide population-based cohort study, all subjects receiving the National Screening Program at the age of 66 during 2009-2014 were included. These subjects were divided into depression group and no depression group based on subjective depressive symptoms and clinically diagnosed depressive disorder and were tracked until 2017 for development of glaucoma. Of the 922,769 subjects included in the study, 191,636 (20.77%) subjects were categorized as depression group. Subjects with depression showed increased hazard of developing glaucoma (adjusted HR = 1.12[95% confidence interval (CI), 1.09-1.15]) than those without depression. The risk of glaucoma increased sequentially from those with no depression to those with subjective depressive symptom (adjusted HR = 1.09[95% CI, 1.06-1.13]), those with clinically diagnosed depressive disorder (adjusted HR = 1.23[95% CI, 1.14-1.32]), and those with both subjective depressive symptom and clinically diagnosed depressive disorder (adjusted HR = 1.36[95% CI, 1.22-1.52]). Our analyses suggest that individuals with depression had a greater risk of developing glaucoma than those without depression. Subjective depressive symptoms and clinically diagnosed depressive disorder independently and synergistically increased the risk of glaucoma incidence.
Collapse
|
45
|
Yu H, Zhong H, Li N, Chen K, Chen J, Sun J, Xu L, Wang J, Zhang M, Liu X, Deng L, Huang P, Huang S, Shen X, Zhong Y. Osteopontin activates retinal microglia causing retinal ganglion cells loss via p38 MAPK signaling pathway in glaucoma. FASEB J 2021; 35:e21405. [PMID: 33559950 DOI: 10.1096/fj.202002218r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Microglia activation and release of pro-inflammatory cytokines have been closely linked to glaucoma. However, the mechanisms that initiate these pathways remain unclear. Here, we investigated the role of a pro-inflammatory cytokine--osteopontin (OPN), in retinal microglia activation process along with the underlying mechanisms in glaucoma. A rat chronic ocular hypertension (COH) model was established presenting an increase in retinal OPN level and activation of microglia. Primary microglia cells were isolated and cultured under a pressure culture system showing heightened expressions of microglia-derived OPN with changes in inflammatory factors (TNF-α, IL-1β, and IL-6). OPN and OPN neutralizing antibody (Anti-OPN) interventions were both applied systems for comparison, and cross-referenced with OPN knockdown in vitro. JAK/STAT, NF-κB, ERK1/2, and p38 MAPK, recognized as the primary signaling pathways related to microglia activation, were then screened on whether they can facilitate OPN to act on microglia and their impact on specific inhibitors. Thereafter, retrograde labeling of retinal ganglion cells (RGCs) and flash visual evoked potentials (F-VEP) were used to investigate neuron protection in context of each blockade. Results suggest that OPN is able to enhance the proliferation and activation of retinal microglia in experimental glaucoma which may play a role in the glaucomatous optic neuropathy, and contribute to the eventual RGCs loss and vision function impairment. Such effect may be mediated through the regulation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huimin Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Kaizhe Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Lili Xu
- Department of Emergency, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Mingui Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
- Department of Ophthalmology, Zhoushan Branch of Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Zhoushan, China
| |
Collapse
|
46
|
Retinal ganglion cell dysfunction in mice following acute intraocular pressure is exacerbated by P2X7 receptor knockout. Sci Rep 2021; 11:4184. [PMID: 33603067 PMCID: PMC7893065 DOI: 10.1038/s41598-021-83669-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence for the vulnerability of specific retinal ganglion cell (RGC) types in those with glaucoma and in animal models. In addition, the P2X7-receptor (P2X7-R) has been suggested to contribute to RGC death following stimulation and elevated IOP, though its role in RGC dysfunction prior to death has not been examined. Therefore, we examined the effect of an acute, non-ischemic intraocular pressure (IOP) insult (50 mmHg for 30 min) on RGC function in wildtype mice and P2X7-R knockout (P2X7-KO) mice. We examined retinal function using electroretinogram recordings and individual RGC responses using multielectrode arrays, 3 days following acute IOP elevation. Immunohistochemistry was used to examine RGC cell death and P2X7-R expression in several RGC types. Acute intraocular pressure elevation produced pronounced dysfunction in RGCs; whilst other retinal neuronal responses showed lesser changes. Dysfunction at 3 days post-injury was not associated with RGC loss or changes in receptive field size. However, in wildtype animals, OFF-RGCs showed reduced spontaneous and light-elicited activity. In the P2X7-KO, both ON- and OFF-RGC light-elicited responses were reduced. Expression of P2X7-R in wildtype ON-RGC dendrites was higher than in other RGC types. In conclusion, OFF-RGCs were vulnerable to acute IOP elevation and their dysfunction was not rescued by genetic ablation of P2X7-R. Indeed, knockout of P2X7-R also caused ON-RGC dysfunction. These findings aid our understanding of how pressure affects RGC function and suggest treatments targeting the P2X7-R need to be carefully considered.
Collapse
|
47
|
Quaranta L, Bruttini C, Micheletti E, Konstas AGP, Michelessi M, Oddone F, Katsanos A, Sbardella D, De Angelis G, Riva I. Glaucoma and neuroinflammation: An overview. Surv Ophthalmol 2021; 66:693-713. [PMID: 33582161 DOI: 10.1016/j.survophthal.2021.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Glaucoma is an optic neuropathy characterized by well-defined optic disc morphological changes (i.e., cup enlargement, neuroretinal border thinning, and notching, papillary vessel modifications) consequent to retinal ganglion cell loss, axonal degeneration, and lamina cribrosa remodeling. These modifications tend to be progressive and are the main cause of functional damage in glaucoma. Despite the latest findings about the pathophysiology of the disease, the exact trigger mechanisms and the mechanism of degeneration of retinal ganglion cells and their axons have not been completely elucidated. Neuroinflammation may play a role in both the development and the progression of the disease as a result of its effects on retinal environment and retinal ganglion cells. We summarize the latest findings about neuroinflammation in glaucoma and examine the connection between risk factors, neuroinflammation, and retinal ganglion cell degeneration.
Collapse
Affiliation(s)
- Luciano Quaranta
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.
| | - Carlo Bruttini
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Eleonora Micheletti
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Anastasios G P Konstas
- 1st and 3rd University Departments of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Andreas Katsanos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | | | - Giovanni De Angelis
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | |
Collapse
|
48
|
Regulation of distinct caspase-8 functions in retinal ganglion cells and astroglia in experimental glaucoma. Neurobiol Dis 2021; 150:105258. [PMID: 33434617 DOI: 10.1016/j.nbd.2021.105258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal ganglion cells (RGCs) expanding from the retina to the brain are primary victims of neurodegeneration in glaucoma, a leading cause of blindness; however, the neighboring astroglia survive the glaucoma-related stress and promote neuroinflammation. In light of diverse functions of caspase-8 in apoptosis, cell survival, and inflammation, this study investigated the importance of caspase-8 in different fates of glaucomatous RGCs and astroglia using two experimental approaches in parallel. In the first approach, cell type-specific responses of RGCs and astroglia to a caspase-8 cleavage-inhibiting pharmacological treatment were studied in rat eyes with or without experimentally induced glaucoma. The second approach utilized an experimental model of glaucoma in mice in which astroglial caspase-8 was conditionally deleted by cre/lox. Findings of these experiments revealed cell type-specific distinct processes that regulate caspase-8 functions in experimental glaucoma, which are involved in inducing the apoptosis of RGCs and promoting the survival and inflammatory responses of astroglia. Deletion of caspase-8 in astroglia protected RGCs against glia-driven inflammatory injury, while the inhibition of caspase-8 cleavage inhibited apoptosis in RGCs themselves. Various caspase-8 functions impacting both RGC apoptosis and astroglia-driven neuroinflammation may suggest the multi-target potential of caspase-8 regulation to provide neuroprotection and immunomodulation in glaucoma.
Collapse
|
49
|
Curcumin Metabolite Tetrahydrocurcumin in the Treatment of Eye Diseases. Int J Mol Sci 2020; 22:ijms22010212. [PMID: 33379248 PMCID: PMC7795090 DOI: 10.3390/ijms22010212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022] Open
Abstract
Curcumin is one of the most valuable natural products due to its pharmacological activities. However, the low bioavailability of curcumin has long been a problem for its medicinal use. Large studies have been conducted to improve the use of curcumin; among these studies, curcumin metabolites have become a relatively new research focus over the past few years. Additionally, accumulating evidence suggests that curcumin or curcuminoid metabolites have similar or better biological activity than the precursor of curcumin. Recent studies focus on the protective role of plasma tetrahydrocurcumin (THC), a main metabolite of curcumin, against tumors and chronic inflammatory diseases. Nevertheless, studies of THC in eye diseases have not yet been conducted. Since ophthalmic conditions play a crucial role in worldwide public health, the prevention and treatment of ophthalmic diseases are of great concern. Therefore, the present study investigated the antioxidative, anti-inflammatory, antiangiogenic, and neuroprotective effects of THC on four major ocular diseases: age-related cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). While this study aimed to show curcumin as a promising potential solution for eye conditions and discusses the involved mechanistic pathways, further work is required for the clinical application of curcumin.
Collapse
|
50
|
Takayanagi Y, Takai Y, Kaidzu S, Tanito M. Evaluation of Redox Profiles of the Serum and Aqueous Humor in Patients with Primary Open-Angle Glaucoma and Exfoliation Glaucoma. Antioxidants (Basel) 2020; 9:E1305. [PMID: 33352680 PMCID: PMC7765903 DOI: 10.3390/antiox9121305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress is thought to play a significant role in the development of glaucoma. However, the association between systemic and local oxidative stresses in different types of glaucoma has not been assessed fully. The current study compared the redox status in the aqueous humor (AH) and blood samples among eyes with primary open-angle glaucoma (POAG), exfoliation glaucoma (EXG), and non-glaucomatous controls to evaluate the relationship among systemic redox status, intraocular oxidative stress, and clinical backgrounds. AH and blood samples were obtained from 45 eyes of 45 Japanese subjects (15 POAG, 15 EXG, and 15 control eyes). The serum levels of lipid peroxides, ferric-reducing activity, and thiol antioxidant activity were measured by diacron reactive oxygen metabolites (dROM), biologic antioxidant potential (BAP), and sulfhydryl (SH) tests, respectively, using a free radical analyzer. The activities of cytosolic and mitochondrial forms of the superoxide dismutase (SOD) isoforms, i.e., SOD1 and SOD2, respectively, in AH and serum were measured using a multiplex bead immunoassay. In AH, SOD1 in subjects with EXG and SOD2 in those with POAG and EXG were significantly higher than in control eyes. In serum, compared to control subjects, BAP in subjects with POAG and EXG was significantly lower; SOD1 in those with EXG and SOD2 in those with POAG and EXG were significantly higher. dROM and SH did not differ significantly among the groups. The BAP values were correlated negatively with the SOD1 concentrations in AH and serum, SOD2 in the AH, intraocular pressure, and number of antiglaucoma medications. In conclusion, lower systemic antioxidant capacity accompanies up-regulation of higher local antioxidant enzymes, suggesting increased oxidative stress in eyes with OAG, especially in EXG. Determination of the systemic BAP values may help predict the redox status in AH.
Collapse
Affiliation(s)
| | | | | | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (Y.T.); (Y.T.); (S.K.)
| |
Collapse
|