1
|
Boreel DF, Beerkens AP, Heskamp S, Boswinkel M, Peters JP, Adema GJ, Span PN, Bussink J. Inhibition of OXPHOS induces metabolic rewiring and reduces hypoxia in murine tumor models. Clin Transl Radiat Oncol 2024; 49:100875. [PMID: 39469146 PMCID: PMC11513494 DOI: 10.1016/j.ctro.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Tumor hypoxia is a feature of many solid malignancies and is known to cause radio resistance. In recent years it has become clear that hypoxic tumor regions also foster an immunosuppressive phenotype and are involved in immunotherapy resistance. It has been proposed that reducing the tumors' oxygen consumption will result in an increased oxygen concentration in the tissue and improve radio- and immunotherapy efficacy. The aim of this study is to investigate the metabolic rewiring of cancer cells by pharmacological attenuation of oxidative phosphorylation (OXPHOS) and subsequently reduce tumor hypoxia. Material and methods The metabolic effects of three OXPHOS inhibitors IACS-010759, atovaquone and metformin were explored by measuring oxygen consumption rate, extra cellular acidification rate, and [18F]FDG uptake in 2D and 3D cell culture. Tumor cell growth in 2D cell culture and hypoxia in 3D cell culture were analyzed by live cell imaging. Tumor hypoxia and [18F]FDG uptake in vivo following treatment with IACS-010759 was determined by immunohistochemistry and ex vivo biodistribution respectively. Results In vitro experiments show that tumor cell metabolism is heterogeneous between different models. Upon OXPHOS inhibition, metabolism shifts from oxygen consumption through OXPHOS towards glycolysis, indicated by increased acidification and glucose uptake. Inhibition of OXPHOS by IACS-010759 treatment reduced diffusion limited tumor hypoxia in both 3D cell culture and in vivo. Although immune cell presence was lower in hypoxic areas compared with normoxic areas, it is not altered following short term OXPHOS inhibition. Discussion These results show that inhibition of OXPHOS causes a metabolic shift from OXPHOS towards increased glycolysis in 2D and 3D cell culture. Moreover, inhibition of OXPHOS reduces diffusion limited hypoxia in 3D cell culture and murine tumor models. Reduced hypoxia by OXPHOS inhibition might enhance therapy efficacy in future studies. However, caution is warranted as systemic metabolic rewiring can cause adverse effects.
Collapse
Affiliation(s)
- Daan F. Boreel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Anne P.M. Beerkens
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Milou Boswinkel
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Johannes P.W. Peters
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Gosse J. Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Paul N. Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Kumar P, Lacroix M, Dupré P, Arslan J, Fenou L, Orsetti B, Le Cam L, Racoceanu D, Radulescu O. Deciphering oxygen distribution and hypoxia profiles in the tumor microenvironment: a data-driven mechanistic modeling approach. Phys Med Biol 2024; 69:125023. [PMID: 38815610 DOI: 10.1088/1361-6560/ad524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Objective. The distribution of hypoxia within tissues plays a critical role in tumor diagnosis and prognosis. Recognizing the significance of tumor oxygenation and hypoxia gradients, we introduce mathematical frameworks grounded in mechanistic modeling approaches for their quantitative assessment within a tumor microenvironment. By utilizing known blood vasculature, we aim to predict hypoxia levels across different tumor types.Approach. Our approach offers a computational method to measure and predict hypoxia using known blood vasculature. By formulating a reaction-diffusion model for oxygen distribution, we derive the corresponding hypoxia profile.Main results. The framework successfully replicates observed inter- and intra-tumor heterogeneity in experimentally obtained hypoxia profiles across various tumor types (breast, ovarian, pancreatic). Additionally, we propose a data-driven method to deduce partial differential equation models with spatially dependent parameters, which allows us to comprehend the variability of hypoxia profiles within tissues. The versatility of our framework lies in capturing diverse and dynamic behaviors of tumor oxygenation, as well as categorizing states of vascularization based on the dynamics of oxygen molecules, as identified by the model parameters.Significance. The proposed data-informed mechanistic method quantitatively assesses hypoxia in the tumor microenvironment by integrating diverse histopathological data and making predictions across different types of data. The framework provides valuable insights from both modeling and biological perspectives, advancing our comprehension of spatio-temporal dynamics of tumor oxygenation.
Collapse
Affiliation(s)
- P Kumar
- Laboratory of Pathogens and Host Immunity, University of Montpellier, CNRS, INSERM, Montpellier, France
- Sorbonne Université, CNRS, INSERM, AP-HP, Inria, Paris Brain Institute (ICM), Paris, France
| | - M Lacroix
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University of Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - P Dupré
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University of Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - J Arslan
- Sorbonne Université, CNRS, INSERM, AP-HP, Inria, Paris Brain Institute (ICM), Paris, France
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Australia
| | - L Fenou
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University of Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - B Orsetti
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University of Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - L Le Cam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University of Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - D Racoceanu
- Sorbonne Université, CNRS, INSERM, AP-HP, Inria, Paris Brain Institute (ICM), Paris, France
| | - O Radulescu
- Laboratory of Pathogens and Host Immunity, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
3
|
Shi W, Dong J, Zhong B, Hu X, Zhao C. Predicting the Prognosis of Bladder Cancer Patients Through Integrated Multi-omics Exploration of Chemotherapy-Related Hypoxia Genes. Mol Biotechnol 2024:10.1007/s12033-024-01203-9. [PMID: 38806990 DOI: 10.1007/s12033-024-01203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Bladder cancer is a prevalent malignancy with high mortality rates worldwide. Hypoxia is a critical factor in the development and progression of cancers. However, whether and how hypoxia-related genes (HRGs) could affect the development and the chemotherapy response of bladder cancer is still largely unexplored. This study comprehensively explored the complex molecular landscape associated with hypoxia in bladder cancer by analyzing 260 hypoxia genes based on transcriptomic and genomic data in 411 samples. Employing the 109 dysregulated hypoxia genes for consensus clustering, we delineated two distinct bladder cancer clusters characterized by disparate survival outcomes and distinct oncogenic roles. We defined a HPscore that was correlated with a variety of clinical features, including TNM stages and pathologic grades. Tumor immune landscape analysis identified three immune clusters and close interactions between hypoxia genes and the various immune cells. Utilizing a network-based method, we defined 129 HRGs exerting influence on apoptotic processes and critical signaling pathways in cancer. Further analysis of chemotherapy drug sensitivity identified potential drug-target HRGs. We developed a Risk Score model that was related to the overall survival of bladder cancer patients based on doxorubicin-target HRGs: ACTG2, MYC, PDGFRB, DHRS2, and KLRD1. This study not only enhanced our understanding of bladder cancer at the molecular level but also provided promising avenues for the development of targeted therapies, representing a significant step toward the identification of effective treatments and addressing the urgent need for advancements in bladder cancer management.
Collapse
Affiliation(s)
- Wensheng Shi
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, Hunan, China
- Furong Laboratory, Changsha, 410008, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiaming Dong
- Department of Radiation, Cangzhou Central Hospital, Hebei, 061000, China
| | - Bowen Zhong
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, Hunan, China
- Furong Laboratory, Changsha, 410008, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiheng Hu
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, 410008, Hunan, China
- Furong Laboratory, Changsha, 410008, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chunguang Zhao
- Department of Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Beerkens APM, Boreel DF, Nathan JA, Neuzil J, Cheng G, Kalyanaraman B, Hardy M, Adema GJ, Heskamp S, Span PN, Bussink J. Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging. Cancer Metab 2024; 12:13. [PMID: 38702787 PMCID: PMC11067257 DOI: 10.1186/s40170-024-00342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.
Collapse
Affiliation(s)
- Anne P M Beerkens
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
| | - Daan F Boreel
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - James A Nathan
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport Qld, 4222, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- Aix Marseille University, CNRS, ICR, UMR 7273, Marseille, 13013, France
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Johan Bussink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| |
Collapse
|
5
|
Possenti L, Vitullo P, Cicchetti A, Zunino P, Rancati T. Modeling hypoxia-induced radiation resistance and the impact of radiation sources. Comput Biol Med 2024; 173:108334. [PMID: 38520919 DOI: 10.1016/j.compbiomed.2024.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Hypoxia contributes significantly to resistance in radiotherapy. Our research rigorously examines the influence of microvascular morphology on radiotherapy outcome, specifically focusing on how microvasculature shapes hypoxia within the microenvironment and affects resistance to a standard treatment regimen (30×2GyRBE). Our computational modeling extends to the effects of different radiation sources. For photons and protons, our analysis establishes a clear correlation between hypoxic volume distribution and treatment effectiveness, with vascular density and regularity playing a crucial role in treatment success. On the contrary, carbon ions exhibit distinct effectiveness, even in areas of intense hypoxia and poor vascularization. This finding points to the potential of carbon-based hadron therapy in overcoming hypoxia-induced resistance to RT. Considering that the spatial scale analyzed in this study is closely aligned with that of imaging data voxels, we also address the implications of these findings in a clinical context envisioning the possibility of detecting subvoxel hypoxia.
Collapse
Affiliation(s)
- Luca Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy.
| | - Piermario Vitullo
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Alessandro Cicchetti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, P.zza Da Vinci 32, Milan, 20133, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, Milan, 20133, Italy
| |
Collapse
|
6
|
Pominova D, Ryabova A, Skobeltsin A, Markova I, Linkov K, Romanishkin I. The use of methylene blue to control the tumor oxygenation level. Photodiagnosis Photodyn Ther 2024; 46:104047. [PMID: 38503388 DOI: 10.1016/j.pdpdt.2024.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Hypoxia is a characteristic feature of many tumors. It promotes tumor proliferation, metastasis, and invasion and can reduce the effectiveness of many types of cancer treatment. OBJECTIVE The aim of this study was to investigate the pharmacokinetics of methylene blue (MB) and its impact on the tumor oxygenation level at mouse Lewis lung carcinoma (LLC) model using spectroscopic methods. APPROACH The pharmacokinetics of MB were studied qualitatively and quantitatively using video fluorescence imaging and fluorescence spectroscopy. The degree of hemoglobin oxygenation in vivo was examined by calculating hemoglobin optical absorption from the measured diffuse reflectance spectra. The distribution of MB fluorescence and the lifetime of NADH were analyzed using laser scanning microscopy and fluorescence lifetime imaging microscopy (FLIM) to assess cellular metabolism. RESULTS After intravenous administration of MB at 10-20 mg/kg, it quickly transitioned in the tumor to a colorless leucomethylene blue, with maximum accumulation in the tumor occurring after 5-10 min. A concentration of 10 mg/kg resulted in a relative increase of the tumor oxygenation level for small tumors (volume 50-75 mm3) and normal tissue 120 min after the introduction of MB. A shift in tumor metabolism towards oxidative phosphorylation (according to the lifetime of the NADH coenzyme) was measured using FLIM method after intravenous administration of 10 mg/kg of MB. Intravenous administration of MB at 20 mg/kg results in a long-term decrease in oxygenation, which persisted for at least 120 min after the administration and did not return to its initial level. CONCLUSIONS Administration of MB at 10 mg/kg shown to increase tumor oxygenation level, potentially leading to more effective antitumor therapy. However, at higher doses (20 mg/kg), MB may cause long-term decrease in oxygenation.
Collapse
Affiliation(s)
- Daria Pominova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University MEPhI, Moscow, Russia
| | - Anastasia Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University MEPhI, Moscow, Russia
| | - Alexey Skobeltsin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia; National Research Nuclear University MEPhI, Moscow, Russia
| | - Inessa Markova
- National Research Nuclear University MEPhI, Moscow, Russia
| | - Kirill Linkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Igor Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Huang W, Yu M, Sun S, Yu L, Wen S, Liu Y, Peng Z, Hao H, Wang T, Wu M. Mitochondrial-Targeting Nanotrapper Captured Copper Ions to Alleviate Tumor Hypoxia for Amplified Photoimmunotherapy in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2166-2179. [PMID: 38170968 DOI: 10.1021/acsami.3c17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hypoxia is a pervasive feature of solid tumors, which significantly limits the therapeutic effect of photodynamic therapy (PDT) and further influences the immunotherapy efficiency in breast cancer. However, the transient alleviation of tumor hypoxia fails to address the underlying issue of increased oxygen consumption, resulting from the rapid proliferation of tumor cells. At present, studies have found that the reduction of the oxygen consumption rate (OCR) by cytochrome C oxidase (COX) inhibition that induced oxidative phosphorylation (OXHPOS) suppression was able to solve the proposed problem. Herein, we developed a specific mitochondrial-targeting nanotrapper (I@MSN-Im-PEG), which exhibited good copper chelating ability to inhibit COX for reducing the OCR. The results proved that the nanotrapper significantly alleviated the hypoxic tumor microenvironment by copper chelation in mitochondria and enhanced the PDT effect in vitro and in vivo. Meanwhile, the nanotrapper improved photoimmunotherapy through both enhancing PDT-induced immunogenetic cell death (ICD) effects and reversing Treg-mediated immune suppression on 4T1 tumor-bearing mice. The mitochondrial-targeting nanotrapper provided a novel and efficacious strategy to enhance the PDT effect and amplify photoimmunotherapy in breast cancer.
Collapse
Affiliation(s)
- Wenxin Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Simin Wen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Yuanqi Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Huisong Hao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P.R. China
| |
Collapse
|
8
|
Rodriguez-Berriguete G, Puliyadi R, Machado N, Barberis A, Prevo R, McLaughlin M, Buffa FM, Harrington KJ, Higgins GS. Antitumour effect of the mitochondrial complex III inhibitor Atovaquone in combination with anti-PD-L1 therapy in mouse cancer models. Cell Death Dis 2024; 15:32. [PMID: 38212297 PMCID: PMC10784292 DOI: 10.1038/s41419-023-06405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Immune checkpoint blockade (ICB) provides effective and durable responses for several tumour types by unleashing an immune response directed against cancer cells. However, a substantial number of patients treated with ICB develop relapse or do not respond, which has been partly attributed to the immune-suppressive effect of tumour hypoxia. We have previously demonstrated that the mitochondrial complex III inhibitor atovaquone alleviates tumour hypoxia both in human xenografts and in cancer patients by decreasing oxygen consumption and consequently increasing oxygen availability in the tumour. Here, we show that atovaquone alleviates hypoxia and synergises with the ICB antibody anti-PD-L1, significantly improving the rates of tumour eradication in the syngeneic CT26 model of colorectal cancer. The synergistic effect between atovaquone and anti-PD-L1 relied on CD8+ T cells, resulted in the establishment of a tumour-specific memory immune response, and was not associated with any toxicity. We also tested atovaquone in combination with anti-PD-L1 in the LLC (lung) and MC38 (colorectal) cancer syngeneic models but, despite causing a considerable reduction in tumour hypoxia, atovaquone did not add any therapeutic benefit to ICB in these models. These results suggest that atovaquone has the potential to improve the outcomes of patients treated with ICB, but predictive biomarkers are required to identify individuals likely to benefit from this intervention.
Collapse
Affiliation(s)
| | - Rathi Puliyadi
- Department of Oncology, University of Oxford, Oxford, UK
| | - Nicole Machado
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Remko Prevo
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Computing Sciences, Bocconi University, Milan, Italy
| | | | | |
Collapse
|
9
|
Machado ND, Heather LC, Harris AL, Higgins GS. Targeting mitochondrial oxidative phosphorylation: lessons, advantages, and opportunities. Br J Cancer 2023; 129:897-899. [PMID: 37563220 PMCID: PMC10491675 DOI: 10.1038/s41416-023-02394-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Nicole D Machado
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom.
| |
Collapse
|
10
|
Carmona-Bozo JC, Manavaki R, Miller JL, Brodie C, Caracò C, Woitek R, Baxter GC, Graves MJ, Fryer TD, Provenzano E, Gilbert FJ. PET/MRI of hypoxia and vascular function in ER-positive breast cancer: correlations with immunohistochemistry. Eur Radiol 2023; 33:6168-6178. [PMID: 37166494 PMCID: PMC10415421 DOI: 10.1007/s00330-023-09572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVES To explore the relationship between indices of hypoxia and vascular function from 18F-fluoromisonidazole ([18F]-FMISO)-PET/MRI with immunohistochemical markers of hypoxia and vascularity in oestrogen receptor-positive (ER +) breast cancer. METHODS Women aged > 18 years with biopsy-confirmed, treatment-naïve primary ER + breast cancer underwent [18F]-FMISO-PET/MRI prior to surgery. Parameters of vascular function were derived from DCE-MRI using the extended Tofts model, whilst hypoxia was assessed using the [18F]-FMISO influx rate constant, Ki. Histological tumour sections were stained with CD31, hypoxia-inducible factor (HIF)-1α, and carbonic anhydrase IX (CAIX). The number of tumour microvessels, median vessel diameter, and microvessel density (MVD) were obtained from CD31 immunohistochemistry. HIF-1α and CAIX expression were assessed using histoscores obtained by multiplying the percentage of positive cells stained by the staining intensity. Regression analysis was used to study associations between imaging and immunohistochemistry variables. RESULTS Of the lesions examined, 14/22 (64%) were ductal cancers, grade 2 or 3 (19/22; 86%), with 17/22 (77%) HER2-negative. [18F]-FMISO Ki associated negatively with vessel diameter (p = 0.03), MVD (p = 0.02), and CAIX expression (p = 0.002), whilst no significant relationships were found between DCE-MRI pharmacokinetic parameters and immunohistochemical variables. HIF-1α did not significantly associate with any PET/MR imaging indices. CONCLUSION Hypoxia measured by [18F]-FMISO-PET was associated with increased CAIX expression, low MVD, and smaller vessel diameters in ER + breast cancer, further corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. KEY POINTS • Hypoxia, measured by [18F]-FMISO-PET, was associated with low microvessel density and small vessel diameters, corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. • Increased CAIX expression was associated with higher levels of hypoxia measured by [18F]-FMISO-PET. • Morphologic and functional abnormalities of the tumour microvasculature are the major determinants of hypoxia in cancers and support the previously reported perfusion-driven character of hypoxia in breast carcinomas.
Collapse
Affiliation(s)
- Julia C Carmona-Bozo
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jodi L Miller
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Cara Brodie
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Corradina Caracò
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ramona Woitek
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Gabrielle C Baxter
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Box 65 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Elena Provenzano
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Box 97 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
11
|
Shen J, Chen G, Zhao L, Huang G, Liu H, Liu B, Miao Y, Li Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv Healthc Mater 2023; 12:e2300089. [PMID: 37055912 DOI: 10.1002/adhm.202300089] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.
Collapse
Affiliation(s)
- Jing Shen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
12
|
Feng X, Chen Z, Liu Z, Fu X, Song H, Zhang Q. Self-delivery photodynamic-hypoxia alleviating nanomedicine synergizes with anti-PD-L1 for cancer immunotherapy. Int J Pharm 2023; 639:122970. [PMID: 37084832 DOI: 10.1016/j.ijpharm.2023.122970] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The low level of T-lymphocyte infiltration in tumor is a key issue in cancer immunotherapy. Stimulating anti-tumor immune responses and improving the tumor microenvironment are essential for enhancing anti-PD-L1 immunotherapy. Herein, atovaquone (ATO), protoporphyrin IX (PpIX), and stabilizer (ATO/PpIX NPs) were constructed to self-assemble with hydrophobic interaction and passively targeted to tumor for the first time. The studies have indicated that PpIX-mediated photodynamic induction of immunogenic cell death combined with relieving tumor hypoxia by ATO, leading to maturation of dendritic cells, polarization of M2-type tumor-associated macrophages (TAMs) towards M1-type TAMs, infiltration of cytotoxic T lymphocytes, reduction of regulatory T cells, release of pro-inflammatory cytokines, resulting in an effective anti-tumor immune response synergized with anti-PD-L1 against primary tumor and pulmonary metastasis. Taken together, the combined nanoplatform may be a promising strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Xianquan Feng
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Zhenzhen Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Zhihong Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Xiaoling Fu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Hongtao Song
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Qian Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China.
| |
Collapse
|
13
|
Boreel DF, Span PN, Kip A, Boswinkel M, Peters JPW, Adema GJ, Bussink J, Heskamp S. Quantitative Imaging of Hypoxic CAIX-Positive Tumor Areas with Low Immune Cell Infiltration in Syngeneic Mouse Tumor Models. Mol Pharm 2023; 20:2245-2255. [PMID: 36882391 PMCID: PMC10074386 DOI: 10.1021/acs.molpharmaceut.3c00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Limited diffusion of oxygen in combination with increased oxygen consumption leads to chronic hypoxia in most solid malignancies. This scarcity of oxygen is known to induce radioresistance and leads to an immunosuppressive microenvironment. Carbonic anhydrase IX (CAIX) is an enzyme functioning as a catalyzer for acid export in hypoxic cells and is an endogenous biomarker for chronic hypoxia. The aim of this study is to develop a radiolabeled antibody that recognizes murine CAIX to visualize chronic hypoxia in syngeneic tumor models and to study the immune cell population in these hypoxic areas. An anti-mCAIX antibody (MSC3) was conjugated to diethylenetriaminepentaacetic acid (DTPA) and radiolabeled with indium-111 (111In). CAIX expression on murine tumor cells was determined using flow cytometry, and in vitro affinity of [111In]In-MSC3 was analyzed in a competitive binding assay. Ex vivo biodistribution studies were performed to determine in vivo radiotracer distribution. CAIX+ tumor fractions were determined by mCAIX microSPECT/CT, and the tumor microenvironment was analyzed using immunohistochemistry and autoradiography. We showed that [111In]In-MSC3 binds to CAIX-expressing (CAIX+) murine cells in vitro and accumulates in CAIX+ areas in vivo. We optimized the use of [111In]In-MSC3 for preclinical imaging such that it can be applied in syngeneic mouse models and showed that we can quantitatively distinguish between tumor models with varying CAIX+ fractions by ex vivo analyses and in vivo mCAIX microSPECT/CT. Analysis of the tumor microenvironment identified these CAIX+ areas as less infiltrated by immune cells. Together these data demonstrate that mCAIX microSPECT/CT is a sensitive technique to visualize hypoxic CAIX+ tumor areas that exhibit reduced infiltration of immune cells in syngeneic mouse models. In the future, this technique may enable visualization of CAIX expression before or during hypoxia-targeted or hypoxia-reducing treatments. Thereby, it will help optimize immuno- and radiotherapy efficacy in translationally relevant syngeneic mouse tumor models.
Collapse
Affiliation(s)
- Daan F Boreel
- Radiotherapy and OncoImmunology Laboratory, Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525GA Nijmegen, The Netherlands.,Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy and OncoImmunology Laboratory, Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525GA Nijmegen, The Netherlands
| | - Annemarie Kip
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Milou Boswinkel
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Johannes P W Peters
- Radiotherapy and OncoImmunology Laboratory, Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525GA Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525GA Nijmegen, The Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525GA Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
14
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
15
|
How the histological structure of some lung cancers shaped almost 70 years of radiobiology. Br J Cancer 2023; 128:407-412. [PMID: 36344595 PMCID: PMC9938174 DOI: 10.1038/s41416-022-02041-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Pivotal research led by Louis Harold Gray in the 1950s suggested that oxygen plays a vital role during radiotherapy. By proving that tumours have large necrotic cores due to hypoxia and that hypoxic cells require significantly larger doses of ionising radiation to achieve the same cell kill, Thomlinson and Gray inspired the subsequent decades of research into better defining the mechanistic role of molecular oxygen at the time of radiation. Ultimately, the work pioneered by Thomlinson and Gray led to numerous elegant studies which demonstrated that tumour hypoxia predicts for poor patient outcomes. Furthermore, this subsequently resulted in investigations into markers and measurement of hypoxia, as well as modification strategies. However, despite an abundance of pre-clinical data supporting hypoxia-targeted treatments, there is limited widespread application of hypoxia-targeted therapies routinely used in clinical practice. Significant contributing factors underpinning disappointing clinical trial results include the use of model systems which are more hypoxic than human tumours and a failure to stratify patients based on levels of hypoxia. However, translating the original findings of Thomlinson and Gray remains a research priority with the potential to significantly improve patient outcomes and specifically those receiving radiotherapy.
Collapse
|
16
|
Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:184-193. [PMID: 36781361 DOI: 10.1016/j.joim.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/27/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Physical exercise, a common non-drug intervention, is an important strategy in cancer treatment, including hepatocellular carcinoma (HCC). However, the mechanism remains largely unknown. Due to the importance of hypoxia and cancer stemness in the development of HCC, the present study investigated whether the anti-HCC effect of physical exercise is related to its suppression on hypoxia and cancer stemness. METHODS A physical exercise intervention of swimming (30 min/d, 5 d/week, for 4 weeks) was administered to BALB/c nude mice bearing subcutaneous human HCC tumor. The anti-HCC effect of swimming was assessed in vivo by tumor weight monitoring, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) detection of proliferating cell nuclear antigen (PCNA) and Ki67. The expression of stemness transcription factors, including Nanog homeobox (NANOG), octamer-binding transcription factor 4 (OCT-4), v-Myc avian myelocytomatosis viral oncogene homolog (C-MYC) and hypoxia-inducible factor-1α (HIF-1α), was detected using real-time reverse transcription polymerase chain reaction. A hypoxia probe was used to explore the intratumoral hypoxia status. Western blot was used to detect the expression of HIF-1α and proteins related to protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. The IHC analysis of platelet endothelial cell adhesion molecule-1 (CD31), and the immunofluorescence co-location of CD31 and desmin were used to analyze tumor blood perfusion. SMMC-7721 cells were treated with nude mice serum. The inhibition effect on cancer stemness in vitro was detected using suspension sphere experiments and the expression of stemness transcription factors. The hypoxia status was inferred by measuring the protein and mRNA levels of HIF-1α. Further, the expression of proteins related to Akt/GSK-3β/β-catenin signaling pathway was detected. RESULTS Swimming significantly reduced the body weight and tumor weight in nude mice bearing HCC tumor. HE staining and IHC results showed a lower necrotic area ratio as well as fewer PCNA or Ki67 positive cells in mice receiving the swimming intervention. Swimming potently alleviated the intratumoral hypoxia, attenuated the cancer stemness, and inhibited the Akt/GSK-3β/β-catenin signaling pathway. Additionally, the desmin+/CD31+ ratio, rather than the number of CD31+ vessels, was significantly increased in swimming-treated mice. In vitro experiments showed that treating cells with the serum from the swimming intervention mice significantly reduced the formation of SMMC-7721 cell suspension sphere, as well as the mRNA expression level of stemness transcription factors. Consistent with the in vivo results, HIF-1α and Akt/GSK-3β/β-catenin signaling pathway were also inhibited in cells treated with serum from swimming group. CONCLUSION Swimming alleviated hypoxia and attenuated cancer stemness in HCC, through suppression of the Akt/GSK-3β/β-catenin signaling pathway. The alleviation of intratumoral hypoxia was related to the increase in blood perfusion in the tumor. Please cite this article as: Xiao CL, Zhong ZP, Lü C, Guo BJ, Chen JJ, Zhao T, Yin ZF, Li B. Physical exercise suppresses hepatocellular carcinoma progression by alleviating hypoxia and attenuating cancer stemness through the Akt/GSK-3β/β-catenin pathway. J Integr Med. 2022; Epub ahead of print.
Collapse
Affiliation(s)
- Chu-Lan Xiao
- Department of Rehabilitation, Changhai Hospital, Naval Medical University, Shanghai 200433, China; Department of Traditional Chinese Medicine, The 920th Hospital of Joint Logistics Support Force, Kunming 650000, Yunnan Province, China
| | - Zhi-Peng Zhong
- Department of Rehabilitation, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Can Lü
- Department of Rehabilitation, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Bing-Jie Guo
- Department of Rehabilitation, Changhai Hospital, Naval Medical University, Shanghai 200433, China; Second Team, Graduate School, Naval Medical University, Shanghai 200433, China
| | - Jiao-Jiao Chen
- Department of Rehabilitation, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tong Zhao
- College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zi-Fei Yin
- Department of Military Traditional Chinese Medicine, Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200433, China.
| | - Bai Li
- Department of Rehabilitation, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
17
|
Iwanicki I, Wu LL, Flores-Guzman F, Sundland R, Viza-Gomes P, Nordgren R, Centner CS, Kandel JJ, Applebaum MA, Bader KB, Hernandez SL. Histotripsy induces apoptosis and reduces hypoxia in a neuroblastoma xenograft model. Int J Hyperthermia 2023; 40:2222941. [PMID: 37344380 DOI: 10.1080/02656736.2023.2222941] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor of childhood, and high-risk disease is resistant to intensive treatment. Histotripsy is a focused ultrasound therapy under development for tissue ablation via bubble activity. The goal of this study was to assess outcomes of histotripsy ablation in a xenograft model of high-risk NB. METHODS Female NCr nude mice received NGP-luciferase cells intrarenally. Under ultrasound image guidance, histotripsy pulses were applied over a distance of 4-6 mm within the tumors. Bioluminescence indicative of tumor viability was quantified before, immediately after, and 24 h after histotripsy exposure. Tumors were immunostained to assess apoptosis (TUNEL), endothelium (endomucin), pericytes (αSMA), hypoxia (pimonidazole), vascular endothelial growth factor A (VEGFA), and platelet-derived growth factor-B (PDGF-B). The apoptotic cytokine TNFα and its downstream effector cleaved caspase-3 (c-casp-3) were assessed with SDS-PAGE. RESULTS Histotripsy induced a 50% reduction in bioluminescence compared to untreated controls, with an absence of nuclei in the treatment core surrounded by a dense rim of TUNEL-positive cells. Tumor regions not targeted by histotripsy also showed an increase in TUNEL staining density. Increased apoptosis in histotripsy samples was consistent with increases in TNFα and c-casp-3 relative to controls. Treated tumors exhibited a decrease in hypoxia, VEGF, PDGF-B, and pericyte coverage of vasculature compared to control samples. Further, increases in vasodilation were found in histotripsy-treated specimens. CONCLUSIONS In addition to ablative effects, histotripsy was found to drive tumor apoptosis through intrinsic pathways, altering blood vessel architecture, and reducing hypoxia.
Collapse
Affiliation(s)
- Isabella Iwanicki
- Department of Surgery, Section of Pediatric Surgery, The University of Chicago, Chicago, IL, USA
| | - Lydia L Wu
- Department of Surgery, Section of Pediatric Surgery, The University of Chicago, Chicago, IL, USA
| | - Fernando Flores-Guzman
- Department of Surgery, Section of Pediatric Surgery, The University of Chicago, Chicago, IL, USA
| | - Rachael Sundland
- Department of Surgery, Section of Pediatric Surgery, The University of Chicago, Chicago, IL, USA
| | - Paula Viza-Gomes
- Department of Surgery, Section of Pediatric Surgery, The University of Chicago, Chicago, IL, USA
| | - Rachel Nordgren
- Department of Public Health Sciences, The University of Chicago, Chicago, IL
| | | | - Jessica J Kandel
- Department of Surgery, Section of Pediatric Surgery, The University of Chicago, Chicago, IL, USA
| | - Mark A Applebaum
- Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Kenneth B Bader
- Department of Radiology, The University of Chicago, Chicago, IL
| | - Sonia L Hernandez
- Department of Surgery, Section of Pediatric Surgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
d’Hose D, Mathieu B, Mignion L, Hardy M, Ouari O, Jordan BF, Sonveaux P, Gallez B. EPR Investigations to Study the Impact of Mito-Metformin on the Mitochondrial Function of Prostate Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185872. [PMID: 36144606 PMCID: PMC9504708 DOI: 10.3390/molecules27185872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Background: Mito-metformin10 (MM10), synthesized by attaching a triphenylphosphonium cationic moiety via a 10-carbon aliphatic side chain to metformin, is a mitochondria-targeted analog of metformin that was recently demonstrated to alter mitochondrial function and proliferation in pancreatic ductal adenocarcinoma. Here, we hypothesized that this compound may decrease the oxygen consumption rate (OCR) in prostate cancer cells, increase the level of mitochondrial ROS, alleviate tumor hypoxia, and radiosensitize tumors. Methods: OCR and mitochondrial superoxide production were assessed by EPR (9 GHz) in vitro in PC-3 and DU-145 prostate cancer cells. Reduced and oxidized glutathione were assessed before and after MM10 exposure. Tumor oxygenation was measured in vivo using 1 GHz EPR oximetry in PC-3 tumor model. Tumors were irradiated at the time of maximal reoxygenation. Results: 24-hours exposure to MM10 significantly decreased the OCR of PC-3 and DU-145 cancer cells. An increase in mitochondrial superoxide levels was observed in PC-3 but not in DU-145 cancer cells, an observation consistent with the differences observed in glutathione levels in both cancer cell lines. In vivo, the tumor oxygenation significantly increased in the PC-3 model (daily injection of 2 mg/kg MM10) 48 and 72 h after initiation of the treatment. Despite the significant effect on tumor hypoxia, MM10 combined to irradiation did not increase the tumor growth delay compared to the irradiation alone. Conclusions: MM10 altered the OCR in prostate cancer cells. The effect of MM10 on the superoxide level was dependent on the antioxidant capacity of cell line. In vivo, MM10 alleviated tumor hypoxia, yet without consequence in terms of response to irradiation.
Collapse
Affiliation(s)
- Donatienne d’Hose
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Barbara Mathieu
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Lionel Mignion
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Micael Hardy
- Institut de Chimie Radicalaire UMR 7273, Aix-Marseille Université/CNRS, 13013 Marseille, France
| | - Olivier Ouari
- Institut de Chimie Radicalaire UMR 7273, Aix-Marseille Université/CNRS, 13013 Marseille, France
| | - Bénédicte F. Jordan
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherches Expérimentales et Cliniques (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Research Institute, 1300 Wavre, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
- Correspondence:
| |
Collapse
|
19
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
20
|
Wadsworth BJ, Lee CM, Bennewith KL. Transiently hypoxic tumour cell turnover and radiation sensitivity in human tumour xenografts. Br J Cancer 2022; 126:1616-1626. [PMID: 35031765 PMCID: PMC9130130 DOI: 10.1038/s41416-021-01691-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Solid tumour perfusion can be unstable, creating transiently hypoxic cells that can contribute to radiation resistance. We investigated the in vivo lifetime of transiently hypoxic tumour cells and chronically hypoxic tumour cells during tumour growth and following irradiation. METHODS Hypoxic cells in SiHa and WiDr human tumour xenografts were labelled using pimonidazole and EF5, and turnover was quantified as the loss of labelled cells over time. The perfusion-modifying drug pentoxifylline was used to reoxygenate transiently hypoxic cells prior to hypoxia marker administration or irradiation. RESULTS Chronically hypoxic cells constantly turnover in SiHa and WiDr tumours, with half-lives ranging from 42-82 h and significant numbers surviving >96 h. Transiently hypoxic cells constitute 26% of the total hypoxic cells in WiDr tumours. These transiently hypoxic cells survive at least 24 h, but then rapidly turnover with a half-life of 34 h and are undetectable 72 h after labelling. Transiently hypoxic cells are radiation-resistant, although vascular dysfunction induced by 10 Gy of ionising radiation preferentially kills transiently hypoxic cells. CONCLUSIONS Transiently hypoxic tumour cells survive up to 72 h in WiDr tumours and are radiation-resistant, although transiently hypoxic cells are sensitive to vascular dysfunction induced by high doses of ionising radiation.
Collapse
Affiliation(s)
- Brennan J. Wadsworth
- Integrative Oncology, BC Cancer, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Che-Min Lee
- Integrative Oncology, BC Cancer, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC Canada
| | - Kevin L. Bennewith
- Integrative Oncology, BC Cancer, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
21
|
Mudassar F, Shen H, Cook KM, Hau E. Improving the synergistic combination of programmed death‐1/programmed death ligand‐1 blockade and radiotherapy by targeting the hypoxic tumour microenvironment. J Med Imaging Radiat Oncol 2022; 66:560-574. [PMID: 35466515 PMCID: PMC9322583 DOI: 10.1111/1754-9485.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
Abstract
Immune checkpoint inhibition with PD‐1/PD‐L1 blockade is a promising area in the field of anti‐cancer therapy. Although clinical data have revealed success of PD‐1/PD‐L1 blockade as monotherapy or in combination with CTLA‐4 or chemotherapy, the combination with radiotherapy could further boost anti‐tumour immunity and enhance clinical outcomes due to the immunostimulatory effects of radiation. However, the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy can be challenged by the complex nature of the tumour microenvironment (TME), including the presence of tumour hypoxia. Hypoxia is a major barrier to the effectiveness of both radiotherapy and PD‐1/PD‐L1 blockade immunotherapy. Thus, targeting the hypoxic TME is an attractive strategy to enhance the efficacy of the combination. Addition of compounds that directly or indirectly reduce hypoxia, to the combination of PD‐1/PD‐L1 inhibitors and radiotherapy may optimize the success of the combination and improve therapeutic outcomes. In this review, we will discuss the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy and highlight the role of hypoxic TME in impeding the success of both therapies. In addition, we will address the potential approaches for targeting tumour hypoxia and how exploiting these strategies could benefit the combination of PD‐1/PD‐L1 blockade and radiotherapy.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Kristina M Cook
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre Westmead Hospital Sydney New South Wales Australia
- Blacktown Hematology and Cancer Centre Blacktown Hospital Sydney New South Wales Australia
| |
Collapse
|
22
|
Dewhirst MW, Oleson JR, Kirkpatrick J, Secomb TW. Accurate Three-Dimensional Thermal Dosimetry and Assessment of Physiologic Response Are Essential for Optimizing Thermoradiotherapy. Cancers (Basel) 2022; 14:1701. [PMID: 35406473 PMCID: PMC8997141 DOI: 10.3390/cancers14071701] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous randomized trials have revealed that hyperthermia (HT) + radiotherapy or chemotherapy improves local tumor control, progression free and overall survival vs. radiotherapy or chemotherapy alone. Despite these successes, however, some individuals fail combination therapy; not every patient will obtain maximal benefit from HT. There are many potential reasons for failure. In this paper, we focus on how HT influences tumor hypoxia, since hypoxia negatively influences radiotherapy and chemotherapy response as well as immune surveillance. Pre-clinically, it is well established that reoxygenation of tumors in response to HT is related to the time and temperature of exposure. In most pre-clinical studies, reoxygenation occurs only during or shortly after a HT treatment. If this were the case clinically, then it would be challenging to take advantage of HT induced reoxygenation. An important question, therefore, is whether HT induced reoxygenation occurs in the clinic that is of radiobiological significance. In this review, we will discuss the influence of thermal history on reoxygenation in both human and canine cancers treated with thermoradiotherapy. Results of several clinical series show that reoxygenation is observed and persists for 24-48 h after HT. Further, reoxygenation is associated with treatment outcome in thermoradiotherapy trials as assessed by: (1) a doubling of pathologic complete response (pCR) in human soft tissue sarcomas, (2) a 14 mmHg increase in pO2 of locally advanced breast cancers achieving a clinical response vs. a 9 mmHg decrease in pO2 of locally advanced breast cancers that did not respond and (3) a significant correlation between extent of reoxygenation (as assessed by pO2 probes and hypoxia marker drug immunohistochemistry) and duration of local tumor control in canine soft tissue sarcomas. The persistence of reoxygenation out to 24-48 h post HT is distinctly different from most reported rodent studies. In these clinical series, comparison of thermal data with physiologic response shows that within the same tumor, temperatures at the higher end of the temperature distribution likely kill cells, resulting in reduced oxygen consumption rate, while lower temperatures in the same tumor improve perfusion. However, reoxygenation does not occur in all subjects, leading to significant uncertainty about the thermal-physiologic relationship. This uncertainty stems from limited knowledge about the spatiotemporal characteristics of temperature and physiologic response. We conclude with recommendations for future research with emphasis on retrieving co-registered thermal and physiologic data before and after HT in order to begin to unravel complex thermophysiologic interactions that appear to occur with thermoradiotherapy.
Collapse
Affiliation(s)
- Mark W Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - James R Oleson
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John Kirkpatrick
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
23
|
Kim MJ, Ku JM, Choi YJ, Lee SY, Hong SH, Kim HI, Shin YC, Ko SG. Reduced HIF-1α Stability Induced by 6-Gingerol Inhibits Lung Cancer Growth through the Induction of Cell Death. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072106. [PMID: 35408505 PMCID: PMC9000891 DOI: 10.3390/molecules27072106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 11/16/2022]
Abstract
Lung cancer (LC) is the leading global cause of cancer-related death, and metastasis is a great challenge in LC therapy. Additionally, solid cancer, including lung, prostate, and colon cancer, are characterized by hypoxia. A low-oxygen state is facilitated by the oncogene pathway, which correlates with a poor cancer prognosis. Thus, we need to understand the related mechanisms in solid tumors to improve and develop new anticancer strategies. The experiments herein describe an anticancer mechanism in which heat shock protein 90 (HSP90) stabilizes HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate the efficacy of 6-gingerol and the molecular mechanism by which 6-gingerol inhibits LC metastasis in different oxygen environments. Our results showed that cell proliferation was inhibited after 6-gingerol treatment. Additionally, HIF-1α, a transcriptional regulator, was found to be recruited to the hypoxia response element (HRE) of target genes to induce the transcription of a series of target genes, including MMP-9, vimentin and snail. Interestingly, we found that 6-gingerol treatment suppressed activation of the transcription factor HIF-1α by downregulating HSP90 under both normoxic and hypoxic conditions. Furthermore, an experiment in an in vivo xenograft model revealed decreased tumor growth after 6-gingerol treatment. Both in vitro and in vivo analyses showed the inhibition of metastasis through HIF-1α/HSP90 after 6-gingerol treatment. In summary, our study demonstrates that 6-gingerol suppresses proliferation and blocks the nuclear translocation of HIF-1α and activation of the EMT pathway. These data suggest that 6-gingerol is a candidate antimetastatic treatment for LC.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
| | - Jin Mo Ku
- Institute of Safety and Effectiveness Evaluation for Korean Medicine, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (J.M.K.); (S.H.H.)
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
| | - Seo Yeon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
| | - Se Hyang Hong
- Institute of Safety and Effectiveness Evaluation for Korean Medicine, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (J.M.K.); (S.H.H.)
| | - Hyo In Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
| | - Yong Cheol Shin
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
- Institute of Safety and Effectiveness Evaluation for Korean Medicine, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (J.M.K.); (S.H.H.)
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea
| | - Seong-Gyu Ko
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (M.J.K.); (Y.-J.C.); (S.Y.L.); (H.I.K.); (Y.C.S.)
- Institute of Safety and Effectiveness Evaluation for Korean Medicine, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea; (J.M.K.); (S.H.H.)
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae Rd., Dongdaemun-gu, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
24
|
Afas KC, Goldman D. A two-layer continuously distributed capillary O 2 transport model applied to blood flow regulation in resting skeletal muscle. J Theor Biol 2022; 539:111058. [PMID: 35181287 DOI: 10.1016/j.jtbi.2022.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
The microcirculation is the site of direct oxygen transfer from blood to tissue, and also of oxygen delivery control via regulation of local blood flow. In addition, a number of diseases including type II diabetes mellitus (DMII) and sepsis are known to produce microcirculatory dysfunction in their early phases. Given the complexity of microvascular structure and physiology, and the difficulty of measuring tissue oxygenation at the micro-scale, mathematical modelling has been necessary for understanding the physiology and pathophysiology of O2 transport in the microcirculation and for interpreting in vivo experiments. To advance this area, a model of blood-tissue O2 transport in skeletal muscle was recently developed which uses continuously distributed capillaries and includes O2 diffusion, convection, and consumption. The present work extends this model to two adjacent layers of skeletal muscle with different blood flow rates and applies it to study steady-state O2 transport when flow regulation is stimulated using an O2 exchange chamber. To generate a model which may be validated through in vivo experiments, an overlying O2 permeable membrane is included. The model is solved using traditional methods including separation of variables and Fourier decomposition, and to ensure smooth profiles at the muscle-muscle and muscle-membrane interfaces matching conditions are developed. The study presents qualitative verification for the model, using visualizations of tissue PO2 distributions for varying capillary density (CD), and presents capillary velocity response values in the near layer for varying chamber PO2 under the assumption that outlet capillary O2 saturation is equalized between adjacent layers. These compensatory velocity profiles, along with effective 'no-flux' chamber PO2 values, are presented for varying CD and tissue O2 consumption values. Insights gained from the two-layer model provide guidance for interpreting and planning future in-vivo experiments, and also provide motivation for further development of the model to improve understanding of the interaction between O2 transport and blood flow regulation.
Collapse
Affiliation(s)
- Keith Christian Afas
- School of Biomedical Engineering, University of Western Ontario, London, N6G1G8, Ontario, CA
| | - Daniel Goldman
- School of Biomedical Engineering, University of Western Ontario, London, N6G1G8, Ontario, CA; Department of Medical Biophysics, University of Western Ontario, London, N6A5C1, Ontario, CA; Department of Applied Mathematics, University of Western Ontario, London, N6A5C1, Ontario, CA.
| |
Collapse
|
25
|
Zhang X, He C, Xiang G. Engineering nanomedicines to inhibit hypoxia-inducible Factor-1 for cancer therapy. Cancer Lett 2022; 530:110-127. [PMID: 35041892 DOI: 10.1016/j.canlet.2022.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1), an essential promoter of tumor progression, has attracted increasing attention as a therapeutic target. In addition to hypoxic cellular conditions, HIF-1 activation can be triggered by cancer treatment, which causes drug tolerance and therapeutic failure. To date, a series of effective strategies have been explored to suppress HIF-1 function, including silencing the HIF-1α gene, inhibiting HIF-1α protein translation, degrading HIF-1α protein, and inhibiting HIF-1 transcription. Furthermore, nanoparticle-based drug delivery systems have been widely developed to improve the stability and pharmacokinetics of HIF-1 inhibitors or achieve HIF-1-targeted combination therapies as a nanoplatform. In this review, we summarize the current literature on nanomedicines targeting HIF-1 to combat cancer and discuss their potential for future development.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Bourigault P, Skwarski M, Macpherson RE, Higgins GS, McGowan DR. Investigation of atovaquone-induced spatial changes in tumour hypoxia assessed by hypoxia PET/CT in non-small cell lung cancer patients. EJNMMI Res 2021; 11:130. [PMID: 34964932 PMCID: PMC8716680 DOI: 10.1186/s13550-021-00871-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tumour hypoxia promotes an aggressive tumour phenotype and enhances resistance to anticancer treatments. Following the recent observation that the mitochondrial inhibitor atovaquone increases tumour oxygenation in NSCLC, we sought to assess whether atovaquone affects tumour subregions differently depending on their level of hypoxia. METHODS Patients with resectable NSCLC participated in the ATOM trial (NCT02628080). Cohort 1 (n = 15) received atovaquone treatment, whilst cohort 2 (n = 15) did not. Hypoxia-related metrics, including change in mean tumour-to-blood ratio, tumour hypoxic volume, and fraction of hypoxic voxels, were assessed using hypoxia PET imaging. Tumours were divided into four subregions or distance categories: edge, outer, inner, and centre, using MATLAB. RESULTS Atovaquone-induced reduction in tumour hypoxia mostly occurred in the inner and outer tumour subregions, and to a lesser extent in the centre subregion. Atovaquone did not seem to act in the edge subregion, which was the only tumour subregion that was non-hypoxic at baseline. Notably, the most intensely hypoxic tumour voxels, and therefore the most radiobiologically resistant areas, were subject to the most pronounced decrease in hypoxia in the different subregions. CONCLUSIONS This study provides insights into the action of atovaquone in tumour subregions that help to better understand its role as a novel tumour radiosensitiser. TRIAL REGISTRATION ClinicalTrials.gov, NCT0262808. Registered 11th December 2015, https://clinicaltrials.gov/ct2/show/NCT02628080.
Collapse
Affiliation(s)
| | - Michael Skwarski
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ruth E Macpherson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
27
|
Li C, Chen X, Ren X, Chen JL, Chen H, Yu JJ, Ran QC, Kang S, Chen XM, Zhao ZJ. Identification of Hypoxia-Related Molecular Classification and Associated Gene Signature in Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:709865. [PMID: 34888229 PMCID: PMC8649955 DOI: 10.3389/fonc.2021.709865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
The high heterogeneity of oral squamous cell carcinoma (OSCC) is the main obstacle for individualized treatment. Recognizing the characteristics of different subtypes and investigating the promising strategies for each subclass are of great significance in precise treatment. In this study, we systematically evaluated hypoxia-mediated patterns together with immune characteristics of 309 OSCC patients in the TCGA training set and 97 patients in the GSE41613 testing set. We further identified two different hypoxia subtypes with distinct immune microenvironment traits and provided treatment programs for the two subclasses. In order to assess hypoxia level individually, we finally constructed a hypoxia-related risk score, which could predict the clinical outcome and immunotherapy response of OSCC patients. In summary, the recognition of different hypoxia patterns and the establishment of hypoxia-related risk score might enhance our understanding of the tumor microenvironment of OSCC and provide more personalized treatment strategies in the future.
Collapse
Affiliation(s)
- Chen Li
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ren
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, China
| | - Jia-Lin Chen
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Hao Chen
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Jing-Jia Yu
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Qiu-Chi Ran
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Shuang Kang
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Xi-Meng Chen
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhen-Jin Zhao
- Department of Orthodontics, The First Clinic of Stomatological Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Wan Y, Fu LH, Li C, Lin J, Huang P. Conquering the Hypoxia Limitation for Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103978. [PMID: 34580926 DOI: 10.1002/adma.202103978] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) has aroused great research interest in recent years owing to its high spatiotemporal selectivity, minimal invasiveness, and low systemic toxicity. However, due to the hypoxic nature characteristic of many solid tumors, PDT is frequently limited in therapeutic effect. Moreover, the consumption of O2 during PDT may further aggravate the tumor hypoxic condition, which promotes tumor proliferation, metastasis, and invasion resulting in poor prognosis of treatment. Therefore, numerous efforts have been made to increase the O2 content in tumor with the goal of enhancing PDT efficacy. Herein, these strategies developed in past decade are comprehensively reviewed to alleviate tumor hypoxia, including 1) delivering exogenous O2 to tumor directly, 2) generating O2 in situ, 3) reducing tumor cellular O2 consumption by inhibiting respiration, 4) regulating the TME, (e.g., normalizing tumor vasculature or disrupting tumor extracellular matrix), and 5) inhibiting the hypoxia-inducible factor 1 (HIF-1) signaling pathway to relieve tumor hypoxia. Additionally, the O2 -independent Type-I PDT is also discussed as an alternative strategy. By reviewing recent progress, it is hoped that this review will provide innovative perspectives in new nanomaterials designed to combat hypoxia and avoid the associated limitation of PDT.
Collapse
Affiliation(s)
- Yilin Wan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chunying Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
29
|
Aimaitijiang A, Tabu K, Wang W, Nobuhisa I, Taga T. Glioma cells remotely promote erythropoiesis as a self-expanding strategy of cancer stem cells. Genes Cells 2021; 27:25-42. [PMID: 34837452 DOI: 10.1111/gtc.12908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Cancer stem cells are a promising target for cancer eradication due to their responsibility for therapy-resistance and cancer recurrence. Previously, we have demonstrated that glioma stem cells (GSCs) recruit and induce the differentiation of bone marrow (BM) monocytes into tumor-infiltrating macrophages, which phagocytose hemorrhaged erythrocytes and store GSC-beneficial iron in mouse xenografts, suggesting a self-expanding strategy of GSCs that exploits host hematopoiesis of myeloid cells. However, it remains unclear whether a self-advantageous effect of GSCs also occurs on erythroid cells during glioma development. Here, we found that, in the primary cultures of mouse fetal liver proerythroblasts (proEs), conditioned media prepared from glioma cells including patient-derived glioblastoma (GBM) cells significantly facilitated the differentiation of proEs into erythroblasts. Importantly, in-vivo erythroid analysis in intracranially GSC-transplanted mice showed an enhanced erythropoiesis in the BM. In addition, the sphere forming ability of patient-derived GBM cells was significantly suppressed by hypoxia treatment and iron chelation, suggesting higher demands of GSCs for oxygen and iron, which may be supplied by GSCs- and their progeny-induced erythrocyte production. Our findings provide a new insight into survival and expanding strategies of GSCs that systemically exploit host erythropoiesis.
Collapse
Affiliation(s)
- Alapati Aimaitijiang
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Wenqian Wang
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
30
|
Vilaplana-Lopera N, Besh M, Moon EJ. Targeting Hypoxia: Revival of Old Remedies. Biomolecules 2021; 11:1604. [PMID: 34827602 PMCID: PMC8615589 DOI: 10.3390/biom11111604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Tumour hypoxia is significantly correlated with patient survival and treatment outcomes. At the molecular level, hypoxia is a major driving factor for tumour progression and aggressiveness. Despite the accumulative scientific and clinical efforts to target hypoxia, there is still a need to find specific treatments for tumour hypoxia. In this review, we discuss a variety of approaches to alter the low oxygen tumour microenvironment or hypoxia pathways including carbogen breathing, hyperthermia, hypoxia-activated prodrugs, tumour metabolism and hypoxia-inducible factor (HIF) inhibitors. The recent advances in technology and biological understanding reveal the importance of revisiting old therapeutic regimens and repurposing their uses clinically.
Collapse
Affiliation(s)
| | | | - Eui Jung Moon
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington OX3 7DQ, UK; (N.V.-L.); (M.B.)
| |
Collapse
|
31
|
Wang S, Zhou X, Zeng Z, Sui M, Chen L, Feng C, Huang C, Yang Q, Ji M, Hou P. Atovaquone-HSA nano-drugs enhance the efficacy of PD-1 blockade immunotherapy by alleviating hypoxic tumor microenvironment. J Nanobiotechnology 2021; 19:302. [PMID: 34600560 PMCID: PMC8487475 DOI: 10.1186/s12951-021-01034-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hypoxia is inherent character of most solid malignancies, leading to the failure of chemotherapy, radiotherapy and immunotherapy. Atovaquone, an anti-malaria drug, can alleviate tumor hypoxia by inhibiting mitochondrial complex III activity. The present study exploits atovaquone/albumin nanoparticles to improve bioavailability and tumor targeting of atovaquone, enhancing the efficacy of anti-PD-1 therapy by normalizing tumor hypoxia. Methods We prepared atovaquone-loaded human serum albumin (HSA) nanoparticles stabilized by intramolecular disulfide bonds, termed HSA-ATO NPs. The average size and zeta potential of HSA-ATO NPs were measured by particle size analyzer. The morphology of HSA-ATO NPs was characterized by transmission electron microscope (TEM). The bioavailability and safety of HSA-ATO NPs were assessed by animal experiments. Flow cytometry and ELISA assays were used to evaluate tumor immune microenvironment. Results Our data first verified that atovaquone effectively alleviated tumor hypoxia by inhibiting mitochondrial activity both in vitro and in vivo, and successfully encapsulated atovaquone in vesicle with albumin, forming HSA-ATO NPs of approximately 164 nm in diameter. We then demonstrated that the HSA-ATO NPs possessed excellent bioavailability, tumor targeting and a highly favorable biosafety profile. When combined with anti-PD-1 antibody, we observed that HSA-ATO NPs strongly enhanced the response of mice bearing tumor xenografts to immunotherapy. Mechanistically, HSA-ATO NPs promoted intratumoral CD8+ T cell recruitment by alleviating tumor hypoxia microenvironment, thereby enhancing the efficacy of anti-PD-1 immunotherapy. Conclusions Our data provide strong evidences showing that HSA-ATO NPs can serve as safe and effective nano-drugs to enhance cancer immunotherapy by alleviating hypoxic tumor microenvironment. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01034-9.
Collapse
Affiliation(s)
- Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xinrui Zhou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Zekun Zeng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Mengjun Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Lihong Chen
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Chao Feng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Chen Huang
- Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China. .,Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
32
|
Therapeutic Modification of Hypoxia. Clin Oncol (R Coll Radiol) 2021; 33:e492-e509. [PMID: 34535359 DOI: 10.1016/j.clon.2021.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
Regions of reduced oxygenation (hypoxia) are a characteristic feature of virtually all animal and human solid tumours. Numerous preclinical studies, both in vitro and in vivo, have shown that decreasing oxygen concentration induces resistance to radiation. Importantly, hypoxia in human tumours is a negative indicator of radiotherapy outcome. Hypoxia also contributes to resistance to other cancer therapeutics, including immunotherapy, and increases malignant progression as well as cancer cell dissemination. Consequently, substantial effort has been made to detect hypoxia in human tumours and identify realistic approaches to overcome hypoxia and improve cancer therapy outcomes. Hypoxia-targeting strategies include improving oxygen availability, sensitising hypoxic cells to radiation, preferentially killing these cells, locating the hypoxic regions in tumours and increasing the radiation dose to those areas, or applying high energy transfer radiation, which is less affected by hypoxia. Despite numerous clinical studies with each of these hypoxia-modifying approaches, many of which improved both local tumour control and overall survival, hypoxic modification has not been established in routine clinical practice. Here we review the background and significance of hypoxia, how it can be imaged clinically and focus on the various hypoxia-modifying techniques that have undergone, or are currently in, clinical evaluation.
Collapse
|
33
|
Meng X, Zhang X, Lei Y, Cao D, Wang Z. Biodegradable copper-metformin nanoscale coordination polymers for enhanced chemo/chemodynamic synergistic therapy by reducing oxygen consumption to promote H 2O 2 accumulation. J Mater Chem B 2021; 9:1988-2000. [PMID: 33511387 DOI: 10.1039/d0tb02476g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chemo/chemodynamic synergistic therapy is a promising strategy to improve the antitumor effect. However, hypoxia and a limited amount of hydrogen peroxide (H2O2) in the tumor microenvironment (TME) severely restrict the therapeutic efficacy of this combined treatment. Herein, we report biodegradable doxorubicin (Dox)-loaded copper-metformin (Met) nanoscale coordination polymers (Dox@Cu-Met NPs), which exert a chemo/chemodynamic synergistic therapeutic effect by reducing oxygen (O2) consumption to promote H2O2 accumulation in the tumor. Inside tumor cells, Met can inhibit the consumption of O2 to relieve tumor hypoxia by suppressing mitochondrial respiration. The alleviated-tumor hypoxia can not only elevate H2O2 content via the Dox-activated cascade reaction of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and superoxide dismutase (SOD), but also improve the efficacy of Dox. More importantly, the depletion of glutathione (GSH) accompanies the whole treatment process, which can realize the conversion of Cu2+ to Cu+ and boost reactive oxygen species (ROS) accumulation to improve chemodynamic therapy (CDT) efficacy. Meanwhile, Met is expected to cut off the energy supply by inhibiting respiration, leading to starvation therapy. In vivo investigations demonstrate that tumor growth is significantly inhibited through the enhanced chemo/chemodynamic synergistic treatment. This work provides a new paradigm for cancer therapy using an economical and straightforward method to construct a synergistic nanomedicine platform.
Collapse
Affiliation(s)
- Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, P. R. China.
| | - Xuezhong Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, P. R. China.
| | - Yunfeng Lei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, P. R. China.
| | - Dongwei Cao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, P. R. China. and Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, Jiangsu, P. R. China.
| |
Collapse
|
34
|
Is Hypoxia a Factor Influencing PSMA-Directed Radioligand Therapy?-An In Silico Study on the Role of Chronic Hypoxia in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13143429. [PMID: 34298642 PMCID: PMC8307065 DOI: 10.3390/cancers13143429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumor hypoxia is considered a critical factor associated with the resistance of conventional radiotherapy, where the X-ray-induced free radicals lead to DNA damage in a manner that is strongly dependent on the tissue oxygenation. The emerging PSMA-directed radioligand therapy (RLT) employs the α or β particles emitted by the radiopharmaceuticals to kill the tumor cells. In contrast to conventional therapy, the induced DNA damage is less dependent on the oxygenation status. Less attention has been paid to investigating whether tumor hypoxia will influence the efficacy of PSMA-directed RLT. We propose a histology-driven in silico model to quantitatively investigate the influence of tumor hypoxia on the treatment outcome for PSMA-directed RLT with 177Lu and 225Ac. Our finding suggests that hypoxia is a factor to be considered for the application of PSMA-directed RLT. Abstract Radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) is an emerging treatment for metastatic castration-resistant prostate cancer (mCRPC). It administrates 225Ac- or 177Lu-labeled ligands for the targeted killing of tumor cells. Differently from X- or γ-ray, for the emitted α or β particles the ionization of the DNA molecule is less dependent on the tissue oxygenation status. Furthermore, the diffusion range of electrons in a tumor is much larger than the volume typically spanned by hypoxic regions. Therefore, hypoxia is less investigated as an influential factor for PSMA-directed RLT, in particular with β emitters. This study proposes an in silico approach to theoretically investigate the influence of tumor hypoxia on the PSMA-directed RLT. Based on mice histology images, the distribution of the radiopharmaceuticals was simulated with an in silico PBPK-based convection–reaction–diffusion model. Three anti-CD31 immunohistochemistry slices were used to simulate the tumor microenvironment. Ten regions of interest with varying hypoxia severity were analyzed. A kernel-based method was developed for dose calculation. The cell survival probability was calculated according to the linear-quadratic model. The statistical analysis performed on all the regions of interest (ROIs) shows more heterogeneous dose distributions obtained with 225Ac compared to 177Lu. The higher homogeneity of 177Lu-PSMA-ligand treatment is due to the larger range covered by the emitted β particles. The dose-to-tissue histogram (DTH) metric shows that in poorly vascularized ROIs only 10% of radiobiological hypoxic tissue receives the target dose using 177Lu-PSMA-ligand treatment. This percentage drops down to 5% using 225Ac. In highly vascularized ROIs, the percentage of hypoxic tissue receiving the target dose increases to more than 85% and 65% for the 177Lu and 225Ac-PSMA-ligands, respectively. The in silico study demonstrated that the reduced vascularization of the tumor strongly influences the dose delivered by PSMA-directed RLT, especially in hypoxic regions and consequently the treatment outcome.
Collapse
|
35
|
A Mesoscale Computational Model for Microvascular Oxygen Transfer. Ann Biomed Eng 2021; 49:3356-3373. [PMID: 34184146 DOI: 10.1007/s10439-021-02807-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
We address a mathematical model for oxygen transfer in the microcirculation. The model includes blood flow and hematocrit transport coupled with the interstitial flow, oxygen transport in the blood and the tissue, including capillary-tissue exchange effects. Moreover, the model is suited to handle arbitrarily complex vascular geometries. The purpose of this study is the validation of the model with respect to classical solutions and the further demonstration of its adequacy to describe the heterogeneity of oxygenation in the tissue microenvironment. Finally, we discuss the importance of these effects in the treatment of cancer using radiotherapy.
Collapse
|
36
|
Jin Z, Zhao Q, Yuan S, Jiang W, Hu Y. Strategies of Alleviating Tumor Hypoxia and Enhancing Tumor Therapeutic Effect by Macromolecular Nanomaterials. Macromol Biosci 2021; 21:e2100092. [PMID: 34008312 DOI: 10.1002/mabi.202100092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Indexed: 01/03/2023]
Abstract
Hypoxia as one of the most prominent features in tumors, has presented negative effects on tumor therapies including photodynamic therapy, radiotherapy, and chemotherapies, leading to the tumor regeneration and metastasis. Recently, nanomedicines have been proposed to handle the hypoxia dilemma. Some nanomedicines alleviated hypoxia to enhance the therapeutic effect, others used hypoxia-sensitive substances to treat tumor. Among them, macromolecular nanomaterials-based nanomedicine has attracted increased research interest. However, the complicated tumor microenvironment disturbs the practical application of macromolecular nanomaterials to deal with hypoxia. This review highlights the influence of hypoxia on tumor therapy and some new strategies of using macromolecular nanomaterials to overcome hypoxia for effective tumor therapy.
Collapse
Affiliation(s)
- Zhenyu Jin
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Qingyu Zhao
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Shanmei Yuan
- Nantong Vocational University, Nantong, 226019, China
| | - Wei Jiang
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| |
Collapse
|
37
|
Boreel DF, Span PN, Bussink J. Letter to the editor: Hypoxia kinetics and histology in combined radiotherapy and oxidative phosphorylation inhibition effects on antitumor immunity. J Immunother Cancer 2021; 9:jitc-2020-001793. [PMID: 33707312 PMCID: PMC7957125 DOI: 10.1136/jitc-2020-001793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
In response to the recent paper by Chen et al investigating the triple combination of oxidative phosphorylation inhibition, immunotherapy and radiotherapy, we would like to stress that after irradiation, a strong reduction in hypoxia (within 24 hours) can be followed by a strong increase (several days). This is especially the case with larger fraction sizes of radiation therapy, which are often applied in combination with immunotherapy, and is likely to be tumor dependent. All together this may strongly affect the synergistic effect of such a triple combination therapy.
Collapse
Affiliation(s)
- Daan F Boreel
- Radiotherapy & OncoImmunology laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy & OncoImmunology laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Johan Bussink
- Radiotherapy & OncoImmunology laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Shi R, Bao X, Unger K, Sun J, Lu S, Manapov F, Wang X, Belka C, Li M. Identification and validation of hypoxia-derived gene signatures to predict clinical outcomes and therapeutic responses in stage I lung adenocarcinoma patients. Am J Cancer Res 2021; 11:5061-5076. [PMID: 33754044 PMCID: PMC7978303 DOI: 10.7150/thno.56202] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: The current tumour-node-metastasis (TNM) staging system is insufficient for precise treatment decision-making and accurate survival prediction for patients with stage I lung adenocarcinoma (LUAD). Therefore, more reliable biomarkers are urgently needed to identify the high-risk subset in stage I patients to guide adjuvant therapy. Methods: This study retrospectively analysed the transcriptome profiles and clinical parameters of 1,400 stage I LUAD patients from 14 public datasets, including 13 microarray datasets from different platforms and 1 RNA-Seq dataset from The Cancer Genome Atlas (TCGA). A series of bioinformatic and machine learning approaches were combined to establish hypoxia-derived signatures to predict overall survival (OS) and immune checkpoint blockade (ICB) therapy response in stage I patients. In addition, enriched pathways, genomic and copy number alterations were analysed in different risk subgroups and compared to each other. Results: Among various hallmarks of cancer, hypoxia was identified as a dominant risk factor for overall survival in stage I LUAD patients. The hypoxia-related prognostic risk score (HPRS) exhibited more powerful capacity of survival prediction compared to traditional clinicopathological features, and the hypoxia-related immunotherapeutic response score (HIRS) outperformed conventional biomarkers for ICB therapy. An integrated decision tree and nomogram were generated to optimize risk stratification and quantify risk assessment. Conclusions: In summary, the proposed hypoxia-derived signatures are promising biomarkers to predict clinical outcomes and therapeutic responses in stage I LUAD patients.
Collapse
|
39
|
Goenka A, Tiek D, Song X, Huang T, Hu B, Cheng SY. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 2021; 10:cells10030484. [PMID: 33668200 PMCID: PMC7995978 DOI: 10.3390/cells10030484] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain cancer. Standard care using chemo- and radio-therapy modestly increases the overall survival of patients; however, recurrence is inevitable, due to treatment resistance and lack of response to targeted therapies. GBM therapy resistance has been attributed to several extrinsic and intrinsic factors which affect the dynamics of tumor evolution and physiology thus creating clinical challenges. Tumor-intrinsic factors such as tumor heterogeneity, hypermutation, altered metabolomics and oncologically activated alternative splicing pathways change the tumor landscape to facilitate therapy failure and tumor progression. Moreover, tumor-extrinsic factors such as hypoxia and an immune-suppressive tumor microenvironment (TME) are the chief causes of immunotherapy failure in GBM. Amid the success of immunotherapy in other cancers, GBM has occurred as a model of resistance, thus focusing current efforts on not only alleviating the immunotolerance but also evading the escape mechanisms of tumor cells to therapy, caused by inter- and intra-tumoral heterogeneity. Here we review the various mechanisms of therapy resistance in GBM, caused by the continuously evolving tumor dynamics as well as the complex TME, which cumulatively contribute to GBM malignancy and therapy failure; in an attempt to understand and identify effective therapies for recurrent GBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Shi-Yuan Cheng
- Correspondence: ; Tel.: +1-312-503-3043; Fax: +1-312-503-5603
| |
Collapse
|
40
|
Bernauer C, Man YKS, Chisholm JC, Lepicard EY, Robinson SP, Shipley JM. Hypoxia and its therapeutic possibilities in paediatric cancers. Br J Cancer 2021; 124:539-551. [PMID: 33106581 PMCID: PMC7851391 DOI: 10.1038/s41416-020-01107-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
In tumours, hypoxia-a condition in which the demand for oxygen is higher than its availability-is well known to be associated with reduced sensitivity to radiotherapy and chemotherapy, and with immunosuppression. The consequences of hypoxia on tumour biology and patient outcomes have therefore led to the investigation of strategies that can alleviate hypoxia in cancer cells, with the aim of sensitising cells to treatments. An alternative therapeutic approach involves the design of prodrugs that are activated by hypoxic cells. Increasing evidence indicates that hypoxia is not just clinically significant in adult cancers but also in paediatric cancers. We evaluate relevant methods to assess the levels and extent of hypoxia in childhood cancers, including novel imaging strategies such as oxygen-enhanced magnetic resonance imaging (MRI). Preclinical and clinical evidence largely supports the use of hypoxia-targeting drugs in children, and we describe the critical need to identify robust predictive biomarkers for the use of such drugs in future paediatric clinical trials. Ultimately, a more personalised approach to treatment that includes targeting hypoxic tumour cells might improve outcomes in subgroups of paediatric cancer patients.
Collapse
Affiliation(s)
- Carolina Bernauer
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK
| | - Y K Stella Man
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK
| | - Julia C Chisholm
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Surrey, UK
- Sarcoma Clinical Trials in Children and Young People Team, The Institute of Cancer Research, London, UK
| | - Elise Y Lepicard
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, The Institute of Cancer Research, London, UK.
| |
Collapse
|
41
|
A hybrid semiconducting organosilica-based O 2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy. Nat Commun 2021; 12:523. [PMID: 33483518 PMCID: PMC7822893 DOI: 10.1038/s41467-020-20860-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
The outcome of radiotherapy is significantly restricted by tumor hypoxia. To overcome this obstacle, one prevalent solution is to increase intratumoral oxygen supply. However, its effectiveness is often limited by the high metabolic demand for O2 by cancer cells. Herein, we develop a hybrid semiconducting organosilica-based O2 nanoeconomizer pHPFON-NO/O2 to combat tumor hypoxia. Our solution is twofold: first, the pHPFON-NO/O2 interacts with the acidic tumor microenvironment to release NO for endogenous O2 conservation; second, it releases O2 in response to mild photothermal effect to enable exogenous O2 infusion. Additionally, the photothermal effect can be increased to eradicate tumor residues with radioresistant properties due to other factors. This “reducing expenditure of O2 and broadening sources” strategy significantly alleviates tumor hypoxia in multiple ways, greatly enhances the efficacy of radiotherapy both in vitro and in vivo, and demonstrates the synergy between on-demand temperature-controlled photothermal and oxygen-elevated radiotherapy for complete tumor response. Tumor hypoxia is a major limitation in radiotherapy, and strategies to address this often fail due to high oxygen consumption. Here, the authors report a nanomaterial assembly for the simultaneous reduction in mitochondrial respiration and to supply oxygen to potentiate radiotherapy.
Collapse
|
42
|
Boreel DF, Span PN, Heskamp S, Adema GJ, Bussink J. Targeting Oxidative Phosphorylation to Increase the Efficacy of Radio- and Immune-Combination Therapy. Clin Cancer Res 2021; 27:2970-2978. [PMID: 33419779 DOI: 10.1158/1078-0432.ccr-20-3913] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
As tumors grow, they upregulate glycolytic and oxidative metabolism to support their increased and altered energetic demands. These metabolic changes have major effects on the tumor microenvironment. One of the properties leading to this aberrant metabolism is hypoxia, which occurs when tumors outgrow their often-chaotic vasculature. This scarcity of oxygen is known to induce radioresistance but can also have a disrupting effect on the antitumor immune response. Hypoxia inhibits immune effector cell function, while immune cells with a more suppressing phenotype become more active. Therefore, hypoxia strongly affects the efficacy of both radiotherapy and immunotherapy, as well as this therapy combination. Inhibition of oxidative phosphorylation (OXPHOS) is gaining interest for its ability to combat tumor hypoxia, and there are strong indications that this results in a reactivation of the immune response. This strategy decreases oxygen consumption, leading to better oxygenation of hypoxic tumor areas and eventually an increase in immunogenic cell death induced by radio-immunotherapy combinations. Promising preclinical improvements in radio- and immunotherapy efficacy have been observed by the hypoxia-reducing effect of OXPHOS inhibitors and several compounds are currently in clinical trials for their anticancer properties. Here, we will review the pharmacologic attenuation of tumor hypoxia using OXPHOS inhibitors, with emphasis on their impact on the intrinsic antitumor immune response and how this affects the efficacy of (combined) radio- and immunotherapy.
Collapse
Affiliation(s)
- Daan F Boreel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands. .,Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul N Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
43
|
Dadgar S, Troncoso JR, Siegel ER, Curry NM, Griffin RJ, Dings RPM, Rajaram N. Spectroscopic investigation of radiation-induced reoxygenation in radiation-resistant tumors. Neoplasia 2021; 23:49-57. [PMID: 33220616 PMCID: PMC7683290 DOI: 10.1016/j.neo.2020.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Fractionated radiation therapy is believed to reoxygenate and subsequently radiosensitize surviving hypoxic cancer cells. Measuring tumor reoxygenation between radiation fractions could conceivably provide an early biomarker of treatment response. However, the relationship between tumor reoxygenation and local control is not well understood. We used noninvasive optical fiber-based diffuse reflectance spectroscopy to monitor radiation-induced changes in hemoglobin oxygen saturation (sO2) in tumor xenografts grown from two head and neck squamous cell carcinoma cell lines - UM-SCC-22B and UM-SCC-47. Tumors were treated with 4 doses of 2 Gy over 2 consecutive weeks and diffuse reflectance spectra were acquired every day during the 2-week period. There was a statistically significant increase in sO2 in the treatment-responsive UM-SCC-22B tumors immediately following radiation. This reoxygenation trend was due to an increase in oxygenated hemoglobin (HbO2) and disappeared over the next 48 h as sO2 returned to preradiation baseline values. Conversely, sO2 in the relatively radiation-resistant UM-SCC-47 tumors increased after every dose of radiation and was driven by a significant decrease in deoxygenated hemoglobin (dHb). Immunohistochemical analysis revealed significantly elevated expression of hypoxia-inducible factor (HIF-1) in the UM-SCC-47 tumors prior to radiation and up to 48 h postradiation compared with the UM-SCC-22B tumors. Our observation of a decrease in dHb, a corresponding increase in sO2, as well as greater HIF-1α expression only in UM-SCC-47 tumors strongly suggests that the reoxygenation within these tumors is due to a decrease in oxygen consumption in the cancer cells, which could potentially play a role in promoting radiation resistance.
Collapse
Affiliation(s)
- Sina Dadgar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Natalie M Curry
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
44
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
45
|
Rickard AG, Zhuang M, DeRosa CA, Zhang X, Dewhirst MW, Fraser CL, Palmer GM. Dual-emissive, oxygen-sensing boron nanoparticles quantify oxygen consumption rate in breast cancer cells. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200174RR. [PMID: 33231018 PMCID: PMC7682476 DOI: 10.1117/1.jbo.25.11.116504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Decreasing the oxygen consumption rate (OCR) of tumor cells is a powerful method for ameliorating tumor hypoxia. However, quantifying the change in OCR is challenging in complex experimental systems. AIM We present a method for quantifying the OCR of two tumor cell lines using oxygen-sensitive dual-emissive boron nanoparticles (BNPs). We hypothesize that our BNP results are equivalent to the standard Seahorse assay. APPROACH We quantified the spectral emissions of the BNP and accounted for external oxygen diffusion to quantify OCR over 24 h. The BNP-computed OCR of two breast cancer cell lines, E0771 and 4T07, were compared with their respective Seahorse assays. Both cell lines were also irradiated to quantify radiation-induced changes in the OCR. RESULTS Using a Bland-Altman analysis, our BNPs OCR was equivalent to the standard Seahorse assay. Moreover, in an additional experiment in which we irradiated the cells at their 50% survival fraction, the BNPs were sensitive enough to quantify 24% reduction in OCR after irradiation. CONCLUSIONS Our results conclude that the BNPs are a viable alternative to the Seahorse assay for quantifying the OCR in cells. The Bland-Altman analysis showed that these two methods result in equivalent OCR measurements. Future studies will extend the OCR measurements to complex systems including 3D cultures and in vivo models, in which OCR measurements cannot currently be made.
Collapse
Affiliation(s)
- Ashlyn G. Rickard
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| | - Meng Zhuang
- University of Virginia, Department of Chemistry, Charlottesville, Virginia, United States
| | - Christopher A. DeRosa
- University of Virginia, Department of Chemistry, Charlottesville, Virginia, United States
| | - Xiaojie Zhang
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| | - Mark W. Dewhirst
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| | - Cassandra L. Fraser
- University of Virginia, Department of Chemistry, Charlottesville, Virginia, United States
| | - Gregory M. Palmer
- Duke University, Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
46
|
Mudassar F, Shen H, O'Neill G, Hau E. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:208. [PMID: 33028364 PMCID: PMC7542384 DOI: 10.1186/s13046-020-01724-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade gliomas (HGGs), including glioblastoma and diffuse intrinsic pontine glioma, are amongst the most fatal brain tumors. These tumors are associated with a dismal prognosis with a median survival of less than 15 months. Radiotherapy has been the mainstay of treatment of HGGs for decades; however, pronounced radioresistance is the major obstacle towards the successful radiotherapy treatment. Herein, tumor hypoxia is identified as a significant contributor to the radioresistance of HGGs as oxygenation is critical for the effectiveness of radiotherapy. Hypoxia plays a fundamental role in the aggressive and resistant phenotype of all solid tumors, including HGGs, by upregulating hypoxia-inducible factors (HIFs) which stimulate vital enzymes responsible for cancer survival under hypoxic stress. Since current attempts to target tumor hypoxia focus on reducing oxygen demand of tumor cells by decreasing oxygen consumption rate (OCR), an attractive strategy to achieve this is by inhibiting mitochondrial oxidative phosphorylation, as it could decrease OCR, and increase oxygenation, and could therefore improve the radiation response in HGGs. This approach would also help in eradicating the radioresistant glioma stem cells (GSCs) as these predominantly rely on mitochondrial metabolism for survival. Here, we highlight the potential for repurposing anti-parasitic drugs to abolish tumor hypoxia and induce apoptosis of GSCs. Current literature provides compelling evidence that these drugs (atovaquone, ivermectin, proguanil, mefloquine, and quinacrine) could be effective against cancers by mechanisms including inhibition of mitochondrial metabolism and tumor hypoxia and inducing DNA damage. Therefore, combining these drugs with radiotherapy could potentially enhance the radiosensitivity of HGGs. The reported efficacy of these agents against glioblastomas and their ability to penetrate the blood-brain barrier provides further support towards promising results and clinical translation of these agents for HGGs treatment.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia.
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia.
| | - Geraldine O'Neill
- Children's Cancer Research Unit, The Children's Hospital at Westmead, NSW, Westmead, Australia
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Westmead, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, NSW, Blacktown, Australia
| |
Collapse
|
47
|
Kery M, Papandreou I. Emerging strategies to target cancer metabolism and improve radiation therapy outcomes. Br J Radiol 2020; 93:20200067. [PMID: 32462882 DOI: 10.1259/bjr.20200067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer-specific metabolic changes support the anabolic needs of the rapidly growing tumor, maintain a favorable redox balance, and help cells adapt to microenvironmental stresses like hypoxia and nutrient deprivation. Radiation is extensively applied in a large number of cancer treatment protocols but despite its curative potential, radiation resistance and treatment failures pose a serious problem. Metabolic control of DNA integrity and genomic stability can occur through multiple processes, encompassing cell cycle regulation, nucleotide synthesis, epigenetic regulation of gene activity, and antioxidant defenses. Given the important role of metabolic pathways in oxidative damage responses, it is necessary to assess the potential for tumor-specific radiosensitization by novel metabolism-targeted therapies. Additionally, there are opportunities to identify molecular and functional biomarkers of vulnerabilities to combination treatments, which could then inform clinical decisions. Here, we present a curated list of metabolic pathways in the context of ionizing radiation responses. Glutamine metabolism influences DNA damage responses by mechanisms such as synthesis of nucleotides for DNA repair or of glutathione for ROS detoxification. Repurposed oxygen consumption inhibitors have shown promising radiosensitizing activity against murine model tumors and are now in clinical trials. Production of 2-hydroxy glutarate by isocitrate dehydrogenase1/2 neomorphic oncogenic mutants interferes with the function of α-ketoglutarate-dependent enzymes and modulates Ataxia Telangiectasia Mutated (ATM) signaling and glutathione pools. Radiation-induced oxidative damage to membrane phospholipids promotes ferroptotic cell loss and cooperates with immunotherapies to improve tumor control. In summary, there are opportunities to enhance the efficacy of radiotherapy by exploiting cell-inherent vulnerabilities and dynamic microenvironmental components of the tumor.
Collapse
Affiliation(s)
| | - Ioanna Papandreou
- Department of Radiation Oncology, Wexner Medical Center and Comprehensive Cancer Center The Ohio State University Columbus, OH, USA
| |
Collapse
|
48
|
Kumar A, Deep G. Exosomes in hypoxia-induced remodeling of the tumor microenvironment. Cancer Lett 2020; 488:1-8. [PMID: 32473240 DOI: 10.1016/j.canlet.2020.05.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022]
Abstract
Exosomes are structurally and functionally pleiotropic nano-sized (~30-150 nm in diameter) extracellular vesicles (EVs) with endosomal origin. These vesicles are secreted by almost all cells and play a significant role in intercellular communication and bio-waste disposal. To a great extent, exosomes represent biological "snapshot" of parent cells, and their cargos (protein, nucleotides, lipids, and metabolites) are loaded uniquely under different pathophysiological conditions. For example, most cancerous cells secrete a higher amount of exosomes loaded with distinct cargos under stressful low oxygen condition i.e. hypoxia, a key characteristic of solid tumors responsible for disease aggressiveness and poor survival. Exosomes secreted under hypoxia (ExoHypoxic) play a vital role in aiding cancer cells crosstalk with its microenvironment constituents to create conditions advantageous for cancer growth and metastatic spread. In this review article, we have highlighted the effects of ExoHypoxic on various tumor microenvironment components involved in angiogenesis, survival, proliferation, pre-metastatic niches preparation, immunomodulation, epithelial-to-mesenchymal transition, invasion, metastasis, and drug resistance. We have also described key ExoHypoxic cargos (miRNA, proteins, etc) and their targets in the receipt cells, responsible for various biological effects. Finally, we have emphasized the applicability of ExoHypoxic as a biomarker of tumor hypoxia and disease prognosis.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA; Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
49
|
Crezee J, Oei AL, Franken NAP, Stalpers LJA, Kok HP. Response: Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Front Oncol 2020; 10:528. [PMID: 32351897 PMCID: PMC7174773 DOI: 10.3389/fonc.2020.00528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Experimental Oncology and Radiobiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
Lan Y, Zhu X, Tang M, Wu Y, Zhang J, Liu J, Zhang Y. Construction of a near-infrared responsive upconversion nanoplatform against hypoxic tumors via NO-enhanced photodynamic therapy. NANOSCALE 2020; 12:7875-7887. [PMID: 32227004 DOI: 10.1039/c9nr10453d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) has been extensively used to treat cancer and other malignant diseases because it can offer many unique advantages over other medical treatments such as less invasive, fewer side effects, lower cost, etc. Despite great progress, the efficiency of PDT treatment, as an oxygen-dependent therapy, is still limited by the hypoxic microenvironment in the human tumor region. In this work, we have developed a near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs), which incorporates PDT photosensitizer (curcumin) and NO donor (Roussin's black salt) in order to overcome hypoxia-associated resistance by reducing cellular respiration with NO presence in the PDT treatment. Our results suggest that the photo-released NO upon NIR illumination can greatly decrease the oxygen consumption rate and hence increase singlet oxygen generation, which ultimately leads to an increased number of cancer cell deaths, especially under hypoxic condition. It is believed that the methodology developed in this study enables to relieve the hypoxia-induced resistance in PDT treatment and also holds great potential for overcoming hypoxia challenges in other oxygen-dependent therapies.
Collapse
Affiliation(s)
- Ying Lan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | |
Collapse
|