1
|
Baek K, Woo MR, Choi YS, Kang MJ, Kim JO, Choi HG, Jin SG. Engineering sodium alginate microparticles with different crystallinities for niclosamide repositioning and solubilization to improve solubility and oral bioavailability in rats. Int J Biol Macromol 2024; 283:137471. [PMID: 39522921 DOI: 10.1016/j.ijbiomac.2024.137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Niclosamide is a commonly used anthelmintic; however, its poor aqueous solubility limits its oral bioavailability. Enhancing its solubility and oral bioavailability is crucial for its repositioning as an anticancer agent. Here, we aimed to develop new sodium alginate-poloxamer microparticles with different crystallinities to increase drug solubility and oral bioavailability. Sodium alginate and poloxamer were used as the polymer and surfactant, respectively, to prepare niclosamide-loaded microparticles via spray drying. The optimized amorphous and crystalline microparticles were prepared with niclosamide/sodium alginate/poloxamer weight ratios of 1:2.5:3 and 1:1.125:0.375, respectively. Their solubilities, dissolution rates, physicochemical properties, and oral bioavailabilities were compared with those of drug powder in rats. Physicochemical characterization of the developed particles revealed changed structure from crystalline to amorphous, with no irregular crystalline characteristics but decreased particle size. Compared to the pure drug powder, crystalline microparticles retained their crystalline nature with no significant changes in particle size. Both microparticles showed significantly higher aqueous solubilities, dissolution rates, and oral bioavailabilities than niclosamide powder in rats. Amorphous microparticles showed higher solubility (approximately 1775-fold) and oral bioavailability (approximately 5.6-fold) than niclosamide powder due to the crystalline-to-amorphous change and decreased particle size. The developed amorphous microparticles can be used to improve niclosamide solubility and oral bioavailability.
Collapse
Affiliation(s)
- Kyungho Baek
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| |
Collapse
|
2
|
Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Drug Release from Surfactant-Containing Amorphous Solid Dispersions: Mechanism and Role of Surfactant in Release Enhancement. Pharm Res 2023; 40:2817-2845. [PMID: 37052841 DOI: 10.1007/s11095-023-03502-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE To understand how surfactants affect drug release from ternary amorphous solid dispersions (ASDs), and to investigate different mechanisms of release enhancement. METHODS Ternary ASDs containing ritonavir (RTV), polyvinylpyrrolidone/vinyl acetate (PVPVA) and a surfactant (sodium dodecyl sulfate (SDS), Tween 80, Span 20 or Span 85) were prepared with rotary evaporation. Release profiles of ternary ASDs were measured with surface normalized dissolution. Phase separation morphologies of ASD compacts during hydration/dissolution were examined in real-time with a newly developed confocal fluorescence microscopy method. The water ingress rate of different formulations was measured with dynamic vapor sorption. Microscopy was employed to check for matrix crystallization during release studies. RESULTS All surfactants improved drug release at 30% DL, while only SDS and Tween 80 improved drug release at higher DLs, although SDS promoted matrix crystallization. The dissolution rate of neat polymer increased when SDS and Tween 80 were present. The water ingress rate also increased in the presence of all surfactants. Surfactant-incorporation affected both the kinetic and thermodynamics factors governing phase separation of RTV-PVPVA-water system, modifying the phase morphology during ASD dissolution. Importantly, SDS increased the miscibility of RTV-PVPVA-water system, whereas other surfactants mainly affected the phase separation kinetics/drug-rich barrier persistence. CONCLUSION Incorporation of surfactants enhanced drug release from RTV-PVPVA ASDs compared to the binary system. Increased drug-polymer-water miscibility and disruption of the drug-rich barrier at the gel-solvent interface via plasticization are highlighted as two key mechanisms underlying surfactant impacts based on direct visualization of the phase separation process upon hydration and release.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hitesh S Purohit
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Barghi L, Vekalati A, Jahangiri A. Stability-Enhanced Ternary Solid Dispersions of Glyburide: Effect of Preparation Method on Physicochemical Properties. Adv Pharmacol Pharm Sci 2023; 2023:2641153. [PMID: 37215486 PMCID: PMC10199792 DOI: 10.1155/2023/2641153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Limited aqueous solubility and subsequent poor absorption and low bioavailability are the main challenges in oral drug delivery. Solid dispersion is a widely used formulation strategy to overcome this problem. Despite their efficiency, drug crystallization tendency and poor physical stability limited their commercial use. To overcome this defect, ternary solid dispersions of glyburide: sodium lauryl sulfate (SLS) and polyethylene glycol 4000 (PEG), were developed using the fusion (F) and solvent evaporation (SE) techniques and subsequently evaluated and compared. Materials and Methods Physicochemical and dissolution properties of the prepared ternary solid dispersions were evaluated using differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), and dissolution test. Flow properties were also assessed using Carr's index and Hausner's ratio. The physical stability of the formulations was evaluated initially and after 12 months by comparing dissolution properties. Results Formulations prepared by both methods similarly showed significant improvements in dissolution efficiency and mean dissolution time compared to the pure drug. However, formulations that were prepared by SE showed a greater dissolution rate during the initial phase of dissolution. Also, after a 12-month follow-up, no significant change was observed in the mentioned parameters. The results of the infrared spectroscopy indicated that there was no chemical interaction between the drug and the polymer. The absence of endotherms related to the pure drug from thermograms of the prepared formulations could be indicative of reduced crystallinity or the gradual dissolving of the drug in the molten polymer. Moreover, formulations prepared by the SE technique revealed superior flowability and compressibility in comparison with the pure drug and physical mixture (ANOVA, P < 0.05). Conclusion Efficient ternary solid dispersions of glyburide were successfully prepared by F and SE methods. Solid dispersions prepared by SE, in addition to increasing the dissolution properties and the possibility of improving the bioavailability of the drug, showed acceptable long-term physical stability with remarkably improved flowability and compressibility features.
Collapse
Affiliation(s)
- Leila Barghi
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Afshin Vekalati
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Azin Jahangiri
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Hu X, Sun Y, Zhou X, Zhang B, Guan H, Xia F, Gui S, Kong X, Li F, Ling D. Insight into Drug Loading Regulated Micellar Rigidity by Nuclear Magnetic Resonance. ACS NANO 2022; 16:21407-21416. [PMID: 36375116 DOI: 10.1021/acsnano.2c09785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rigidity of polymeric micelles plays an important role in their biological behaviors. However, how drug loading affects the rigidity of polymeric micelles remains elusive. Herein, the indomethacin (IMC)-loaded Pluronic F127 micelle is used as a model system to illustrate the impact of drug loading on the rigidity and biological behaviors of polymeric micelles. Against expectations, micelles with moderate drug loading show higher cellular uptake and more severe cytotoxicity as compared to both high and low drug loading counterparts. Extensive one- and two-dimensional nuclear magnetic resonance (NMR) measurements are employed to reveal that the higher drug loading induces stronger interaction between IMC and hydrophilic block to boost the micellar rigidity; consequently, the moderate drug loading imparts micelles with appropriate rigidity for satisfactory cellular uptake and cytotoxicity. In summary, NMR spectroscopy is an important tool to gain insight into drug loading regulated micellar rigidity, which is helpful to understand their biological behaviors.
Collapse
Affiliation(s)
- Xi Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Yu Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Xiaoqi Zhou
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- WLA Laboratories, Shanghai201203, China
| | - Hanxi Guan
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Fan Xia
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou310027, China
| | - Fangyuan Li
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- WLA Laboratories, Shanghai201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou310009, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai200240, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou310058, China
- WLA Laboratories, Shanghai201203, China
| |
Collapse
|
5
|
Role of surfactants in improving release from higher drug loading amorphous solid dispersions. Int J Pharm 2022; 625:122120. [PMID: 35987321 DOI: 10.1016/j.ijpharm.2022.122120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Amorphous solid dispersion formulations (ASD) are increasingly being used as a formulation strategy to improve bioavailability of poorly soluble drugs. One of the limitations of ASDs, in particular for high glass transition temperature (Tg) compounds, is the drug loading threshold (termed the limit of congruency, LoC) below which rapid, complete and congruent release of drug and polymer is achieved. In this study, several ionic and non-ionic surfactants were added to atazanavir-copovidone ASDs with the main goal of increasing the limit of congruency. Atazanavir (ATZ) is a relatively high Tg compound with a LoC of 5 % drug loading (DL). Surface normalized dissolution studies revealed that addition of 5 % w/w of surfactant, sodium dodecyl sulfate (SDS) or cetrimonium bromide (CTAB), to the binary copovidone-based ASD doubled the LoC (from 5 to 10 % DL), resulting in a more than 30-fold increase in total release compared to the corresponding binary ASD. Moreover, addition of 5 % of Span®80 increased the LoC to 15 % DL. ASD Tg was found to decrease upon addition of surfactants and water sorption extent was found to increase. We speculate that surfactants act as plasticizers, which may facilitate polymer release from ASDs containing a high Tg drug, providing a possible explanation for the observed enhancement in drug release from ternary ASDs and the increase in LoC.
Collapse
|
6
|
Zhao Z, Higashi K, Ueda K, Moribe K. Revealing the mechanism of morphological variation of amorphous drug nanoparticles formed by aqueous dispersion of ternary solid dispersion. Int J Pharm 2021; 607:120984. [PMID: 34389423 DOI: 10.1016/j.ijpharm.2021.120984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
Probucol (PBC)/hypromellose (HPMC)/sodium dodecyl sulfate (SDS) ternary solid dispersions (SDs) of various weight ratios were prepared and evaluated to unveil the effect of HPMC and SDS on the formation of amorphous PBC nanoparticles. The morphological variation of the PBC nanoparticles prepared using SDs of different compositions was determined using dynamic light scattering and cryogenic transmission electron microscopy (cryo-TEM). Statistical analysis of particle size versus roundness of PBC nanoparticles was carried out based on cryo-TEM images. A clear correlation was observed between the morphologies of the PBC nanoparticles and the amounts of HPMC and SDS, either admixed in SDs or pre-dissolved in an aqueous solution. The admixed HPMC in SDs was demonstrated to play the major role in determining the primary particle sizes of discrete amorphous PBC nanoparticles. Based on 13C solid-state NMR spectroscopy, this phenomenon should be due to the enlarged size of the PBC-rich domains in SDs, which depended on the decreasing amounts of admixed HPMC. Although the pre-dissolved part of HPMC had less impact on the primary particle sizes, it was found to inhibit the particle agglomeration and recrystallization of amorphous PBC nanoparticles. On the other hand, sufficient SDS admixed in SDs could suppress the size enhancement of the PBC-rich domains during water immersion and nanoparticle evolution (agglomeration and crystallization) after aqueous dispersion. The pre-dissolved SDS could restrain the agglomeration of amorphous PBC nanoparticles, ultimately forming hundreds of irregular nanometer-order structures. Since the increase in size during water immersion, their sizes were still slightly larger than those obtained with a high portion of admixed SDS. The findings of this study clarified the usefulness and necessity of adding polymers and surfactants to SDs to fabricate drug nanoparticle formulations.
Collapse
Affiliation(s)
- Zhijing Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
7
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Tran PH, Duan W, Lee BJ, Tran TT. Modulation of Drug Crystallization and Molecular Interactions by Additives in Solid Dispersions for Improving Drug Bioavailability. Curr Pharm Des 2019; 25:2099-2107. [DOI: 10.2174/1381612825666190618102717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/24/2019] [Indexed: 11/22/2022]
Abstract
Background::
An increase in poorly water-soluble drugs makes the design of drug delivery systems
challenging.
Methods::
Currently, a number of prospective solid dispersions have been investigated with potential applications
for delivering a variety of poorly water-soluble drugs. A number of traditional solid dispersions and modifiedsolid
dispersions offer attractive advantages in the fabrication, design and development of those drugs for effective
therapeutics.
Results::
Although traditional solid dispersions can produce a higher release rate, resulting in higher bioavailability
compared to conventional dosage forms, this method is not always a promising approach. Modified-solid
dispersion has demonstrated both the ability of its polymers to transform drug crystals into amorphous forms and
molecular interactivity, thereby improving drug dissolution rate and bioavailability, especially with tough drugs.
However, the classification of modified-solid dispersion, which guides the selection of the right strategy in solid
dispersion preparation, remains ill-defined.
Conclusions::
This review focused on effective strategies in using additives in solid dispersion for improving drug
bioavailability.
Collapse
Affiliation(s)
| | - Wei Duan
- Deakin University, School of Medicine, Geelong, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T.D. Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Yang B, Wei C, Qian F, Li S. Surface Wettability Modulated by Surfactant and Its Effects on the Drug Release and Absorption of Fenofibrate Solid Dispersions. AAPS PharmSciTech 2019; 20:234. [PMID: 31236817 DOI: 10.1208/s12249-019-1446-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/01/2019] [Indexed: 12/29/2022] Open
Abstract
The objective of this study is to explore the surface wettability modulated by a surfactant and its effects on the drug release and absorption of fenofibrate solid dispersions (FF SDs). Both the polyvinylpyrrolidone/sodium lauryl sulfate (PVP/SLS) coprecipitate and FF SDs were prepared by solvent evaporation method. The contact angle of PVP/SLS coprecipitate with various PVP/SLS weight ratios was determined to screen out the suitable content of SLS incorporated in FF SDs. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) was used to analyze the surface composition of the PVP/SLS coprecipitate, suggesting that SLS molecules were prone to concentrate on the carrier surface. The physicochemical characteristics of FF, PVP, SLS, FF SDs, and FF physical mixtures (PMs) were evaluated by thermal analysis, XRD, FTIR, and SEM, which revealed that FF was molecularly dispersed in SDs. The interaction between SLS and PVP or FF confirmed by FTIR would affect the surface morphology of SDs. Finally, the contact angle of FF SDs was measured to explore the effects of surface wettability on the dissolution behavior and drug absorption of FF SDs. The interesting thing is that the wettability of the PVP/SLS coprecipitate was positively related to that of FF SDs. The improved wettability of FF SDs or the PVP/SLS coprecipitate by adding SLS contributed to the slight enhancement of initial drug release and absorption, which implied that wettability would be a promising tool in the formulation studies.
Collapse
|
10
|
Yang B, Wu L, Ke J, Zhou L, Chen M, Li S, Feng X. Effects of Polymer/Surfactant as Carriers on the Solubility and Dissolution of Fenofibrate Solid Dispersion. AAPS PharmSciTech 2019; 20:102. [PMID: 30723877 DOI: 10.1208/s12249-018-1273-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
The purpose of this work is to investigate the effects of polymer/surfactant as carriers on the solubility and dissolution of fenofibrate solid dispersions (FF SDs) with the aid of systematic research on the physicochemical properties of the polymer/surfactant system and further highlight the importance of studying polymer/surfactant interaction in the preformulation. The critical micelle concentration (CMC) of sodium lauryl sulfate (SLS) and critical aggregation concentration (CAC) of polymer/SLS solutions were obtained through conductivity measurement. Meanwhile, surface tension, viscosity, morphology, and wettability of polymer/SLS with different weight ratios of SLS were analyzed to screen out the suitable content of SLS (weight%, 5% in carriers) incorporated in SDs. Polymer/SLS coprecipitate and FF SDs were prepared by the solvent evaporation method. The results from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that FF was molecularly dispersed in SDs. Compared to the solubility of FF in povidone/SLS (PVP/SLS) solutions, the increment of FF solubility in copovidone/SLS (VA64/SLS) solutions was due to the formation of free SLS micelles, which have been confirmed by transmission electron microscopy (TEM). Particularly, the wettability of FF SDs and physical mixtures (PMs) was also determined by the sessile drop technique. A linear relationship between the wettability of carriers and that of FF SDs was found, which revealed the significant role of carriers on the surface composition of FF SDs. As the molecular weight of PVP increased, the wettability of carriers decreased, thus leading to the reduction of the dissolution rate of SDs. Although the presence of SLS did not enhance the dissolution of FF SDs, it increased the amount of drug released at the initial stage. All these results indicated that the polymer/SLS interaction would affect the performance of SDs; hence, it was necessary to study their properties in the preformulation.
Collapse
|
11
|
Patel HH, Maniar M, Ren C, Dave RH. Determination of Degradation Kinetics and Effect of Anion Exchange Resin on Dissolution of Novel Anticancer Drug Rigosertib in Acidic Conditions. AAPS PharmSciTech 2018; 19:93-100. [PMID: 28600665 DOI: 10.1208/s12249-017-0820-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023] Open
Abstract
Rigosertib is a novel anticancer drug in clinical development by Onconova therapeutics, Inc. Currently, it is in pivotal phase III clinical trials for myelodysplastic syndrome (MDS) patients. Chemically, it is a sodium salt of weak acid with low solubility in lower pH solutions. In the preliminary studies, it was found that rigosertib is unstable in acidic conditions and forms multiple degradation products. In this research, drug degradation kinetics of rigosertib were studied in acidic conditions. Rigosertib follows pseudo-first-order general acid catalysis reaction. Cholestyramine, which is a strong anion exchange resin, was used to form complex with drug to improve stability and dissolution in acidic conditions. Drug complex with cholestyramine showed better dissolution profile compared to drug alone. Effect of polyethylene glycol was investigated on the release of drug from the drug resin complex. Polyethylene glycol further improved dissolution profile by improving drug solubility in acidic medium.
Collapse
|
12
|
Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Dugar RP, Gajera BY, Dave RH. Fusion Method for Solubility and Dissolution Rate Enhancement of Ibuprofen Using Block Copolymer Poloxamer 407. AAPS PharmSciTech 2016; 17:1428-1440. [PMID: 26817763 DOI: 10.1208/s12249-016-0482-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/13/2016] [Indexed: 11/30/2022] Open
Abstract
Aim of current research was to prepare ibuprofen-poloxamer 407 binary mixtures using fusion method and characterize them for their physicochemical and performance properties. Binary mixtures of ibuprofen and poloxamer were prepared in three different ratios (1:0.25, 1:0.5, and 1:0.75, respectively) using a water-jacketed high shear mixer. In vitro dissolution and saturation solubility studies were carried out for the drug, physical mixtures, and formulations for all ratios in de-ionized water, 0.1 N HCl (pH = 1.2), and phosphate buffer (pH = 7.2). Thermal and physical characterization of samples was done using modulated differential scanning calorimetry (mDSC), X-ray powder diffraction (XRD), and infrared spectroscopy (FTIR). Flow properties were evaluated using a powder rheometer. Maximum solubility enhancement was seen in acidic media for fused formulations where the ratio 1:0.75 had 18-fold increase. In vitro dissolution studies showed dissolution rate enhancement for physical mixtures and the formulations in all three media. The most pronounced effect was seen for formulation (1:0.75) in acidic media where the cumulative drug release was 58.27% while for drug, it was 3.67%. Model independent statistical methods and ANOVA based methods were used to check the significance of difference in the dissolution profiles. Thermograms from mDSC showed a characteristic peak for all formulations with Tpeak of around 45°C which suggested formation of a eutectic mixture. XRD data displayed that crystalline nature of ibuprofen was intact in the formulations. This work shows the effect of eutectic formation and micellar solubilization between ibuprofen and poloxamer at the given ratios on its solubility and dissolution rate enhancement.
Collapse
|
14
|
Effect of ionization of drug on drug solubilization in SMEDDS prepared using Capmul MCM and caprylic acid. Asian J Pharm Sci 2016; 12:73-82. [PMID: 32104316 PMCID: PMC7032218 DOI: 10.1016/j.ajps.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to investigate the effect of ionization of drug on drug solubilization in SMEDDS (self-microemulsifying drug delivery system) prepared using Capmul MCM and caprylic acid. Solubilization capacity of blank SMEDDS dispersions for danazol, indomethacin and haloperidol as model drugs was determined. Based on the outcomes of solubilization capacity study, drug-loaded SMEDDS formulations were prepared and subjected to dispersion/precipitation study and droplet size analysis. Blank SMEDDS dispersions exhibited the highest solubilization capacity for haloperidol followed by indomethacin and danazol. Furthermore, the solubilization of the three drugs in blank SMEDDS dispersions was explained by a modified mathematical model. Dispersion/precipitation studies indicate that drug-loaded SMEDDS formulations exhibited superiority in solubilizing the drugs in comparison to their respective drug powder. In addition, indomethacin and haloperidol were found to reduce the droplet size of the microemulsions while danazol did not affect droplet size formation for drug-loaded SMEDDS formulations. These findings suggest that ionization of drug affects drug solubilization, droplet size formation, drug loading and drug dispersion/precipitation profiles for the SMEDDS formulations.
Collapse
|
15
|
Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying. Molecules 2015; 20:21532-48. [PMID: 26633346 PMCID: PMC6332242 DOI: 10.3390/molecules201219784] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022] Open
Abstract
In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.
Collapse
|
16
|
Hot-melt extrusion of polyvinyl alcohol for oral immediate release applications. Int J Pharm 2015; 492:1-9. [DOI: 10.1016/j.ijpharm.2015.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 12/27/2022]
|
17
|
Nkansah P, Antipas A, Lu Y, Varma M, Rotter C, Rago B, El-Kattan A, Taylor G, Rubio M, Litchfield J. Development and evaluation of novel solid nanodispersion system for oral delivery of poorly water-soluble drugs. J Control Release 2013; 169:150-61. [DOI: 10.1016/j.jconrel.2013.03.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/18/2013] [Accepted: 03/29/2013] [Indexed: 10/27/2022]
|
18
|
Patel AD, Agrawal A, Dave RH. Development of Polyvinylpyrrolidone-Based Spray-Dried Solid Dispersions Using Response Surface Model and Ensemble Artificial Neural Network. J Pharm Sci 2013; 102:1847-1858. [DOI: 10.1002/jps.23526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 11/11/2022]
|
19
|
Yu F, He C, Waddad AY, Munyendo WLL, Lv H, Zhou J, Zhang Q. N-octyl-N-arginine-chitosan (OACS) micelles for gambogic acid oral delivery: preparation, characterization and its study on in situ intestinal perfusion. Drug Dev Ind Pharm 2013; 40:774-82. [PMID: 23679668 DOI: 10.3109/03639045.2013.786723] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Gambogic acid (GA) can inhibit the growth of various cancer cells. However, the low bioavailability caused by insolubility, limits its clinical application. L-arginine is always used with GA to form a complex to obtain the higher solubility. Moreover, guanidyl group from arginine, which can facilitate the cellular uptake, was identified. OBJECTIVE In this study, L-arginine and chitosan (CS) were used for the first time to prepare N-octyl-N-arginine CS (OACS), a novel amphiphilic carrier for GA with solubility- and absorption-enhancing functions; the characterization of the GA loaded OACS micelles (GA-OACS) and its absorption-enhancing effect were also investigated. MATERIALS AND METHODS GA-OACS were prepared by the dialysis method. The formed micelles were characterized and evaluated by atomic force microscope (AFM), dynamic light scattering, differential scanning calorimeter (DSC), solubility test, in vitro release and in situ intestinal perfusion. RESULTS The GA-OACS micelles were successfully prepared attaining a 35.3% drug loading and 82.2% entrapment efficiency. GA-OACS had a homogeneous particle size of 160.3 nm; +21.8 mv zeta potential with smooth continuous surface was observed by using AFM. DSC diagram suggested that GA was encapsulated in the micelles. Meanwhile, GA encapsulated in micelles exhibited a desirable slow release in vitro experiment. The solubility of GA in OACS micelles was increased up to 3.16 ± 0.13 mg/mL, 2320 times than that of free GA. The single pass perfusion showed that the absorption of GA-OACS micelles was enhanced 3.6-fold, 2.1-fold and 2.2-fold for jejunum, ileum and colon, respectively. DISCUSSION AND CONCLUSION OACS provided excellent ability of drug loading, increasing solubility and enhanced absorption for GA, which indicated that OACS micelles as an oral drug delivery carrier may have potential research and application values.
Collapse
Affiliation(s)
- Fan Yu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing , China
| | | | | | | | | | | | | |
Collapse
|
20
|
He Y, Liu H, Xie Z, Liao Q, Lai X, Du Z. PVP and surfactant combined carrier as an effective absorption enhancer of poorly soluble astilbin in vitro and in vivo. Drug Dev Ind Pharm 2013; 40:237-43. [PMID: 23350723 DOI: 10.3109/03639045.2012.756008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Astilbin is considered to be a new and promising immunosuppressant for immune related diseases, but limited in clinical application due to its poor water solubility, difficult oral absorption and low bioavailability. OBJECTIVE The present work studied the effect of PVP and surfactant combined carrier on its capability to improve drug absorption. MATERIALS AND METHODS PVP K30-Tween 80 combined carries was applied into the astilbin solid dispersions, tested both in vivo in beagle dogs and in vitro in transport experiments across Caco-2 cell monolayers. RESULTS AND DISCUSSION In the animal studies a many fold increase in plasma AUC was observed for the solid dispersions of drug in PVP K30-Tween 80 combined carries compared to active pharmaceutical ingredient (API). The applicability of Caco-2 monolayers as a tool for predicting the in vivo transport behavior of Astilbin in combination with a solubility enhancing carries was shown. In vitro transport studies confirmed the effect of combined carries on the absorption behavior of the astilbin. MTT studies showed the cell viability gradually decreased with the increase of the drug concentration in a dose dependent manner for astilbin and that in solid dispersions. The permeability and apparent permeability coefficients (Papp) increased with drug in the Caco-2 cell. CONCLUSION In this study, it was found that PVP K30 and Tween 80 promoted the permeability of drugs best within a certain amount. For astilbin PVP K30 and surfactant combined carrier had a strong potential to improve oral bioavailability.
Collapse
Affiliation(s)
- Yan He
- School of Chemical Engineering and Light Industry , Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Yoshida T, Kurimoto I, Yoshihara K, Umejima H, Ito N, Watanabe S, Sako K, Kikuchi A. Effect of aminoalkyl methacrylate copolymer E/HCl on in vivo absorption of poorly water-soluble drug. Drug Dev Ind Pharm 2012; 39:1698-705. [PMID: 23062024 DOI: 10.3109/03639045.2012.730525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study aimed to investigate in vivo absorption of tacrolimus formulated as a solid dispersion using Eudragit E®/HCl (E-SD). E-SD is an aminoalkyl methacrylate copolymer that can be dissolved under neutral pH conditions. E-SD was used alone as a solid dispersion carrier and/or was mixed with tacrolimus primarily dispersed with hydroxypropylmethylcellulose (HPMC). Tacrolimus was formulated with E-SD at several different ratios. Formulations with tacrolimus/E-SD ratio of 1/3 showed higher in vivo absorption, compared to tacrolimus dispersed in the excipients (primarily HPMC) found in commercially available tacrolimus capsules, using a rat in situ closed loop method. Good correlation was observed between in vitro drug solubility and in vivo drug absorption. In vitro solubility tests and rat oral absorption studies of tacrolimus/HPMC solid dispersion formulations were also conducted after mixing the HPMC dispersion with several ratios of E-SD. E-SD/tacrolimus/HPMC formulations yielded high in vitro drug solubility but comparatively low in vivo absorption. Dog oral absorption studies were conducted using capsules containing a formulation of tacrolimus/E-SD at a ratio of 1/5. The E-SD formulation-containing capsule showed higher in vivo drug absorption than tacrolimus dispersed in the standard HPMC capsule. These studies report enhancement of the in vivo absorption of a poorly water-soluble drug following dispersion with E-SD when compared to formulation in HPMC.
Collapse
Affiliation(s)
- Takatsune Yoshida
- Pharmaceutical Research and Technology Labs , Astellas Pharma, Inc., 180 Ozumi, Yaizu, Shizuoka , Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Dave RH, Patel HH, Donahue E, Patel AD. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole. Drug Dev Ind Pharm 2012; 39:1562-72. [DOI: 10.3109/03639045.2012.725731] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|