1
|
Rajendran DS, Venkataraman S, Jha SK, Chakrabarty D, Kumar VV. A review on bio-based polymer polylactic acid potential on sustainable food packaging. Food Sci Biotechnol 2024; 33:1759-1788. [PMID: 38752115 PMCID: PMC11091039 DOI: 10.1007/s10068-024-01543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/18/2024] Open
Abstract
Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards. The incorporation of microbial and synthetic biopolymers, polysaccharides, oligosaccharides, oils, proteins and peptides to PLA in packaging solutions arises from its inherent non-toxicity and outstanding mechanical as well as thermal resilience. Functioning as a proficient film producer, PLA constructs an ideal preservation environment by merging optical and permeability traits. Esteemed as a pioneer in environmentally mindful packaging, PLA diminishes ecological footprints owing to its innate biodegradability. Primarily, the adoption of PLA extends the shelf life of products and encourages an eco-centric approach, marking a significant stride toward the food industry's embrace of sustainable packaging methodologies. Graphical abstract
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Satyendra Kumar Jha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Disha Chakrabarty
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
2
|
Wu M, Liu X, Tu W, Xia J, Zou Y, Gong X, Yu P, Huang WE, Wang H. Deep insight into oriented propionate production from food waste: Microbiological interpretation and design practice. WATER RESEARCH 2023; 243:120399. [PMID: 37499537 DOI: 10.1016/j.watres.2023.120399] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Using mixed microbial cultures (MMCs) for oriented volatile fatty acids (VFAs) refining in an open environment is a typical challenge due to the microbial diversiform and the process complexity. Especially for carbohydrate-rich waste (such as food waste), butyrate-type fermentation is usually dominant in a single-stage MMCs anaerobic process, while the production of odd-carbon VFAs (such as propionate) is difficult although it plays a significant role in chemicals industries. In this study, firstly, we gave a new perspective on the rationality of the oriented propionate production using MMCs with lactate as feedstock by conducting in-depth microbial informatics and reaction analysis. Secondly, we verified the feasibility of the "food waste-lactate-propionate" route to reverse the original butyrate-type fermentation situation and explore mechanisms for maintaining stability. In the first stage, a defined lactate fermentation microbiome was used to produce lactate-containing broth (80% of total chemical oxygen demand) at pH=4. In the second stage, an undomesticated undefined anaerobic microbiome was used to drive propionate production (45.26% ± 2.23% of total VFAs) under optimized conditions (C/N = 100:1-200:1 and pH=5.0). The low pH environment in the first stage enhanced the lactic acid bacteria to resist the invasion of non-functional flanking bacteria, making the community stable. In the second stage, the system maintained the propionate-type fermentation due to the absence of the ecological niche of the invasive lactic acid bacteria; The selection of propionate-producing specialists was a necessary but not sufficient condition for propionate-type fermentation. At last, this study proposed an enhanced engineering strategy framework for understanding elaborate MMCs fermentation.
Collapse
Affiliation(s)
- Menghan Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinning Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Juntao Xia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yina Zou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Ma W, Li X, Zhang F, Zhang ZY, Yang WQ, Huang PW, Gu Y, Sun XM. Enhancing the biomass and docosahexaenoic acid-rich lipid accumulation of Schizochytrium sp. in propionate wastewater. Biotechnol J 2023; 18:e2300052. [PMID: 37128672 DOI: 10.1002/biot.202300052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
In order to find a more effective way to obtain docosahexaenoic acid (DHA) rich lipid from Schizochytrium sp., a widespread propionate wastewater (PW) is used. PW is a common industrial and domestic wastewater, and transforming it into valuable products is a potential treatment method. Schizochytrium sp. is a rapidly growing oleaginous organism, which has been used commercially for DHA production. Herein, PW is completely used for DHA production by Schizochytrium sp. by genetic engineering and fermentation optimization, which can alleviate the increasingly tense demand for water resources and environmental pollution caused by industrial wastewater. Firstly, the methylmalonyl-CoA mutase (MCM) was overexpressed in Schizochytrium sp. to enhance the metabolism of propionate, then the engineered strain of overexpressed MCM (OMCM) can effectively use propionate. Then, the effects of PW with different concentration of propionate were investigated, and results showed that OMCM can completely replace clean water with PW containing 5 g L-1 propionate. Furthermore, in the fed-batch fermentation, the OMCM obtained the highest biomass of 113.4 g L-1 and lipid yield of 64.4 g L-1 in PW condition, which is 26.8% and 51.7% higher than that of wild type (WT) in PW condition. Moreover, to verify why overexpression of MCM can promote DHA and lipid accumulation, the comparative metabolomics, ATP production level, the antioxidant system, and the transcription of key genes were investigated. Results showed that ATP induced by PW condition could drive the synthesis of DHA, and remarkably improve the antioxidant capacity of cells by enhancing the carotenoids production. Therefore, PW can be used as an effective and economical substrate and water source for Schizochytrium sp. to accumulate biomass and DHA.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, Qixia District, Nanjing, China
| | - Xin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Feng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Zi-Yi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, Qixia District, Nanjing, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, China
| |
Collapse
|
4
|
Bose I, Roy S, Pandey VK, Singh R. A Comprehensive Review on Significance and Advancements of Antimicrobial Agents in Biodegradable Food Packaging. Antibiotics (Basel) 2023; 12:968. [PMID: 37370286 DOI: 10.3390/antibiotics12060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Food waste is key global problem and more than 90% of the leftover waste produced by food packaging factories is dumped in landfills. Foods packaged using eco-friendly materials have a longer shelf life as a result of the increased need for high-quality and secure packaging materials. For packaging purposes, natural foundation materials are required, as well as active substances that can prolong the freshness of the food items. Antimicrobial packaging is one such advancement in the area of active packaging. Biodegradable packaging is a basic form of packaging that will naturally degrade and disintegrate in due course of time. A developing trend in the active and smart food packaging sector is the use of natural antioxidant chemicals and inorganic nanoparticles (NPs). The potential for active food packaging applications has been highlighted by the incorporation of these materials, such as polysaccharides and proteins, in biobased and degradable matrices, because of their stronger antibacterial and antioxidant properties, UV-light obstruction, water vapor permeability, oxygen scavenging, and low environmental impact. The present review highlights the use of antimicrobial agents and nanoparticles in food packaging, which helps to prevent undesirable changes in the food, such as off flavors, colour changes, or the occurrence of any foodborne outcomes. This review attempts to cover the most recent advancements in antimicrobial packaging, whether edible or not, employing both conventional and novel polymers as support, with a focus on natural and biodegradable ingredients.
Collapse
Affiliation(s)
- Ipsheta Bose
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow 226026, India
- Department of Biotechnology, Axis Institute of Higher Education, Kanpur 209402, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow 226026, India
| |
Collapse
|
5
|
Cavero-Olguin VH, Dishisha T, Hatti-Kaul R. Membrane-based continuous fermentation with cell recycling for propionic acid production from glycerol by Acidipropionibacterium acidipropionici. Microb Cell Fact 2023; 22:43. [PMID: 36870992 PMCID: PMC9985857 DOI: 10.1186/s12934-023-02049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Microbial production of propionic acid (PA) from renewable resources is limited by the slow growth of the producer bacteria and product-mediated inhibition. The present study evaluates high cell density continuous PA fermentation from glycerol (Gly) using Acidipropionibacterium acidipropionici DSM 4900 in a membrane-based cell recycling system. A ceramic tubular membrane filter of 0.22 μm pore size was used as the filtering device for cell recycling. The continuous fermentations were run sequentially at dilution rates of 0.05 and 0.025 1/h using varying glycerol concentrations and two different yeast extract concentrations. RESULTS PA volumetric productivity of 0.98 g/L.h with a product yield of 0.38 gPA/gGly was obtained with 51.40 g/L glycerol at a yeast extract concentration of 10 g/L. Increasing the glycerol and yeast extract concentrations to 64.50 g/L and 20 g/L, respectively, increased in PA productivity, product yield, and concentration to 1.82 g/L.h, 0.79 gPA/gGly, and 38.37 g/L, respectively. However, lowering the dilution rate to 0.025 1/h reduced the production efficiency. The cell density increased from 5.80 to 91.83 gCDW/L throughout the operation, which lasted for a period of 5 months. A tolerant variant of A. acidipropoinici exhibiting growth at a PA concentration of 20 g/L was isolated at the end of the experiment. CONCLUSIONS Applying the current approach for PA fermentation can overcome several limitations for process industrialization.
Collapse
Affiliation(s)
- Victor Hugo Cavero-Olguin
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, 124, 221 00, Lund, Sweden.,Área de Biotecnología, Instituto de Investigaciones Fármaco Bioquímicas, Facultad de Ciencias Farmacéuticas y Bioquímicas, Universidad Mayor de San Andrés, 3239, La Paz, Bolivia
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, 124, 221 00, Lund, Sweden.
| |
Collapse
|
6
|
Propionic acid production via two-step sequential repeated batch fermentations on whey and flour. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Sriwong C, Sukyai P. Simulated elephant colon for cellulose extraction from sugarcane bagasse: An effective pretreatment to reduce chemical use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155281. [PMID: 35439514 DOI: 10.1016/j.scitotenv.2022.155281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Sugarcane bagasse (SCB) is an abundant by-product from sugar production and promising biomass for cellulose extraction. Simulated elephant colon pretreatment (SEP) to reduce chemical use in cellulose extraction from SCB was investigated using elephant dung as fermentation inoculum. The 16S rRNA gene sequences showed microorganisms in elephant dung that corresponded to metabolites during pretreatment. Organic acid accumulation in the fermentation broth was confirmed by the presence of lactic, acetic, propionic and butyric acids. Lignin peroxidase, manganese peroxidase and xylanase detected during the pretreatment enhanced lignin removal. The SEP fiber showed increased cellulose content, while lignin content decreased with reduced bleaching time from 7 to 5 h and high whiteness and crystallinity indices. Lignin removal was also confirmed by Fourier transform infrared spectroscopy. Scanning electron microscopy revealed increasing internal surface area through opening up the fiber structure. SEP offered an efficient and promising approach for cellulose fiber extraction with reduced use of chemicals for the bleaching process.
Collapse
Affiliation(s)
- Chotiwit Sriwong
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngamwongwan Road Chatuchak, Bangkok 10900, Thailand
| | - Prakit Sukyai
- Cellulose for Future Materials and Technologies Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngamwongwan Road Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
8
|
Ding W, Meng Q, Dong G, Qi N, Zhao H, Shi S. Metabolic engineering of threonine catabolism enables Saccharomyces cerevisiae to produce propionate under aerobic conditions. Biotechnol J 2022; 17:e2100579. [PMID: 35086163 DOI: 10.1002/biot.202100579] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Propionate is widely used as a preservative in the food and animal feed industries. Propionate is currently produced by petrochemical processes, and fermentative production of propionate remains challenging. METHODS AND RESULTS In this study, a synthetic propionate pathway was constructed in the budding yeast Saccharomyces cerevisiae, for propionate production under aerobic conditions. Through expression of tdcB and aldH from Escherichia coli and kivD from Lactococcus lactis, L-threonine was converted to propionate via 2-ketobutyrate and propionaldehyde. The resulting yeast aerobically produced 0.21 g/L propionate from glucose in a shake flask. Subsequent overexpression of pathway genes and elimination of competing pathways increased propionate production to 0.37 g/L. To further increase propionate production, carbon flux was pulled into the propionate pathway by weakened expression of pyruvate kinase (PYK1), together with overexpression of phosphoenolpyruvate carboxylase (ppc). The final propionate production reached 1.05 g/L during fed-batch fermentation in a fermenter. CONCLUSIONS AND IMPLICATIONS In this work, a yeast cell factory was constructed using synthetic biology and metabolic engineering strategies to enable propionate production under aerobic conditions. Our study demonstrates engineered S. cerevisiae as a promising alternative for the production of propionate and its derivatives. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China.,Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 9, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Qiongyu Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Nailing Qi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
9
|
Propionic acid production from glycerol in immobilized cell bioreactor using an acid-tolerant strain of Propionibacterium acidipropionici obtained by adaptive evolution. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Chen Y, Zhang X, Chen Y. Propionic acid-rich fermentation (PARF) production from organic wastes: A review. BIORESOURCE TECHNOLOGY 2021; 339:125569. [PMID: 34303105 DOI: 10.1016/j.biortech.2021.125569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, increasing attention has been drawn to biological valorization of organic wastes. Wherein, propionic acid-rich fermentation (PARF) has become a focal point of research. The objective of this review is to make a thorough investigation on the potential of PARF production and give future outlook. By discussing the key factors affecting PARF including substrate types, pH, temperature, retention time, etc., and various improving methods to enhance PARF including different pretreatments, inoculation optimization and immobilization, a comprehensive summary on how to achieve PARF from organic waste is presented. Then, current application of PARF liquid is concluded, which is found to play an essential role in the efficient denitrification and phosphorus removal of wastewater and preparation of microbial lipids. Finally, the environmental performance of PARF production is reviewed through life cycle assessment studies, and environmentally sensitive sectors are summarized for process optimization, providing a reference for waste management in low carbon scenarios.
Collapse
Affiliation(s)
- Yuexi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Fermentative production of propionic acid: prospects and limitations of microorganisms and substrates. Appl Microbiol Biotechnol 2021; 105:6199-6213. [PMID: 34410439 DOI: 10.1007/s00253-021-11499-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Propionic acid is an important organic acid with wide industrial applications, especially in the food industry. It is currently produced from petrochemicals via chemical routes. Increasing concerns about greenhouse gas emissions from fossil fuels and a growing consumer preference for bio-based products have led to interest in fermentative production of propionic acid, but it is not yet competitive with chemical production. To improve the economic feasibility and sustainability of bio-propionic acid, fermentation performance in terms of concentration, yield, and productivity must be improved and the cost of raw materials must be reduced. These goals require robust microbial producers and inexpensive renewable feedstocks, so the present review focuses on bacterial producers of propionic acid and promising sources of substrates as carbon sources. Emphasis is placed on assessing the capacity of propionibacteria and the various approaches pursued in an effort to improve their performance through metabolic engineering. A wide range of substrates employed in propionic acid fermentation is analyzed with particular interest in the prospects of inexpensive renewable feedstocks, such as cellulosic biomass and industrial residues, to produce cost-competitive bio-propionic acid. KEY POINTS: • Fermentative propionic acid production emerges as competitor to chemical synthesis. • Various bacteria synthesize propionic acid, but propionibacteria are the best producers. • Biomass substrates hold promise to reduce propionic acid fermentation cost.
Collapse
|
12
|
Drozdov KA, Artyukov AA, Drozdov AL. Changes in the Composition of Celomic Fluid Metabolites of the Black Sea Urchin Mesocentrotus nudus (Echinoidea) and the Starfish Asterina pectinifera (Asteroidea) under Conditions of Hypoxia Stress. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Isipato M, Dessì P, Sánchez C, Mills S, Ijaz UZ, Asunis F, Spiga D, De Gioannis G, Mascia M, Collins G, Muntoni A, Lens PNL. Propionate Production by Bioelectrochemically-Assisted Lactate Fermentation and Simultaneous CO 2 Recycling. Front Microbiol 2021; 11:599438. [PMID: 33384675 PMCID: PMC7769879 DOI: 10.3389/fmicb.2020.599438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Production of volatile fatty acids (VFAs), fundamental building blocks for the chemical industry, depends on fossil fuels but organic waste is an emerging alternative substrate. Lactate produced from sugar-containing waste streams can be further processed to VFAs. In this study, electrofermentation (EF) in a two-chamber cell is proposed to enhance propionate production via lactate fermentation. At an initial pH of 5, an applied potential of −1 V vs. Ag/AgCl favored propionate production over butyrate from 20 mM lactate (with respect to non-electrochemical control incubations), due to the pH buffering effect of the cathode electrode, with production rates up to 5.9 mM d–1 (0.44 g L–1 d–1). Microbial community analysis confirmed the enrichment of propionate-producing microorganisms, such as Tyzzerella sp. and Propionibacterium sp. Organisms commonly found in microbial electrosynthesis reactors, such as Desulfovibrio sp. and Acetobacterium sp., were also abundant at the cathode, indicating their involvement in recycling CO2 produced by lactate fermentation into acetate, as confirmed by stoichiometric calculations. Propionate was the main product of lactate fermentation at substrate concentrations up to 150 mM, with a highest production rate of 12.9 mM d–1 (0.96 g L–1 d–1) and a yield of 0.48 mol mol–1 lactate consumed. Furthermore, as high as 81% of the lactate consumed (in terms of carbon) was recovered as soluble product, highlighting the potential for EF application with high-carbon waste streams, such as cheese whey or other food wastes. In summary, EF can be applied to control lactate fermentation toward propionate production and to recycle the resulting CO2 into acetate, increasing the VFA yield and avoiding carbon emissions and addition of chemicals for pH control.
Collapse
Affiliation(s)
- Marco Isipato
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy.,Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Paolo Dessì
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Carlos Sánchez
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Simon Mills
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Fabiano Asunis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Daniela Spiga
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Giorgia De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy.,IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council-Piazza D'Armi 1, Cagliari, Italy
| | - Michele Mascia
- Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, Cagliari, Italy
| | - Gavin Collins
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Aldo Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy.,IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council-Piazza D'Armi 1, Cagliari, Italy
| | - Piet N L Lens
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
14
|
Propionic acid production by Propionibacterium freudenreichii using sweet sorghum bagasse hydrolysate. Appl Microbiol Biotechnol 2020; 104:9619-9629. [PMID: 33047167 DOI: 10.1007/s00253-020-10953-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Propionic acid, a widely used food preservative and intermediate in the manufacture of various chemicals, is currently produced from petroleum-based chemicals, raising concerns about its long-term sustainability. A key way to make propionic acid more sustainable is through fermentation of low-cost renewable and inedible sugar sources, such as lignocellulosic biomass. To this end, we utilized the cellulosic hydrolysate of sweet sorghum bagasse (SSB), a residue from a promising biomass source that can be cultivated around the world, for fermentative propionic acid production using Propionibacterium freudenreichii. In serum bottles, SSB hydrolysate supported a higher propionic acid yield than glucose (0.51 vs. 0.44 g/g, respectively), which can be attributed to the presence of additional nutrients in the hydrolysate enhancing propionic acid biosynthesis and the pH buffering capacity of the hydrolysate. Additionally, SSB hydrolysate supported better cell growth kinetics and higher tolerance to product inhibition by P. freudenreichii. The yield was further improved by co-fermenting glycerol, a renewable byproduct of the biodiesel industry, reaching up to 0.59 g/g, whereas volumetric productivity was enhanced by running the fermentation with high cell density inoculum. In the bioreactor, although the yield was slightly lower than in serum bottles (0.45 g/g), higher final concentration and overall productivity of propionic acid were achieved. Compared to glucose (this study) and hydrolysates from other biomass species (literature), use of SSB hydrolysate as a renewable glucose source resulted in comparable or even higher propionic acid yields. KEY POINTS: • Propionic acid yield and cell growth were higher in SSB hydrolysate than glucose. • The yield was enhanced by co-fermenting SSB hydrolysate and glycerol. • The productivity was enhanced under high cell density fermentation conditions. • SSB hydrolysate is equivalent or superior to other reported hydrolysates.
Collapse
|
15
|
Sun L, Gong M, Lv X, Huang Z, Gu Y, Li J, Du G, Liu L. Current advance in biological production of short-chain organic acid. Appl Microbiol Biotechnol 2020; 104:9109-9124. [DOI: 10.1007/s00253-020-10917-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
|
16
|
Castro PGM, Maeda RN, Rocha VAL, Fernandes RP, Pereira N. Improving propionic acid production from a hemicellulosic hydrolysate of sorghum bagasse by means of cell immobilization and sequential batch operation. Biotechnol Appl Biochem 2020; 68:1120-1127. [PMID: 32942342 DOI: 10.1002/bab.2031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Propionic acid (PA) is an important organic compound with extensive application in different industrial sectors and is currently produced by petrochemical processes. The production of PA by large-scale fermentation processes presents a bottleneck, particularly due to low volumetric productivity. In this context, the present work aimed to produce PA by a biochemical route from a hemicellulosic hydrolysate of sorghum bagasse using the strain Propionibacterium acidipropionici CIP 53164. Conditions were optimized to increase volumetric productivity and process efficiency. Initially, in simple batch fermentation, a final concentration of PA of 17.5 g⋅L-1 was obtained. Next, fed batch operation with free cells was adopted to minimize substrate inhibition. Although a higher concentration of PA was achieved (38.0 g⋅L-1 ), the response variables (YP/S = 0.409 g⋅g-1 and QP = 0.198 g⋅L-1 ⋅H-1 ) were close to those of the simple batch experiment. Finally, the fermentability of the hemicellulosic hydrolysate was investigated in a sequential batch with immobilized cells. The PA concentration achieved a maximum of 35.3 g⋅L-1 in the third cycle; moreover, the volumetric productivity was almost sixfold higher (1.17 g⋅L-1 ⋅H-1 ) in sequential batch than in simple batch fermentation. The results are highly promising, providing preliminary data for studies on scaling up the production of this organic acid.
Collapse
Affiliation(s)
- Patrycia G M Castro
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Roberto N Maeda
- Novozymes Latin America, Barigui, Rua Professor Francisco Ribeiro, Araucaria, Parana, CEP, Brazil
| | - Vanessa A L Rocha
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Rodrigo P Fernandes
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| | - Nei Pereira
- Center of Biofuels, Oil and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, CEP, Brazil
| |
Collapse
|
17
|
Liu T, Zhao Q, Li Y, Zhu L, Jiang L, Huang H. Transcriptomics and Proteomics Analyses of the Responses of Propionibacterium acidipropionici to Metabolic and Evolutionary Manipulation. Front Microbiol 2020; 11:1564. [PMID: 32903527 PMCID: PMC7438477 DOI: 10.3389/fmicb.2020.01564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023] Open
Abstract
We first performed a combination of metabolic engineering (deletion of ldh and poxB and overexpression of mmc) with evolutionary engineering (selection under oxygen stress, acid stress and osmotic stress) in Propionibacterium acidipropionici. The results indicated that the mutants had superior physiological activity, especially the mutant III obtained from P. acidipropionici-Δldh-ΔpoxB+mmc by evolutionary engineering, with 1.5-3.5 times higher growth rates, as well as a 37.1% increase of propionic acid (PA) titer and a 37.8% increase PA productivity compared to the wild type. Moreover, the integrative transcriptomics and proteomics analyses revealed that the differentially expressed genes (DEGs) and proteins (DEPs) in the mutant III were involved in energy metabolism, including the glycolysis pathway and tricarboxylic acid cycle (TCA cycle). These genes were up-regulated to supply increased amounts of energy and precursors for PA synthesis compared to the wild type. In addition, the down-regulation of fatty acid biosynthesis and fatty acid metabolism may indicate that the repressed metabolic flux was related to the production of PA. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was performed to verify the differential expression levels of 16 selected key genes. The results offer deep insights into the mechanism of high PA production, which provides the theoretical foundation for the construction of advanced microbial cell factories.
Collapse
Affiliation(s)
- Tingting Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Qianru Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yang Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - He Huang
- College of Pharmaceutical Science, Nanjing Tech University, Nanjing, China
| |
Collapse
|
18
|
Ranaei V, Pilevar Z, Khaneghah AM, Hosseini H. Propionic Acid: Method of Production, Current State and Perspectives. Food Technol Biotechnol 2020; 58:115-127. [PMID: 32831564 PMCID: PMC7416123 DOI: 10.17113/ftb.58.02.20.6356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/20/2020] [Indexed: 01/21/2023] Open
Abstract
During the past years, there has been a growing interest in the bioproduction of propionic acid by Propionibacterium. One of the major limitations of the existing models lies in their low productivity yield. Hence, many strategies have been proposed in order to circumvent this obstacle. This article provides a comprehensive synthesis and review of important biotechnological aspects of propionic acid production as a common ingredient in food and biotechnology industries. We first discuss some of the most important production processes, mainly focusing on biological production. Then, we provide a summary of important propionic acid producers, including Propionibacterium freudenreichii and Propionibacterium acidipropionici, as well as a wide range of reported growth/production media. Furthermore, we describe bioprocess variables that can have impact on the production yield. Finally, we propose methods for the extraction and analysis of propionic acid and put forward strategies for overcoming the limitations of competitive microbial production from the economical point of view. Several factors influence the propionic acid concentration and productivity such as culture conditions, type and bioreactor scale; however, the pH value and temperature are the most important ones. Given that there are many reports about propionic acid production from glucose, whey permeate, glycerol, lactic acid, hemicelluloses, hydrolyzed corn meal, lactose, sugarcane molasses and enzymatically hydrolyzed whole wheat flour, only few review articles evaluate biotechnological aspects, i.e. bioprocess variables.
Collapse
Affiliation(s)
- Vahid Ranaei
- Department of Public Health, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Pilevar
- Student Research Committee, Department of Food Sciences and Technology Department, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Hedayat Hosseini
- Department of Food Sciences and Technology Department, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wang P, Shen C, Li L, Guo J, Cong Q, Lu J. Simultaneous production of propionic acid and vitamin B12 from corn stalk hydrolysates by Propionibacterium freudenreichii in an expanded bed adsorption bioreactor. Prep Biochem Biotechnol 2020; 50:763-767. [PMID: 32134358 DOI: 10.1080/10826068.2020.1734942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Vitamin B12 and propionic acid that were simultaneous produced by Propionibacterium freudenreichii are both favorable chemicals widely used in food preservatives, medicine, and nutrition. While the carbon source and propionic acid accumulation reflected fermentation efficiency. In this study, using corn stalk as a carbon source and fed-batch fermentation process in an expanded bed adsorption bioreactor was studied for efficient and economic biosynthesis of acid vitamin B12 and propionic. With liquid hot water pretreated corn stalk hydrolysates as carbon source, 28.65 mg L-1 of vitamin B12 and 17.05 g L-1 of propionic acid were attained at 168 h in batch fermentation. In order to optimize the fermentation outcomes, fed-batch fermentation was performed with hydrolyzed corn stalk in expanded bed adsorption bioreactor (EBAB), giving 47.6 mg L-1 vitamin B12 and 91.4 g L-1 of propionic acid at 258 h, which correspond to product yields of 0.37 mg g-1 and 0.75 g g-1, respectively. The present study provided a promising strategy for economically sustainable production of vitamin B12 and propionic acid by P. freudenreichii fermentation using biomass cornstalk as carbon source and expanded bed adsorption bioreactor.
Collapse
Affiliation(s)
- Peng Wang
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, Hebei, China.,State Key Laboratory Breeding Base, Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, Hebei, China.,Hebei Province Pharmaceutical Chemical Engineering Technology Research Center, Shijiazhuang, Hebei, China
| | - Chen Shen
- State Key Laboratory Breeding Base, Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, Hebei, China
| | - Luwei Li
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, Hebei, China
| | - Jinfeng Guo
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, Hebei, China
| | - Qinqin Cong
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, Hebei, China
| | - Jialin Lu
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, Hebei, China
| |
Collapse
|
20
|
Valorization of cheese whey using microbial fermentations. Appl Microbiol Biotechnol 2020; 104:2749-2764. [DOI: 10.1007/s00253-020-10408-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
|
21
|
Paulista LO, Boaventura RAR, Vilar VJP, Pinheiro ALN, Martins RJE. Enhancing methane yield from crude glycerol anaerobic digestion by coupling with ultrasound or A. niger/E. coli biodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1461-1474. [PMID: 31749007 DOI: 10.1007/s11356-019-06748-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion of crude glycerol from biodiesel production is a feasible way for methane production. However, crude glycerol (CG) contains impurities, such as long-chain fatty acids (LCFA) that can inhibit methanogenic microorganisms. Ultrasound promotes the hydrolysis of LCFA and deagglomerates the microorganisms in biological flocs. Furthermore, Aspergillus niger and Escherichia coli produce lipases capable of degrading LCFA. This study aims at improving the methane yield from anaerobic digestion by coupling with ultrasound or E. coli/A. niger biodegradation. The effect of the different treatments was first assessed in a perfectly mixed batch reactor (PMBR), using diluted CG at concentrations of 0.2%, 1.7%, and 3.2% (v/v). Later, the best conditions were replicated in an upflow anaerobic sludge blanket (UASB) reactor to simulate full-scale practical applications. Experiments in the PMBR showed that ultrasound or A. niger biodegradation steps improved methane yield up to 11% for 0.2% CG and 99% for 1.7% CG, respectively. CG biodegradation by E. coli inhibited the subsequent anaerobic digestion for all concentrations tested. Using a UASB digester, ultrasonic treatment of CG led to an average increase of 29% in methane production. The application of ultrasound led to a lower accumulation of propionic acid in the digested material and increased biogas production. On the other hand, an average 77% increase in methane production was achieved using a preliminary CG biodegradation step by A. niger, when operated at a loading rate of 2.9 kg COD m-3 day-1. Under these conditions, an energy gain of 0.48 kWh day-1, with the production of the 0.434 m3 CH4 kg-1 CODremoval and 0.573 m3 CH4 kg-1 VS, and a biogas quality of 73% in methane were obtained. The digested material was analyzed for the detection and quantification of added-value by-products in order to obtain a broad assessment of the CG valorization through anaerobic digestion. In some experiments, propionic and oxalic acid were detected. However, the accumulation of propionic caused the inhibition of the acetogenic and methanogenic microorganisms.
Collapse
Affiliation(s)
- Larissa O Paulista
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rui A R Boaventura
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Alexei L N Pinheiro
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Campus Londrina, Av. dos Pioneiros 3131, Londrina, 86036-370, Brazil
| | - Ramiro J E Martins
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
- Department of Chemical and Biological Technology, Superior School of Technology, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
22
|
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 2020; 104:51-65. [PMID: 31773206 PMCID: PMC6942593 DOI: 10.1007/s00253-019-10226-1] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Microorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
23
|
Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng 2019; 43:569-591. [PMID: 31758240 DOI: 10.1007/s00449-019-02256-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Food safety is a global health and socioeconomic concern since many people still suffer from various acute and life-long diseases, which are caused by consumption of unsafe food. Therefore, ensuring safety of the food is one of the most essential issues in the food industry, which needs to be considered during not only food composition formulation but also handling and storage. For safety purpose, various chemical preservatives have been used so far in the foods. Recently, there has been renewed interest in replacing chemically originated food safety compounds with natural ones in the industry, which can also serve as antimicrobial agents. Among these natural compounds, organic acids possess the major portion. Therefore, in this paper, it is aimed to review and compile the applications, effectiveness, and microbial productions of various widely used organic acids as antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
24
|
Cavero-Olguin VH, Hatti-Kaul R, Cardenas-Alegria OV, Gutierrez-Valverde M, Alfaro-Flores A, Romero-Calle DX, Alvarez-Aliaga MT. Stress induced biofilm formation in Propionibacterium acidipropionici and use in propionic acid production. World J Microbiol Biotechnol 2019; 35:101. [DOI: 10.1007/s11274-019-2679-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 06/15/2019] [Indexed: 12/16/2022]
|
25
|
Xu X, Williams TC, Divne C, Pretorius IS, Paulsen IT. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:97. [PMID: 31044010 PMCID: PMC6477708 DOI: 10.1186/s13068-019-1427-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Propionic acid (PA), a key platform chemical produced as a by-product during petroleum refining, has been widely used as a food preservative and an important chemical intermediate in many industries. Microbial PA production through engineering yeast as a cell factory is a potentially sustainable alternative to replace petroleum refining. However, PA inhibits yeast growth at concentrations well below the titers typically required for a commercial bioprocess. RESULTS Adaptive laboratory evolution (ALE) with PA concentrations ranging from 15 to 45 mM enabled the isolation of yeast strains with more than threefold improved tolerance to PA. Through whole genome sequencing and CRISPR-Cas9-mediated reverse engineering, unique mutations in TRK1, which encodes a high-affinity potassium transporter, were revealed as the cause of increased propionic acid tolerance. Potassium supplementation growth assays showed that mutated TRK1 alleles and extracellular potassium supplementation not only conferred tolerance to PA stress but also to multiple organic acids. CONCLUSION Our study has demonstrated the use of ALE as a powerful tool to improve yeast tolerance to PA. Potassium transport and maintenance is not only critical in yeast tolerance to PA but also boosts tolerance to multiple organic acids. These results demonstrate high-affinity potassium transport as a new principle for improving organic acid tolerance in strain engineering.
Collapse
Affiliation(s)
- Xin Xu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Thomas C. Williams
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT 2601 Australia
| | - Christina Divne
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Isak S. Pretorius
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
26
|
Luna-Flores CH, Stowers CC, Cox BM, Nielsen LK, Marcellin E. Linking genotype and phenotype in an economically viable propionic acid biosynthesis process. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:224. [PMID: 30123322 PMCID: PMC6090647 DOI: 10.1186/s13068-018-1222-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/03/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Propionic acid (PA) is used as a food preservative and increasingly, as a precursor for the synthesis of monomers. PA is produced mainly through hydrocarboxylation of ethylene, also known as the 'oxo-process'; however, Propionibacterium species are promising biological PA producers natively producing PA as their main fermentation product. However, for fermentation to be competitive, a PA yield of at least 0.6 g/g is required. RESULTS A new strain able to reach the required yield was obtained using genome shuffling. To gain insight into the changes leading to the improved phenotype, the genome of the new strain was sequenced, and metabolomics and transcriptomics data were obtained. In combination, the data revealed three key mutations: (i) a mutation in the promoter region of a sugar transporter which enables an increase in the uptake rate of sucrose; (ii) a mutation in a polar amino acid transporter which improves consumption of amino acids and acid tolerance; and (iii) a mutation in a gene annotated as a cytochrome C biogenesis gene, which is likely responsible for the coupling of the Wood-Werkman cycle to ATP production were responsible for the phenotype. The bioprocess was further enhanced with a feeding strategy that achieved 70 g/L of product. The proposed bioprocess is expected to outperform the economics of the current 'oxo-process' by 2020. CONCLUSIONS In this study, using genome shuffling, we obtained a strain capable of producing PA exceeding the commercial needs. The multiomics comparison between the novel strain and the wild type revealed overexpression of amino acid pathways, changes in sucrose transporters and an increased activity in the methylglyoxal and the glucuronate interconversion pathways. The analysis also suggests that a mutation in the cytochrome C biogenesis gene, coupled with ATP production through the Wood-Werkman cycle, may be responsible for the increased PA production.
Collapse
Affiliation(s)
- Carlos H. Luna-Flores
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072 Australia
| | - Chris C. Stowers
- BioEngineering and Bioprocessing R&D, Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268 USA
| | - Brad M. Cox
- BioEngineering and Bioprocessing R&D, Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268 USA
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
27
|
Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: A review. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.02.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Run S, Tian P. Improved Tolerance of Escherichia coli to Propionic Acid by Overexpression of Sigma Factor RpoS. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818030122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Crutchik D, Frison N, Eusebi AL, Fatone F. Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery. WATER RESEARCH 2018; 136:112-119. [PMID: 29500972 DOI: 10.1016/j.watres.2018.02.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/31/2018] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Cellulose from used toilet paper is a major untapped resource embedded in municipal wastewater which recovery and valorization to valuable products can be optimized. Cellulosic primary sludge (CPS) can be separated by upstream dynamic sieving and anaerobically digested to recover methane as much as 4.02 m3/capita·year. On the other hand, optimal acidogenic fermenting conditions of CPS allows the production of targeted short-chain fatty acids (SCFAs) as much as 2.92 kg COD/capita·year. Here propionate content can be more than 30% and can optimize the enhanced biological phosphorus removal (EBPR) processes or the higher valuable co-polymer of polyhydroxyalkanoates (PHAs). In this work, first a full set of batch assays were used at three different temperatures (37, 55 and 70 °C) and three different initial pH (8, 9 and 10) to identify the best conditions for optimizing both the total SCFAs and propionate content from CPS fermentation. Then, the optimal conditions were applied in long term to a Sequencing Batch Fermentation Reactor where the highest propionate production (100-120 mg COD/g TVSfed·d) was obtained at 37 °C and adjusting the feeding pH at 8. This was attributed to the higher hydrolysis efficiency of the cellulosic materials (up to 44%), which increased the selective growth of Propionibacterium acidopropionici in the fermentation broth up to 34%. At the same time, around 88% of the phosphorus released during the acidogenic fermentation was recovered as much as 0.15 kg of struvite per capita·year. Finally, the potential market value was preliminary estimated for the recovered materials that can triple over the conventional scenario of biogas recovery in existing municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Dafne Crutchik
- Department of Biotechnology, University of Verona, Verona, Italy; Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Verona, Italy.
| | - Anna Laura Eusebi
- Department of Science and Engineering of Materials, Environment and City Planning, Faculty of Engineering, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Fatone
- Department of Science and Engineering of Materials, Environment and City Planning, Faculty of Engineering, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
30
|
Navone L, McCubbin T, Gonzalez-Garcia RA, Nielsen LK, Marcellin E. Genome-scale model guided design of Propionibacterium for enhanced propionic acid production. Metab Eng Commun 2018; 6:1-12. [PMID: 29255672 PMCID: PMC5725212 DOI: 10.1016/j.meteno.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/12/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
Production of propionic acid by fermentation of propionibacteria has gained increasing attention in the past few years. However, biomanufacturing of propionic acid cannot compete with the current oxo-petrochemical synthesis process due to its well-established infrastructure, low oil prices and the high downstream purification costs of microbial production. Strain improvement to increase propionic acid yield is the best alternative to reduce downstream purification costs. The recent generation of genome-scale models for a number of Propionibacterium species facilitates the rational design of metabolic engineering strategies and provides a new opportunity to explore the metabolic potential of the Wood-Werkman cycle. Previous strategies for strain improvement have individually targeted acid tolerance, rate of propionate production or minimisation of by-products. Here we used the P. freudenreichii subsp. shermanii and the pan-Propionibacterium genome-scale metabolic models (GEMs) to simultaneously target these combined issues. This was achieved by focussing on strategies which yield higher energies and directly suppress acetate formation. Using P. freudenreichii subsp. shermanii, two strategies were assessed. The first tested the ability to manipulate the redox balance to favour propionate production by over-expressing the first two enzymes of the pentose-phosphate pathway (PPP), Zwf (glucose-6-phosphate 1-dehydrogenase) and Pgl (6-phosphogluconolactonase). Results showed a 4-fold increase in propionate to acetate ratio during the exponential growth phase. Secondly, the ability to enhance the energy yield from propionate production by over-expressing an ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) and sodium-pumping methylmalonyl-CoA decarboxylase (MMD) was tested, which extended the exponential growth phase. Together, these strategies demonstrate that in silico design strategies are predictive and can be used to reduce by-product formation in Propionibacterium. We also describe the benefit of carbon dioxide to propionibacteria growth, substrate conversion and propionate yield.
Collapse
Affiliation(s)
- Laura Navone
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | | | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Australia
| |
Collapse
|
31
|
Belgrano FDS, Verçoza BRF, Rodrigues JCF, Hatti-Kaul R, Pereira N. EPS production by Propionibacterium freudenreichii facilitates its immobilization for propionic acid production. J Appl Microbiol 2018; 125:480-489. [PMID: 29704883 DOI: 10.1111/jam.13895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 04/10/2018] [Accepted: 04/22/2018] [Indexed: 01/17/2023]
Abstract
AIMS Immobilization of microbial cells is a useful strategy for developing high cell density bioreactors with improved stability and productivity for production of different chemicals. Functionalization of the immobilization matrix or biofilm forming property of some strains has been utilized for achieving cell attachment. The aim of the present study was to investigate the production of exopolysaccharide (EPS) by Propionibacterium freudenreichii C.I.P 59.32 and utilize this feature for immobilization of the cells on porous glass beads for production of propionic acid. METHODS AND RESULTS Propionibacterium freudenreichii was shown to produce both capsular and excreted EPS during batch cultivations using glucose as carbon source. Different electron microscopy techniques confirmed the secretion of EPS and formation of cellular aggregates. The excreted EPS was mainly composed of mannose and glucose in a 5·3 : 1 g g-1 ratio. Immobilization of the cells on untreated and polyethyleneimine (PEI)-treated Poraver beads in a bioreactor was evaluated. Higher productivity and yield of propionic acid (0·566 g l-1 h-1 and 0·314 g g-1 , respectively) was achieved using cells immobilized to untreated beads and EPS production reached 617·5 mg l-1 after 48 h. CONCLUSION These results suggest an important role of EPS-producing strains for improving cell immobilization and propionic acid production. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the EPS-producing microbe to be easily immobilized on a solid matrix and to be used in a bioprocess. Such a system could be optimized for achieving high cell density in fermentations without the need for functionalization of the matrix.
Collapse
Affiliation(s)
- F D S Belgrano
- Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Lund, Sweden.,Laboratórios de Desenvolvimento de Bioprocessos, Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-Bio, Polo de Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - B R F Verçoza
- Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-Bio, Polo de Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - J C F Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-Bio, Polo de Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - R Hatti-Kaul
- Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Lund, Sweden
| | - N Pereira
- Laboratórios de Desenvolvimento de Bioprocessos, Departamento de Engenharia Bioquímica, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Yang H, Wang Z, Lin M, Yang ST. Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis. BIORESOURCE TECHNOLOGY 2018; 250:1-9. [PMID: 29153644 DOI: 10.1016/j.biortech.2017.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Propionic acid (PA) is a specialty chemical; its calcium salt is widely used as food preservative. Soy molasses (SM), a low-value byproduct from soybean refinery, contains sucrose and raffinose-family oligosaccharides (RFO), which are difficult to digest for most animals and industrial microorganisms. The feasibility of using SM for PA production by P. acidipropionici, which has genes encoding enzymes necessary for RFO hydrolysis, was studied. With corn steep liquor as the nitrogen source, stable long-term PA production from SM was demonstrated in sequential batch fermentations, achieving PA productivity of >0.8 g/L h and yield of 0.42 g/g sugar at pH 6.5. Economic analysis showed that calcium propionate as the main component (63.5%) in the product could be produced at US $1.55/kg for a 3000-MT plant with a capital investment of US $10.82 million. At $3.0/kg for the product, the process offers attractive 40% return of investment and is promising for commercial application.
Collapse
Affiliation(s)
- Hopen Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Zhongqiang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Guan N, Du B, Li J, Shin HD, Chen RR, Du G, Chen J, Liu L. Comparative genomics and transcriptomics analysis-guided metabolic engineering ofPropionibacterium acidipropionicifor improved propionic acid production. Biotechnol Bioeng 2017; 115:483-494. [DOI: 10.1002/bit.26478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta
| | - Bin Du
- Department of Bioengineering; University of California; San Diego La Jolla California
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta
| | - Rachel R. Chen
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
- Key Laboratory of Industrial Biotechnology; Ministry of Education; Jiangnan University; Wuxi China
| |
Collapse
|
34
|
Liu J, Li J, Shin HD, Liu L, Du G, Chen J. Protein and metabolic engineering for the production of organic acids. BIORESOURCE TECHNOLOGY 2017; 239:412-421. [PMID: 28538198 DOI: 10.1016/j.biortech.2017.04.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Organic acids are natural metabolites of living organisms. They have been widely applied in the food, pharmaceutical, and bio-based materials industries. In recent years, biotechnological routes to organic acids production from renewable raw materials have been regarded as very promising approaches. In this review, we provide an overview of current developments in the production of organic acids using protein and metabolic engineering strategies. The organic acids include propionic acid, pyruvate, itaconic acid, succinic acid, fumaric acid, malic acid and citric acid. We also expect that rapid developments in the fields of systems biology and synthetic biology will accelerate protein and metabolic engineering for microbial organic acid production in the future.
Collapse
Affiliation(s)
- Jingjing Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
35
|
An overview of biotechnological production of propionic acid: From upstream to downstream processes. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
36
|
|
37
|
Eş I, Khaneghah AM, Hashemi SMB, Koubaa M. Current advances in biological production of propionic acid. Biotechnol Lett 2017; 39:635-645. [PMID: 28150076 DOI: 10.1007/s10529-017-2293-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
Abstract
Propionic acid and its derivatives are considered "Generally Recognized As Safe" food additives and are generally used as an anti-microbial and anti-inflammatory agent, herbicide, and artificial flavor in diverse industrial applications. It is produced via biological pathways using Propionibacterium and some anaerobic bacteria. However, its commercial chemical synthesis from the petroleum-based feedstock is the conventional production process bit results in some environmental issues. Novel biological approaches using microorganisms and renewable biomass have attracted considerable recent attention due to economic advantages as well as great adaptation with the green technology. This review provides a comprehensive overview of important biotechnological aspects of propionic acid production using recent technologies such as employment of co-culture, genetic and metabolic engineering, immobilization technique and efficient bioreactor systems.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083-862, Campinas, SP, Brazil.
| | | | - Mohamed Koubaa
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOMEA 4297 TIMR), Centre de Recherche de Royallieu, CS 60319, 60203, Compiègne Cedex, France
| |
Collapse
|
38
|
Chen Y, Shen N, Wang T, Zhang F, Zeng RJ. Ammonium level induces high purity propionate production in mixed culture glucose fermentation. RSC Adv 2017. [DOI: 10.1039/c6ra25926j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Propionate is an important chemical widely applied in industry and its productionviafermentation is economic.
Collapse
Affiliation(s)
- Yun Chen
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Nan Shen
- School of Environmental Engineering and Science
- Yangzhou University
- Yangzhou
- People's Republic of China
| | - Ting Wang
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Fang Zhang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao
- People's Republic of China
| | - Raymond J. Zeng
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- People's Republic of China
| |
Collapse
|
39
|
Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula in Escherichia coli. ACTA ACUST UNITED AC 2016; 43:1659-1670. [DOI: 10.1007/s10295-016-1843-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022]
Abstract
Abstract
Acrylic acid and propionic acid are important chemicals requiring affordable, renewable production solutions. Here, we metabolically engineered Escherichia coli with genes encoding components of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula for conversion of glucose to acrylic and propionic acids. To construct an acrylic acid-producing pathway in E. coli, heterologous expression of malonyl-CoA reductase (MCR), malonate semialdehyde reductase (MSR), 3-hydroxypropionyl-CoA synthetase (3HPCS), and 3-hydroxypropionyl-CoA dehydratase (3HPCD) from M. sedula was accompanied by overexpression of succinyl-CoA synthetase (SCS) from E. coli. The engineered strain produced 13.28 ± 0.12 mg/L of acrylic acid. To construct a propionic acid-producing pathway, the same five genes were expressed, with the addition of M. sedula acryloyl-CoA reductase (ACR). The engineered strain produced 1430 ± 30 mg/L of propionic acid. This approach can be expanded to synthesize many important organic chemicals, creating new opportunities for the production of chemicals by carbon dioxide fixation.
Collapse
|
40
|
Chen Y, Wang T, Shen N, Zhang F, Zeng RJ. High-purity propionate production from glycerol in mixed culture fermentation. BIORESOURCE TECHNOLOGY 2016; 219:659-667. [PMID: 27544916 DOI: 10.1016/j.biortech.2016.08.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
High-purity propionate production from glycerol in mixed culture fermentation (MCF) induced by high ammonium concentration was investigated. Fed-batch experiments revealed that higher ammonium concentration (>2.9g/L) had simultaneous negative effects on acetate and propionate degradation. Propionate production and yield was up to 22.6g/L and 0.45g COD/g COD glycerol, respectively, with a purity of 96%. Sequential batch experiments demonstrated that the yields of propionate were 0.3±0.05, 0.32±0.01, and 0.34±0.03g COD/g COD at a glycerol concentration of 2.78, 4.38, and 5.56g/L, respectively, and the purity of propionate was 91-100%. Microbial community analysis showed that the phylum Firmicutes dominated the bacterial community at different glycerol concentrations. However, the Methanosaeta population decreased from 46% to 6% when glycerol concentration increased from 2.78 to 5.56g/L, resulting in lower acetate degradation rate. Thus, the present study might provide an alternative option for the production of propionate from glycerol via MCF.
Collapse
Affiliation(s)
- Yun Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Ting Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Nan Shen
- School of Environmental Engineering and Science, Yangzhou University, 196 West Huayang Road, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Fang Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Raymond J Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, People's Republic of China.
| |
Collapse
|
41
|
Luna‐Flores CH, Palfreyman RW, Krömer JO, Nielsen LK, Marcellin E. Improved production of propionic acid using genome shuffling. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Carlos H Luna‐Flores
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Qld Australia
| | - Robin W Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Qld Australia
| | - Jens O Krömer
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Qld Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Qld Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane Qld Australia
- Dow Centre for Sustainable Engineering and Innovation The University of Queensland Brisbane Qld Australia
| |
Collapse
|
42
|
Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8469357. [PMID: 27556042 PMCID: PMC4983341 DOI: 10.1155/2016/8469357] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
Abstract
Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.
Collapse
|
43
|
Abstract
Propionibacterium acidipropionici produces propionic acid as its main fermentation product. Traditionally derived from fossil fuels, environmental and sustainable issues have revived the interest in producing propionic acid using biological resources. Here, we present the closed sequence of Propionibacterium acidipropionici ATCC 55737, an efficient propionic acid producer.
Collapse
|
44
|
Henczka M, Djas M. Reactive extraction of acetic acid and propionic acid using supercritical carbon dioxide. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Stine A, Zhang M, Ro S, Clendennen S, Shelton MC, Tyo KE, Broadbelt LJ. Exploring
De Novo
metabolic pathways from pyruvate to propionic acid. Biotechnol Prog 2016; 32:303-11. [DOI: 10.1002/btpr.2233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/21/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew Stine
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| | - Miaomin Zhang
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| | - Soo Ro
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| | | | | | - Keith E.J. Tyo
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| | - Linda J. Broadbelt
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| |
Collapse
|
46
|
Liu L, Guan N, Zhu G, Li J, Shin HD, Du G, Chen J. Pathway engineering of Propionibacterium jensenii for improved production of propionic acid. Sci Rep 2016; 6:19963. [PMID: 26814976 PMCID: PMC4750426 DOI: 10.1038/srep19963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/27/2015] [Indexed: 11/09/2022] Open
Abstract
Propionic acid (PA) is an important chemical building block widely used in the food, pharmaceutical, and chemical industries. In our previous study, a shuttle vector was developed as a useful tool for engineering Propionibacterium jensenii, and two key enzymes—glycerol dehydrogenase and malate dehydrogenase—were overexpressed to improve PA titer. Here, we aimed to improve PA production further via the pathway engineering of P. jensenii. First, the phosphoenolpyruvate carboxylase gene (ppc) from Klebsiella pneumoniae was overexpressed to access the one-step synthesis of oxaloacetate directly from phosphoenolpyruvate without pyruvate as intermediate. Next, genes encoding lactate dehydrogenase (ldh) and pyruvate oxidase (poxB) were deleted to block the synthesis of the by-products lactic acid and acetic acid, respectively. Overexpression of ppc and deleting ldh improved PA titer from 26.95 ± 1.21 g·L−1 to 33.21 ± 1.92 g·L−1 and 30.50 ± 1.63 g·L−1, whereas poxB deletion decreased it. The influence of this pathway engineering on gene transcription, enzyme expression, NADH/NAD+ ratio, and metabolite concentration was also investigated. Finally, PA production in P. jensenii with ppc overexpression as well as ldh deletion was investigated, which resulted in further increases in PA titer to 34.93 ± 2.99 g·L−1 in a fed-batch culture.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Gexin Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
47
|
Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii. Biotechnol Bioeng 2015; 113:1294-304. [PMID: 26666200 DOI: 10.1002/bit.25902] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/12/2015] [Accepted: 12/07/2015] [Indexed: 11/11/2022]
Abstract
Propionic acid (PA) and its salts are widely used in the food, pharmaceutical, and chemical industries. Microbial production of PA by propionibacteria is a typical product-inhibited process, and acid resistance is crucial in the improvement of PA titers and productivity. We previously identified two key acid resistance elements-the arginine deaminase and glutamate decarboxylase systems-that protect propionibacteria against PA stress by maintaining intracellular pH homeostasis. In this study, we attempted to improve the acid resistance and PA production of Propionibacterium jensenii ATCC 4868 by engineering these elements. Specifically, five genes (arcA, arcC, gadB, gdh, and ybaS) encoding components of the arginine deaminase and glutamate decarboxylase systems were overexpressed in P. jensenii. The activities of the five enzymes in the engineered strains were 26.7-489.0% higher than those in wild-type P. jensenii. The growth rates of the engineered strains decreased, whereas specific PA production increased significantly compared with those of the wild-type strain. Among the overexpressed genes, gadB (encoding glutamate decarboxylase) increased PA resistance and yield most effectively; the PA resistance of P. jensenii-gadB was more than 10-fold higher than that of the wild-type strain, and the production titer, yield, and conversion ratio of PA reached 10.81 g/L, 5.92 g/g cells, and 0.56 g/g glycerol, representing increases of 22.0%, 23.8%, and 21.7%, respectively. We also investigated the effects of introducing these acid resistance elements on the transcript levels of related enzymes. The results showed that the expression of genes in the engineered pathways affected the expression of the other genes. Additionally, the intracellular pools of amino acids were altered as different genes were overexpressed, which may further contribute to the enhanced PA production. This study provides an effective strategy for improving PA production in propionibacteria; this strategy may be useful for the production of other organic acids. Biotechnol. Bioeng. 2016;113: 1294-1304. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
48
|
Akawi L, Srirangan K, Liu X, Moo-Young M, Perry Chou C. Engineering Escherichia coli for high-level production of propionate. ACTA ACUST UNITED AC 2015; 42:1057-72. [PMID: 25948049 DOI: 10.1007/s10295-015-1627-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/25/2015] [Indexed: 12/14/2022]
Abstract
Abstract
Mounting environmental concerns associated with the use of petroleum-based chemical manufacturing practices has generated significant interest in the development of biological alternatives for the production of propionate. However, biological platforms for propionate production have been limited to strict anaerobes, such as Propionibacteria and select Clostridia. In this work, we demonstrated high-level heterologous production of propionate under microaerobic conditions in engineered Escherichia coli. Activation of the native Sleeping beauty mutase (Sbm) operon not only transformed E. coli to be propionogenic (i.e., propionate-producing) but also introduced an intracellular “flux competition” between the traditional C2-fermentative pathway and the novel C3-fermentative pathway. Dissimilation of the major carbon source of glycerol was identified to critically affect such “flux competition” and, therefore, propionate synthesis. As a result, the propionogenic E. coli was further engineered by inactivation or overexpression of various genes involved in the glycerol dissimilation pathways and their individual genetic effects on propionate production were investigated. Generally, knocking out genes involved in glycerol dissimilation (except glpA) can minimize levels of solventogenesis and shift more dissimilated carbon flux toward the C3-fermentative pathway. For optimal propionate production with high C3:C2-fermentative product ratios, glycerol dissimilation should be channeled through the respiratory pathway and, upon suppressed solventogenesis with minimal production of highly reduced alcohols, the alternative NADH-consuming route associated with propionate synthesis can be critical for more flexible redox balancing. With the implementation of various biochemical and genetic strategies, high propionate titers of more than 11 g/L with high yields up to 0.4 g-propionate/g-glycerol (accounting for ~50 % of dissimilated glycerol) were achieved, demonstrating the potential for industrial application. To our knowledge, this represents the most effective engineered microbial system for propionate production with titers and yields comparable to those achieved by anaerobic batch cultivation of various native propionate-producing strains of Propionibacteria.
Collapse
Affiliation(s)
- Lamees Akawi
- grid.46078.3d 0000000086441405 Department of Chemical Engineering University of Waterloo 200 University Avenue West N2L 3G1 Waterloo ON Canada
| | - Kajan Srirangan
- grid.46078.3d 0000000086441405 Department of Chemical Engineering University of Waterloo 200 University Avenue West N2L 3G1 Waterloo ON Canada
| | - Xuejia Liu
- grid.46078.3d 0000000086441405 Department of Chemical Engineering University of Waterloo 200 University Avenue West N2L 3G1 Waterloo ON Canada
| | - Murray Moo-Young
- grid.46078.3d 0000000086441405 Department of Chemical Engineering University of Waterloo 200 University Avenue West N2L 3G1 Waterloo ON Canada
| | - C Perry Chou
- grid.46078.3d 0000000086441405 Department of Chemical Engineering University of Waterloo 200 University Avenue West N2L 3G1 Waterloo ON Canada
| |
Collapse
|
49
|
Kracke F, Krömer JO. Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 2014; 15:410. [PMID: 25547630 PMCID: PMC4310134 DOI: 10.1186/s12859-014-0410-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022] Open
Abstract
Background Microbial electrosynthesis and electro fermentation are techniques that aim to optimize microbial production of chemicals and fuels by regulating the cellular redox balance via interaction with electrodes. While the concept is known for decades major knowledge gaps remain, which make it hard to evaluate its biotechnological potential. Here we present an in silico approach to identify beneficial production processes for electro fermentation by elementary mode analysis. Since the fundamentals of electron transport between electrodes and microbes have not been fully uncovered yet, we propose different options and discuss their impact on biomass and product yields. Results For the first time 20 different valuable products were screened for their potential to show increased yields during anaerobic electrically enhanced fermentation. Surprisingly we found that an increase in product formation by electrical enhancement is not necessarily dependent on the degree of reduction of the product but rather the metabolic pathway it is derived from. We present a variety of beneficial processes with product yield increases of maximal 36% in reductive and 84% in oxidative fermentations and final theoretical product yields up to 100%. This includes compounds that are already produced at industrial scale such as succinic acid, lysine and diaminopentane as well as potential novel bio-commodities such as isoprene, para-hydroxybenzoic acid and para-aminobenzoic acid. Furthermore, it is shown that the way of electron transport has major impact on achievable biomass and product yields. The coupling of electron transport to energy conservation could be identified as crucial for most processes. Conclusions This study introduces a powerful tool to determine beneficial substrate and product combinations for electro-fermentation. It also highlights that the maximal yield achievable by bio electrochemical techniques depends strongly on the actual electron transport mechanisms. Therefore it is of great importance to reveal the involved fundamental processes to be able to optimize and advance electro fermentations beyond the level of lab-scale studies. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0410-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frauke Kracke
- Centre for Microbial Electrosynthesis, The University of Queensland, Level 4, Gehrmann Laboratories Building (60), Brisbane, QLD, 4072, Australia. .,Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia.
| | - Jens O Krömer
- Centre for Microbial Electrosynthesis, The University of Queensland, Level 4, Gehrmann Laboratories Building (60), Brisbane, QLD, 4072, Australia. .,Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
50
|
Thakker C, Martínez I, Li W, San KY, Bennett GN. Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol 2014; 42:403-22. [PMID: 25502283 DOI: 10.1007/s10295-014-1560-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022]
Abstract
The review describes efforts toward metabolic engineering of production of organic acids. One aspect of the strategy involves the generation of an appropriate amount and type of reduced cofactor needed for the designed pathway. The ability to capture reducing power in the proper form, NADH or NADPH for the biosynthetic reactions leading to the organic acid, requires specific attention in designing the host and also depends on the feedstock used and cell energetic requirements for efficient metabolism during production. Recent work on the formation and commercial uses of a number of small mono- and diacids is discussed with redox differences, major biosynthetic precursors and engineering strategies outlined. Specific attention is given to those acids that are used in balancing cell redox or providing reduction equivalents for the cell, such as formate, which can be used in conjunction with metabolic engineering of other products to improve yields. Since a number of widely studied acids derived from oxaloacetate as an important precursor, several of these acids are covered with the general strategies and particular components summarized, including succinate, fumarate and malate. Since malate and fumarate are less reduced than succinate, the availability of reduction equivalents and level of aerobiosis are important parameters in optimizing production of these compounds in various hosts. Several other more oxidized acids are also discussed as in some cases, they may be desired products or their formation is minimized to afford higher yields of more reduced products. The placement and connections among acids in the typical central metabolic network are presented along with the use of a number of specific non-native enzymes to enhance routes to high production, where available alternative pathways and strategies are discussed. While many organic acids are derived from a few precursors within central metabolism, each organic acid has its own special requirements for high production and best compatibility with host physiology.
Collapse
Affiliation(s)
- Chandresh Thakker
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | | | | | |
Collapse
|