1
|
Kang L, Bao S, Li P, Zhang G, Zhu X, Ji M, Guan H. METTL14-mediated depression of NEIL1 aggravates oxidative damage and mitochondrial dysfunction of lens epithelial cells through regulating KEAP1/NRF2 pathways. Cell Signal 2025; 127:111623. [PMID: 39855533 DOI: 10.1016/j.cellsig.2025.111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Abnormal base excision repair (BER) pathway and N6-methyladenosine (m6A) of RNA have been proved to be significantly related to age-related cataract (ARC) pathogenesis. However, the relationship between the Nei Endonuclease VIII-Like1 (NEIL1) gene (a representative DNA glycosylase of BER pathway) and its m6A modification remains unclear. Here, we showed that the expression of NEIL1 was decreased in the ARC anterior lens capsules and H2O2-stimulated SRA01/04 cells. Our findings demonstrated that ectopic expression of NEIL1 alleviated DNA oxidative damage, apoptosis and mitochondrial dysfunction through disturbing KEAP1/NRF2 interaction. Furthermore, silencing NEIL1 aggravated H2O2-induced lens opacity, whereas ML334 could mitigate lens cloudy ex vitro in rat lenses. Besides, intravitreal injection of AAV2-NEIL1 alleviated lens opacity in Emory mice in vivo. Mechanistically, the N(6)-Methyladenosine (m6A) methyltransferase-like 14 (METTL14) was identified as a factor in promoting m6A modification of NEIL1, which resulted in the recruitment of YTHDF2 to recognize and impair NEIL1 RNA stability. Collectively, these findings highlight the critical role of the m6A modification in NEIL1 on regulating oxidative stress and mitochondrial homeostasis through KEAP1/NRF2 pathways, providing a new way to explore the pathogenesis of ARC.
Collapse
Affiliation(s)
- Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Sijie Bao
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xi Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Świerczyńska M, Tronina A, Smędowski A. Understanding cataract development in axial myopia: The contribution of oxidative stress and related pathways. Redox Biol 2025; 80:103495. [PMID: 39813957 PMCID: PMC11782857 DOI: 10.1016/j.redox.2025.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Myopia is an evolving global health challenge, with estimates suggesting that by 2050 it will affect half of the world's population, becoming the leading cause of irreversible vision loss. Moreover, myopia can lead to various complications, including the earlier onset of cataracts. Given the progressive aging of the population and the increase in life expectancy, this will contribute to a rising demand for cataract surgery, posing an additional challenge for healthcare systems. The pathogenesis of nuclear and posterior subcapsular cataract (PSC) development in axial myopia is complex and primarily involves intensified liquefaction of the vitreous body, excessive production of reactive oxygen species, impaired antioxidant defense, and chronic inflammation in the eyeball. These factors contribute to disruptions in mitochondrial homeostasis, abnormal cell signaling, lipid peroxidation, protein and nucleic acid damage, as well as the induction of adverse epigenetic modifications. Age-related and oxidative processes can cause destabilization of crystallins with subsequent protein accumulation, which finally drives to a lens opacification. Moreover, an altered redox status is one of the major contributors to the pathogenesis of PSC. This review aims to summarize the mechanisms known to be responsible for the accelerated development of cataracts in axial myopia and to enhance understanding of these relationships.
Collapse
Affiliation(s)
- Marta Świerczyńska
- Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Agnieszka Tronina
- Department of Pediatric Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Pediatric Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smędowski
- Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland; GlaucoTech Co, Katowice, Poland
| |
Collapse
|
3
|
Espitia-Pérez L, Brango H, Peñata-Taborda A, Galeano-Páez C, Jaramillo-García M, Espitia-Pérez P, Pastor-Sierra K, Bru-Cordero O, Hoyos-Giraldo LS, Reyes-Carvajal I, Saavedra-Trujillo D, Ricardo-Caldera D, Coneo-Pretelt A. Influence of genetic polymorphisms of Hg metabolism and DNA repair on the frequencies of micronuclei, nucleoplasmic bridges, and nuclear buds in communities living in gold mining areas. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503790. [PMID: 39054006 DOI: 10.1016/j.mrgentox.2024.503790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Fishing communities living near gold mining areas are at increased risk of mercury (Hg) exposure via bioaccumulation of methylmercury (MeHg) in fish. This exposure has been linked to health effects that may be triggered by genotoxic events. Genetic polymorphisms play a role in the risk associated with Hg exposure. This study evaluated the effect of single nucleotide polymorphisms (SNPs) in metabolic and DNA repair genes on genetic instability and total hair Hg (T-Hg) levels in 78 individuals from "La Mojana" in northern Colombia and 34 individuals from a reference area. Genetic instability was assessed by the frequency of micronuclei (MNBN), nuclear buds (NBUDS), and nucleoplasmic bridges (NPB). We used a Poisson regression to assess the influence of SNPs on T-Hg levels and genetic instability, and a Bayesian regression to examine the interaction between Hg detoxification and DNA repair. Among exposed individuals, carriers of XRCC1Arg399Gln had a significantly higher frequency of MNBN. Conversely, the XRCC1Arg194Trp and OGG1Ser326Cys polymorphisms were associated with lower frequencies of MNBN. XRCC1Arg399Gln, XRCC1Arg280His, and GSTM1Null carriers showed lower NPB frequencies. Our results also indicated that individuals with the GSTM1Nulland GSTT1null polymorphisms had a 1.6-fold risk for higher T-Hg levels. The Bayesian model showed increased MNBN frequencies in carriers of the GSTM1Null polymorphism in combination with XRCC1Arg399Gln and increased NBUDS frequencies in the GSTM1Null carriers with the XRCC3Thr241Met and OGG1Ser326Cys alleles. The GSTM1+ variant was found to be a protective factor in individuals carrying OGG1Ser326Cys (MNBN) and XRCC1Arg280His (NPB); the GSTT1+ polymorphism combined with XRCCArg194Trp also modulated lower MNBN frequencies, while GSTT1+ carriers with the XRCC1Arg399Gln allele showed lower NPB frequencies. Consistent with GSTM1, GSTT1Null carriers with XRCC3Thr241Met showed increased NBUDS frequency. With the rise of gold mining activities, these approaches are vital to identify and safeguard populations vulnerable to Hg's toxic effects.
Collapse
Affiliation(s)
- Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia.
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
| | - Ana Peñata-Taborda
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Claudia Galeano-Páez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Manolo Jaramillo-García
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia (Postmorten)
| | - Pedro Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Karina Pastor-Sierra
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Osnamir Bru-Cordero
- Universidad Nacional de Colombia, Dirección académica, kilómetro 9, vía Valledupar-La Paz, La Paz, Cesar, Colombia
| | - Luz Stella Hoyos-Giraldo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Ingrid Reyes-Carvajal
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Diana Saavedra-Trujillo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Andrés Coneo-Pretelt
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| |
Collapse
|
4
|
Sun L, Li F, Bai S, Bi C. CircRNA HLCS regulates lens epithelial cell apoptosis via miR-338-3p/BPNT1 axis. Int Ophthalmol 2024; 44:142. [PMID: 38493427 DOI: 10.1007/s10792-024-03082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE The purpose of this study was to investigate the effect of circ_HLCS on age-related cataract (ARC). METHODS Circ_HLCS, microRNA (miR)-338-3p, and bisphosphate 3'-nucleotidase 1 (BPNT1) were quantified by quantitative real-time polymerase chain reaction or western blot. Cell proliferation and cell viability were assessed by the 5-Ethynyl-2'-deoxyuridinr and cell counting kit-8 assays. Cell apoptosis was detected by flow cytometry. Targeted correlations among circ_HLCS, miR-338-3p, and BPNT1 were verified by the dual-luciferase reporter and RNA pull-down assays. RESULTS circ_HLCS was diminished in ARC tissues and UV-treated SRA01/04 cells. Elevated content of circ_HLCS undermined UV-induced cell proliferation inhibition and apoptosis. Mechanistically, circ_HLCS directly targeted miR-338-3p, and circ_HLCS regulated BPNT1 expression through miR-338-3p. Furthermore, reduction of miR-338-3p ameliorated UV-induced SRA01/04 cell damage by increasing BPNT1 expression. CONCLUSION Taken together, these data suggested that circ_HLCS inhibited apoptosis of UV-treated SRA01/04 cells by miR-338-3p/BPNT1 axis. Therefore, circ_HLCS might be a potential therapeutic target for ARC.
Collapse
Affiliation(s)
- Lianyi Sun
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, 710004, China
| | - Fengzhi Li
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, 710004, China
| | - Shuwei Bai
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, 710004, China.
| | - Chunchao Bi
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, 710004, China
| |
Collapse
|
5
|
Radak Z, Pan L, Zhou L, Mozaffaritabar S, Gu Y, A Pinho R, Zheng X, Ba X, Boldogh I. Epigenetic and "redoxogenetic" adaptation to physical exercise. Free Radic Biol Med 2024; 210:65-74. [PMID: 37977212 DOI: 10.1016/j.freeradbiomed.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Lei Zhou
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| |
Collapse
|
6
|
Zhao W, Chen S, Lu B, Wu D, Gu Y, Hao S, Sheng F, Xu Y, Han Y, Chen R, Zhou L, Fu Q, Yao K. Upregulation of EphA2 is associated with apoptosis in response to H 2O 2 and UV radiation-induced cataracts. Arch Biochem Biophys 2023; 747:109756. [PMID: 37714253 DOI: 10.1016/j.abb.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
In this article, we examine the role of erythropoietin-producing hepatocellular receptor A2 (EphA2) in the apoptosis of lens epithelial cells (LECs) in H2O2 and UV radiation-induced cataracts. We treated SRA01/04 cells with H2O2 or ultraviolet (UV) radiation to create a cataract cell model. We constructed a cataract lens model by exposing mice to UV radiation. We used CCK8 assays, Annexin V-FITC analysis, and immunohistochemical staining to explore proliferation and apoptosis of the cataract model. Thereafter, we used quantitative real-time PCR (qPCR) analysis, Western blot assays, and immunofluorescence to determine gene and protein expression levels. We also employed Crispr/Cas9 gene editing to create an EphA2 knockout in SRA01/04 cells. Results: H2O2 or UV radiation induced SRA01/04 cells showed EphA2 gene upregulation. CCK8 and apoptosis assays showed that EphA2 over-expression (OE) reduced epithelial cell apoptosis, but knockout of EphA2 induced it in response to H2O2 and UV radiation, respectively. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on cell apoptosis. In vivo, the EphA2 protein level increased in the lenses of UV-treated mice. Our results showed that EphA2 was upregulated in SRA01/04 cells in response to H2O2 and UV radiation. Mutation of the EphA2 protein kinase domain (c.2003G > A, p. G668D) had a limited effect on H2O2 and UV radiation-induced cell apoptosis. We confirmed this change with an experiment on UV-treated mice. The present study established a novel association between EphA2 and LEC apoptosis.
Collapse
Affiliation(s)
- Wei Zhao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shuying Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Bing Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Di Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuzhou Gu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Shengjie Hao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Feiyin Sheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yili Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yu Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Rongrong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Lei Zhou
- School of Optometry, Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Qiuli Fu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
You Y, Bai C, Wang W, Zhan T, Hu X, Hao F, Xia M, Liu Y, Ma T, Liu Y, Zheng C, Pu T, Zhang Y, Lu Y, Ding N, Li J, Yin Y, Chen Y, Wang L, Zhou J, Niu L, Xiu Y, Lu Y, Jia T, Liu X, Zhang C. Comparative proteomics in captive giant pandas to identify proteins involved in age-related cataract formation. Sci Rep 2023; 13:12722. [PMID: 37543644 PMCID: PMC10404263 DOI: 10.1038/s41598-023-40003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023] Open
Abstract
Approximately 20% of aged captive giant pandas (Ailuropoda melanoleuca) have cataracts that impair their quality of life. To identify potential biomarkers of cataract formation, we carried out a quantitative proteomics analysis of 10 giant pandas to find proteins differing in abundance between healthy and cataract-bearing animals. We identified almost 150 proteins exceeding our threshold for differential abundance, most of which were associated with GO categories related to extracellular localization. The most significant differential abundance was associated with components of the proteasome and other proteins with a role in proteolysis or its regulation, most of which were depleted in pandas with cataracts. Other modulated proteins included components of the extracellular matrix or cytoskeleton, as well as associated signaling proteins and regulators, but we did not find any differentially expressed transcription factors. These results indicate that the formation of cataracts involves a complex post-transcriptional network of signaling inside and outside lens cells to drive stress responses as a means to address the accumulation of protein aggregates triggered by oxidative damage. The modulated proteins also indicate that it should be possible to predict the onset of cataracts in captive pandas by taking blood samples and testing them for the presence or absence of specific protein markers.
Collapse
Affiliation(s)
- Yuyan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Chao Bai
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Tongtong Zhan
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Xin Hu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | | | - Yan Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Tao Ma
- Beijing Zoo, Beijing, China
| | | | | | | | | | | | | | | | | | - Yucun Chen
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | | | | | | | - Yunfang Xiu
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | - Yan Lu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | | | | | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| |
Collapse
|
8
|
Abstract
PURPOSE Cataract (opacification of the ocular lens) is a typical tissue reaction (deterministic effect) following ionizing radiation exposure, for which prevention dose limits have been recommended in the radiation protection system. Manifestations of radiation cataracts can vary among individuals, but such potential individual responses remain uncharacterized. Here we review relevant literature and discuss implications for radiation protection. This review assesses evidence for significant modification of radiation-induced cataractogenesis by age at exposure, sex and genetic factors based on current scientific literature. CONCLUSIONS In addition to obvious physical factors (e.g. dose, dose rate, radiation quality, irradiation volume), potential factors modifying individual responses for radiation cataracts include sex, age and genetics, with comorbidity and coexposures also having important roles. There are indications and preliminary data identifying such potential modifiers of radiation cataract incidence or risk, although no firm conclusions can yet be drawn. Further studies and a consensus on the evidence are needed to gain deeper insights into factors determining individual responses regarding radiation cataracts and the implications for radiation protection.
Collapse
Affiliation(s)
- Stephen G R Barnard
- UK Health Security Agency (UKHSA), Radiation, Chemical and Environmental Hazards Division (RCEHD), Didcot, UK
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
9
|
Li R, Zhu H, Li Q, Tang J, Jin Y, Cui H. METTL3-mediated m6A modification of has_circ_0007905 promotes age-related cataract progression through miR-6749-3p/EIF4EBP1. PeerJ 2023; 11:e14863. [PMID: 36908822 PMCID: PMC9997201 DOI: 10.7717/peerj.14863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
Many cases of blindness are caused by age-related cataracts (ARCs). N6-methyladenosine (m6A)-modified circRNA widely participates in disease progression. However, the role of m6A modification of circRNA in ARC is unclear. We mined and elucidated the functions and mechanisms of key circRNAs with m6A modification involved in ARC progression. The GSE153722 dataset was used to mine m6A-mediated key circRNA. Loss-of-function assays and rescue assays were used to explore the effect and mechanism of circRNA on ARC cell proliferation and apoptosis. Has_circ_0007905 was a hypermethylated and upregulated expression in the ARC group relative to the control group both in vivo and in vitro. Silencing of has_circ_0007905 promoted proliferation and inhibited the apoptosis of HLE-B3 cells. METTL3 was upregulated in HLE-B3 cells after ARC modeling and had four binding sites with has_circ_0007905 and a mediated m6A modification of has_circ_0007905. Proliferation was significantly inhibited and apoptosis of HLE-B3 cells was facilitated by METTL3 overexpression, whereas these effects were prevented by has_circ_0007905 silencing. Silencing of has_circ_0007905 led to an alteration in the transcriptome landscape. Differentially expressed genes were mainly involved in immune-related processes and pathways. EIF4EBP1 overexpression promoted apoptosis and suppressed proliferation, and also significantly reversed effects of has_circ_0007905 silencing. Moreover, miR-6749-3p significantly decreased the luciferase activities of wild type plasmids with both of has_circ_0007905 and EIF4EBP1. MiR-6749-3p inhibitor blocked elevation in proliferation and reduced EIF4EBP1 expression and apoptosis conferred by has_circ_0007905 silencing. We reveal for the first time that the commitment of ARC progression is guided by METTL3/has_circ_0007905/miR-6749-3p/EIF4EBP1 axis, and the results provide new insights into ARC pathology.
Collapse
Affiliation(s)
- Rui Li
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haohao Zhu
- Department of Ophthalmology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qian Li
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiancen Tang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiping Jin
- Department of Ophthalmology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hongping Cui
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Chen X, Zhang G, Li P, Yu J, Kang L, Qin B, Wang Y, Wu J, Wang Y, Zhang J, Qin M, Guan H. SYVN1-mediated ubiquitination and degradation of MSH3 promotes the apoptosis of lens epithelial cells. FEBS J 2022; 289:5682-5696. [PMID: 35334159 DOI: 10.1111/febs.16447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
Abstract
The pathology of age-related cataract (ARC) mainly involves the misfolding and aggregation of proteins, especially oxidative damage repair proteins, in the lens, induced by ultraviolet-B (UVB). MSH3, as a key member of the mismatch repair family, primarily maintains genome stability. However, the function of MSH3 and the mechanism by which cells maintain MSH3 proteostasis during cataractogenesis remains unknown. In the present study, the protein expression levels of MSH3 were found to be attenuated in ARC specimens and SRA01/04 cells under UVB exposure. The ectopic expression of MSH3 notably impeded UVB-induced apoptosis, whereas the knockdown of MSH3 promoted apoptosis. Protein half-life assay revealed that UVB irradiation accelerated the decline of MSH3 by ubiquitination and degradation. Subsequently, we found that E3 ubiquitin ligase synoviolin (SYVN1) interacted with MSH3 and promoted its ubiquitination and degradation. Of note, the expression and function of SYVN1 were contrary to those of MSH3 and SYVN1 regulated MSH3 protein degradation via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway. Based on these findings, we propose a mechanism for ARC pathogenesis that involves SYVN1-mediated degradation of MSH3 via the ubiquitin-proteasome pathway and the autophagy-lysosome pathway, and suggest that interventions targeting SYVN1 might be a potential therapeutic strategy for ARC.
Collapse
Affiliation(s)
- Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Bai Qin
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Ying Wang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Miaomiao Qin
- Eye Institute, Affiliated Hospital of Nantong University, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, China
| |
Collapse
|
11
|
XRCC5 downregulated by TRIM25 is susceptible for lens epithelial cell apoptosis. Cell Signal 2022; 94:110314. [PMID: 35331835 DOI: 10.1016/j.cellsig.2022.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Exposure of the lens to UVB can lead to oxidative stress, which would result in age-related cataract (ARC) formation. In this study, we investigate the regulatory mechanism of tripartite motif containing 25 (TRIM25) in ARC. The protein level of TRIM25 was elevated in ARC specimens and UVB-exposed SRA01/04 cells. Bioinformatic analysis indicated that X-ray repair cross complementing 5 (XRCC5) might interact with TRIM25, and the interaction was validated via immunoprecipitation. TRIM25 interacted with XRCC5 and ubiquitinated it for degradation. Further studies showed that XRCC5 overexpression notably repressed UVB-induced apoptosis, while XRCC5 knockdown promoted apoptosis. Of note, ubiquitination of XRCC5 mediated by TRIM25 overexpression facilitated apoptosis. Attenuation of XRCC5 ubiquitination by mutant with substitution of lysine residues with arginine residues rescued its anti-apoptosis effect. Moreover, we observed that TRIM25-mediated XRCC5 degradation was reversed by proteasome inhibitor MG-132 or lysosome inhibitor 3-MA. In conclusion, TRIM25 mediates ubiquitination of XRCC5 to regulate the function and degradation of XRCC5, suggesting that interventions targeting TRIM25 might be a promising therapeutic strategy for ARC.
Collapse
|
12
|
Chen L, Zhang M, Ding Y, Li M, Zhong J, Feng S. Fluoride induces hypomethylation of BMP2 and activates osteoblasts through the Wnt/β-catenin signaling pathway. Chem Biol Interact 2022; 356:109870. [PMID: 35218729 DOI: 10.1016/j.cbi.2022.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Skeletal fluorosis has become a public health issue in recent years as its serious impact on patients' life expectancy. Bone morphogenetic protein 2 (BMP2) plays a key role in promoting osteogenesis. However, the mechanism of BMP2-Wnt/β-catenin axis in skeletal fluorosis needs further exploration. METHODS The RT-qPCR and western blot assay were carried out to examine the mRNA and protein levels. Cell viability was measured by MTT assay. A commercial ALP assay kit was used to detect ALP activities. Alizarin Red staining was performed to measure the formation of mineralized nodules. Methylation-specific PCR (MSP) was performed to measure the methylation level of BMP2. RESULTS Fluoride promoted the expression of osteogenic marker genes (OPN, OCN, OSX and RUNX2) and induced the proliferation and differentiation of MC3T3-E1 cells. Fluoride induced hypomethylation and high expression of BMP2. Furthermore, knockdown of BMP2 reversed the promoting effect of fluoride on osteogenic differentiation of MC3T3-E1. The expression of β-catenin, glycogen synthase kinase 3β (GSK3β), wingless/integrated 3α (Wnt3α), low-density lipoprotein receptor-related protein 5 (LRP5) and dishevelled 1 (Dv1) were increased in osteoblasts treated with fluoride, however, knockdown of BMP2 reversed this phenomenon. Simultaneous knockdown of BMP2 and β-catenin significantly inhibited the differentiation of osteoblasts induced by fluoride. CONCLUSION Fluoride contributed to proliferation and differentiation of osteoblasts through BMP2-Wnt/β-catenin axis, providing a feasible theoretical basis for the treatment of skeletal fluorosis.
Collapse
Affiliation(s)
- Long Chen
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, PR China
| | - Meilin Zhang
- Cilinical Laboratoray of Urumqi Blood Center, Urumqi, 830000, Xinjiang Province, PR China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, PR China
| | - Min Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, PR China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, PR China.
| | - Shumei Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830011, Xinjiang Province, PR China.
| |
Collapse
|
13
|
You Y, Bai C, Liu X, Lu Y, Jia T, Xia M, Yin Y, Wang W, Chen Y, Zhang C, Liu Y, Wang L, Pu T, Ma T, Liu Y, Zhou J, Niu L, Xu S, Ni Y, Hu X, Zhang Z. RNA-Seq analysis in giant pandas reveals the differential expression of multiple genes involved in cataract formation. BMC Genom Data 2021; 22:44. [PMID: 34706646 PMCID: PMC8555103 DOI: 10.1186/s12863-021-00996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The giant panda (Ailuropoda melanoleuca) is an endangered mammalian species native to China. Fewer than 2500 giant pandas are known to exist, many of which are bred in captivity as a means to preserve and repopulate the species. Like other captive mammals, giant pandas acquire age-related cataracts, reducing their quality of life. Recent comparative genome-wide methylation analysis revealed 110 differentially methylated genes associated with cataract formation including six also associated with the formation of age-related cataracts in humans. RESULTS To investigate the pathological pathway in greater detail, here we used RNA-Seq analysis to investigate the differential expression profiles of genes in three giant pandas with cataracts and three healthy controls. We identified more than 700 differentially expressed genes, 29 of which were selected for further analysis based on their low q-value. We found that many of the genes encoded regulatory and signaling proteins associated with the control of cell growth, migration, differentiation and apoptosis, supporting previous research indicating a key role for apoptosis in cataract formation. CONCLUSION The identification of genes involved in the formation of age-related cataracts could facilitate the development of predictive markers, preventative measures and even new therapies to improve the life of captive animals.
Collapse
Affiliation(s)
- Yuyan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Chao Bai
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Yan Lu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | | | | | - Wei Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yucun Chen
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yan Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | | | - Tao Ma
- Beijing Zoo, Beijing, China
| | | | | | | | - Suhui Xu
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | | | - Xin Hu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | |
Collapse
|
14
|
UV Effect on Human Anterior Lens Capsule Macro-Molecular Composition Studied by Synchrotron-Based FTIR Micro-Spectroscopy. Int J Mol Sci 2021; 22:ijms22105249. [PMID: 34065666 PMCID: PMC8156142 DOI: 10.3390/ijms22105249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet (UV) irradiation is an important risk factor in cataractogenesis. Lens epithelial cells (LECs), which are a highly metabolically active part of the lens, play an important role in UV-induced cataractogenesis. The purpose of this study was to characterize cell compounds such as nucleic acids, proteins, and lipids in human UV C-irradiated anterior lens capsules (LCs) with LECs, as well as to compare them with the control, non-irradiated LCs of patients without cataract, by using synchrotron radiation-based Fourier transform infrared (SR-FTIR) micro-spectroscopy. In order to understand the effect of the UV C on the LC bio-macromolecules in a context of cataractogenesis, we used the SR-FTIR micro-spectroscopy setup installed on the beamline MIRAS at the Spanish synchrotron light source ALBA, where measurements were set to achieve a single-cell resolution with high spectral stability and high photon flux. UV C irradiation of LCs resulted in a significant effect on protein conformation with protein formation of intramolecular parallel β-sheet structure, lower phosphate and carboxyl bands in fatty acids and amino acids, and oxidative stress markers with significant increase of lipid peroxidation and diminishment of the asymmetric CH3 band.
Collapse
|
15
|
Cao Y, Li P, Zhang G, Kang L, Zhou T, Wu J, Wang Y, Wang Y, Chen X, Guan H. MicroRNA Let-7c-5p-Mediated Regulation of ERCC6 Disrupts Autophagic Flux in Age-Related Cataract via the Binding to VCP. Curr Eye Res 2021; 46:1353-1362. [PMID: 33703976 DOI: 10.1080/02713683.2021.1900273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: DNA damage contributes to the pathogenesis of age-related cataract (ARC) and is repaired through the nucleotide excision repair (NER) pathway, which includes ERCC6. Evidence has demonstrated that defective autophagy leads to lens organelle degradation and cataract. This study aimed to investigate the effects of ERCC6 on autophagy and determine its mechanisms in ARC.Methods: The clinical case-control study comprised 30 patients with ARC and 30 age-matched controls who received transparent lens extraction. Transmission electron microscopy was used to assess the ultrastructure of autophagic vesicles in lens anterior capsule tissues and lens epithelial cell line (SRA01/04). Real-time polymerase chain reaction and western blot analyses were performed to measure relative gene expression levels. Gene expression levels and localization were assessed by immunofluorescence. A coimmunoprecipitation assay was used to investigate the relationship between CSB which encoded by ERCC6 and VCP. ERCC6-siRNA and let-7 c-5p mimic were used to alter the expression of ERCC6 and let-7 c-5p.Results: Autophagy induction occurred in lens anterior capsule tissues of patients with ARC and in UVB-induced SRA01/04 cells, where the number of LC3B puncta was increased. Consistent with this result, the expression of beclin1 (BECN1) and LC3B, in addition to that of p62, was increased. Additionally, ERCC6 expression decreased, and silencing ERCC6 induced increases in the expression of BECN1, LC3B and p62. Moreover, CSB interacted with VCP, and let-7 c-5p induced dysregulation of autophagy by targeting ERCC6.Conclusion: In ARC, Let-7 c-5p-mediated downregulation of ERCC6 might prevent the degradation of autophagic vacuoles. CSB binds to VCP, inducing autophagosomes to combine with lysosomes and be degraded.
Collapse
Affiliation(s)
- Yu Cao
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
16
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Li P, Yu H, Zhang G, Kang L, Qin B, Cao Y, Luo J, Chen X, Wang Y, Qin M, Wu J, Huang Y, Zou X, Guan H, Wang Y. Identification and Characterization of N6-Methyladenosine CircRNAs and Methyltransferases in the Lens Epithelium Cells From Age-Related Cataract. Invest Ophthalmol Vis Sci 2021; 61:13. [PMID: 32761139 PMCID: PMC7441297 DOI: 10.1167/iovs.61.10.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To explore the involvement of N6-methyladenosine (m6A) modification in circular RNAs (circRNAs) and relevant methyltransferases in the lesion of lens epithelium cells (LECs) under the circumstances of age-related cataract (ARC). Methods LECs were collected from normal subjects and patients with cortical type of ARC (ARCC). M6A-tagged circRNAs and circRNAs expression were analyzed by m6A-modified RNA immunoprecipitation sequencing (m6A-RIP-seq) and RNA sequencing (RNA-seq). Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to predict possible functions of the m6A-circRNAs. Expression of m6A-related methyltransferase and demethytransferase was measured by quantitative real-time polymerase chain reaction. Expression and location of AlkB homolog 5 RNA demethylase (ALKBH5), a key component of m6A demethytransferase, were determined by Western blot and immunostaining. Results All 4646 m6A peaks within circRNAs had different abundances, with 2472 enriched and 2174 subdued. The level of m6A abundance in total circRNAs was decreased in the LECs from ARCCs in comparison with the controls. We also found that the expression of highly m6A-tagged circRNAs was mostly decreased in comparison with non-m6A-tagged circRNAs. The bioinformatics analysis predicted the potential functions of m6A modified circRNAs and the relevant pathways that may be associated with m6A modified circRNAs. Among five major methyltransferases, ALKBH5 was significantly upregulated in LECs of ARCCs. Conclusions Our data provided novel evidence regarding the involvement of circRNAs m6A modifications in ARC. The altered expression of methyltransferases in lens tissue might selectively change the epigenetic profile of lens genome through regulating genes that host the circRNAs, thus enhance the susceptibility to ARC. The results might provide a new insight in the molecular target of ARC pathogenesis.
Collapse
|
18
|
Chen X, Li P, Zhang G, Kang L, Qin B, Mao X, Qin M, Cao Y, Wang Y, Guan H. Comprehensive Profiling of Proteome and Ubiquitome Changes in Human Lens Epithelial Cell Line after Ultraviolet-B Irradiation. ACS OMEGA 2020; 5:32171-32182. [PMID: 33376855 PMCID: PMC7758888 DOI: 10.1021/acsomega.0c03088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/20/2020] [Indexed: 05/08/2023]
Abstract
Ultraviolet-B (UVB) is a recognized risk factor for age-related cataract (ARC) and can cause various changes, including ubiquitination, in lens epithelial cells (LECs). However, the relationship between ubiquitination and ARC is unclear. Herein, we used UVB-irradiated human lens epithelial cell line (SRA01/04) representing the cell model of ARC to investigate the profile changes in the proteome and ubiquitome. A total of 552 differentially expressed proteins (DEPs) and 871 differentially ubiquitinated proteins (DUPs) were identified, and 9 ubiquitination motifs were found. Bioinformatics analysis revealed diverse pathways and biological processes of differential proteins and several DNA damage repair proteins that were potentially mediated via ubiquitin-proteasome pathway. We validated the decreased protein expression of DNA-directed RNA polymerase II subunit RPB2 (POLR2B) in both human cataract capsule tissues and UVB-treated SRA01/04 cells and found that treatment with proteasome inhibitor (MG-132) could reverse the protein level of POLR2B in UVB-irradiated SRA01/04 cells. Our data provide novel information regarding protein expressions and ubiquitination modifications in UVB-induced oxidative damage model. This study might offer a cell-level reference to further investigate the pathogenesis of ARC.
Collapse
|
19
|
Zhou T, Zhang J, Qin B, Xu H, Zhang S, Guan H. Long non‑coding RNA NONHSAT143692.2 is involved in oxidative DNA damage repair in the lens by regulating the miR‑4728‑5p/OGG1 axis. Int J Mol Med 2020; 46:1838-1848. [PMID: 33000245 PMCID: PMC7521474 DOI: 10.3892/ijmm.2020.4707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Age-related cataract (ARC) is the leading cause of blindness worldwide. Oxidative DNA damage is a biochemical feature of ARC pathogenesis. The present study investigated the role of long non-coding RNAs in the DNA repair of oxidative damage, partially the regulation of the DNA repair gene, 8-oxoguanine DNA glycosylase (OGG1), in lens affected by ARC. The ogg1 mutant zebrafish model was constructed to verify the role of ogg1 in the lens. A high-throughput lncRNA profiling was performed on human lens epithelial cells (LECs) following oxidative stress. The lncRNAs with the OGG1 target gene were analyzed for possible differentiated expression levels. The lens capsule samples of patients with ARC were collected to further verify the screening results. lncRNA was then overexpressed and knocked down in LECs to observe cell proliferation and apoptosis. The association between lncRNA, miRNA and the OGG1 mRNA 3′UTR were analyzed. The ogg1 mutant zebrafish developed more severe lens lesions following oxidative challenge. lncRNA NONHSAT143692.2 was distinctly expressed in various disease models. The knockdown of NONHSAT143692.2 downregulated the expression of OGG1 mRNA (P<0.001) and OGG1 protein (P<0.001), aggravated oxidative damage to LECs, increased apoptosis (P<0.001) and decreased cell proliferation (P<0.01). The overexpression of NONHSAT143692.2 reversed the above-mentioned outcomes. miR-4728-5p was predicted to bind to NONHSAT143692.2 and OGG1 mRNA 3′UTR. The overexpression of miR-4728-5p downregulated the expression of NONHSAT143692.2 (P<0.001), OGG1 mRNA (P<0.001) and OGG1 protein (P<0.001). The knockdown of miR-4728-5p reversed the above-mentioned outcomes. Overall, the findings of the present study demonstrate that the NONHSAT143692.2/miR-4728-5p/OGG1 axis may play an important role in the development of ARC. This novel concept may provide new insight into the molecular diagnosis and treatment of ARC.
Collapse
Affiliation(s)
- Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Bai Qin
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Xu
- Jiangsu Key Laboratory of Neurodegeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuqiang Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
20
|
Liu S, Hu C, Luo Y, Yao K. Genome-wide DNA methylation profiles may reveal new possible epigenetic pathogenesis of sporadic congenital cataract. Epigenomics 2020; 12:771-788. [PMID: 32516005 DOI: 10.2217/epi-2019-0254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To investigate the possible epigenetic pathogenesis of sporadic congenital cataract. Materials & methods: We conducted whole genome bisulfite sequencing on peripheral blood from sporadic binocular or monocular congenital cataract patients and cataract-free participants. Results: We found massive differentially methylated regions within the whole genomes between any two groups. Meanwhile, we identified five genes (ACTN4, ACTG1, TUBA1A, TUBA1C, TUBB4B) for the binocular and control groups and TUBA1A for the monocular and control groups as the core differentially methylated region-related genes. The proteins encoded by these core genes are involved in building cytoskeleton and intercellular junctions. Conclusion: Changes in the methylation levels of core genes may disturb the function of cytoskeleton and intercellular junctions, eventually leading to sporadic congenital cataract.
Collapse
Affiliation(s)
- Siyu Liu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Chenyang Hu
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Yueqiu Luo
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| | - Ke Yao
- Eye Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310031, PR China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province 310031, PR China
| |
Collapse
|
21
|
Chen E, Bohm K, Rosenblatt M, Kang K. Epigenetic regulation of anterior segment diseases and potential therapeutics. Ocul Surf 2020; 18:383-395. [PMID: 32344150 DOI: 10.1016/j.jtos.2020.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
In recent years, technological advances in sequencing have accelerated our understanding of epigenetics in ocular development and ophthalmic diseases. We now know that epigenetic modifications are necessary for normal ocular development and biological processes such as corneal wound healing and ocular surface repair, while aberrant epigenetic regulation underlies the pathogenesis of a wide range of ocular diseases, including cataracts and various diseases of the ocular surface. As the epigenetics of the eye is a constantly changing field of medicine, this comprehensive review focuses on innovations and scientific discoveries related to epigenetic control of anterior segment diseases that were published in the English literature in the past five years. These recent studies attempt to elucidate therapeutic targets for the anterior segment pathological processes. Already, recent studies have shown therapeutic potential in targeting epigenetic mechanisms of ocular diseases, and new epigenetic therapies are on the verge of being introduced to clinical practice. New drug targets can potentially emerge as we make further discoveries within this field.
Collapse
Affiliation(s)
- Eric Chen
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kelley Bohm
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Rosenblatt
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kai Kang
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
22
|
Histone acetyltransferase and Polo-like kinase 3 inhibitors prevent rat galactose-induced cataract. Sci Rep 2019; 9:20085. [PMID: 31882756 PMCID: PMC6934598 DOI: 10.1038/s41598-019-56414-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023] Open
Abstract
Diabetic cataracts can occur at an early age, causing visual impairment or blindness. The detailed molecular mechanisms of diabetic cataract formation remain incompletely understood, and there is no well-documented prophylactic agent. Galactose-fed rats and ex vivo treatment of lenses with galactose are used as models of diabetic cataract. To assess the role of histone acetyltransferases, we conducted cataract prevention screening with known histone acetyltransferase (HAT) inhibitors. Ex vivo treatment with a HAT inhibitor strongly inhibited the formation of lens turbidity in high-galactose conditions, while addition of a histone deacetylase (HDAC) inhibitor aggravated turbidity. We conducted a microarray to identify genes differentially regulated by HATs and HDACs, leading to discovery of a novel cataract causative factor, Plk3. Plk3 mRNA levels correlated with the degree of turbidity, and Plk3 inhibition alleviated galactose-induced cataract formation. These findings indicate that epigenetically controlled Plk3 influences cataract formation. Our results demonstrate a novel approach for prevention of diabetic cataract using HAT and Plk3 inhibitors.
Collapse
|
23
|
Clinical Role of Epigenetics and Network Analysis in Eye Diseases: A Translational Science Review. J Ophthalmol 2019; 2019:2424956. [PMID: 31976085 PMCID: PMC6959156 DOI: 10.1155/2019/2424956] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Network medicine is a molecular-bioinformatic approach analyzing gene-gene interactions that can perturb the human interactome. This review focuses on epigenetic changes involved in several ocular diseases, such as DNA methylation, histone and nonhistone post-translational modifications, and noncoding RNA regulators. Although changes in aberrant DNA methylation play a major role in the pathogenesis of most ocular diseases, histone modifications are seldom investigated. Hypermethylation in TGM-2 and hypomethylation in MMP-2/CD24 promoter genes may play a crucial role in pterygium development; hypermethylation in regulatory regions of GSTP1 and OGG1 genes appear to be diagnostic biomarkers of cataract; hypomethylation of TGF-β1 promoter may trigger glaucoma onset; hypermethylation of the LOXL1 gene might be associated with pseudoexfoliation syndrome. A large panel of upregulated micro-RNAs (miRNAs), including hsa-hsa-miR-494, hsa-let-7e, hsa-miR-513-1, hsa-miR-513-2, hsa-miR-518c, hsa-miR-129-1, hsa-miR-129-2, hsa-miR-198, hsa-miR-492, hsa-miR-498, hsa-miR-320, hsa-miR-503, and hsa-miR-373, ∗ may have a putative role in the development of retinoblastoma. Hypermethylation of H3K4 and hypomethylation of H3K27 at the TGFBIp locus are putative pathogenic mechanisms involved in corneal dystrophies. Determining how, where, and when specific epigenetic changes trigger ocular diseases may provide useful clinical biomarkers for their prevention, diagnosis, and management, as well as innovative drug targets. PF-04523655, a 19-nucleotide methylated double-stranded siRNA targeting the RTP80 gene, showed a dose-related improvement in best-corrected visual acuity (BCVA) in patients affected by diabetic macular edema. The observed results support a clinical network-based research program aimed to clarify the role of epigenetic regulators in the development of ocular diseases and personalized therapy.
Collapse
|
24
|
You Y, Bai C, Liu X, Xia M, Jia T, Li X, Zhang C, Chen Y, Zhao S, Wang L, Wang W, Yin Y, Xiu Y, Niu L, Zhou J, Ma T, Du Y, Liu Y. Genome-wide analysis of methylation in giant pandas with cataract by methylation-dependent restriction-site associated DNA sequencing (MethylRAD). PLoS One 2019; 14:e0222292. [PMID: 31553743 PMCID: PMC6760787 DOI: 10.1371/journal.pone.0222292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/26/2019] [Indexed: 01/19/2023] Open
Abstract
The giant panda (Ailuropoda melanoleuca) is a native species to China. They are rare and endangered and are regarded as the 'national treasure' and 'living fossil' in China. For the time being, there are only about 2500 giant pandas in the world. Therefore, we still have to do much more efforts to protect the giant pandas. In captive wildlife, the cataract incidence of mammalian always increases with age. Currently, in China, the proportion of elderly giant pandas who suffering from cataract has reached 20%. The eye disorder thus has a strong influence on the physical health and life quality of the elderly giant pandas. To discover the genes associated with the pathogenesis of cataract in the elderly giant panda and achieve the goal of early assessment and diagnosis of cataract in giant pandas during aging, we performed whole genome methylation sequencing in 3 giant pandas with cataract and 3 healthy giant pandas using methylation-dependent restriction-site associated DNA sequencing (MethylRAD). In the present study, we obtained 3.62M reads, on average, for each sample, and identified 116 and 242 differentially methylated genes (DMGs) between the two groups under the context of CCGG and CCWGG on genome, respectively. Further KEGG and GO enrichment analyses determined a total of 110 DMGs that are involved in the biological functions associated with pathogenesis of cataract. Among them, 6 DMGs including EEA1, GARS, SLITRK4, GSTM3, CASP3, and EGLN3 have been linked with cataract in old age.
Collapse
Affiliation(s)
- Yuyan You
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
- * E-mail:
| | - Chao Bai
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yucun Chen
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | - Sufen Zhao
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Wei Wang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Yunfang Xiu
- Strait (Fuzhou) Giant Panda Research and Exchange Centers, Fuzhou, China
| | | | | | - Tao Ma
- Beijing Zoo, Beijing, China
| | | | | |
Collapse
|
25
|
Montes-Castro N, Alvarado-Cruz I, Torres-Sánchez L, García-Aguiar I, Barrera-Hernández A, Escamilla-Núñez C, Del Razo LM, Quintanilla-Vega B. Prenatal exposure to metals modified DNA methylation and the expression of antioxidant- and DNA defense-related genes in newborns in an urban area. J Trace Elem Med Biol 2019; 55:110-120. [PMID: 31345348 DOI: 10.1016/j.jtemb.2019.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
The developmental period in utero is a critical window for environmental exposure. Epigenetic fetal programming via DNA methylation is a pathway through which metal exposure influences the risk of developing diseases later in life. Genetic damage repair can be modified by alterations in DNA methylation, which, in turn, may modulate gene expression due to metal exposure. We investigated the impact of prenatal metal exposure on global and gene-specific DNA methylation and mRNA expression in 181 umbilical cord blood samples from newborns in Mexico City. Global (LINE1) and promoter methylation of DNA-repair (OGG1 and PARP1) and antioxidant (Nrf2) genes was evaluated by pyrosequencing. Prenatal metal exposure (As, Cu, Hg, Mn, Mo, Pb, Se, and Zn) was determined by ICP-MS analysis of maternal urine samples. Multiple regression analyses revealed that DNA methylation of LINE1, Nrf2, OGG1, and PARP1 was associated with potentially toxic (As, Hg, Mn, Mo, and Pb) and essential (Cu, Se, and Zn) elements, and with their interactions. We also evaluated the association between gene expression (mRNA levels quantified by p-PCR) and DNA methylation. An increase in OGG1 methylation at all sites and at CpG2, CpG3, and CpG4 sites was associated with reduced mRNA levels; likewise, methylation at the CpG5, CpG8, and CpG11 sites of PARP1 was associated with reduced mRNA expression. In contrast, methylation at the PARP1 CpG7 site was positively associated with its mRNA levels. No associations between Nrf2 expression and CpG site methylation were observed. Our data suggest that DNA methylation can be influenced by prenatal metal exposure, which may contribute to alterations in the expression of repair genes, and therefore, result in a lower capacity for DNA damage repair in newborns.
Collapse
Affiliation(s)
- N Montes-Castro
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - I Alvarado-Cruz
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - L Torres-Sánchez
- National Institute of Public Health-INSP, Ave. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos, 62100, Mexico
| | - I García-Aguiar
- Department of Molecular Biomedicine, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - A Barrera-Hernández
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - C Escamilla-Núñez
- National Institute of Public Health-INSP, Ave. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos, 62100, Mexico
| | - L M Del Razo
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico
| | - B Quintanilla-Vega
- Department of Toxicology, Cinvestav, Ave. IPN 2508, Zacatenco, Mexico City, 07360, Mexico.
| |
Collapse
|
26
|
Kang L, Zou X, Zhang G, Xiang J, Wang Y, Yang M, Chen X, Wu J, Guan AH. A variant in a microRNA binding site in NEIL2 3′UTR confers susceptibility to age‐related cataracts. FASEB J 2019; 33:10469-10476. [PMID: 31253066 DOI: 10.1096/fj.201802291r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lihua Kang
- Eye InstituteAffiliated Hospital of Nantong University Nantong China
| | - Xi Zou
- Eye InstituteAffiliated Hospital of Nantong University Nantong China
- The Third People's Hospital of Changzhou Changzhou China
| | - Guowei Zhang
- Eye InstituteAffiliated Hospital of Nantong University Nantong China
| | - Jing Xiang
- Eye InstituteAffiliated Hospital of Nantong University Nantong China
| | - Yong Wang
- Eye InstituteAffiliated Hospital of Nantong University Nantong China
| | - Mei Yang
- Eye InstituteAffiliated Hospital of Nantong University Nantong China
| | - Xiang Chen
- Department of PathologyThe Second Affiliated Hospital of Nantong University Nantong China
| | - Jian Wu
- Eye InstituteAffiliated Hospital of Nantong University Nantong China
| | - And Huaijin Guan
- Eye InstituteAffiliated Hospital of Nantong University Nantong China
| |
Collapse
|
27
|
Wu S, Yan W, Qiu B, Liao Y, Gu J, Wei S, Zhang A, Pan X. Aberrant methylation-induced dysfunction of p16 is associated with osteoblast activation caused by fluoride. ENVIRONMENTAL TOXICOLOGY 2019; 34:37-47. [PMID: 30259626 DOI: 10.1002/tox.22655] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 05/19/2023]
Abstract
Chronic exposure to fluoride continues to be a public health problem worldwide, affecting thousands of people. Fluoride can cause abnormal proliferation and activation of osteoblast and osteoclast, leading to skeletal fluorosis that can cause pain and harm to joints and bones and even lead to permanent disability. Nevertheless, there is no recognized mechanism to explain the bone lesions of fluorosis. In this work, we performed a population study and in vitro experiments to investigate the pathogenic mechanism of skeletal fluorosis in relation to methylation of the promoter of p16. The protein coded by the p16 gene inhibits cdk (cyclin-dependent kinase) 4/cdk6-mediated phosphorylation4 of retinoblastoma gene product and induces cell cycle arrest. The results showed that hypermethylation of p16 and reduced gene expression was evident in peripheral blood mononuclear cells of patients with fluorosis and correlated with the level of fluoride exposure. Studies with cell cultures of osteoblasts revealed in response to sodium fluoride (NaF) treatment, there was an induction of p16 hypermethylation and decreased expression, leading to increased cell proliferation, a longer S-phase of the cell cycle, and development of skeletal fluorosis. Further, the methylation inhibitor, 5-aza-2-deoxycytidine, reversed the p16 hypermethylation and expression in response to NaF. These results reveal a regulatory role of p16 gene methylation on osteoblasts activation during the development of skeletal fluorosis.
Collapse
Affiliation(s)
- Shouli Wu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Weimin Yan
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Bing Qiu
- Guizhou Orthopedics Hospital, Guiyang, China
| | | | - Junying Gu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Shaofeng Wei
- School of Public Health, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xueli Pan
- School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
28
|
Zou X, Kang L, Yang M, Wu J, Guan H. MicroRNA binding mediated Functional sequence variant in 3'-UTR of DNA repair Gene XPC in Age-related Cataract. Sci Rep 2018; 8:15198. [PMID: 30315181 PMCID: PMC6185952 DOI: 10.1038/s41598-018-33071-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
DNA oxidative damage repair is strongly involved in the pathogenesis of age-related cataract (ARC). The sequence variants of in coding region of DNA repair genes have been shown to be associated with ARC. It is known that single nucleotide polymorphisms (SNPs) in the 3′-terminal untranslated region (3′-UTR) can alter the gene expression by binding with microRNAs (miRNAs). We hypothesize that SNP(s) in miRNA binding site of certain DNA oxidative damage repair genes might associate with ARC risk. We examined 10 miRNA binding SNPs in 3′-UTR of 7 oxidative damage genes and revealed the XPC- rs2229090 C allele was associated with nuclear type of ARC (ARNC) risk in Chinese population. The individuals with the variant G allele (CG and GG) of XPC- rs2229090 had higher XPC mRNA expression compared to individuals carrying CC genotype. The in vitro assay showed that luciferase reporter gene expression can be down regulated by hsa-miR-589-5p in cells transfected with rs2229090 C allele compared to G allele. These results suggested that the C allele of XPC-2229090 increase the risk with ARNC. The mechanism underlying might be due to the stronger interation of the C allele with hsa-miR-589-5p, resulting in lower XPC expression and DNA repair capability than the individuals carring G allele in lens.
Collapse
Affiliation(s)
- Xi Zou
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,The Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Lihua Kang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Wu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
29
|
BLM can regulate cataract progression by influencing cell vitality and apoptosis. Exp Eye Res 2018; 178:99-107. [PMID: 30227115 DOI: 10.1016/j.exer.2018.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 01/04/2023]
Abstract
Age-related cataract (ARC) is the most common cause of severe visual impairment and blindness. The precise mechanisms of ARC are not completely understood, but it is well accepted that oxidative damage plays an important role in the disease pathogenesis. BLM, the key enzyme of the double-strand break repair (DSBR) pathway, is part of a family of DNA unwinding enzymes and has a crucial role in multiple steps of the DNA recombination, replication and repair processes. We have recently shown that BLM-rs1063147 is initially associated with nuclear ARC in a cross-section study. Therefore, we wanted to study the effects of BLM on ARC progression. In ARC patients, BLM transcription in lens capsules was decreased, so did the BLM protein, and after UVB irradiation, BLM mRNA and protein levels were increased in SRA01/04 cells. Upon silencing BLM in SRA01/04 cells and rat lens, cell vitality and apoptosis were altered, and the rat lens opacification was considerable. In conclusion, BLM can regulate cataract progression by influencing cell vitality and apoptosis.
Collapse
|
30
|
Zhu X, Li D, Du Y, He W, Lu Y. DNA hypermethylation-mediated downregulation of antioxidant genes contributes to the early onset of cataracts in highly myopic eyes. Redox Biol 2018; 19:179-189. [PMID: 30172102 PMCID: PMC6122317 DOI: 10.1016/j.redox.2018.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022] Open
Abstract
High myopia is recognized as a risk factor for earlier onset of nuclear cataracts. One possible explanation for this is that lenses in highly myopic eyes are exposed to higher levels of oxygen than normal eyes owing to earlier vitreous liquefaction and, hence, are subjected to oxidative insults. Here, we first compared the methylation levels of six essential antioxidant genes (GSTP1, NRF2, OGG1, TXN, TXNRD1 and TXNRD2) between highly myopic cataract (HMC) and age-related cataract (ARC) lens epithelial samples via Sequenom MassARRAY. We found that specific CpG units in the promoters of GSTP1 and TXNRD2 were hypermethylated and that the expression levels of these two genes were lower in the HMC group than in the ARC group. A luciferase reporter assay confirmed the significance of differentially methylated fragments in the activation of transcription. The importance of GSTP1 and TXNRD2 in antioxidant capacity was confirmed by overexpression or knockdown experiments on cultured lens epithelial cells (LECs). In addition, the expression of DNA methyl transferase 1 (DNMT1) was higher in the lens epithelium of HMC patients than that of ARC patients, and the expression of GSTP1 and TXNRD2 was upregulated by use of a DNMT inhibitor in cultured LECs. Finally, we mimicked the intraocular environment of highly myopic eyes by treating LECs with hydrogen peroxide (H2O2) and observed both alterations in the methylation status of the GSTP1 and TXNRD2 promoters and time-dependent altered expression levels. Therefore, we propose that in an environment with high oxygen, in which lenses in highly myopic eyes are immersed, there exists a vicious cycle composed of increased oxidative stress and decreased enzymatic antioxidants via the hypermethylation of antioxidant genes. Vitreous liquefaction generates a high-O2 environment surrounding the lens. In highly myopic eyes, vitreous liquefaction occurs earlier and results in severer nuclear cataract. Methylation levels of GSTP1 and TXNRD2 were elevated in lens epithelium of highly myopic eyes. Increased oxidation and decreased enzymatic antioxidant via hypermethylation form a vicious circle in highly myopic eyes.
Collapse
Affiliation(s)
- Xiangjia Zhu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Road, Shanghai 200031, China; Eye Institute of Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Dan Li
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Road, Shanghai 200031, China; Eye Institute of Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Yu Du
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Road, Shanghai 200031, China; Eye Institute of Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Wenwen He
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Road, Shanghai 200031, China; Eye Institute of Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Yi Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Myopia, Ministry of Health, 83 Fenyang Road, Shanghai 200031, China; Eye Institute of Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, Fudan University, 83 Fenyang Road, Shanghai 200031, China.
| |
Collapse
|
31
|
Lanosterol Synthase Pathway Alleviates Lens Opacity in Age-Related Cortical Cataract. J Ophthalmol 2018; 2018:4125893. [PMID: 30116630 PMCID: PMC6079410 DOI: 10.1155/2018/4125893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/31/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Lanosterol synthase (LSS) abnormity contributes to lens opacity in rats, mice, dogs, and human congenital cataract development. This study examined whether LSS pathway has a role in different subtypes of age-related cataract (ARC). Methods A total of 390 patients with ARC and 88 age-matched non-ARC patients were enrolled in this study. LSS expression was analyzed by western blot and enzyme-linked immunosorbent assay (ELISA). To further examine the function of LSS, we used U18666A, an LSS inhibitor in rat lens culture system. Results In lens epithelial cells (LECs), LSS expression in LECs increased with opaque degree C II, while it decreased with opaque degree C IV and C V. While in the cortex of age-related cortical cataract (ARCC), LSS expression was negatively related to opaque degree, while lanosterol level was positively correlated to opaque degree. No obvious change in both LSS and lanosterol level was found in either LECs or the cortex of age-related nuclear cataract (ARNC) and age-related posterior subcapsular cataract (ARPSC). In vitro, inhibiting LSS activity induced rat lens opacity and lanosterol effectively delayed the occurrence of lens opacity. Conclusions This study indicated that LSS and lanosterol were localized in the lens of human ARC, including ARCC, ARNC, and ARPSC. LSS and lanosterol level are only correlated with opaque degree of ARCC. Furthermore, activated LSS pathway in lens is protective for lens transparency in cortical cataract.
Collapse
|
32
|
Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G. Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Front Med (Lausanne) 2018; 5:104. [PMID: 29719834 PMCID: PMC5913290 DOI: 10.3389/fmed.2018.00104] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
As average life span and elderly people prevalence in the western world population is gradually increasing, the incidence of age-related diseases such as cancer, heart diseases, diabetes, and dementia is increasing, bearing social and economic consequences worldwide. Understanding the molecular basis of aging-related processes can help extend the organism’s health span, i.e., the life period in which the organism is free of chronic diseases or decrease in basic body functions. During the last few decades, immense progress was made in the understanding of major components of aging and healthy aging biology, including genomic instability, telomere attrition, epigenetic changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and intracellular communications. This progress has been made by three spear-headed strategies: in vitro (cell and tissue culture from various sources), in vivo (includes diverse model and non-model organisms), both can be manipulated and translated to human biology, and the study of aging-like human syndromes and human populations. Herein, we will focus on current repository of genomic “senescence” stage of aging, which includes health decline, structural changes of the genome, faulty DNA damage response and DNA damage, telomere shortening, and epigenetic alterations. Although aging is a complex process, many of the “hallmarks” of aging are directly related to DNA structure and function. This review will illustrate the variety of these studies, done in in vitro, in vivo and human levels, and highlight the unique potential and contribution of each research level and eventually the link between them.
Collapse
Affiliation(s)
| | - Danielle Gutman
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
33
|
Knox B, Wang Y, Rogers LJ, Xuan J, Yu D, Guan H, Chen J, Shi T, Ning B, Kadlubar SA. A functional SNP in the 3'-UTR of TAP2 gene interacts with microRNA hsa-miR-1270 to suppress the gene expression. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:134-143. [PMID: 29205500 PMCID: PMC5811321 DOI: 10.1002/em.22159] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/26/2017] [Accepted: 10/27/2017] [Indexed: 05/24/2023]
Abstract
The transporter associated with antigen processing 2 (TAP2) is involved in the development of multidrug resistance and the etiology of immunological diseases. In this study, we investigated whether the expression of TAP2 can be perturbed by single nucleotide polymorphisms (SNPs) located in 3'-untranslated region (3'-UTR) of the gene via interactions with microRNAs. Using a series of in silico assays, we selected the candidate microRNAs (miRNAs) with the potential to interact with functional SNPs of TAP2. The SNP rs241456-located in the 3'-UTR of TAP2-resides in a potential binding site for hsa-miR-1270 and hsa-miR-620. HEK 293 cells, from a human kidney cell line, were used to characterize the extent of binding of miRNAs to each polymorphic allele of the SNP by a luciferase reporter gene assay. RNA electrophoretic mobility shift assays were used to evaluate the interaction between the miRNAs and each allele sequence of the SNP. We found that hsa-miR-1270 inhibited luciferase activity by binding to the T allele of the SNP in an allele-specific manner. A negative correlation was also found between the expression of hsa-miR-1270 and the T allele of the SNP in kidney tissues. Our findings support the hypothesis that hsa-miR-1270 suppresses the production of TAP2 by binding to this SNP in the 3'-UTR of this gene. Environ. Mol. Mutagen. 59:134-143, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bridgett Knox
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Yong Wang
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lora J. Rogers
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jiekun Xuan
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Dianke Yu
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiwei Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tieliu Shi
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Baitang Ning
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | |
Collapse
|
34
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
35
|
Narváez DM, Groot H, Diaz SM, Palma RM, Muñoz N, Cros MP, Hernández-Vargas H. Oxidative stress and repetitive element methylation changes in artisanal gold miners occupationally exposed to mercury. Heliyon 2017; 3:e00400. [PMID: 28948237 PMCID: PMC5602780 DOI: 10.1016/j.heliyon.2017.e00400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/08/2017] [Accepted: 08/30/2017] [Indexed: 12/22/2022] Open
Abstract
Mercury (Hg) exposure is a public health concern due to its persistence in the environment and its high toxicity. Such toxicity has been associated with the generation of oxidative stress in occupationally exposed subjects, such as artisanal gold miners. In this study, we characterize occupational exposure to Hg by measuring blood, urine and hair levels, and investigate oxidative stress and DNA methylation associated with gold mining. To do this, samples from 53 miners and 36 controls were assessed. We show higher levels of oxidative stress marker 8-OHdG in the miners. Differences in LINE1 and Alu(Yb8) DNA methylation between gold miners and control group are present in peripheral blood leukocytes. LINE1 methylation is positively correlated with 8-OHdG levels, while XRCC1 and LINE1 methylation are positively correlated with Hg levels. These results suggest an effect of Hg on oxidative stress and DNA methylation in gold miners that may have an impact on miners' health.
Collapse
Affiliation(s)
- Diana M. Narváez
- Human Genetics Laboratory. Universidad de los Andes. Bogotá, Colombia
- Instituto Nacional de Salud (INS). Bogotá, Colombia
- Epigenetics Group. International Agency for Research on Cancer (IARC). Lyon, France
| | - Helena Groot
- Human Genetics Laboratory. Universidad de los Andes. Bogotá, Colombia
| | | | | | | | - Marie-Pierre Cros
- Epigenetics Group. International Agency for Research on Cancer (IARC). Lyon, France
| | | |
Collapse
|
36
|
Stäubli A, Capatina N, Fuhrer Y, Munier FL, Labs S, Schorderet DF, Tiwari A, Verrey F, Heon E, Cheng CY, Wong TY, Berger W, Camargo SMR, Kloeckener-Gruissem B. Abnormal creatine transport of mutations in monocarboxylate transporter 12 (MCT12) found in patients with age-related cataract can be partially rescued by exogenous chaperone CD147. Hum Mol Genet 2017; 26:4203-4214. [DOI: 10.1093/hmg/ddx310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
|
37
|
Cencer CS, Chintala SK, Townsend TJ, Feldmann DP, Awrow MA, Putris NA, Geno ME, Donovan MG, Giblin FJ. PARP-1/PAR Activity in Cultured Human Lens Epithelial Cells Exposed to Two Levels of UVB Light. Photochem Photobiol 2017; 94:126-138. [PMID: 28756616 DOI: 10.1111/php.12814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
This study investigated poly(ADP-ribose) polymerase-1 (PARP-1) activation in cultured human lens epithelial cells exposed to two levels of UVB light (312 nm peak wavelength), 0.014 and 0.14 J cm-2 ("low" and "high" dose, respectively). At the low dose, PARP-1 and poly(ADP-ribose) (PAR) polymers acted to repair DNA strand breaks rapidly with no subsequent major effects on either cell morphology or viability. However, following the high UVB dose, there was a dramatic second phase of PARP-1 activation, 90 min later, which included a sudden reappearance of DNA strand breaks, bursts of reactive oxygen species (ROS) formation within both the mitochondria and nucleus, a translocation of PAR from the nucleus to the mitochondria and an ultimate 70% loss of cell viability occurring after 24 h. The results provide evidence for an important role for PARP-1 in protecting the human lens epithelium against low levels of UVB light, and possibly participating in the triggering of cell death following exposure to toxic levels of radiation.
Collapse
Affiliation(s)
| | | | | | | | - Mirna A Awrow
- Eye Research Institute, Oakland University, Rochester, MI
| | | | - Mason E Geno
- Eye Research Institute, Oakland University, Rochester, MI
| | | | - Frank J Giblin
- Eye Research Institute, Oakland University, Rochester, MI
| |
Collapse
|
38
|
Wang Y, Guan H. The Role of DNA Methylation in Lens Development and Cataract Formation. Cell Mol Neurobiol 2017; 37:979-984. [PMID: 27858287 DOI: 10.1007/s10571-016-0447-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
Epigenetics pertains to heritable alterations in genomic structural modifications without altering genomic DNA sequence. The studies of epigenetic mechanisms include DNA methylation, histone modifications, and microRNAs. DNA methylation may contribute to silencing gene expression which is a major mechanism of epigenetic gene regulation. DNA methylation regulatory mechanisms in lens development and pathogenesis of cataract represent exciting areas of research that have opened new avenues for association with aging and environment. This review addresses our current understanding of the major mechanisms and function of DNA methylation in lens development, age-related cataract, secondary cataract, and complicated cataract. By understanding the role of DNA methylation in the lens disease and development, it is expected to open up a new therapeutic approach to clinical treatment of cataract.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China.
| |
Collapse
|
39
|
Association between the 8-oxoguanine DNA glycosylase gene Ser326Cys polymorphism and age-related cataract: a systematic review and meta-analysis. Int Ophthalmol 2017. [PMID: 28631182 DOI: 10.1007/s10792-017-0606-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the association between the 8-oxoguanine DNA glycosylase (OGG1) gene Ser326Cys (rs1052133) polymorphism and age-related cataract (ARC). METHODS MEDLINE and EMBASE were searched to identify potential studies published before May 19, 2017, investigating the association between the OGG1 gene Ser326Cys polymorphism and ARC risk. The quality of eligible studies was assessed using the Newcastle-Ottawa Scale tool. The association between the OGG1 gene Ser326Cys polymorphism and ARC was analyzed using meta-analysis. Publication bias and sensitivity analyses were also performed. RESULTS Six studies were included in this systematic review, and five of these studies with Hardy-Weinberg equilibrium were included in a meta-analysis. The sample size of the meta-analysis was 3716, including 1831 patients with cataract and 1885 controls. Odds ratios (ORs) were 0.67 (95% confidence interval (CI) 0.52-0.85), 0.90 (95% CI 0.54-1.51), 0.52 (95% CI 0.32-0.85) and 0.72 (95% CI 0.56-0.92) for recessive, dominant, additive and allele contrast models, respectively. Sensitivity analysis indicated that the results of the meta-analysis were robust. No publication bias was observed. CONCLUSIONS The OGG1 gene Ser326Cys polymorphism was associated with ARC risk.
Collapse
|
40
|
Wang Y, Yu D, Tolleson WH, Yu LR, Green B, Zeng L, Chen Y, Chen S, Ren Z, Guo L, Tong W, Guan H, Ning B. A systematic evaluation of microRNAs in regulating human hepatic CYP2E1. Biochem Pharmacol 2017; 138:174-184. [PMID: 28438567 DOI: 10.1016/j.bcp.2017.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) is an important drug metabolizing enzyme for processing numerous xenobiotics in the liver, including acetaminophen and ethanol. Previous studies have shown that microRNAs (miRNAs) can suppress CYP2E1 expression by binding to the 3'-untranslated region (3'-UTR) of its transcript. However, a systematic analysis of CYP2E1 regulation by miRNAs has not been described. Here, we applied in silico, in vivo, and in vitro approaches to investigate miRNAs involved in the regulation of CYP2E1. Initially, potential miRNA binding sites in the CYP2E1 mRNA transcript were identified and screened using in silico methods. Next, inverse correlations were found in human liver samples between the expression of CYP2E1 mRNA and the levels of two miRNA species, hsa-miR-214-3p and hsa-miR-942-5p. In a HepG2-derived CYP2E1 over-expression cell model, hsa-miR-214-3p exhibited strong suppression of CYP2E1 expression by targeting the coding region of its mRNA transcript, but hsa-miR-942-5p did not inhibit CYP2E1 levels. Electrophoretic mobility shift assays confirmed that hsa-miR-214-3p recruited other cellular protein factors to form stable complexes with specific sequences present in the CYP2E1 mRNA open reading frame. Transfection of HepaRG cells with hsa-miR-214-3p mimics inhibited expression of the endogenous CYP2E1 gene. Further, hsa-miR-214-3p mimics partially blocked ethanol-dependent increases in CYP2E1 mRNA and protein levels in HepG2 cells and they reduced the release of alanine aminotransferase from CYP2E1-overexpressing HepG2 cells exposed to acetaminophen. These results substantiate the suppressing effect of hsa-miR-214-3p on CYP2E1 expression.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Li-Rong Yu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Bridgett Green
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Linjuan Zeng
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Yinting Chen
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Zhen Ren
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Weida Tong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Baitang Ning
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
41
|
Wang Y, Zhang G, Kang L, Guan H. Expression Profiling of DNA Methylation and Transcriptional Repression Associated Genes in Lens Epithelium Cells of Age-Related Cataract. Cell Mol Neurobiol 2017; 37:537-543. [PMID: 27306760 DOI: 10.1007/s10571-016-0393-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
In our previous research, the formation and development of age-related cataract (ARC) is associated with DNA hypermethylation of some genes in lens epithelial cells (LECs). This study aimed to investigate the expression profile of DNA methylation- and transcriptional repression-associated genes in LECs of ARC. The expression levels of the genes were first evaluated by microarray analysis. The results were further confirmed by Quantitative Real-Time PCR (qRT-PCR) and Western blot assay. The mRNA and protein levels of 5 genes increased in LECs of ARCs compared with the controls. These data provided a global perspective on expression of DNA methylation- and transcriptional repression-associated genes. The study supports the notion that the epigenetic modification of macromolecules in LECs might contribute to ARC pathogenesis.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Jiangsu, Nantong, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Jiangsu, Nantong, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Jiangsu, Nantong, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Jiangsu, Nantong, China.
| |
Collapse
|
42
|
Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015. Photochem Photobiol Sci 2016; 15:141-74. [PMID: 26822392 DOI: 10.1039/c6pp90004f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.
Collapse
|
43
|
Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, Kadhim M, Hamada N. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:238-261. [DOI: 10.1016/j.mrrev.2016.07.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
|
44
|
Zhang H, Zhong J, Bian Z, Fang X, Peng Y, Hu Y. Association between polymorphisms of OGG1, EPHA2 and age-related cataract risk: a meta-analysis. BMC Ophthalmol 2016; 16:168. [PMID: 27681698 PMCID: PMC5041552 DOI: 10.1186/s12886-016-0341-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/02/2016] [Indexed: 11/21/2022] Open
Abstract
Background Evidences have identified the correlation of 8-oxoguanine DNA glycosylase-1 (OGG1) and eph-receptor tyrosine kinase-type A2 (EPHA2) polymorphisms in age-related cataract (ARC) risk. However, the results were not consistent. The objective of this study was to examine the role of these two gene polymorphisms in ARC susceptibility. Methods Eligible case–control studies published between January 2000 and 2015 were searched and retrieved in the electronic databases. The odds ratio with 95 % confidence interval (CI) was employed to calculate the strength of the relationship. Results We totally screened out six articles, including 5971 cataract patients and 4189 matched controls. Three variants were contained (OGG1 rs1052133; EPHA2 rs7543472 and rs11260867). For OGG1 rs1052133, we detected a significant correlation between OGG1 polymorphism and ARC risk under the heterogenous model (CG vs. CC: OR = 1.34, 95 % CI = 1.06–1.70, P = 0.01) and dominant model (GG+CG vs. CC: OR = 1.45, 95 % CI = 1.16–1.81, P = 0.001), especially in patients with cortical cataract of subgroup analysis by phenotypes (P < 0.05). For EPHA2 rs7543472 and rs11260867, we did not find a positive association between these two mutations and ARC susceptibility in total cases. Subgroup analysis by phenotypes of cataract showed that only in cortical cataract, genotypes of rs7543472 under the allele model, homogenous model and recessive model; genotypes of rs11260867 under the heterogenous model and dominant model were associated with ARC risk. Conclusions OGG1 rs1052133 (CG and CG+GG genotypes) might be risk factor for ARC, particularly in cortical cataract risk. EPHA2 rs7543472 (T allele and TT genotype) and rs11260867 (CG and GG+CG genotypes) might be associated with cortical cataract.
Collapse
Affiliation(s)
- Hongxu Zhang
- Department of Ophtalmology, Hangzhou First People's Hospital, Hangzhou Hospital Affiliated to Nanjing Medical University, Huansha Road No. 261, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Jianguang Zhong
- Department of Ophtalmology, Hangzhou First People's Hospital, Hangzhou Hospital Affiliated to Nanjing Medical University, Huansha Road No. 261, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Zhenyu Bian
- Department of Orthopaedics, Hangzhou First People's Hospital, Hangzhou Hospital Affiliated to Nanjing Medical University, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Xiang Fang
- Department of Central Laboratory, Hangzhou First People's Hospital, Hangzhou Hospital Affiliated to Nanjing Medical University, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - You Peng
- Department of Surgical Oncology, Hangzhou First People's Hospital, Hangzhou Hospital Affiliated to Nanjing Medical University, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Yongping Hu
- Department of Ophtalmology, Hangzhou First People's Hospital, Hangzhou Hospital Affiliated to Nanjing Medical University, Huansha Road No. 261, Hangzhou, 310006, Zhejiang, People's Republic of China.
| |
Collapse
|
45
|
Gu S, Rong H, Zhang G, Kang L, Yang M, Guan H. Functional SNP in 3'-UTR MicroRNA-Binding Site of ZNF350 Confers Risk for Age-Related Cataract. Hum Mutat 2016; 37:1223-1230. [PMID: 27586871 DOI: 10.1002/humu.23073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/10/2016] [Accepted: 08/29/2016] [Indexed: 12/28/2022]
Abstract
Many studies have suggested that individual susceptibility to age-related cataract (ARC) may be associated with DNA sequence polymorphisms affecting gene regulation. As DNA repair is implicated in ARC pathogenesis and single-nucleotide polymorphisms (SNPs) in the 3'-terminal untranslated region (3'-UTR) targeted by microRNAs (miRNAs) can alter the gene function, we hypothesize that the miRNA-binding SNPs (miRSNPs) in DNA double-strand break repair (DSBR) and nucleotide excision repair (NER) pathways might associate with ARC risk. We genotyped nine miRSNPs of eight genes in DSBR and NER pathways in Chinese population and found that ZNF350- rs2278414:G>A was significantly associated with ARC risk. Even though the Comet assay of cellular DNA damage indicated that all the subtypes of ARC patients had more DNA breaks in peripheral lymphocytes than the controls independent of rs2278414 genotypes, individuals carrying the variant A allele (AA and AG) had lower ZNF350 mRNA levels compared with individuals with GG genotype. Moreover, the in vitro experiment indicated that miR-21-3p and miR-150-5p specifically downregulated luciferase reporter expression in the cell lines transfected with rs2278414 A allele compared with rs2278414 G. These results suggested that the association of SNP rs2278414 with ARC might involve an altered miRNA regulation of ZNF350.
Collapse
Affiliation(s)
- Shanshan Gu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Han Rong
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mei Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
46
|
Liu X, Zhou P, Fan F, Li D, Wu J, Lu Y, Luo Y. CpG site methylation in CRYAA promoter affect transcription factor Sp1 binding in human lens epithelial cells. BMC Ophthalmol 2016; 16:141. [PMID: 27507241 PMCID: PMC4979130 DOI: 10.1186/s12886-016-0309-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/28/2016] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Age-related cataract (ARC) is the leading cause of visual impairment worldwide, and α-crystallin (CRYAA) is the predominant structural protein involved in the maintenance of lens clarity and refractive properties. We previously demonstrated that CRYAA genes undergo epigenetic repression in the lens epithelia in ARC. We further analyze the underlying mechanism in the current study. METHODS The transcription factor binding sites of the CpG island of CRYAA promoter were predicted by TESS website. An electrophoretic mobility shift assay (EMSA) was used to analyze the impact of the methylation of CpG sites on transcription factors. Human lens epithelial B-3 (HLE B-3) Cells were treated with demethylation agent zebularine in the concentrations of 0 (PBS as control), 10 μM, 20 μM, 50 μM, 100 μM and 200 μM, respectively. After treatment in the above concentrations for 24 h, 48 h and 72 h, respectively, CRYAA mRNA expression levels were detected by Quantitative Real-Time RT-PCR. RESULTS The methylation of the CpG site of the CRYAA promoter decreased the DNA-binding capacity of transcription factor Sp1. Zebularine increased CRYAA expression in HLE B-3 Cells in a dose- dependent and time- dependent pattern. CONCLUSIONS The evidence presented suggests that the methylation of the CpG sites of the CRYAA promotor directly affect Sp1 binding, leading to down expression of CRYAA in human lens epithelial cells. Zebularine treatment could restore CRYAA expression in a dose- dependent and time- dependent pattern.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China.,Key Laboratory of Myopia, Ministry of Health, 83 FenYang Road, Shanghai, 200031, People's Republic of China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China
| | - Peng Zhou
- Department of Ophthalmology, Parkway Health, Specialty and Inpatient Center (Luwan), 170 DanShui Road, Floor 3, Shanghai, 200020, People's Republic of China.,Hong Qiao Medical Center, 2258 HongQiao Road, Shanghai, 200033, People's Republic of China
| | - Fan Fan
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China.,Key Laboratory of Myopia, Ministry of Health, 83 FenYang Road, Shanghai, 200031, People's Republic of China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China
| | - Dan Li
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China
| | - Jihong Wu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China
| | - Yi Lu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China.,Key Laboratory of Myopia, Ministry of Health, 83 FenYang Road, Shanghai, 200031, People's Republic of China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China
| | - Yi Luo
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China. .,Key Laboratory of Myopia, Ministry of Health, 83 FenYang Road, Shanghai, 200031, People's Republic of China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, 83 FenYang Road, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
47
|
Li D, Qiu X, Yang J, Liu T, Luo Y, Lu Y. Generation of Human Lens Epithelial-Like Cells From Patient-Specific Induced Pluripotent Stem Cells. J Cell Physiol 2016; 231:2555-62. [PMID: 26991066 DOI: 10.1002/jcp.25374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Dan Li
- Research Center; Eye & ENT Hospital of Fudan University; Shanghai China
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- State Key Laboratory of Molecular Engineering of Polymers; Fudan University; Shanghai China
| | - Xiaodi Qiu
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- Department of Ophthalmology; Eye & ENT Hospital of Fudan University; Shanghai China
| | - Jin Yang
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- Department of Ophthalmology; Eye & ENT Hospital of Fudan University; Shanghai China
| | - Tianjin Liu
- Institute of Biochemistry and Cell Biology; Shanghai Institutes for Biological Sciences; Chinese Academy for Sciences; Shanghai China
| | - Yi Luo
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- Department of Ophthalmology; Eye & ENT Hospital of Fudan University; Shanghai China
| | - Yi Lu
- Key Laboratory of Myopia; Ministry of Health; Shanghai China
- Department of Ophthalmology; Eye & ENT Hospital of Fudan University; Shanghai China
| |
Collapse
|
48
|
Wang Y, Li F, Zhang G, Kang L, Guan H. Ultraviolet-B induces ERCC6 repression in lens epithelium cells of age-related nuclear cataract through coordinated DNA hypermethylation and histone deacetylation. Clin Epigenetics 2016; 8:62. [PMID: 27231489 PMCID: PMC4880862 DOI: 10.1186/s13148-016-0229-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background Ultraviolet-B (UVB) exposure attributes to the formation of age-related nuclear cataract (ARNC), which is mediated with DNA damage. DNA damage, an important factor for pathogenesis of ARNC, is induced by UVB, and is generally resolved by the nucleotide excision repair (NER) repair mechanism. Cockayne syndrome complementation group B (CSB) protein coded by ERCC6 is a vital component for NER. However, we found no association between selected ERCC6 polymorphisms and ARNC. In this study, we investigated whether UVB exposure could alter ERCC6 expression and the process could involve epigenetic changes of DNA methylation and/or histone acetylation of ERCC6 in the lens epithelial cells (LECs). We also assessed the involvement of those coordinated changes in lens tissue from ARNC patients. Results mRNA and protein expression of ERCC6 in lens tissue (LECs) were lower in ARNCs than those in the controls. This reduction corresponded to methylation of a CpG site at the ERCC6 promoter and histone modifications (methylation and acetylation) nearby this site. UVB-treated human lens epithelium B3 (HLE-B3) and 239T cell presented (1) increased apoptosis, suggesting reduced UV-damage repair, (2) hypermethylation of the CpG site located at position -441 (relative to transcription start site) within the binding region for transcriptional factor Sp1 in the ERCC6 promoter, (3) the enhancement of histone H3K9 deacetylation, (4) induction in DNA methyltransferases 3b (DNMT3b) and histone deacetylase1 (HDAC1) associated to the CpG site of ERCC6 by CHIP assay. Conclusions These findings suggest an orchestrated mechanism triggered by UVB radiation where the concurrent association of specific hypermethylation CpG site, H3K9 deacetylation of ERCC6, and repression of ERCC6 gene expression. Taken together, with the similar changes in the lens tissue from ARNC patients, our data unveiled a possible mechanism of epigenetic modification of DNA repair gene in the pathogenesis of ARNC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0229-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| | - Fei Li
- Ophthalmology Department, Chengdu Fifth People's Hospital, Chengdu, Sichuan China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu China
| |
Collapse
|
49
|
Coppedè F, Tannorella P, Stoccoro A, Chico L, Siciliano G, Bonuccelli U, Migliore L. Methylation analysis of DNA repair genes in Alzheimer's disease. Mech Ageing Dev 2016; 161:105-111. [PMID: 27080585 DOI: 10.1016/j.mad.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
There is substantial evidence of impaired DNA repair activities in Alzheimer's disease (AD) neurons and peripheral tissues, inducing some investigators to speculate that this could partially result from promoter hypermethylation of DNA repair genes, resulting in gene silencing in those tissues. In the present study a screening cohort composed by late-onset AD (LOAD) patients and healthy matched controls was evaluated with a commercially available DNA methylation array for the assessment of the methylation levels of a panel of 22 genes involved in major DNA repair pathways in blood DNA. We then applied a cost-effective PCR based methylation-sensitive high-resolution melting (MS-HRM) technique, in order to evaluate the promoter methylation levels of the following DNA repair genes: OGG1, PARP1, MRE11A, BRCA1, MLH1, and MGMT. The analysis was performed in blood DNA from 56 LOAD patients and 55 matched controls, including the samples previously assessed with the DNA methylation array as validating samples. Both approaches revealed that all the investigated genes were largely hypomethylated in LOAD and control blood DNA, and no difference between groups was observed. Collectively, present data do not support an increased promoter methylation of some of the major DNA repair genes in blood DNA of AD patients.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Pierpaola Tannorella
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Andrea Stoccoro
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy; Doctoral School in Genetics Oncology and Clinical Medicine, University of Siena, Siena, Italy
| | - Lucia Chico
- Unit of Neurology, Department of Neuroscience, Pisa University Hospital, Via Roma 67, 56126 Pisa, Italy
| | - Gabriele Siciliano
- Unit of Neurology, Department of Neuroscience, Pisa University Hospital, Via Roma 67, 56126 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Neurological Clinic, Via Roma 67, 56126 Pisa, Italy
| | - Ubaldo Bonuccelli
- Unit of Neurology, Department of Neuroscience, Pisa University Hospital, Via Roma 67, 56126 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Neurological Clinic, Via Roma 67, 56126 Pisa, Italy
| | - Lucia Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, Section of Medical Genetics, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
50
|
Epigenetic Regulation of Werner Syndrome Gene in Age-Related Cataract. J Ophthalmol 2015; 2015:579695. [PMID: 26509079 PMCID: PMC4609838 DOI: 10.1155/2015/579695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023] Open
Abstract
Purpose. To examine the promoter methylation and histone modification of WRN (Werner syndrome gene), a DNA repair gene, and their relationship with the gene expression in age-related cataract (ARC) lens. Methods. We collected the lenses after cataract surgery from 117ARC patients and 39 age-matched non-ARC. WRN expression, DNA methylation and histone modification around the CpG island were assessed. The methylation status of Human-lens-epithelium cell (HLEB-3) was chemically altered to observe the relationship between methylation and expression of WRN. Results. The WRN expression was significantly decreased in the ARC anterior lens capsules comparing with the control. The CpG island of WRN promoter in the ARC anterior lens capsules displayed hypermethylation comparing with the controls. The WRN promoter was almost fully methylated in the cortex of ARC and control lens. Acetylated H3 was lower while methylated H3-K9 was higher in ARC anterior lens capsules than that of the controls. The expression of WRN in HLEB-3 increased after demethylation of the cells. Conclusions. A hypermethylation in WRN promoter and altered histone modification in anterior lens capsules might contribute to the ARC mechanism. The data suggest an association of altered DNA repair capability in lens with ARC pathogenesis.
Collapse
|