1
|
Gültekin HE, Aydın HH, Şahiner A, Soylu FE, Şenyiğit Z, Karayıldırım ÇK. In vitro and in vivo evaluation of tedizolid nanoparticle incorporated buccal films for oromucosal infections. Int J Pharm 2024; 665:124688. [PMID: 39293576 DOI: 10.1016/j.ijpharm.2024.124688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
A novel tedizolid phosphate (TZP) nanoparticle (NP)-loaded buccal film formulation was developed for the treatment of buccal wounds infected with S. aureus. TZP-loaded chitosan NPs were produced and characterized to prepare this composite system. The optimum NP formulation was then loaded into mucoadhesive buccal films. The antibacterial effects of the obtained buccal films were evaluated by in vitro and in vivo studies. The optimum TZP-NP formulation (F8) had a particle size of 177.40 ± 2.97 nm and PDI and ZP values were 0.437 ± 0.002 and 33.9 ± 0.5, respectively. In antibacterial efficacy tests, the optimum NP containing buccal film formulation was used, which released approximately 90 % of TZP within 5 h. TZP-NP-loaded buccal films achieved a 3 log10 reduction in S. aureus within just 3 h. It was also administered to Wistar albino rats with S. aureus-infected buccal wounds. As a result of in vivo studies, a significant decrease in the number of S. aureus was detected in wound samples treated with TZP-NP-loaded buccal films. In addition, a complete inhibition of growth was observed on the fifth day of the film application. The current work suggested that the TZP-NP-loaded composite films could be promising candidates for effective and long-acting antibacterial treatment of buccal wounds.
Collapse
Affiliation(s)
- Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Kâtip Çelebi University, Çiğli, 35620 İzmir, Turkey.
| | - Hüsniye Hande Aydın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Kâtip Çelebi University, Çiğli, 35620 İzmir, Turkey
| | - Aslı Şahiner
- Department of Biology, Science Faculty, Ege University, 35100 İzmir, Turkey
| | - Fahri Emrah Soylu
- Laboratory Animals Research Center, Ege University, 35100 İzmir, Turkey
| | - Zeynep Şenyiğit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Kâtip Çelebi University, Çiğli, 35620 İzmir, Turkey
| | - Çinel Köksal Karayıldırım
- Department of Biology, Science Faculty, Ege University, 35100 İzmir, Turkey; Laboratory Animals Research Center, Ege University, 35100 İzmir, Turkey
| |
Collapse
|
2
|
Parhizkary M, Jafari SM, Assadpour E, Enayati A, Kashiri M. Pea protein-coated nanoliposomal encapsulation of jujube phenolic extract with different stabilizers; characterization and in vitro release. Food Chem X 2024; 23:101771. [PMID: 39280214 PMCID: PMC11401102 DOI: 10.1016/j.fochx.2024.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Jujube, a fruit rich in phenolic compounds, is renowned for its potential health benefits, including lowering blood pressure, and exhibiting anti-cancer, and anti-inflammatory effects, attributed to its potent antioxidant properties. However, the application of these phenolics in food products is limited by their instability and low concentration in plant tissues. This study investigates the nanoencapsulation of jujube extract (JE) using nanoliposomes (NLs) coated with pea protein isolate (PPI) to enhance stability and bioavailability. NLs were prepared via the ethanol injection method and optimized through comprehensive characterization, including dynamic light scattering, polydispersity index, and zeta potential. The encapsulated JE showed improved antioxidant activity and controlled release profiles in simulated gastric fluid and simulated intestinal fluid. This research highlights the potential of PPI-coated NLs in stabilizing and enhancing the bioactivity of jujube phenolics, providing a promising approach for their integration into functional foods.
Collapse
Affiliation(s)
- Maedeh Parhizkary
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Mahboobeh Kashiri
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
3
|
Abou-Taleb BA, El-Hadidy WF, Masoud IM, Matar NA, Hussein HS. Dihydroquercetin nanoparticles nasal gel is a promising formulation for amelioration of Alzheimer's disease. Int J Pharm 2024; 666:124814. [PMID: 39384026 DOI: 10.1016/j.ijpharm.2024.124814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Dihydroquercetin is a natural flavonoid with anti-inflammatory, antioxidant, and neuroprotective activities. Dihydroquercetin exhibits a great neuroprotector promise in Alzheimer's disorder via preventing the aggregation of amyloid-beta-peptide-Aβ(1-42). The goal of the study was to create dihydroquercetin-loaded-chitosan nanoparticles (DHQ-CS NPs) loaded to a mucoadhesive, thermosensitive in-situ gel for direct nasal administration to cure Alzheimer's disorder. Loading drug in chitosan nanoparticles and incorporation into thermosensitive gel enhanced residence time and reduced mucociliary-clearance. Different in-vitro-physicochemical-characteristics of gels and nanoparticles-characterization were used to evaluate the formulations. The therapeutic effectiveness of DHQ-CS NPs gel was evaluated behaviorally, biochemically and histopathologically in Alzheimer's-rat-model compared to intranasal DHQ gel. The small particles-size was obtained = 235.3 nm of DHQ-CS NPs. The DHQ-CS NPs gel demonstrated a greater release rate compared to the raw DHQ gel. Additionally, the nasal-administration of the DHQ-CS NPs gel showed better In-vivo results compared to DHQ gel, through improvement of memory and learning deficits and also the exploratory behavior and new object memory in streptozotocin induced-Alzheimer rats. Biochemically, the intranasal DHQ-CS NPs gel, showed reduced both Aβ-protein formation and tau protein hyperphosphorylation, inhibition of acetylcholine esterase activity and oxidative stress in the brain with increase of total antioxidants in the brain and serum, compared to DHQ gel. Histopathologically, the DHQ-CS NPs nasal gel produced improvement in the hippocampal and cerebral cortex structures, being comparable to the normal group. Consequently, the intranasal DHQ-CS NPs loaded in-situ gel seems to be a promising therapeutic formulation for Alzheimer's disease medication.
Collapse
Affiliation(s)
- Basant A Abou-Taleb
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmacy Practices, Alexandria University Hospitals, Alexandria University, Alexandria, Egypt.
| | - Wessam F El-Hadidy
- Department of Pharmacology & Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Inas M Masoud
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Noura A Matar
- Department of Histochemistry & Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Hoda S Hussein
- Department of Pharmacology & Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
M Salah N, Elbedaiwy HM, Helmy MW, El-Salamouni NS. Topical amlodipine-loaded solid lipid nanoparticles for enhanced burn wound healing: A repurposed approach. Int J Pharm 2024; 662:124484. [PMID: 39033942 DOI: 10.1016/j.ijpharm.2024.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Burn wounds are a complicated process with ongoing psychological and physical issues for the affected individuals. Wound healing consists of multifactorial molecular mechanisms and interactions involving; inflammation, proliferation, angiogenesis, and matrix remodeling. Amlodipine (ADB), widely used in cardiovascular disorders, demonstrated antioxidant and anti-inflammatory effects in some non-cardiovascular studies. It was reported that amlodipine is capable of promoting the healing process by regulation of collagen production, extracellular matrix, re-epithelialization and wound healing through its vasodilation and angiogenic activity. The objective of the current study is to appraise the wound healing capacity of amlodipine-loaded SLN (ADB-SLN) integrated into a hydrogel. The in-vitro characterization revealed that the optimized formulation was nanometric (190.4 ± 1.6 nm) with sufficiently high entrapment efficiency (88 % ± 1.4) and sustained ADB release (85.45 ± 4.45 % after 12 h). Furthermore, in-vivo evaluation was conducted on second-degree burns induced in male Sprague-Dawley rats. ADB-SLN gel revealed a high wound contraction rate and a significant improvement in skin regeneration and inflammatory biomarkers levels, confirming its efficiency in enhancing wound healing compared to other tested and commercial formulations. To conclude, the present findings proved that ADB-SLN integrated hydrogel offers a promising novel therapy for burn wound healing with a maximum therapeutic value.
Collapse
Affiliation(s)
- Nada M Salah
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba M Elbedaiwy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
5
|
Khan MS, Fatima M, Wahab S, Khalid M, Kesharwani P. Gallic acid loaded self-nano emulsifying hydrogel-based drug delivery system against onychomycosis. Nanomedicine (Lond) 2024; 19:2065-2083. [PMID: 39143900 PMCID: PMC11485813 DOI: 10.1080/17435889.2024.2386923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: To developed and investigate gallic acid (GA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) for treating onychomycosis via transungual route.Materials & methods: The SNEDDS were prepared by direct dispersion technique and were evaluated for characteristics parameters using Fourier transform infrared, differential scanning calorimetry, confocal microscopy, transmission electron microscopy and zeta sizer. Furthermore, the safety of prepared formulation was evaluated via Hen's egg test-chorioallantoic membrane study and stability was confirmed using different parameters. Also, its effectiveness was evaluated against fungal strain Trichophyton mentagrophytes.Results: The SNEDDS displayed a particle size of 199.8 ± 4.21 nm and a zeta potential; of -22.75 ± 2.09 mV. Drug release study illustrated a sustained release pattern with a release of 70.34 ± 0.20% over a period of 24 h. The penetration across the nail plate was found to be 1.59 ± 0.002 µg/mg and 0.97 ± 0.001 µg/mg for GA loaded SNEDDS and GA solution respectively. An irritation score of 0.52 ± 0.005 and 3.84 ± 0.001 was reported for GA loaded SNEDDS hydrogel and GA solution, indicating a decrease in the drug's irritation potential from slightly irritating to non irritating due to its entrapment within the SNEDDS.Conclusion: GA loaded SNEDDS has potential to address limitations of conventional treatments, enhancing the drug's efficacy and reducing the likelihood of resistance in the treatment of Onychomycosis.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
6
|
Chang X, Wang Y, Zain A, Yu H, Huang W. Antifungal Activity of Difenoconazole-Loaded Microcapsules against Curvularia lunata. J Fungi (Basel) 2024; 10:519. [PMID: 39194845 DOI: 10.3390/jof10080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Difenoconazole-loaded (CS-DIF) microcapsules were synthesized by encapsulating difenoconazole into biocompatible chitosan. The physical and chemical properties indicated that the encapsulation and chemical loading rates were 85.58% and 61.98%, respectively. The microcapsules exhibited prominent controlled-release and surface stability performance. The cumulative release rate was only 33.6% in 168 h, and the contact angle decreased by 11.73° at 120 s compared with difenoconazole. The antifungal activity of the CS-DIF microcapsules against Curvularia lunata was confirmed through observations of colony growth, in vitro and in vivo inoculation, mycelium morphology, as well as DNA and protein leakage. The antioxidant enzyme activity of superoxide dismutase, peroxidase, and catalase decreased by 65.1%, 84.9%, and 69.7%, respectively, when Curvularia lunata was treated with 200 μg/mL microcapsules, compared with the control in 24 h. The enzymatic activity of polyphenol oxidase decreased by 323.8%. The reactive oxygen species contents of hydrogen peroxide and superoxide anions increased by 204.6% and 164%, respectively. Additionally, the soluble sugar and soluble protein contents decreased by 65.5% and 69.6%, respectively. These findings provided a novel approach to control the growth of C. lunata efficiently, laying a foundation for reducing the quantity and enhancing the efficiency of chemical pesticides. The CS-DIF microcapsules exhibited a strong inhibitory effect on fungus, effectively preventing and controlling leaf spot disease and showing potential for field applications. This study might be of great significance in ensuring plant protection strategies.
Collapse
Affiliation(s)
- Xiaoyu Chang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Yuyan Wang
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Abbas Zain
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Weidong Huang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
7
|
Ghosh A, Majie A, Karmakar V, Chatterjee K, Chakraborty S, Pandey M, Jain N, Roy Sarkar S, Nair AB, Gorain B. In-depth Mechanism, Challenges, and Opportunities of Delivering Therapeutics in Brain Using Intranasal Route. AAPS PharmSciTech 2024; 25:96. [PMID: 38710855 DOI: 10.1208/s12249-024-02810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Swarup Chakraborty
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| | - Suparna Roy Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
8
|
Elmoghayer ME, Saleh NM, Abu Hashim II. Enhanced oral delivery of hesperidin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles for augmenting its hypoglycemic activity: in vitro-in vivo assessment study. Drug Deliv Transl Res 2024; 14:895-917. [PMID: 37843733 DOI: 10.1007/s13346-023-01440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Hesperidin (Hsd), a bioactive phytomedicine, experienced an antidiabetic activity versus both Type 1 and Type 2 Diabetes mellitus. However, its intrinsic poor solubility and bioavailability is a key challenging obstacle reflecting its oral delivery. From such perspective, the purpose of the current study was to prepare and evaluate Hsd-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles (Hsd/CD/CS NPs) for improving the hypoglycemic activity of the orally administered Hsd. Hsd was first complexed with sulfobutylether-β-cyclodextrin (SBE-β-CD) and the complex (CX) was found to be formed with percent complexation efficiency and percent process efficiency of 50.53 ± 1.46 and 84.52 ± 3.16%, respectively. Also, solid state characterization of the complex ensured the inclusion of Hsd inside the cavity of SBE-β-CD. Then, Hsd/CD/CS NPs were prepared using the ionic gelation technique. The prepared NPs were fully characterized to select the most promising one (F1) with a homogenous particle size of 455.7 ± 9.04 nm, a positive zeta potential of + 32.28 ± 1.12 mV, and an entrapment efficiency of 77.46 ± 0.39%. The optimal formula (F1) was subjected to further investigation of in vitro release, ex vivo intestinal permeation, stability, cytotoxicity, and in vivo hypoglycemic activity. The results of the release and permeation studies of F1 manifested a modulated pattern between Hsd and CX. The preferential stability of F1 was observed at 4 ± 1 °C. Also, the biocompatibility of F1 with oral epithelial cell line (OEC) was retained up to a concentration of 100 µg/mL. After oral administration of F1, a noteworthy synergistic hypoglycemic effect was recorded with decreased blood glucose level until the end of the experiment. In conclusion, Hsd/CD/CS NPs could be regarded as a hopeful oral delivery system of Hsd with enhanced antidiabetic activity.
Collapse
Affiliation(s)
- Mona Ebrahim Elmoghayer
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | |
Collapse
|
9
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
10
|
Babu SR, Shekara HH, Sahoo AK, Harsha Vardhan PV, Thiruppathi N, Venkatesh MP. Intranasal nanoparticulate delivery systems for neurodegenerative disorders: a review. Ther Deliv 2023; 14:571-594. [PMID: 37691577 DOI: 10.4155/tde-2023-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Neurodegenerative diseases are a significant cause of mortality worldwide, and the blood-brain barrier (BBB) poses a significant challenge for drug delivery. An intranasal route is a prominent approach among the various methods to bypass the BBB. There are different pathways involved in intranasal drug delivery. The drawbacks of this method include mucociliary clearance, enzymatic degradation and poor drug permeation. Novel nanoformulations and intranasal drug-delivery devices offer promising solutions to overcome these challenges. Nanoformulations include polymeric nanoparticles, lipid-based nanoparticles, microspheres, liposomes and noisomes. Additionally, intranasal devices could be utilized to enhance drug-delivery efficacy. Therefore, intranasal drug-delivery systems show potential for treating neurodegenerative diseases through trigeminal or olfactory pathways, which can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Someshbabu Ramesh Babu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Harshith Hosahalli Shekara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ashish Kumar Sahoo
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Pyda Venkata Harsha Vardhan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Nitheesh Thiruppathi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Madhugiri Prakash Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Faculty of Pharmaceutical Sciences, UCSI University, Kaula Lampur, Malaysia
| |
Collapse
|
11
|
Zuhair Alshawwa S, Salah Labib G, Badr-Eldin SM, Ahmed Kassem A. Solid lipid Lyo-Nanosuspension: A promising stabilized oral delivery system for the antihyperglycemic extract of mistletoe Plicosepalus acacia. Saudi Pharm J 2023; 31:101689. [PMID: 37457370 PMCID: PMC10339052 DOI: 10.1016/j.jsps.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The antihyperglycemic effect of Plicosepalus acaciae (P. acaciae) extract was proven, but it still needs to be formulated into a suitable dosage form. We aimed at preparing an oral stabilized SLNs for P. acaciae with high payload, to be used as powder for reconstitution, filled into capsule or compressed into tablet. SLNs were prepared by emulsion solvent evaporation technique. Preliminary characterization was performed followed by full assessment of the optimized SLNs suspension and/or its lyophilized form: particle size, zeta potential, surface morphology, percentage entrapment efficiency (% EE), DSC, FTIR and in vitro release studies. The optimized SLNs lyophilized formula (F3L) exhibited acceptable compressibility and flowability. The reconstituted F3L showed % sedimentation volume of 91.83 %, re-dispersibility of 95%, viscosity of 764.33 cp, uniform particle size of 30.28 nm as shown by TEM, polydispersity index (PDI) of 0.16, zeta potential of -36.4 mV, % EE of 89.64 % and drug content of 97.69 %. The physical mixture and F3L FTIR spectrum indicated compatibility of components. In vitro release study showed a burst release in lyophilized formulations followed by slow-release, calculated as total phenolic content. Our previously reported work revealed that the total extracts of P. acaciae and SLNs formulations with the greatest lipid content F3s, demonstrated a considerable blood glucose-lowering effect in diabetic rats. The obtained lyophilized SLNs is promising for preparation of a suitable stable dosage form for P. acaciae extract to be used in treatment of diabetes.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Gihan Salah Labib
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, 21321 Alexandria, Egypt
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, 21321 Alexandria, Egypt
| |
Collapse
|
12
|
Abou-Taleb BA, El-Ganainy SO. Thermoresponsive Gel-loaded Oxcarbazepine Nanosystems for Nose- To-Brain Delivery: Enhanced Antiepileptic Activity in Rats. Pharm Res 2023; 40:1835-1852. [PMID: 37353628 PMCID: PMC10421799 DOI: 10.1007/s11095-023-03552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Oxcarbazepine (OXC) is a frequently prescribed antiepileptic drug for managing focal and generalized seizures. Its therapeutic benefits are limited by its dose-dependent side effects. Nose-to-brain delivery is a novel route for improving the efficacy of antiepileptics. Drug encapsulation in mucoadhesive nanoparticles offers even more advantages for the nasal route. OBJECTIVE The study aimed to develop oxcarbazepine-loaded chitosan nanoparticles (OXC-NP) added to a mucoadhesive thermo-reversible gel for intranasal delivery and enhancement of antiepileptic activity. METHODS The formulation was optimized based on entrapment efficiency, polydispersity index, particle size, zeta potential, and in vitro release analysis. The therapeutic efficacy of OXC-NP was assessed in an epileptic rat model and compared to intranasal OXC and oral OXC. RESULTS The optimized OXC-NPs with chitosan exhibited particle size, zeta potential, and entrapment efficiency of 189 nm, + 31.4 mV ± 2.5 and 97.6% ± 0.14, respectively. The release of OXC was prolonged, reaching 47.1% after 6 h and 55% after 24 h. Enhanced antiepileptic activity of OXC-NP was manifested as decreased seizure score and prolonged survival. Halting of hippocampal TNF-α and IL-6 together with upregulated IL-10 could explain its anti-inflammatory mechanisms. CONCLUSIONS Intranasal OXC-NP-loaded in situ gel represents a promising formulation for enhanced antiepileptic potential achieved at low drug concentrations.
Collapse
Affiliation(s)
- Basant A Abou-Taleb
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
- Department of Pharmacy practices, Alexandria University Hospitals, Alexandria University, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
13
|
Mir Najib Ullah SN, Afzal O, Altamimi ASA, Ather H, Sultana S, Almalki WH, Bharti P, Sahoo A, Dwivedi K, Khan G, Sultana S, Alzahrani A, Rahman M. Nanomedicine in the Management of Alzheimer's Disease: State-of-the-Art. Biomedicines 2023; 11:1752. [PMID: 37371847 DOI: 10.3390/biomedicines11061752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is a deadly, progressive, and irreversible brain condition that impairs cognitive abilities. Globally, it affects 32.6 million individuals, and if no viable therapies are available by 2050, that figure might rise to 139 million. The current course of treatment enhances cognitive abilities and temporarily relieves symptoms, but it does not halt or slow the disease's development. Additionally, treatments are primarily offered in conventional oral dosage forms, and conventional oral treatments lack brain specialization and cause adverse effects, resulting in poor patient compliance. A potential nanotechnology-based strategy can improve the bioavailability and specificity of the drug targeting in the brain. Furthermore, this review extensively summarizes the applications of nanomedicines for the effective delivery of drugs used in the management of AD. In addition, the clinical progress of nanomedicines in AD is also discussed, and the challenges facing the clinical development of nanomedicines are addressed in this article.
Collapse
Affiliation(s)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Hissana Ather
- Department of Pharmaceutical Chemistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Shaheen Sultana
- IIMT College of Pharmacy, Greater Noida 201310, Uttar Pradesh, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Pragya Bharti
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133207, Haryana, India
| | - Ankit Sahoo
- Department of Pharmaceutics, Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Sambhunath Institute of Pharmacy Jhalwa, Prayagraj 211015, Uttar Pradesh, India
| | - Gyas Khan
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq 65779-7738, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India
| |
Collapse
|
14
|
Abbate MTA, Ramöller IK, Sabri AH, Paredes AJ, Hutton AJ, McKenna PE, Peng K, Hollett JA, McCarthy HO, Donnelly RF. Formulation of antiretroviral nanocrystals and development into a microneedle delivery system for potential treatment of HIV-associated neurocognitive disorder (HAND). Int J Pharm 2023; 640:123005. [PMID: 37142137 DOI: 10.1016/j.ijpharm.2023.123005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
HIV/AIDS remains a major global public health issue. While antiretroviral therapy is effective at reducing the viral load in the blood, up to 50% of those with HIV suffer from some degree of HIV-associated neurocognitive disorder, due to the presence of the blood-brain barrier restricting drugs from crossing into the central nervous system and treating the viral reservoir there. One way to circumvent this is the nose-to-brain pathway. This pathway can also be accessed via a facial intradermal injection. Certain parameters can increase delivery via this route, including using nanoparticles with a positive zeta potential and an effective diameter of 200 nm or less. Microneedle arrays offer a minimally invasive, pain-free alternative to traditional hypodermic injections. This study shows the formulation of nanocrystals of both rilpivirine (RPV) and cabotegravir, followed by incorporation into separate microneedle delivery systems for application to either side of the face. Following an in vivo study in rats, delivery to the brain was seen for both drugs. For RPV, a Cmax was seen at 21 days of 619.17 ± 73.32 ng/g, above that of recognised plasma IC90 levels, and potentially therapeutically relevant levels were maintained for 28 days. For CAB, a Cmax was seen at 28 days of 478.31 ± 320.86 ng/g, and while below recognised 4IC90 levels, does indicate that therapeutically relevant levels could be achieved by manipulating final microaaray patch size in humans.
Collapse
Affiliation(s)
- Marco T A Abbate
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Inken K Ramöller
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | | | - Aaron J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Peter E McKenna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Jessica A Hollett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL
| |
Collapse
|
15
|
Alhodieb FS, Rahman MA, Barkat MA, Alanezi AA, Barkat HA, Hadi HA, Harwansh RK, Mittal V. Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer's disease. Nanomedicine (Lond) 2023; 18:145-168. [PMID: 36938800 DOI: 10.2217/nnm-2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Drug-loaded, brain-targeted nanocarriers could be a promising tool in overcoming the challenges associated with Alzheimer's disease therapy. These nanocargoes are enormously flexible to functionalize and facilitate the delivery of drugs to brain cells by bridging the blood-brain barrier and into brain cells. To date, modifications have included nanoparticles (NPs) coating with tunable surfactants/phospholipids, covalently attaching polyethylene glycol chains (PEGylation), and tethering different targeting ligands to cell-penetrating peptides in a manner that facilitates their entry across the BBB and downregulates various pathological hallmarks as well as intra- and extracellular signaling pathways. This review provides a brief update on drug-loaded, multifunctional nanocarriers and the therapeutic intervention of autophagy and stem cells in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Ar Rass, 51921, Saudi Arabia
| | | | - Muhammad Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia.,Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
16
|
Chitosan-Based Nanoparticles for Targeted Nasal Galantamine Delivery as a Promising Tool in Alzheimer’s Disease Therapy. Pharmaceutics 2023; 15:pharmaceutics15030829. [PMID: 36986689 PMCID: PMC10056147 DOI: 10.3390/pharmaceutics15030829] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Natural alkaloid galantamine is widely used for the treatment of mild to moderate Alzheimer’s dementia. Galantamine hydrobromide (GH) is available as fast-release tablets, extended-release capsules, and oral solutions. However, its oral delivery can cause some unwanted side effects, such as gastrointestinal disturbances, nausea, and vomiting. Intranasal administration is one possible way to avoid such unwanted effects. In this work, chitosan-based nanoparticles (NPs) were studied as potential GH delivery vehicles for nasal application. The NPs were synthesized via ionic gelation and studied using dynamic light scattering (DLS) as well as by spectroscopic and thermal methods. The GH-loaded chitosan–alginate complex particles were also prepared as a way to modify the release of GH. The high loading efficiency of the GH was confirmed for both types of particles, at 67% for the GH-loaded chitosan NPs and 70% for the complex chitosan/alginate GH-loaded particles. The mean particle size of the GH-loaded chitosan NPs was about 240 nm, while the sodium alginate coated chitosan particles loaded with GH were expectedly bigger, with a mean particle size of ~286 nm. GH release profiles in PBS at 37 °C were obtained for both types of NPs, and it was found that the GH-loaded chitosan NPs allowed the prolonged release of the incorporated drug for a period of 8 h, while the complex GH-loaded chitosan/alginate NPs released the incorporated GH faster. The stability of the prepared GH-loaded NPs was also demonstrated after 1 year of storage at 5 °C ± 3 °C.
Collapse
|
17
|
Yildirim Y, İnce İ, Gümüştaş B, Vardar Ö, Yakar N, Munjakovic H, Özdemir G, Emingil G. Development of doxycycline and atorvastatin-loaded chitosan nanoparticles for local delivery in periodontal disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
18
|
Safdar R, Thanabalan M. Preparation of Chitosan-Tripolyphosphate Formulated Insulin Microparticles, Their Characterization, ANN Prediction, and Release Kinetics. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:119-152. [PMID: 35910081 PMCID: PMC9308891 DOI: 10.1007/s40005-022-00589-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 01/06/2023]
Abstract
Background Cranial nerve-related diseases such as brain tumors, Alzheimer's disease, and epilepsy are serious diseases that continue to threaten human. Brain-related diseases are increasing worldwide, including in the United States and Korea, and these increases are closely related to the exposure to harmful substances and excessive stress caused by rapid industrialization and environmental pollution. Drug delivery to the brain is very important for the effective prevention and treatment of brain-related diseases. However, due to the presence of the blood-brain barrier and the extensive first-pass metabolism effect, the general routes of administration such as oral and intravenous routes have limitations in drug delivery to the brain. Therefore, as an alternative, the nasal-brain drug delivery route is attracting attention as a route for effective drug delivery to the brain. Areas covered This review includes physiological factors, advantages, limitations, current application status, especially in clinical applications, and the necessary factors for consideration in formulation development related to nasal-brain drug delivery. Expert opinion The nasal-brain drug delivery route has the advantage of enhancing drug delivery to the brain locally, mainly through the olfactory route rather than the systemic circulation. The nasal-brain lymphatic system has recently attracted attention, and it has been implied that the delivery of anticancer drugs to the brain nervous system is possible effectively. However, there are limitations such as low drug permeability, as well as nasal mucosa and the mucociliary system, as obstacles in nasal-brain drug delivery. Therefore, to overcome the limitations of nasal-brain drug delivery, the use of nanocarriers and mucoadhesive agents is being attempted. However, very few drugs have been officially approved for clinical application via the nasal-brain drug delivery route. This is probably because the understanding of and related studies on nasal-brain drug delivery are limited. In this review, we tried to explore the major considerations and target factors in drug delivery through the nasal-brain route based on physiological knowledge and formulation research information. This will help to provide a mechanistic understanding of drug delivery through the nasal-brain route and bring us one step closer to developing effective formulations and drugs in consideration of the key factors for nasal-brain drug delivery.
Collapse
|
20
|
Comparative study on the topical and transdermal delivery of diclofenac incorporated in nano-emulsions, nano-emulgels, and a colloidal suspension. Drug Deliv Transl Res 2022; 13:1372-1389. [PMID: 36525200 DOI: 10.1007/s13346-022-01267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
Transdermal delivery of active pharmaceutical ingredients (APIs) can be challenging, since the skin possesses a rate-limiting barrier, which may be overcome when APIs possess certain ideal physicochemical properties. The lack thereof would require that APIs be included in drug delivery vehicles to enhance skin permeation. Hence, diclofenac was incorporated into various drug delivery vehicles (i.e., nano-emulsions, nano-emulgels, and a colloidal suspension containing drug-loaded nanoparticles) to investigate the transdermal delivery thereof, while nano-emulsions and nano-emulgels had varying concentrations of evening primrose oil (EPO). The aim of the study was to compare the topical and transdermal diclofenac delivery from the different types of vehicles and to investigate the influence the different EPO concentrations had on diclofenac delivery. After characterization, membrane release studies were performed (to determine whether the API was successfully released from the vehicle) followed by in vitro skin diffusion studies and tape stripping (to establish whether the vehicles assisted the API in reaching the target site (transdermal delivery)). Lastly, cytotoxicity studies were conducted via methyl thiazolyl tetrazolium (MTT) and neutral red (NR) assays on human keratinocyte (HaCaT) cells. Results showed minimal cytotoxic effects at concentrations equivalent to that which had permeated through the skin, while the membrane release and in vitro skin diffusion studies indicated that the nano-emulsions and the 10% EPO vehicles increased API release and diffusion when compared to the other vehicles. However, the colloidal suspension had the highest concentrations of API within the skin. Hence, all the vehicles were non-toxic and effectively delivered diclofenac through the transdermal route.
Collapse
|
21
|
Itraconazole and Difluorinated-Curcumin Containing Chitosan Nanoparticle Loaded Hydrogel for Amelioration of Onychomycosis. Biomimetics (Basel) 2022; 7:biomimetics7040206. [PMID: 36412734 PMCID: PMC9680304 DOI: 10.3390/biomimetics7040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Onychomycosis is a nail infection caused by a fungus, Trichophyton mentagrophytes, that is responsible for major nail infections. The best method suited for treating such infections generally includes a topical remedy. However, conventional oral or topical formulations are associated with various limitations. Therefore, a more efficient and compatible formulation is developed in this study. The primary objective of the current study is to formulate and evaluate chitosan nanoparticle-based hydrogel for ameliorating onychomycosis. The sole purpose of this research was to increase the permeation of the lipophilic drug itraconazole and difluorinated curcumin, and its synergistic antifungal activity was also evaluated for the first time. Both in vitro and ex vivo drug release evaluations confirmed the sustained release of both drugs from the hydrogel, which is a prerequisite for treating onychomycosis. The results overall highlighted the promising activity of a synergistic approach that could be implemented for the treatment of onychomycosis. The hydrogel-based formulation serves as an effective method of delivery of drugs across the layers of the skin, resulting from its hydrating characteristics.
Collapse
|
22
|
L-Cysteine Modified Chitosan Nanoparticles and Carbon-Based Nanostructures for the Intranasal Delivery of Galantamine. Polymers (Basel) 2022; 14:polym14194004. [PMID: 36235952 PMCID: PMC9571213 DOI: 10.3390/polym14194004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
The present study evaluates the use of thiolized chitosan conjugates (CS) in combination with two fundamental carbon nanoforms (carbon dots (CDs) and Hierarchical Porous Carbons (HPC)) for the preparation of intranasally (IN) administrated galantamine (GAL) nanoparticles (NPs). Initially, the modification of CS with L-cysteine (Cys) was performed, and the successful formation of a Cys-CS conjugates was verified via 1H-NMR, FTIR, and pXRD. The new Cys-CS conjugate showed a significant solubility enhancement in neutral and alkaline pH, improving CS’s utility as a matrix-carrier for IN drug administration. In a further step, drug-loaded NPs were prepared via solid-oil–water double emulsification, and thoroughly analyzed by SEM, DLS, FTIR and pXRD. The results showed the formation of spherical NPs with a smooth surface, while the drug was amorphously dispersed within most of the prepared NPs, with the exemption of those systems contianing the CDs. Finally, in vitro dissolution release studies revealed that the prepared NPs could prolong GAL’s release for up to 12 days. In sum, regarding the most promising system, the results of the present study clearly suggest that the preparation of NPs using both Cys-CS and CDs results in a more thermodynamically stable drug dispersion, while a zero-order release profile was achieved, which is essential to attain a stable in vivo pharmacokinetic behavior.
Collapse
|
23
|
Montegiove N, Calzoni E, Emiliani C, Cesaretti A. Biopolymer Nanoparticles for Nose-to-Brain Drug Delivery: A New Promising Approach for the Treatment of Neurological Diseases. J Funct Biomater 2022; 13:125. [PMID: 36135560 PMCID: PMC9504125 DOI: 10.3390/jfb13030125] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
Diseases affecting the central nervous system (CNS) are among the most disabling and the most difficult to cure due to the presence of the blood-brain barrier (BBB) which represents an impediment from a therapeutic and diagnostic point of view as it limits the entry of most drugs. The use of biocompatible polymer nanoparticles (NPs) as vehicles for targeted drug delivery to the brain arouses increasing interest. However, the route of administration of these vectors remains critical as the drug must be delivered without being degraded to achieve a therapeutic effect. An innovative approach for the administration of drugs to the brain using polymeric carriers is represented by the nose-to-brain (NtB) route which involves the administration of the therapeutic molecule through the neuro-olfactory epithelium of the nasal mucosa. Nasal administration is a non-invasive approach that allows the rapid transport of the drug directly to the brain and minimizes its systemic exposure. To date, many studies involve the use of polymer NPs for the NtB transport of drugs to the brain for the treatment of a whole series of disabling neurological diseases for which, as of today, there is no cure. In this review, various types of biodegradable polymer NPs for drug delivery to the brain through the NtB route are discussed and particular attention is devoted to the treatment of neurological diseases such as Glioblastoma and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
24
|
|
25
|
Martano S, De Matteis V, Cascione M, Rinaldi R. Inorganic Nanomaterials versus Polymer-Based Nanoparticles for Overcoming Neurodegeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2337. [PMID: 35889562 PMCID: PMC9317100 DOI: 10.3390/nano12142337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Neurodegenerative disorders (NDs) affect a great number of people worldwide and also have a significant socio-economic impact on the aging population. In this context, nanomedicine applied to neurological disorders provides several biotechnological strategies and nanoformulations that improve life expectancy and the quality of life of patients affected by brain disorders. However, available treatments are limited by the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (B-CSFB). In this regard, nanotechnological approaches could overcome these obstacles by updating various aspects (e.g., enhanced drug-delivery efficiency and bioavailability, BBB permeation and targeting the brain parenchyma, minimizing side effects). The aim of this review is to carefully explore the key elements of different neurological disorders and summarize the available nanomaterials applied for neurodegeneration therapy looking at several types of nanocarriers. Moreover, nutraceutical-loaded nanoparticles (NPs) and synthesized NPs using green approaches are also discussed underling the need to adopt eco-friendly procedures with a low environmental impact. The proven antioxidant properties related to several natural products provide an interesting starting point for developing efficient and green nanotools useful for neuroprotection.
Collapse
|
26
|
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:769-787. [PMID: 35505234 PMCID: PMC9064725 DOI: 10.1007/s00210-022-02245-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia. .,Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, Chaikh Larbi Tebessi University, Tebessa, Algeria.
| | - Marwa Jabberi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia.,Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Ariana, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
27
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| |
Collapse
|
28
|
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022; 14:883. [PMID: 35456717 PMCID: PMC9026217 DOI: 10.3390/pharmaceutics14040883] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
There has been an increasing demand for the development of nanocarriers targeting multiple diseases with a broad range of properties. Due to their tiny size, giant surface area and feasible targetability, nanocarriers have optimized efficacy, decreased side effects and improved stability over conventional drug dosage forms. There are diverse types of nanocarriers that have been synthesized for drug delivery, including dendrimers, liposomes, solid lipid nanoparticles, polymersomes, polymer-drug conjugates, polymeric nanoparticles, peptide nanoparticles, micelles, nanoemulsions, nanospheres, nanocapsules, nanoshells, carbon nanotubes and gold nanoparticles, etc. Several characterization techniques have been proposed and used over the past few decades to control and predict the behavior of nanocarriers both in vitro and in vivo. In this review, we describe some fundamental in vitro, ex vivo, in situ and in vivo characterization methods for most nanocarriers, emphasizing their advantages and limitations, as well as the safety, regulatory and manufacturing aspects that hinder the transfer of nanocarriers from the laboratory to the clinic. Moreover, integration of artificial intelligence with nanotechnology, as well as the advantages and problems of artificial intelligence in the development and optimization of nanocarriers, are also discussed, along with future perspectives.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; or
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Ragwa Mohamed Farid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Shaimaa Khamis Mostafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Gihan Salah Labib
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| |
Collapse
|
29
|
McGuckin MB, Wang J, Ghanma R, Qin N, Palma SD, Donnelly RF, Paredes AJ. Nanocrystals as a master key to deliver hydrophobic drugs via multiple administration routes. J Control Release 2022; 345:334-353. [DOI: 10.1016/j.jconrel.2022.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
|
30
|
Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Md S, Alhakamy NA, Alfaleh MA, Afzal O, Altamimi ASA, Iqubal A, Shaik RA. Mechanisms Involved in Microglial-Interceded Alzheimer's Disease and Nanocarrier-Based Treatment Approaches. J Pers Med 2021; 11:1116. [PMID: 34834468 PMCID: PMC8619529 DOI: 10.3390/jpm11111116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder accountable for dementia and cognitive dysfunction. The etiology of AD is complex and multifactorial in origin. The formation and deposition of amyloid-beta (Aβ), hyperphosphorylated tau protein, neuroinflammation, persistent oxidative stress, and alteration in signaling pathways have been extensively explored among the various etiological hallmarks. However, more recently, the immunogenic regulation of AD has been identified, and macroglial activation is considered a limiting factor in its etiological cascade. Macroglial activation causes neuroinflammation via modulation of the NLRP3/NF-kB/p38 MAPKs pathway and is also involved in tau pathology via modulation of the GSK-3β/p38 MAPK pathways. Additionally, microglial activation contributes to the discrete release of neurotransmitters and an altered neuronal synaptic plasticity. Therefore, activated microglial cells appear to be an emerging target for managing and treating AD. This review article discussed the pathology of microglial activation in AD and the role of various nanocarrier-based anti-Alzeihmenr's therapeutic approaches that can either reverse or inhibit this activation. Thus, as a targeted drug delivery system, nanocarrier approaches could emerge as a novel means to overcome existing AD therapy limitations.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Rasheed A. Shaik
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
32
|
Hyaluronic-benzydamine oromucosal films outperform conventional mouth rinse in ulcer healing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Abd El Hady WE, Soliman OAEA, El Sabbagh HM, Mohamed EA. Glutaraldehyde-crosslinked chitosan-polyethylene oxide nanofibers as a potential gastroretentive delivery system of nizatidine for augmented gastroprotective activity. Drug Deliv 2021; 28:1795-1809. [PMID: 34470551 PMCID: PMC8428272 DOI: 10.1080/10717544.2021.1971796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nizatidine (NIZ), a histamine H2-receptor antagonist, is soluble and stable in the stomach, however, it exhibits a short half-life and a rapid clearance. Therefore, chitosan (CS) and polyethylene oxide (PEO) nanofibers (NFs) at different weight ratios were prepared by electrospinning and characterized. The selected uncrosslinked and glutaraldehyde-crosslinked NFs were investigated regarding floating, solid-state characteristics, in vitro release, and in vitro cytotoxicity. The cytoprotective activity against ethanol-induced gastric injury in rats was evaluated through macroscopical, histopathological, immunohistochemical, and oxidative stress examinations. NFs based on 8:2 CS:PEO exhibited the smallest diameter (119.17 ± 22.05 nm) and the greatest mucoadhesion (22.82 ± 3.21 g/cm2), so they were crosslinked with glutaraldehyde. Solid-state characterization indicated polymers interaction, a successful crosslinking, and NIZ dispersion in NFs. Crosslinking maintained swollen mats at pH 1.2 (swelling% = 29.47 ± 3.50% at 24 h), retarded their erosion at pH 6.8 (swelling%= 84.64 ± 4.91% vs. 25.40 ± 0.79% for the uncrosslinked NFs at 24 h), augmented the floating up to 24 h vs. 10 min for the uncrosslinked NFs at pH 1.2 and prolonged the drug release (%drug released ≥ 93% at 24 h vs. 4 and 5 h for the uncrosslinked NFs at pHs 1.2 and 6.8, respectively). The viability of Caco-2 cells ≥ 86.87 ± 6.86% revealed NFs biocompatibility and unreacted glutaraldehyde removal. Crosslinking of 8:2 CS:PEO NFs potentiated the antiulcer activity (38.98 vs. 8.67 for the uncrosslinked NFs) as well as it preserved the gastric wall architecture, COX-2 expression, and oxidative stress markers levels of the normal rats.
Collapse
|
34
|
LC-MS bioanalysis of targeted nasal galantamine bound chitosan nanoparticles in rats' brain homogenate and plasma. Anal Bioanal Chem 2021; 413:5181-5191. [PMID: 34173038 DOI: 10.1007/s00216-021-03487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Validated LC-MS method for the direct quantitative analysis of galantamine (acetylcholinesterase inhibitor) was developed in rat cerebrospinal fluid and brain homogenate besides rat plasma, utilizing structurally close nalbuphine as an internal standard. After a simple protein precipitation step, samples are separated on 2-μm C18 column kept at 40 °C, using isocratic flow of 80% methanol in pH 9.5 ammonium formate buffer, and retention times were about 1.8 and 2.9 min for galantamine and nalbuphine, respectively. Mass detection with electrospray ionization (ESI) and positive polarity was able to detect 0.2 ng mL-1 galantamine using single ion monitoring mode (SIM) at m/z 288 for galantamine and m/z 358 for nalbuphine. The method showed linearity within the range of 0.5 - 300 ng mL-1. The proposed method was validated according to FDA guidelines. Trueness and precision showed acceptable values at all quality control levels, and recoveries were within 85.6 - 114.3% in all matrices at all runs and with relative standard deviations within 0.2 - 12.4%. The method was used to study in vivo brain uptake and pharmacokinetics of galantamine from brain homogenate and plasma samples following the administration of nasal galantamine-bound chitosan nanoparticles compared to oral and nasal galantamine solutions, in scopolamine-induced Alzheimer's disease rat model.
Collapse
|
35
|
Kandil LS, Farid RM, ElGamal SS, Hanafy AS. Intranasal galantamine/chitosan complex nanoparticles elicit neuroprotection potentials in rat brains via antioxidant effect. Drug Dev Ind Pharm 2021; 47:735-740. [PMID: 34032549 DOI: 10.1080/03639045.2021.1934861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease is a common cause of dementia in the elderly. Galantamine hydrobromide (GH) is an anti-Alzheimer cholinesterase inhibitor that has an intrinsic antioxidant effect. In a previous study, GH was complexed with chitosan to prepare intranasal GH/chitosan complex nanoparticles (CX-NP2). The nanoparticles were located in rat brains 1 h after nasal administration and showed pharmacological superiority to GH nasal solution without showing histopathological toxicity. OBJECTIVE This study aimed to investigate whether the long-term administration of CX-NP2 leads to biochemical toxicity in rat brains compared to GH nasal solution. METHODS CX-NP2 dispersion and GH solution were administrated intranasally to male Wistar rats for 30 days (3 mg/kg/day). Malondialdehyde (MDA), lipid peroxidation marker, glutathione (GSH), superoxide dismutase (SOD) activity and tumor necrosis factor-α (TNF-α) were assessed in the brain extracts in all groups. RESULTS There was statistically insignificant difference between the CX-NP2 and GH nasal solution treated groups in all biochemical toxicity parameters assessed. Interestingly, MDA and TNF-α levels in the CX-NP2-treated group significantly decreased compared to the control group. Also, GSH level and SOD activity were significantly enhanced in CX-NP2 treated group compared to the control group. CONCLUSIONS CX-NP2 did not induce a statistically significant oxidative stress or neuroinflammation in rat brains after 30-day treatment, they rather elicited neuroprotective potentials.HighlightsIntranasal GH/chitosan complex nanoparticles (CX-NP2) show promising potential as a brain targeting carrier.Compared to GH nasal solution, nasal CX-NP2 formulation did not exert oxidative stress nor neuroinflammation when administered for 30 days.
Collapse
Affiliation(s)
- Lamia Said Kandil
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria (PUA), Alexandria, Egypt.,Department of Biochemistry/Microbiology in the School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ragwa M Farid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Safaa S ElGamal
- Department of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Amira Sayed Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
36
|
Functionalized carbon nano onion as a novel drug delivery system for brain targeting. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
El-Ganainy SO, Gowayed MA, Agami M, Mohamed P, Belal M, Farid RM, Hanafy AS. Galantamine nanoparticles outperform oral galantamine in an Alzheimer's rat model: pharmacokinetics and pharmacodynamics. NANOMEDICINE (LONDON, ENGLAND) 2021; 16:1281-1296. [PMID: 34013783 DOI: 10.2217/nnm-2021-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Galantamine is an acetylcholinesterase inhibitor frequently used in Alzheimer's disease management. Its cholinergic adverse effects and rapid elimination limit its therapeutic outcomes. We investigated the pharmacodynamics and pharmacokinetics of 2-week intranasal galantamine-bound chitosan nanoparticles (G-NP) treatment in scopolamine-induced Alzheimer's disease rat model. Materials & methods: Behavioral, neurobiochemical and histopathological changes were assessed and compared with oral and nasal solutions. Brain uptake and pharmacokinetics were determined using a novel validated LC/MS assay. Results: G-NP enhanced spatial memory, exploring behavior and cholinergic transmission in rats. Beta-amyloid deposition and Notch signaling were suppressed and the histopathological degeneration was restored. G-NP potentiated galantamine brain delivery and delayed its elimination. Conclusion: G-NP hold promising therapeutic potentials and brain targeting, outperforming conventional galantamine therapy.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mahmoud Agami
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21500, Egypt
| | - Passant Mohamed
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Marwa Belal
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Beheira, 22511, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Amira S Hanafy
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| |
Collapse
|
38
|
Khan NH, Mir M, Ngowi EE, Zafar U, Khakwani MMAK, Khattak S, Zhai YK, Jiang ES, Zheng M, Duan SF, Wei JS, Wu DD, Ji XY. Nanomedicine: A Promising Way to Manage Alzheimer's Disease. Front Bioeng Biotechnol 2021; 9:630055. [PMID: 33996777 PMCID: PMC8120897 DOI: 10.3389/fbioe.2021.630055] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating disease of the aging population characterized by the progressive and slow brain decay due to the formation of extracellular plaques in the hippocampus. AD cells encompass tangles of twisted strands of aggregated microtubule binding proteins surrounded by plaques. Delivering corresponding drugs in the brain to deal with these clinical pathologies, we face a naturally built strong, protective barrier between circulating blood and brain cells called the blood-brain barrier (BBB). Nanomedicines provide state-of-the-art alternative approaches to overcome the challenges in drug transport across the BBB. The current review presents the advances in the roles of nanomedicines in both the diagnosis and treatment of AD. We intend to provide an overview of how nanotechnology has revolutionized the approaches used to manage AD and highlight the current key bottlenecks and future perspective in this field. Furthermore, the emerging nanomedicines for managing brain diseases like AD could promote the booming growth of research and their clinical availability.
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Ujala Zafar
- School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | | | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuan-Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institutes of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
39
|
Xu Y, Zhao M, Zhou D, Zheng T, Zhang H. The application of multifunctional nanomaterials in Alzheimer's disease: A potential theranostics strategy. Biomed Pharmacother 2021; 137:111360. [PMID: 33582451 DOI: 10.1016/j.biopha.2021.111360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
By virtue of their small size, nanomaterials can cross the blood-brain barrier and, when modified to target specific cells or regions, can achieve high bioavailability at the intended site of action. Modified nanomaterials are therefore promising agents for the diagnosis and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). Here we review the roles and mechanisms of action of nanomaterials in AD. First, we discuss the general characteristics of nanomaterials and their application to nanomedicine. Then, we summarize recent studies on the diagnosis and treatment of AD using modified nanomaterials. These studies indicate that using nanomaterials is a potential strategy for AD treatment by slowing the progression of AD through enhanced therapeutic effects.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of ZheJiang Chinese Medical University, Zhejiang Provincial Hospital of TCM, Hangzhou 310058, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
40
|
Prasanna P, Upadhyay A. Flavonoid-Based Nanomedicines in Alzheimer's Disease Therapeutics: Promises Made, a Long Way To Go. ACS Pharmacol Transl Sci 2021; 4:74-95. [PMID: 33615162 PMCID: PMC7887745 DOI: 10.1021/acsptsci.0c00224] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is characterized by the continuous decline of the cognitive abilities manifested due to the accumulation of large aggregates of amyloid-beta 42 (Aβ42), the formation of neurofibrillary tangles of hyper-phosphorylated forms of microtubule-associated tau protein, which may lead to many alterations at the cellular and systemic level. The current therapeutic strategies primarily focus on alleviating pathological symptoms rather than providing a possible cure. AD is one of the highly studied but least understood neurological problems and remains an unresolved condition of human brain degeneration. Over the years, multiple naturally derived small molecules, including plant products, microbial isolates, and some metabolic byproducts, have been projected as supplements reducing the risk or possible treatment of the disease. However, unfortunately, none has met the expected success. One major challenge for most medications is their ability to cross the blood-brain barrier (BBB). In past decades, nanotechnology-based interventions have offered an alternative platform to address the problem of the successful delivery of the drugs to the specific targets. Interestingly, the exciting interface of natural products and nanomedicine is delivering promising results in AD treatment. The potential applications of flavonoids, the plant-derived compounds best known for their antioxidant activities, and their amalgamation with nanomedicinal approaches may lead to highly effective therapeutic strategies for treating well-known neurodegenerative diseases. In the present review, we explore the possibilities and recent developments on an exciting combination of flavonoids and nanoparticles in AD.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Hajipur, Bihar, India 844102
| | - Arun Upadhyay
- Department
of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan, India 305817
| |
Collapse
|
41
|
Altinoglu G, Adali T. Alzheimer's Disease Targeted Nano-Based Drug Delivery Systems. Curr Drug Targets 2021; 21:628-646. [PMID: 31744447 DOI: 10.2174/1389450120666191118123151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and is part of a massive and growing health care burden that is destroying the cognitive function of more than 50 million individuals worldwide. Today, therapeutic options are limited to approaches with mild symptomatic benefits. The failure in developing effective drugs is attributed to, but not limited to the highly heterogeneous nature of AD with multiple underlying hypotheses and multifactorial pathology. In addition, targeted drug delivery to the central nervous system (CNS), for the diagnosis and therapy of neurological diseases like AD, is restricted by the challenges posed by blood-brain interfaces surrounding the CNS, limiting the bioavailability of therapeutics. Research done over the last decade has focused on developing new strategies to overcome these limitations and successfully deliver drugs to the CNS. Nanoparticles, that are capable of encapsulating drugs with sustained drug release profiles and adjustable physiochemical properties, can cross the protective barriers surrounding the CNS. Thus, nanotechnology offers new hope for AD treatment as a strong alternative to conventional drug delivery mechanisms. In this review, the potential application of nanoparticle based approaches in Alzheimer's disease and their implications in therapy is discussed.
Collapse
Affiliation(s)
- Gülcem Altinoglu
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10, Turkey.,Tissue Engineering and Biomaterials Research Centre, Centre of Excellence, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10 Turkey
| | - Terin Adali
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10, Turkey.,Tissue Engineering and Biomaterials Research Centre, Centre of Excellence, Near East University, P.O. Box: 99138, North Cyprus via Mersin 10 Turkey
| |
Collapse
|
42
|
Kumar R, Gulati M, Singh SK, Sharma D, Porwal O. Road From Nose to Brain for Treatment of Alzheimer: The Bumps and Humps. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:663-675. [PMID: 32640969 DOI: 10.2174/1871527319666200708124726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Vulnerability of the brain milieu to even the subtle changes in its normal physiology is guarded by a highly efficient blood brain barrier. A number of factors i.e. molecular weight of the drug, its route of administration, lipophilic character, etc. play a significant role in its sojourn through the Blood Brain Barrier (BBB) and limit the movement of drug into brain tissue through BBB. To overcome these problems, alternative routes of drug administration have been explored to target the drugs to brain tissue. Nasal route has been widely reported for the administration of drugs for treatment of Alzheimer. In this innovative approach, the challenge of BBB is bypassed. Through this route, both the larger as well as polar molecules can be made to reach the brain tissues. Generally, these systems are either pH dependent or temperature dependent. The present review highlights the anatomy of nose, mechanisms of drug delivery from nose to brain, critical factors in the formulation of nasal drug delivery system, nasal formulations of various drugs that have been tried for their nasal delivery for treatment of Alzheimer. It also dives deep to understand the factors that contribute to the success of such formulations to carve out a direction for this niche area to be explored further.
Collapse
Affiliation(s)
- Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Deepika Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Omji Porwal
- Faculty of Pharmacy, Ishik University, Erbil, Iraq
| |
Collapse
|
43
|
López ES, Machado ALL, Vidal LB, González-Pizarro R, Silva AD, Souto EB. Lipid Nanoparticles as Carriers for the Treatment of Neurodegeneration Associated with Alzheimer's Disease and Glaucoma: Present and Future Challenges. Curr Pharm Des 2020; 26:1235-1250. [PMID: 32067607 DOI: 10.2174/1381612826666200218101231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
Glaucoma constitutes the second cause of blindness worldwide and it is considered a neurodegenerative disorder. In this sense, Alzheimer's disease, which is the most common type of dementia, also causes neurodegeneration. The association between both diseases remains unknown although it has been hypothesised that a possible connection might exist and it will be analysed throughout the review. In this sense, nanoparticulate systems and specially, lipid nanoparticles could be the key for effective neuroprotection. Lipid nanoparticles are the most recent type of drug nanoparticulate systems. These nanoparticles have shown great potential to encapsulate hydrophobic drugs increasing their bioavailability and being able to deliver them to the target tissue. In addition, they have shown great potential for ocular drug delivery. This review explores the most recent strategies employing lipid nanoparticles for AD and glaucoma.
Collapse
Affiliation(s)
- Elena S López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain.,Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), University of Barcelona, Barcelona 08028, Spain
| | - Ana L L Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Lorena B Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain
| | - Roberto González-Pizarro
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain.,National Drug Agency Department (ANAMED), Institute of Public Health (ISP), Chile
| | - Amelia D Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5001-801 Vila Real, Portugal.,Research Center and Agri- Environmental and Biological Technologies (CITAB-UTAD), 5001-801 Vila Real, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
44
|
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020; 25:E5294. [PMID: 33202839 PMCID: PMC7697162 DOI: 10.3390/molecules25225294] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer's disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer's disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.
Collapse
Affiliation(s)
- Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Marat Valikhov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Pavel Melnikov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Alexander Majouga
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
45
|
Bicker J, Fortuna A, Alves G, Falcão A. Nose-to-brain Delivery of Natural Compounds for the Treatment of Central Nervous System Disorders. Curr Pharm Des 2020; 26:594-619. [PMID: 31939728 DOI: 10.2174/1381612826666200115101544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several natural compounds have demonstrated potential for the treatment of central nervous system disorders such as ischemic cerebrovascular disease, glioblastoma, neuropathic pain, neurodegenerative diseases, multiple sclerosis and migraine. This is due to their well-known antioxidant, anti-inflammatory, neuroprotective, anti-tumor, anti-ischemic and analgesic properties. Nevertheless, many of these molecules have poor aqueous solubility, low bioavailability and extensive gastrointestinal and/or hepatic first-pass metabolism, leading to a quick elimination as well as low serum and tissue concentrations. Thus, the intranasal route emerged as a viable alternative to oral or parenteral administration, by enabling a direct transport into the brain through the olfactory and trigeminal nerves. With this approach, the blood-brain barrier is circumvented and peripheral exposure is reduced, thereby minimizing possible adverse effects. OBJECTIVE Herein, brain-targeting strategies for nose-to-brain delivery of natural compounds, including flavonoids, cannabinoids, essential oils and terpenes, will be reviewed and discussed. Brain and plasma pharmacokinetics of these molecules will be analyzed and related to their physicochemical characteristics and formulation properties. CONCLUSION Natural compounds constitute relevant alternatives for the treatment of brain diseases but often require loading into nanocarrier systems to reach the central nervous system in sufficient concentrations. Future challenges lie in a deeper characterization of their therapeutic mechanisms and in the development of effective, safe and brain-targeted delivery systems for their intranasal administration.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.,CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
46
|
Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia. Processes (Basel) 2020. [DOI: 10.3390/pr8111350] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study aims to prepare a smart copolymeric for controlled delivery of Galantamine hydrobromide. The synthesis of the hydrogel was executed through free radical polymerization using HPMC (Hydroxypropyl methylcellulose) and pectin as polymers and acrylic acid as monomer. Cross-linking was performed by methylene bisacrylamide (MBA). HPMC-pectin-co-acrylic acid hydrogel was loaded with Galantamine hydrobromide (antidementia drug) as a model drug for treatment of Alzheimer based dementia. Formulated hydrogels (SN1–SN9) were characterized for Fourier transform-infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and energy dispersive X-ray. Drug loading efficiency, gel fraction, measurements of porosity, and tensile strength were reported. Swelling and release studies were performed at pH 1.2 and 7.4. Drug liberation mechanism was evaluated by applying different release kinetic models. Galantamine hydrobromide was released from prepared hydrogels by Fickian release mechanism. Swelling, gel fraction, porosity, and drug release percentages were found to be dependent on hydroxypropyl methylcellulose, pectin, acrylic acid, and methylene bisacrylamide concentrations. By increasing HPMC amount, swelling was increased from 76.7% to 95.9%. Toxicity studies were conducted on albino male rabbits for a period of 14 days. Hematological and histopathological studies were carried out to evaluate safety level of hydrogel. Successfully prepared HPMC-pectin-co-acrylic acid hydrogel showed good swelling and release kinetics, which may help greatly in providing controlled release drug effect leading to enhanced patient compliance for dementia patients.
Collapse
|
47
|
Manek E, Darvas F, Petroianu GA. Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer's Disease. Molecules 2020; 25:E4866. [PMID: 33096898 PMCID: PMC7587961 DOI: 10.3390/molecules25204866] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than 24 million people worldwide and represents an immense medical, social and economic burden. While a vast array of active pharmaceutical ingredients (API) is available for the prevention and possibly treatment of AD, applicability is limited by the selective nature of the blood-brain barrier (BBB) as well as by their severe peripheral side effects. A promising solution to these problems is the incorporation of anti-Alzheimer drugs in polymeric nanoparticles (NPs). However, while several polymeric NPs are nontoxic and biocompatible, many of them are not biodegradable and thus not appropriate for CNS-targeting. Among polymeric nanocarriers, chitosan-based NPs emerge as biodegradable yet stable vehicles for the delivery of CNS medications. Furthermore, due to their mucoadhesive character and intrinsic bioactivity, chitosan NPs can not only promote brain penetration of drugs via the olfactory route, but also act as anti-Alzheimer therapeutics themselves. Here we review how chitosan-based NPs could be used to address current challenges in the treatment of AD; with a specific focus on the enhancement of blood-brain barrier penetration of anti-Alzheimer drugs and on the reduction of their peripheral side effects.
Collapse
Affiliation(s)
- Eniko Manek
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| | - Ferenc Darvas
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA;
| | - Georg A. Petroianu
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| |
Collapse
|
48
|
Muhtadi WK, Novitasari L, Danarti R, Martien R. Development of polymeric nanoparticle gel prepared with the combination of ionic pre-gelation and polyelectrolyte complexation as a novel drug delivery of timolol maleate. Drug Dev Ind Pharm 2020; 46:1844-1852. [PMID: 32901561 DOI: 10.1080/03639045.2020.1821053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The purpose of this study was to overcome the undesired systemic absorption of skin topical administration of timolol maleate (TM) by developing the TM nanoparticle gel. METHODS TM-loaded nanoparticle (TMNP) was prepared by ionic pre-gelation of pectin (PCN) and calcium ions (CI) followed with polyelectrolyte complex using chitosan (CHI). TMNP was characterized by measuring the particle size, polydispersity index, zeta potential, encapsulation efficiency (EE), and the interaction between formula constituents. TM-loaded nanoparticle gel (TMNG) was prepared by using hydroxypropyl methylcellulose (HPMC) and was characterized by measuring the spreadability, pH, viscosity, and drug content. The drug release kinetics were analyzed using DDSolver add-in program. RESULTS TMNP possessed particle size of 175.2 ± 19.7 nm, polydispersity index of 0.528 ± 0.113, zeta potential of -10.86 ± 0.87 mV, and EE of 27.45 ± 2.34%. The electrostatic interactions between PCN, CI, and CHI that formed the nanoparticles were confirmed by the result of vibrational spectroscopy analysis. TMNG possessed spreadability of 60.80 ± 1.38 cm2, pH of 5.154 ± 0.004, viscosity of 269.07 ± 5.83 cP, and drug content of 107.38 ± 1.77%. TM showed a sustained release manner within 24 h by following Korsmeyer-Peppas kinetical model with non-Fickian release mechanism. CONCLUSION The prepared nanoparticle gel can be an effective controlled release system of TM that administered topically on the skin surface.
Collapse
Affiliation(s)
- Wildan Khairi Muhtadi
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Sekolah Tinggi Ilmu Farmasi (STIFAR) Riau, JalanKamboja, Tampan, Pekanbaru, Indonesia
| | - Laras Novitasari
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Retno Danarti
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Farmako Sekip Utara, Yogyakarta, Indonesia
| | - Ronny Martien
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
49
|
Gorain B, Rajeswary DC, Pandey M, Kesharwani P, Kumbhar SA, Choudhury H. Nose to Brain Delivery of Nanocarriers Towards Attenuation of Demented Condition. Curr Pharm Des 2020; 26:2233-2246. [DOI: 10.2174/1381612826666200313125613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Increasing incidence of demented patients around the globe with limited FDA approved conventional
therapies requires pronounced research attention for the management of the demented conditions in the growing
elderly population in the developing world. Dementia of Alzheimer’s type is a neurodegenerative disorder, where
conventional therapies are available for symptomatic treatment of the disease but possess several peripheral toxicities
due to lack of brain targeting. Nanotechnology based formulations via intranasal (IN) routes of administration
have shown to improve therapeutic efficacy of several therapeutics via circumventing blood-brain barrier and
limited peripheral exposure. Instead of numerous research on polymeric and lipid-based nanocarriers in the improvement
of therapeutic chemicals and peptides in preclinical research, a step towards clinical studies still requires
wide-ranging data on safety and efficacy. This review has focused on current approaches of nanocarrierbased
therapies on Alzheimer’s disease (AD) via the IN route for polymeric and lipid-based nanocarriers for the
improvement of therapeutic efficacy and safety. Moreover, the clinical application of IN nanocarrier-based delivery
of therapeutics to the brain needs a long run; however, proper attention towards AD therapy via this platform
could bring a new era for the AD patients.
Collapse
Affiliation(s)
- Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, 47500, Malaysia
| | - Davinaa C. Rajeswary
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, 47500, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Santosh A. Kumbhar
- Department of Pharmaceutics, Marathwada Mitra Mandals, College of Pharmacy, Thergaon, Pune, Maharashtra, India
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Wilson B, Geetha KM. Neurotherapeutic applications of nanomedicine for treating Alzheimer's disease. J Control Release 2020; 325:25-37. [PMID: 32473177 DOI: 10.1016/j.jconrel.2020.05.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive, irreversible, fatal brain disease which disturbs cognitive functions. It affects 35 million people worldwide and the number of people suffering may increase to 100 million by 2050 if no effective treatments are available. The present treatment improves cognitive functions and provide temporary symptomatic relief, but do not stop or delay the disease progression. Moreover, they are mainly available as conventional oral dosage forms and these conventional oral medications lack brain specificity and also produce side effects which leads to poor patient compliance. Brain drug targeting by nanomedicines is a promising approach to improve brain targeting specificity, brain bioavailability and patient compliance. The present review discuses about the currently available pharmacotherapy for AD and the neurotherapeutic applications as well as the advancements of nanomedicine for treating AD. It also highlights the recent advancements of various nanomedicines containing phytopharmaceuticals for treating AD. It is believed that nanomedicines containing approved drugs can be transformed into the clinics hence improve the life style of AD patients.
Collapse
Affiliation(s)
- Barnabas Wilson
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India.
| | - Kannoth Mukundan Geetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| |
Collapse
|