1
|
Sojka J, Šamajová O, Šamaj J. Gene-edited protein kinases and phosphatases in molecular plant breeding. TRENDS IN PLANT SCIENCE 2024; 29:694-710. [PMID: 38151445 DOI: 10.1016/j.tplants.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Protein phosphorylation, the most common and essential post-translational modification, belongs to crucial regulatory mechanisms in plants, affecting their metabolism, intracellular transport, cytoarchitecture, cell division, growth, development, and interactions with the environment. Protein kinases and phosphatases, two important families of enzymes optimally regulating phosphorylation, have now become important targets for gene editing in crops. We review progress on gene-edited protein kinases and phosphatases in crops using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). We also provide guidance for computational prediction of alterations and/or changes in function, activity, and binding of protein kinases and phosphatases as consequences of CRISPR/Cas9-based gene editing with its possible application in modern crop molecular breeding towards sustainable agriculture.
Collapse
Affiliation(s)
- Jiří Sojka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Diao Z, Yang R, Wang Y, Cui J, Li J, Wu Q, Zhang Y, Yu X, Gong B, Huang Y, Yu G, Yao H, Guo J, Zhang H, Shen J, Gust AA, Cai Y. Functional screening of the Arabidopsis 2C protein phosphatases family identifies PP2C15 as a negative regulator of plant immunity by targeting BRI1-associated receptor kinase 1. MOLECULAR PLANT PATHOLOGY 2024; 25:e13447. [PMID: 38561315 PMCID: PMC10984862 DOI: 10.1111/mpp.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.
Collapse
Affiliation(s)
- Zhihong Diao
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Rongqian Yang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Yizhu Wang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Junmei Cui
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Junhao Li
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Qiqi Wu
- Chengdu Lusyno Biotechnology Co., Ltd.ChengduChina
| | - Yaxin Zhang
- Chengdu Lusyno Biotechnology Co., Ltd.ChengduChina
| | - Xiaosong Yu
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Benqiang Gong
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yan Huang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Guozhi Yu
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Huipeng Yao
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Jinya Guo
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Huaiyu Zhang
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| | - Jinbo Shen
- Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and BiotechnologyZhejiang A&F UniversityZhejiangHangzhouChina
| | - Andrea A. Gust
- Department of the Centre for Plant Molecular Biology, Plant BiochemistryEberhard Karls University of TübingenTübingenGermany
| | - Yi Cai
- Department of Biotechnology and Applied Biology, College of Life SciencesSichuan Agricultural UniversityYa'anSichuanChina
| |
Collapse
|
3
|
Zhang Y, Guo Z, Chen X, Li X, Shi Y, Xu L, Yu C, Jing B, Li W, Xu A, Shi X, Li K, Huang Z. Identification candidate genes for salt resistance through quantitative trait loci-sequencing in Brassica napus L. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154187. [PMID: 38422630 DOI: 10.1016/j.jplph.2024.154187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops worldwide. However, its yield is greatly limited by salt stress, one of the primary abiotic stresses. Identification of salt-tolerance genes and breeding salt-tolerant varieties is an effective approach to address this issue. Unfortunately, little is known about the salt-tolerance quantitative trait locus (QTL) and the identification of salt tolerance genes in rapeseed. In this study, high-throughput quantitative trait locus sequencing (QTL-seq) was applied to identifying salt-tolerant major QTLs based on two DNA pools from an F2:3 population of a cross between rapeseed line 2205 (salt tolerant) and 1423 (salt sensitive). A total of twelve major QTLs related to the salt tolerance rating (STR) were detected on chromosomes A03, A08, C02, C03, C04, C06, C07 and C09. To further enhance our understanding, we integrated QTL-seq data with transcriptome analysis of the two parental rapeseed plants subjected to salt stress, through which ten candidate genes for salt tolerance were identified within the major QTLs by gene differential expression, variation and annotated functions analysis. The marker SNP820 linked to salt tolerance was successfully validated and would be useful as a diagnostic marker in marker-assisted breeding. These findings provide valuable insights for future breeding programs aimed at developing rapeseed cultivars resistant to salt stresses.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiting Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liang Xu
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Chengyu Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Zhang P, Liu D, Ma J, Sun C, Wang Z, Zhu Y, Zhang X, Liu Y. Genome-wide analysis and expression pattern of the ZoPP2C gene family in Zingiber officinale Roscoe. BMC Genomics 2024; 25:83. [PMID: 38245685 PMCID: PMC10799369 DOI: 10.1186/s12864-024-09966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.
Collapse
Affiliation(s)
- Pan Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Deqi Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiawei Ma
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Chong Sun
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhaofei Wang
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xuemei Zhang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yiqing Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, 434025, Hubei, China.
- Special Plants Institute, College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
5
|
Yang D, Zhang X, Cao M, Yin L, Gao A, An K, Gao S, Guo S, Yin H. Genome-Wide Identification, Expression and Interaction Analyses of PP2C Family Genes in Chenopodium quinoa. Genes (Basel) 2023; 15:41. [PMID: 38254931 PMCID: PMC10815568 DOI: 10.3390/genes15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Plant protein phosphatase 2Cs (PP2Cs) function as inhibitors in protein kinase cascades involved in various processes and are crucial participants in both plant development and signaling pathways activated by abiotic stress. In this study, a genome-wide study was conducted on the CqPP2C gene family. A total of putative 117 CqPP2C genes were identified. Comprehensive analyses of physicochemical properties, chromosome localization and subcellular localization were conducted. According to phylogenetic analysis, CqPP2Cs were divided into 13 subfamilies. CqPP2Cs in the same subfamily had similar gene structures, and conserved motifs and all the CqPP2C proteins had the type 2C phosphatase domains. The expansion of CqPP2Cs through gene duplication was primarily driven by segmental duplication, and all duplicated CqPP2Cs underwent evolutionary changes guided by purifying selection. The expression of CqPP2Cs in various tissues under different abiotic stresses was analyzed using RNA-seq data. The findings indicated that CqPP2C genes played a role in regulating both the developmental processes and stress responses of quinoa. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis of six CqPP2C genes in subfamily A revealed that they were up-regulated or down-regulated under salt and drought treatments. Furthermore, the results of yeast two-hybrid assays revealed that subfamily A CqPP2Cs interacted not only with subclass III CqSnRK2s but also with subclass II CqSnRK2s. Subfamily A CqPP2Cs could interact with CqSnRK2s in different combinations and intensities in a variety of biological processes and biological threats. Overall, our results will be useful for understanding the functions of CqPP2C in regulating ABA signals and responding to abiotic stress.
Collapse
Affiliation(s)
- Dongdong Yang
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Xia Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Meng Cao
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Lu Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Aihong Gao
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Kexin An
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Songmei Gao
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| | - Shanli Guo
- College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China
- High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Dongying 257300, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
| | - Haibo Yin
- College of Life Sciences, Yantai University, Yantai 264005, China; (D.Y.); (X.Z.); (M.C.); (L.Y.); (A.G.); (K.A.); (S.G.)
| |
Collapse
|
6
|
Li J, Liu X, Ahmad N, Wang Y, Ge H, Wang Y, Liu W, Li X, Wang N, Wang F, Dong Y. CePP2C19 confers tolerance to drought by regulating the ABA sensitivity in Cyperus esculentus. BMC PLANT BIOLOGY 2023; 23:524. [PMID: 37898801 PMCID: PMC10612301 DOI: 10.1186/s12870-023-04522-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Tiger nut (Cyperus esculentus) is widely known as an additional source of food, oil and feed worldwide. The agricultural production of tiger nut has been greatly hindered by drought stress, reducing both yield and quality. Protein phosphatase 2 C (PP2Cs) plays an important role in plant responses to drought stress however, the molecular mechanism of PP2Cs in tiger nuts still unclear. RESULTS In this study, we identified a putative group A PP2C-encoding gene (CePP2C19) from tiger nut using transcriptome analysis, which is highly induced by drought stress. The transient expression assay suggested that CePP2C19 was localized to nucleus. Furthermore, the interaction between CePP2C19 and CePYR1, a coreceptor for ABA signaling, was first detected using a yeast two-hybrid assay and then verified using a bimolecular fluorescence complementation (BiFC) analysis. In addition, the transgenic Arabidopsis lines overexpressing CePP2C19 exhibited extreme tolerance to ABA and mannitol stresses during seed germination and root growth. At the mature stage, overexpression of CePP2C19 resulted in a higher tolerance to drought stress in transgenic Arabidopsis, as confirmed by a visible phenotype and several physiological parameters. Noticeably, the silencing of CePP2C19 by virus-induced gene silencing (VIGS) showed obvious reduction in drought tolerance in tiger nut plants. CONCLUSIONS The CePP2C19 emerges as a pivotal gene involved in the ABA signaling pathway, which likely reduce ABA sensitivity and thus enhances drought tolerance in Cyperus esculentus.
Collapse
Affiliation(s)
- Jia Li
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifei Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Hengshuo Ge
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yijin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Weican Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaowei Li
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Fawei Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Yuanyuan Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
7
|
Jardim-Messeder D, Cassol D, Souza-Vieira Y, Ehlers Loureiro M, Girke T, Boroni M, Lopes Corrêa R, Coelho A, Sachetto-Martins G. Genome-wide identification of core components of ABA signaling and transcriptome analysis reveals gene circuits involved in castor bean (Ricinus communis L.) response to drought. Gene 2023; 883:147668. [PMID: 37500024 DOI: 10.1016/j.gene.2023.147668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Castor bean (Ricinus communis L.) can withstand long periods of water deficit and high temperatures, and therefore has been recognized as a drought-resistant plant species, allowing the study of gene networks involved in drought response and tolerance. The identification of genes networks related to drought response in this plant may yield important information in the characterization of molecular mechanisms correlating changes in the gene expression with the physiological adaptation processes. In this context, gene families related to abscisic acid (ABA) signaling play a crucial role in developmental and environmental adaptation processes of plants to drought stress. However, the families that function as the core components of ABA signaling, as well as genes networks related to drought response, are not well understood in castor bean. In this study 7 RcPYL, 63 RcPP2C, and 6 RcSnRK2 genes were identified in castor bean genome, which was further supported by chromosomal distribution, gene structure, evolutionary relationships, and conserved motif analyses. The castor bean general expression profile was investigated by RNAseq in root and leaf tissues in response to drought stress. These analyses allowed the identification of genes differentially expressed, including genes from the ABA signaling core, genes related to photosynthesis, cell wall, energy transduction, antioxidant response, and transcription factors. These analyses provide new insights into the core components of ABA signaling in castor bean, allow the identification of several molecular responses associated with the high physiological adaptation of castor bean to drought stress, and contribute to the identification of candidate genes for genetic improvement.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniela Cassol
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Institute for Integrative Genome Biology, Genomics Building, University of California, Riverside, CA 92521, USA
| | - Ygor Souza-Vieira
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thomas Girke
- Institute for Integrative Genome Biology, Genomics Building, University of California, Riverside, CA 92521, USA
| | - Mariana Boroni
- Bioinformatics and Computational Laboratory, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, Brazil
| | - Régis Lopes Corrêa
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Coelho
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
8
|
Liu Z, Zhang M, Wang L, Sun W, Li M, Feng C, Yang X. Genome-wide identification and expression analysis of PYL family genes and functional characterization of GhPYL8D2 under drought stress in Gossypium hirsutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108072. [PMID: 37827043 DOI: 10.1016/j.plaphy.2023.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
Cotton is a crucial economic crop, serving as a natural fiber source for the textile industry. However, drought stress poses a significant threat to cotton fiber quality and productivity worldwide. Pyrabactin Resistance 1-Like (PYL) proteins, as abscisic acid (ABA) receptors, play a crucial role in adverse stress responses, but knowledge about the PYLs in cotton remains limited. In our study, we identified 40 GhPYL genes in Gossypium hirsutum through a genome-wide analysis of the cotton genome database. Our analysis revealed that the PYL family formed three distinct subfamilies with typical family characteristics in G. hirsutum. Additionally, through quantitative expression analysis, including transcriptome dataset and qRT-PCR, we found that all GhPYLs were expressed in all tissues of G. hirsutum, and all GhPYLs were differentially expressed under drought stress. Among them, GhPYL4A1, GhPY5D1, GhPY8D2, and a member of the type 2C protein phosphatases clade A family in Gossypium hirsutum (GhPP2CA), GhHAI2D, showed significant differences in expression levels within 12 h after stress treatment. Our protein interaction analysis and BiFC demonstrated the complex regulatory network between GhPYL family proteins and GhPP2CA proteins. We also found that there is an interaction between GhPYL8D2 and GhHAI2D, and through drought treatment of transgenic cotton, we found that GhPYL8D2 played a vital role in the response of G. hirsutum to drought through stomatal control via co-regulation with GhHAI2D. Our findings provide useful insights into the regulation of GhPYL family genes that occur in response to abiotic stresses in cotton.
Collapse
Affiliation(s)
- Zhilin Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Mengmeng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Lichen Wang
- College of Life Science, Linyi University, Linyi, 276000, Shandong, PR China.
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Meng Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Cheng Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
9
|
Sharma A, Sharma D, Verma SK. A systematic in silico report on iron and zinc proteome of Zea mays. FRONTIERS IN PLANT SCIENCE 2023; 14:1166720. [PMID: 37662157 PMCID: PMC10469895 DOI: 10.3389/fpls.2023.1166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
Zea mays is an essential staple food crop across the globe. Maize contains macro and micronutrients but is limited in essential mineral micronutrients such as Fe and Zn. Worldwide, serious health concerns have risen due to the deficiencies of essential nutrients in human diets, which rigorously jeopardizes economic development. In the present study, the systematic in silico approach has been used to predict Fe and Zn binding proteins from the whole proteome of maize. A total of 356 and 546 putative proteins have been predicted, which contain sequence and structural motifs for Fe and Zn ions, respectively. Furthermore, the functional annotation of these predicted proteins, based on their domains, subcellular localization, gene ontology, and literature support, showed their roles in distinct cellular and biological processes, such as metabolism, gene expression and regulation, transport, stress response, protein folding, and proteolysis. The versatile roles of these shortlisted putative Fe and Zn binding proteins of maize could be used to manipulate many facets of maize physiology. Moreover, in the future, the predicted Fe and Zn binding proteins may act as relevant, novel, and economical markers for various crop improvement programs.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Ost C, Cao HX, Nguyen TL, Himmelbach A, Mascher M, Stein N, Humbeck K. Drought-Stress-Related Reprogramming of Gene Expression in Barley Involves Differential Histone Modifications at ABA-Related Genes. Int J Mol Sci 2023; 24:12065. [PMID: 37569441 PMCID: PMC10418636 DOI: 10.3390/ijms241512065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Plants respond to drought by the major reprogramming of gene expression, enabling the plant to survive this threatening environmental condition. The phytohormone abscisic acid (ABA) serves as a crucial upstream signal, inducing this multifaceted process. This report investigated the drought response in barley plants (Hordeum vulgare, cv. Morex) at both the epigenome and transcriptome levels. After a ten-day drought period, during which the soil water content was reduced by about 35%, the relative chlorophyll content, as well as the photosystem II efficiency of the barley leaves, decreased by about 10%. Furthermore, drought-related genes such as HvS40 and HvA1 were already induced compared to the well-watered controls. Global ChIP-Seq analysis was performed to identify genes in which histones H3 were modified with euchromatic K4 trimethylation or K9 acetylation during drought. By applying stringent exclusion criteria, 129 genes loaded with H3K4me3 and 2008 genes loaded with H3K9ac in response to drought were identified, indicating that H3K9 acetylation reacts to drought more sensitively than H3K4 trimethylation. A comparison with differentially expressed genes enabled the identification of specific genes loaded with the euchromatic marks and induced in response to drought treatment. The results revealed that a major proportion of these genes are involved in ABA signaling and related pathways. Intriguingly, two members of the protein phosphatase 2C family (PP2Cs), which play a crucial role in the central regulatory machinery of ABA signaling, were also identified through this approach.
Collapse
Affiliation(s)
- Charlotte Ost
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany
| | - Thuy Linh Nguyen
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, 06466 Seeland, Germany
- Center of Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, 37073 Göttingen, Germany
| | - Klaus Humbeck
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| |
Collapse
|
11
|
Huang X, Liang Y, Zhang R, Zhang B, Song X, Liu J, Lu M, Qin Z, Li D, Li S, Li Y. Genome-Wide Identification of the PP2C Gene Family and Analyses with Their Expression Profiling in Response to Cold Stress in Wild Sugarcane. PLANTS (BASEL, SWITZERLAND) 2023; 12:2418. [PMID: 37446979 DOI: 10.3390/plants12132418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) represent a major group of protein phosphatases in plants, some of which have already been confirmed to play important roles in diverse plant processes. In this study, analyses of the phylogenetics, gene structure, protein domain, chromosome localization, and collinearity, as well as an identification of the expression profile, protein-protein interaction, and subcellular location, were carried out on the PP2C family in wild sugarcane (Saccharum spontaneum). The results showed that 145 PP2C proteins were classified into 13 clades. Phylogenetic analysis suggested that SsPP2Cs are evolutionarily closer to those of sorghum, and the number of SsPP2Cs is the highest. There were 124 pairs of SsPP2C genes expanding via segmental duplications. Half of the SsPP2C proteins were predicted to be localized in the chloroplast (73), with the next most common predicted localizations being in the cytoplasm (37) and nucleus (17). Analysis of the promoter revealed that SsPP2Cs might be photosensitive, responsive to abiotic stresses, and hormone-stimulated. A total of 27 SsPP2Cs showed cold-stress-induced expressions, and SsPP2C27 (Sspon.01G0007840-2D) and SsPP2C64 (Sspon.03G0002800-3D) were the potential hubs involved in ABA signal transduction. Our study presents a comprehensive analysis of the SsPP2C gene family, which can play a vital role in the further study of phosphatases in wild sugarcane. The results suggest that the PP2C family is evolutionarily conserved, and that it functions in various developmental processes in wild sugarcane.
Collapse
Affiliation(s)
- Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Yongsheng Liang
- Nanning Institute of Agricultural Sciences, Nanning 530021, China
| | - Ronghua Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Baoqing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Junxian Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Manman Lu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Zhenqiang Qin
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Dewei Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Song Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agicultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Nanning 530007, China
| |
Collapse
|
12
|
Guo Y, Shi Y, Wang Y, Liu F, Li Z, Qi J, Wang Y, Zhang J, Yang S, Wang Y, Gong Z. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. THE NEW PHYTOLOGIST 2023; 237:1728-1744. [PMID: 36444538 DOI: 10.1111/nph.18647] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Drought is a major environmental stress that threatens crop production. Therefore, identification of genes involved in drought stress response is of vital importance to decipher the molecular mechanism of stress signal transduction and breed drought tolerance crops, especially for maize. Clade A PP2C phosphatases are core abscisic acid (ABA) signaling components, regulating ABA signal transduction and drought response. However, the roles of other clade PP2Cs in drought resistance remain largely unknown. Here, we discovered a clade F PP2C, ZmPP84, that negatively regulates drought tolerance by screening a transgenic overexpression maize library. Quantitative RT-PCR indicates that the transcription of ZmPP84 is suppressed by drought stress. We identified that ZmMEK1, a member of the MAPKK family, interacts with ZmPP84 by immunoprecipitation and mass spectrometry analysis. Additionally, we found that ZmPP84 can dephosphorylate ZmMEK1 and repress its kinase activity on the downstream substrate kinase ZmSIMK1, while ZmSIMK1 is able to phosphorylate S-type anion channel ZmSLAC1 at S146 and T520 in vitro. Mutations of S146 and T520 to phosphomimetic aspartate could activate ZmSLAC1 currents in Xenopus oocytes. Taken together, our study suggests that ZmPP84 is a negative regulator of drought stress response that inhibits stomatal closure through dephosphorylating ZmMEK1, thereby repressing ZmMEK1-ZmSIMK1 signaling pathway.
Collapse
Affiliation(s)
- Yazhen Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yabo Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yalin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingbo Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071002, China
| |
Collapse
|
13
|
Luo C, Akhtar M, Min W, Alam Y, Ma T, Shi Y, She Y, Lu X. The suppressed expression of a stress responsive gene 'OsDSR2' enhances rice tolerance in drought and salt stress. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153927. [PMID: 36682133 DOI: 10.1016/j.jplph.2023.153927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Rice is a crucial staple food crop in many countries, yet, abiotic factors like salt and drought impact its growth. The Domain of Unknown Function 966 (DUF966) gene family may be crucial in how rice plants respond to abiotic stress. Our earlier research showed that overexpression of OsDSR2 (DUF966-stress repressive gene 2 in Oryza sativa) decreased resistance to salt and drought stress. To further understand how OsDSR2 negatively affects rice tolerance to salt and drought stress, transgenic rice plants with decreased OsDSR2 expression levels were created employing the RNAi technique. We investigated alterations in rice phenotype, physiology, and differentially expressed genes (DEGs) using a combination of physio-biochemical measurement and RNA-seq analysis. The results of the study demonstrated that rice seedling lines with OsDSR2 knockdown exhibited improved salt and drought stress tolerance. Statistical analysis revealed that the transgenic plants' survival rate (56-68%) was higher than the control plants (30%), in addition to a roughly 3 fold, 3.5 fold, 20% and 10.5% reduction in cell membrane permeability, malondialdehyde (MDA), superoxide anion radical (O2-) and hydrogen peroxide (H2O2) contents, respectively. However, the proline content and antioxidant enzymes (superoxide dismutase (SOD) and peroxidase (POD)) activities were considerably increased by about 5.5 fold, 3.5 fold, and 4.5 fold, respectively, at physiological levels. There were 115 up-regulated and 173 down-regulated DEGs in the leaves of the transgenic lines on the transcriptional regulation under the combined salt-drought stress. Among these, both up-regulation DEGs (e.g., OsHAK5, OsIAA25) and the down-regulation DEGs (e.g., OsbZIP23, OsERF48, OsAP2-39, etc.) may be related to the enhanced tolerance of the transgenic lines under combined salt-drought stress. This possibly depended on the involvement of abscisic acid (ABA) and indoleacetic acid (IAA) signaling pathways. These findings further confirmed that OsDSR2 negatively affected rice's ability to withstand salt and drought, suggesting that it could be a helpful gene for CRISPR-Cas9 technology-based genetic modification of rice's ability to withstand abiotic stress.
Collapse
Affiliation(s)
- Chengke Luo
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| | - Maryam Akhtar
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Weifang Min
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yasir Alam
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Tianli Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yafei Shi
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yangmengfei She
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xuping Lu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
14
|
Ai G, Li T, Zhu H, Dong X, Fu X, Xia C, Pan W, Jing M, Shen D, Xia A, Tyler BM, Dou D. BPL3 binds the long non-coding RNA nalncFL7 to suppress FORKED-LIKE7 and modulate HAI1-mediated MPK3/6 dephosphorylation in plant immunity. THE PLANT CELL 2023; 35:598-616. [PMID: 36269178 PMCID: PMC9806616 DOI: 10.1093/plcell/koac311] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
RNA-binding proteins (RBPs) participate in a diverse set of biological processes in plants, but their functions and underlying mechanisms in plant-pathogen interactions are largely unknown. We previously showed that Arabidopsis thaliana BPA1-LIKE PROTEIN3 (BPL3) belongs to a conserved plant RBP family and negatively regulates reactive oxygen species (ROS) accumulation and cell death under biotic stress. In this study, we demonstrate that BPL3 suppresses FORKED-LIKE7 (FL7) transcript accumulation and raises levels of the cis-natural antisense long non-coding RNA (lncRNA) of FL7 (nalncFL7). FL7 positively regulated plant immunity to Phytophthora capsici while nalncFL7 negatively regulated resistance. We also showed that BPL3 directly binds to and stabilizes nalncFL7. Moreover, nalncFL7 suppressed accumulation of FL7 transcripts. Furthermore, FL7 interacted with HIGHLY ABA-INDUCED PP2C1 (HAI1), a type 2C protein phosphatase, and inhibited HAI1 phosphatase activity. By suppressing HAI1 activity, FL7 increased the phosphorylation levels of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6, thus enhancing immunity responses. BPL3 and FL7 are conserved in all plant species tested, but the BPL3-nalncFL7-FL7 cascade was specific to the Brassicaceae. Thus, we identified a conserved BPL3-nalncFL7-FL7 cascade that coordinates plant immunity.
Collapse
Affiliation(s)
- Gan Ai
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianli Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zhu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Dong
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowei Fu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuyan Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiye Pan
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Brett M Tyler
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Daolong Dou
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
16
|
Genome-Wide Identification, Expression and Interaction Analysis of GmSnRK2 and Type A PP2C Genes in Response to Abscisic Acid Treatment and Drought Stress in Soybean Plant. Int J Mol Sci 2022; 23:ijms232113166. [PMID: 36361951 PMCID: PMC9653956 DOI: 10.3390/ijms232113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
As a typical ancient tetraploid, soybean (Glycine max) is an important oil crop species and plays a crucial role in supplying edible oil, plant protein and animal fodder worldwide. As global warming intensifies, the yield of soybean in the field is often strongly restricted by drought stress. SNF1-related protein kinase 2 (SnRK2) and type A protein phosphatase 2C (PP2C-A) family members are core components of the abscisic acid (ABA) signal transduction pathway in plants and have been suggested to play important roles in increasing plant tolerance to drought stress, but genetic information supporting this idea is still lacking in soybean. Here, we cloned the GmSnRK2s and GmPP2C-A family genes from the reference genome of Williams 82 soybean. The results showed that the expression patterns of GmSnRK2s and GmPP2C-As are spatiotemporally distinct. The expression of GmSnRK2s in response to ABA and drought signals is not strictly the same as that of Arabidopsis SnRK2 homologous genes. Moreover, our results indicated that the duplicate pairs of GmSnRK2s and GmPP2C-As have similar expression patterns, cis-elements and relationships. GmSnRK2.2 may have a distinct function in the drought-mediated ABA signaling pathway. Furthermore, the results of yeast two-hybrid (Y2H) assays between GmSnRK2s and GmPP2C-As revealed that GmSnRK2.17, GmSnRK2.18, GmSnRK2.22, GmPP2C5, GmPP2C7, GmPP2C10 and GmPP2C17 may play central roles in the crosstalk among ABA signals in response to drought stress. Furthermore, GmPP2C-As and GmSnRKs were targeted by miRNA and validated by degradome sequencing, which may play multiple roles in the crosstalk between ABA and drought signals and other stress signals. Taken together, these results indicate that GmSnRK2s and GmPP2C-As may play a variety of roles in the drought-mediated ABA signaling pathway.
Collapse
|
17
|
Molecular and expression analysis indicate the role of CBL interacting protein kinases (CIPKs) in abiotic stress signaling and development in chickpea. Sci Rep 2022; 12:16862. [PMID: 36207429 PMCID: PMC9546895 DOI: 10.1038/s41598-022-20750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Calcineurin B-like proteins (CBL)-interacting protein kinases (CIPKs) regulate the developmental processes, hormone signal transduction and stress responses in plants. Although the genome sequence of chickpea is available, information related to the CIPK gene family is missing in this important crop plant. Here, a total of 22 CIPK genes were identified and characterized in chickpea. We found a high degree of structural and evolutionary conservation in the chickpea CIPK family. Our analysis showed that chickpea CIPKs have evolved with dicots such as Arabidopsis and soybean, and extensive gene duplication events have played an important role in the evolution and expansion of the CIPK gene family in chickpea. The three-dimensional structure of chickpea CIPKs was described by protein homology modelling. Most CIPK proteins are localized in the cytoplasm and nucleus, as predicted by subcellular localization analysis. Promoter analysis revealed various cis-regulatory elements related to plant development, hormone signaling, and abiotic stresses. RNA-seq expression analysis indicated that CIPKs are significantly expressed through a spectrum of developmental stages, tissue/organs that hinted at their important role in plant development. The qRT-PCR analysis revealed that several CaCIPK genes had specific and overlapping expressions in different abiotic stresses like drought, salt, and ABA, suggesting the important role of this gene family in abiotic stress signaling in chickpea. Thus, this study provides an avenue for detailed functional characterization of the CIPK gene family in chickpea and other legume crops.
Collapse
|
18
|
Hu R, Zhang J, Jawdy S, Sreedasyam A, Lipzen A, Wang M, Ng V, Daum C, Keymanesh K, Liu D, Lu H, Ranjan P, Chen JG, Muchero W, Tschaplinski TJ, Tuskan GA, Schmutz J, Yang X. Comparative genomics analysis of drought response between obligate CAM and C 3 photosynthesis plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153791. [PMID: 36027837 DOI: 10.1016/j.jplph.2022.153791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Crassulacean acid metabolism (CAM) plants exhibit elevated drought and heat tolerance compared to C3 and C4 plants through an inverted pattern of day/night stomatal closure and opening for CO2 assimilation. However, the molecular responses to water-deficit conditions remain unclear in obligate CAM species. In this study, we presented genome-wide transcription sequencing analysis using leaf samples of an obligate CAM species Kalanchoë fedtschenkoi under moderate and severe drought treatments at two-time points of dawn (2-h before the start of light period) and dusk (2-h before the dark period). Differentially expressed genes were identified in response to environmental drought stress and a whole genome wide co-expression network was created as well. We found that the expression of CAM-related genes was not regulated by drought stimuli in K. fedtschenkoi. Our comparative analysis revealed that CAM species (K. fedtschenkoi) and C3 species (Arabidopsis thaliana, Populus deltoides 'WV94') share some common transcriptional changes in genes involved in multiple biological processes in response to drought stress, including ABA signaling and biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Jin Zhang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA.
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Mei Wang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Vivian Ng
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Keykhosrow Keymanesh
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35801, USA; Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94589, USA.
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
19
|
Yang QX, Chen D, Zhao Y, Zhang XY, Zhao M, Peng R, Sun NX, Baldwin TC, Yang SC, Liang YL. RNA-seq analysis reveals key genes associated with seed germination of Fritillaria taipaiensis P.Y.Li by cold stratification. FRONTIERS IN PLANT SCIENCE 2022; 13:1021572. [PMID: 36247582 PMCID: PMC9555243 DOI: 10.3389/fpls.2022.1021572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Seed dormancy is an adaptive strategy for environmental evolution. However, the molecular mechanism of the breaking of seed dormancy at cold temperatures is still unclear, and the genetic regulation of germination initiated by exposure to cold temperature requires further investigation. In the initial phase of the current study, the seed coat characteristics and embryo development of Fritillaria taipaiensis P.Y.Li at different temperatures (0°C, 4°C, 10°C & 25°C) was recorded. The results obtained demonstrated that embryo elongation and the dormancy-breaking was most significantly affected at 4°C. Subsequently, transcriptome analyses of seeds in different states of dormancy, at two stratification temperatures (4°C and 25°C) was performed, combined with weighted gene coexpression network analysis (WGCNA) and metabolomics, to explore the transcriptional regulation of seed germination in F. taipaiensis at the two selected stratification temperatures. The results showed that stratification at the colder temperature (4°C) induced an up-regulation of gene expression involved in gibberellic acid (GA) and auxin biosynthesis and the down-regulation of genes related to the abscisic acid (ABA) biosynthetic pathway. Thereby promoting embryo development and the stimulation of seed germination. Collectively, these data constitute a significant advance in our understanding of the role of cold temperatures in the regulation of seed germination in F. taipaiensis and also provide valuable transcriptomic data for seed dormancy for other non-model plant species.
Collapse
Affiliation(s)
- Qiu-Xiong Yang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Dan Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xiao-Yu Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Min Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Rui Peng
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Nian-Xi Sun
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Sheng-Chao Yang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Yan-Li Liang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural Waseda University, Fengyuan, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
20
|
Sobol G, Chakraborty J, Martin GB, Sessa G. The Emerging Role of PP2C Phosphatases in Tomato Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:737-747. [PMID: 35696659 DOI: 10.1094/mpmi-02-22-0037-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The antagonistic effect of plant immunity on growth likely drove evolution of molecular mechanisms that prevent accidental initiation and prolonged activation of plant immune responses. Signaling networks of pattern-triggered and effector-triggered immunity, the two main layers of plant immunity, are tightly regulated by the activity of protein phosphatases that dephosphorylate their protein substrates and reverse the action of protein kinases. Members of the PP2C class of protein phosphatases have emerged as key negative regulators of plant immunity, primarily from research in the model plant Arabidopsis thaliana, revealing the potential to employ PP2C proteins to enhance plant disease resistance. As a first step towards focusing on the PP2C family for both basic and translational research, we analyzed the tomato genome sequence to ascertain the complement of the tomato PP2C family, identify conserved protein domains and signals in PP2C amino acid sequences, and examine domain combinations in individual proteins. We then identified tomato PP2Cs that are candidate regulators of single or multiple layers of the immune signaling network by in-depth analysis of publicly available RNA-seq datasets. These included expression profiles of plants treated with fungal or bacterial pathogen-associated molecular patterns, with pathogenic, nonpathogenic, and disarmed bacteria, as well as pathogenic fungi and oomycetes. Finally, we discuss the possible use of immunity-associated PP2Cs to better understand the signaling networks of plant immunity and to engineer durable and broad disease resistance in crop plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
21
|
Lei KJ, Zhou H, Gu DL, An GY. The involvement of abscisic acid-insensitive mutants in low phosphate stress responses during rhizosphere acidification, anthocyanin accumulation and Pi homeostasis in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111358. [PMID: 35718336 DOI: 10.1016/j.plantsci.2022.111358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus is an essential plant nutrient, used in the formation of macromolecules such as nucleic acids and phospholipids. Abscisic acid (ABA) may be involved in the process of low inorganic phosphate (Pi) responses. The phenotypes of ABA-insensitive Arabidopsis mutants (abi1/2/3/4/5) under low Pi stress were investigated to identify possible low Pi response mutant genes. The results showed enhanced rhizosphere acidification in the abi1-1/abi2-1/abi5-1 mutants under low Pi stress compared with wild-type (WT) seedlings. The abi1-1/abi2-1/ abi3-1/abi5-1 mutants accumulated less anthocyanin than the WT, while the abi4-1 mutant showed greater accumulation, implicating all the ABA-insensitive mutants in anthocyanin deposition under Pi deficiency. Alterations in the Pi contents of roots or shoots were also observed in the mutants in response to both Pi sufficiency and deficiency, indicating that the mutants were involved in Pi uptake or transportation. The primary root length and root-shoot ratio of abi3-1 and abi4-1 mutants decreased compared with WT seedlings under low Pi condition. Further research showed that ABI5 could regulate PHT1;5 and WRKY42 expression by combining with ACGT cis-acting elements of the PHT1;5 and WRKY42 promoters.
Collapse
Affiliation(s)
- Kai Jian Lei
- College of Life Sciences, Henan University, State Key Laboratory of Cotton Biology, Kaifeng 475004, PR China; Pharmacy College of Henan University, Kaifeng 475004, PR China
| | - Hui Zhou
- College of Life Sciences, Henan University, State Key Laboratory of Cotton Biology, Kaifeng 475004, PR China
| | - Da Lu Gu
- College of Life Sciences, Henan University, State Key Laboratory of Cotton Biology, Kaifeng 475004, PR China
| | - Guo Yong An
- College of Life Sciences, Henan University, State Key Laboratory of Cotton Biology, Kaifeng 475004, PR China.
| |
Collapse
|
22
|
Bai Y, Wei Y, Yin H, Hu W, Cheng X, Guo J, Dong Y, Zheng L, Xie H, Zeng H, Reiter RJ, Shi H. PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava. J Pineal Res 2022; 73:e12804. [PMID: 35488179 DOI: 10.1111/jpi.12804] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Melatonin is an important molecule in both animals and plants, regulating circadian rhythms and stress responses. Therefore, the improvement of melatonin accumulation not only strengthens the function of melatonin but also improves stress resistance in crops. Although melatonin biosynthetic enzymes have been identified through reverse genetics previously, an investigation of melatonin level-related genes through forward genetics in plants has yet to be performed. In this study, a genome-wide association study using cassava natural population of 298 genetic resources identified melatonin accumulation 1 (MA1), which regulates the natural variation of melatonin levels in cassava. We found that MA1 encodes type 2C protein phosphatase 1 (PP2C1), which serves as a negative regulator of melatonin levels in cassava. MePP2C1 physically interacts with MeRAV1/2 and MeWRKY20 and dephosphorylates them at serine (S) 35 residue, S34 residue, and S176 residue, respectively, thereby hindering their transcriptional activation on downstream melatonin biosynthetic genes. Notably, MePP2C1 interacts with phytomelatonin receptor MePMTR1 and dephosphorylates it at S11 residue, repressing its binding to melatonin. In summary, this study demonstrates that MePP2C1 as MA1 plays dual roles in negatively regulating both melatonin accumulation and signaling, extending the understanding of the molecular mechanism underlying melatonin accumulation and signaling through forward genetics in plants.
Collapse
Affiliation(s)
- Yujing Bai
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Hongyan Yin
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan province, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Jingru Guo
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yabin Dong
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Liyan Zheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Haoqi Xie
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| |
Collapse
|
23
|
Liu Q, Ding J, Huang W, Yu H, Wu S, Li W, Mao X, Chen W, Xing J, Li C, Yan S. OsPP65 Negatively Regulates Osmotic and Salt Stress Responses Through Regulating Phytohormone and Raffinose Family Oligosaccharide Metabolic Pathways in Rice. RICE (NEW YORK, N.Y.) 2022; 15:34. [PMID: 35779169 PMCID: PMC9250576 DOI: 10.1186/s12284-022-00581-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Although type 2C protein phosphatases (PP2Cs) have been demonstrated to play important roles in regulating plant development and various stress responses, their specific roles in rice abiotic stress tolerance are still largely unknown. In this study, the functions of OsPP65 in rice osmotic and salt stress tolerance were investigated. Here, we report that OsPP65 is responsive to multiple stresses and is remarkably induced by osmotic and salt stress treatments. OsPP65 was highly expressed in rice seedlings and leaves and localized in the nucleus and cytoplasm. OsPP65 knockout rice plants showed enhanced tolerance to osmotic and salt stresses. Significantly higher induction of genes involved in jasmonic acid (JA) and abscisic acid (ABA) biosynthesis or signaling, as well as higher contents of endogenous JA and ABA, were observed in the OsPP65 knockout plants compared with the wild-type plants after osmotic stress treatment. Further analysis indicated that JA and ABA function independently in osmotic stress tolerance conferred by loss of OsPP65. Moreover, metabolomics analysis revealed higher endogenous levels of galactose and galactinol but a lower content of raffinose in the OsPP65 knockout plants than in the wild-type plants after osmotic stress treatment. These results together suggest that OsPP65 negatively regulates osmotic and salt stress tolerance through regulation of the JA and ABA signaling pathways and modulation of the raffinose family oligosaccharide metabolism pathway in rice. OsPP65 is a promising target for improvement of rice stress tolerance using gene editing.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jierong Ding
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Hang Yu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenyan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Wenfeng Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Junlian Xing
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Chen Li
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
24
|
Wang X, Lei X, Zhang C, He P, Zhong J, Bai S, Li D, Deng X, Lin H. Physiological and molecular responses of Phalaris arundinacea under salt stress on the Tibet plateau. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153715. [PMID: 35609373 DOI: 10.1016/j.jplph.2022.153715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Phalaris arundinacea, with its characteristics of rapid growth and high biological yield, is regarded as an excellent forage grass in the Qinghai-Tibetan Plateau region of China. To explore the physiological and molecular response mechanism of Phalaris arundinacea under salt stress, we monitored the biomass and physiological indexes of two locally grown strains under conditions of exposure to 150 and 300 mM NaCl solution. Z0611 exhibited better salt stress tolerance than YS. Transcriptome sequencing analysis showed that YS and Z0611 had 1713 and 4290 differentially expressed genes (DEGs), respectively, including on metabolic processes, single-organism process, catalytic activity, and plant hormone signal transduction in the GO and KEGG databases. We also identified a large number of genes involved in hormone signaling, antioxidant systems, ion homeostasis, and photosynthetic systems. Our study provides physiological and molecular insight for establishing a salt resistance database and mining salt tolerance genes in Phalaris arundinacea, and also provides theoretical guidance for the restoration of saline-alkali land on the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Changbing Zhang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Peijian He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jialai Zhong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China.
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
25
|
Aziz U, Rehmani MS, Wang L, Xian B, Luo X, Shu K. Repressors: the gatekeepers of phytohormone signaling cascades. PLANT CELL REPORTS 2022; 41:1333-1341. [PMID: 35262769 DOI: 10.1007/s00299-022-02853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Coordinated phytohormone signal transduction, in which repressors are the key players, is essential to balance plant development and stress response. In the absence of phytohormones, repressors interplay to terminate the transcription of phytohormone-responsive genes. For phytohormone signal transduction, degradation or inactivation of the repressors is a prerequisite, a process in which proteasomal degradation or protein modifications, such as phosphorylation, are involved. In this review, we summarize the various repressor proteins and their methods of regulation. In addition, we also shed light on other post-transcriptional modifications, including protein sumoylation, acetylation, methylation, and S-nitrosylation, which might be involved in repressor regulation. We conclude that repressors are the gatekeepers of phytohormone signaling, allowing transcription of phytohormone-responsive genes only when required and thus serving as a universal mechanism to conserve energy in plants. Finally, we strongly recommend that plant research should be focused further on elucidating the mechanisms regulating repressor abundance or activity, to improve our understanding of phytohormone signal transduction.
Collapse
Affiliation(s)
- Usman Aziz
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Muhammad Saad Rehmani
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Baoshan Xian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.
- Research and Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China.
| |
Collapse
|
26
|
Lu J, Wang L, Zhang Q, Ma C, Su X, Cheng H, Guo H. AmCBF1 Transcription Factor Regulates Plant Architecture by Repressing GhPP2C1 or GhPP2C2 in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2022; 13:914206. [PMID: 35712572 PMCID: PMC9197424 DOI: 10.3389/fpls.2022.914206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 06/09/2023]
Abstract
Dwarfism is a beneficial trait in many crops. Dwarf crops hold certain advantages over taller crops in lodging resistance, fertilizer tolerance, and yield. Overexpression of CBF/DREB transcription factors can lead to dwarfing in many plant species, but the molecular mechanism of plant dwarfing caused by overexpression of CBF/DREB in upland cotton (Gossypium hirsutum) remains unclear. In this study, we observed that overexpression of the Ammopiptanthus mongolicus AmCBF1 transcription factor in upland cotton R15 reduced plant height, whereas virus-induced gene silencing of AmCBF1 in the derived dwarf lines L28 and L30 partially restored plant height. Five protein phosphatase (PP2C) genes (GhPP2C1 to GhPP2C5) in cotton were identified by RNA-sequencing among genes differentially expressed in L28 or L30 in comparison with R15 and thus may play an important role in AmCBF1-regulated dwarfing in cotton. Gene expression analysis showed that the GhPP2C genes were down-regulated significantly in L28 and L30, and silencing of GhPP2C1 or GhPP2C2 in R15 inhibited the growth of cotton seedlings. Subcellular localization assays revealed that GhPP2C1 was localized to the cell membrane and nucleus, whereas GhPP2C2 was exclusively localized to the nucleus. Yeast one-hybrid and dual-luciferase assays showed that AmCBF1 was able to bind to the CRT/DRE elements of the upstream promoter of GhPP2C1 or GhPP2C2 and repress their expression. These findings provide insight into the mechanism of dwarfing and may contribute to the breeding of dwarf cultivars of upland cotton.
Collapse
Affiliation(s)
- Junchao Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianqian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caixia Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Deepika D, Poddar N, Kumar S, Singh A. Molecular Characterization Reveals the Involvement of Calcium Dependent Protein Kinases in Abiotic Stress Signaling and Development in Chickpea ( Cicer arietinum). FRONTIERS IN PLANT SCIENCE 2022; 13:831265. [PMID: 35498712 PMCID: PMC9039462 DOI: 10.3389/fpls.2022.831265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are a major group of calcium (Ca2+) sensors in plants. CDPKs play a dual function of "Ca2+ sensor and responder." These sensors decode the "Ca2+ signatures" generated in response to adverse growth conditions such as drought, salinity, and cold and developmental processes. However, knowledge of the CDPK family in the legume crop chickpea is missing. Here, we have identified a total of 22 CDPK genes in the chickpea genome. The phylogenetic analysis of the chickpea CDPK family with other plants revealed their evolutionary conservation. Protein homology modeling described the three-dimensional structure of chickpea CDPKs. Defined arrangements of α-helix, β-strands, and transmembrane-helix represent important structures like kinase domain, inhibitory junction domain, N and C-lobes of EF-hand motifs. Subcellular localization analysis revealed that CaCDPK proteins are localized mainly at the cytoplasm and in the nucleus. Most of the CaCDPK promoters had abiotic stress and development-related cis-regulatory elements, suggesting the functional role of CaCDPKs in abiotic stress and development-related signaling. RNA sequencing (RNA-seq) expression analysis indicated the role of the CaCDPK family in various developmental stages, including vegetative, reproductive development, senescence stages, and during seed stages of early embryogenesis, late embryogenesis, mid and late seed maturity. The real-time quantitative PCR (qRT-PCR) analysis revealed that several CaCDPK genes are specifically as well as commonly induced by drought, salt, and Abscisic acid (ABA). Overall, these findings indicate that the CDPK family is probably involved in abiotic stress responses and development in chickpeas. This study provides crucial information on the CDPK family that will be utilized in generating abiotic stress-tolerant and high-yielding chickpea varieties.
Collapse
Affiliation(s)
- Deepika Deepika
- Stress Signaling Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Nikita Poddar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, New Delhi, India
| | - Amarjeet Singh
- Stress Signaling Lab, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
28
|
Qiu J, Ni L, Xia X, Chen S, Zhang Y, Lang M, Li M, Liu B, Pan Y, Li J, Zhang X. Genome-Wide Analysis of the Protein Phosphatase 2C Genes in Tomato. Genes (Basel) 2022; 13:genes13040604. [PMID: 35456410 PMCID: PMC9032827 DOI: 10.3390/genes13040604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
The plant protein phosphatase 2C (PP2C) plays an irreplaceable role in phytohormone signaling, developmental processes, and manifold stresses. However, information about the PP2C gene family in tomato (Solanum lycopersicum) is relatively restricted. In this study, a genome-wide investigation of the SlPP2C gene family was performed. A total of 92 SlPP2C genes were identified, they were distributed on 11 chromosomes, and all the SlPP2C proteins have the type 2C phosphatase domains. Based on phylogenetic analysis of PP2C genes in Arabidopsis, rice, and tomato, SlPP2C genes were divided into eight groups, designated A–H, which is also supported by the analyses of gene structures and protein motifs. Gene duplication analysis revealed that the duplication of whole genome and chromosome segments was the main cause of SLPP2Cs expansion. A total of 26 cis-elements related to stress, hormones, and development were identified in the 3 kb upstream region of these SlPP2C genes. Expression profile analysis revealed that the SlPP2C genes display diverse expression patterns in various tomato tissues. Furthermore, we investigated the expression patterns of SlPP2C genes in response to Ralstonia solanacearum infection. RNA-seq and qRT-PCR data reveal that nine SlPP2Cs are correlated with R. solanacearum. The above evidence hinted that SlPP2C genes play multiple roles in tomato and may contribute to tomato resistance to bacterial wilt. This study obtained here will give an impetus to the understanding of the potential function of SlPP2Cs and lay a solid foundation for tomato breeding and transgenic resistance to plant pathogens.
Collapse
Affiliation(s)
- Jianfang Qiu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Lei Ni
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xue Xia
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Shihao Chen
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yan Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Min Lang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
| | - Mengyu Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Binman Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, The Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; (J.Q.); (L.N.); (X.X.); (S.C.); (Y.Z.); (M.L.); (M.L.); (B.L.); (Y.P.); (J.L.)
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Correspondence: ; Tel.: +86-23-68250974; Fax: +86-23-68251274
| |
Collapse
|
29
|
Nie L, Xu Z, Wu L, Chen X, Cui Y, Wang Y, Song J, Yao H. Genome-wide identification of protein phosphatase 2C family members in Glycyrrhiza uralensis Fisch. and their response to abscisic acid and polyethylene glycol stress. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2027650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Liping Nie
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Xinlian Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Yingxian Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, People’s Republic of China
| |
Collapse
|
30
|
Ankit A, Singh A, Kumar S, Singh A. Morphophysiological and transcriptome analysis reveal that reprogramming of metabolism, phytohormones and root development pathways governs the potassium (K +) deficiency response in two contrasting chickpea cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:1054821. [PMID: 36714783 PMCID: PMC9875034 DOI: 10.3389/fpls.2022.1054821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 05/10/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and development. K+ deficiency hampers important plant processes, such as enzyme activation, protein synthesis, photosynthesis and stomata movement. Molecular mechanism of K+ deficiency tolerance has been partly understood in model plants Arabidopsis, but its knowledge in legume crop chickpea is missing. Here, morphophysiological analysis revealed that among five high yielding desi chickpea cultivars, PUSA362 shows stunted plant growth, reduced primary root growth and low K+ content under K+ deficiency. In contrast, PUSA372 had negligible effect on these parameters suggesting that PUSA362 is K+ deficiency sensitive and PUSA372 is a K+ deficiency tolerant chickpea cultivar. RNA-seq based transcriptome analysis under K+ deficiency revealed a total of 820 differential expressed genes (DEG's) in PUSA362 and 682 DEGs in PUSA372. These DEGs belongs to different functional categories, such as plant metabolism, signal transduction components, transcription factors, ion/nutrient transporters, phytohormone biosynthesis and signalling, and root growth and development. RNA-seq expression of randomly selected 16 DEGs was validated by RT-qPCR. Out of 16 genes, 13 showed expression pattern similar to RNA-seq expression, that verified the RNA-seq expression data. Total 258 and 159 genes were exclusively up-regulated, and 386 and 347 genes were down-regulated, respectively in PUSA362 and PUSA372. 14 DEGs showed contrasting expression pattern as they were up-regulated in PUSA362 and down-regulated in PUSA372. These include somatic embryogenesis receptor-like kinase 1, thaumatin-like protein, ferric reduction oxidase 2 and transcription factor bHLH93. Nine genes which were down-regulated in PUSA362 found to be up-regulated in PUSA372, including glutathione S-transferase like, putative calmodulin-like 19, high affinity nitrate transporter 2.4 and ERF17-like protein. Some important carbohydrate metabolism related genes, like fructose-1,6-bisphosphatase and sucrose synthase, and root growth related Expansin gene were exclusively down-regulated, while an ethylene biosynthesis gene 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1) was up-regulated in PUSA362. Interplay of these and several other genes related to hormones (auxin, cytokinin, GA etc.), signal transduction components (like CBLs and CIPKs), ion transporters and transcription factors might underlie the contrasting response of two chickpea cultivars to K+ deficiency. In future, some of these key genes will be utilized in genetic engineering and breeding programs for developing chickpea cultivars with improved K+ use efficiency (KUE) and K+ deficiency tolerance traits.
Collapse
|
31
|
Lee Y, Heo S, Lee S. Inhibition of Type 2C Protein Phosphatases by ABA Receptors in Abscisic Acid-Mediated Plant Stress Responses. Methods Mol Biol 2022; 2462:1-16. [PMID: 35152376 DOI: 10.1007/978-1-0716-2156-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abscisic acid (ABA) signaling pathway constitutes a key stress response mechanism in plants. Alternate interaction of a type 2C protein phosphatase (PP2C) with either an ABA receptor or a SNF1-related protein kinase 2 (SnRK2) is at the core of regulation of the ABA signaling pathway. Binding of an ABA receptor to a PP2C inhibits the enzymatic activity of the PP2C. Presence of multiple paralogs of ABA receptors and PP2Cs necessitates development of an inhibition assay. Here, we describe how to prepare the recombinant proteins of ABA receptors and PP2Cs for the inhibition assay and how to perform a colorimetry-based inhibition assay.
Collapse
Affiliation(s)
- Yeongmok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Suhyeon Heo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
32
|
Wang G, Sun X, Guo Z, Joldersma D, Guo L, Qiao X, Qi K, Gu C, Zhang S. Genome-wide Identification and Evolution of the PP2C Gene Family in Eight Rosaceae Species and Expression Analysis Under Stress in Pyrus bretschneideri. Front Genet 2021; 12:770014. [PMID: 34858482 PMCID: PMC8632025 DOI: 10.3389/fgene.2021.770014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2C protein phosphatase (PP2C) plays an essential role in abscisic acid (ABA) signaling transduction processes. In the current study, we identify 719 putative PP2C genes in eight Rosaceae species, including 118 in Chinese white pear, 110 in European pear, 73 in Japanese apricot, 128 in apple, 74 in peach, 65 in strawberry, 78 in sweet cherry, and 73 in black raspberry. Further, the phylogenetic analysis categorized PbrPP2C genes of Chinese white pear into twelve subgroups based on the phylogenic analysis. We observed that whole-genome duplication (WGD) and dispersed gene duplication (DSD) have expanded the Rosaceae PP2C family despite simultaneous purifying selection. Expression analysis finds that PbrPP2C genes have organ-specific functions. QRT-PCR validation of nine PbrPP2C genes of subgroup A indicates a role in ABA-mediated response to abiotic stress. Finally, we find that five PbrPP2C genes of subgroup A function in the nucleus. In summary, our research suggests that the PP2C family functions to modulate ABA signals and responds to abiotic stress.
Collapse
Affiliation(s)
- Guoming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Xun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Dirk Joldersma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Li M, Xu X, Su Y, Shao X, Zhou Y, Yan J. A comprehensive overview of PPM1A: From structure to disease. Exp Biol Med (Maywood) 2021; 247:453-461. [PMID: 34861123 DOI: 10.1177/15353702211061883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PPM1A (magnesium-dependent phosphatase 1 A, also known as PP2Cα) is a member of the Ser/Thr protein phosphatase family. Protein phosphatases catalyze the removal of phosphate groups from proteins via hydrolysis, thus opposing the role of protein kinases. The PP2C family is generally considered a negative regulator in the eukaryotic stress response pathway. PPM1A can bind and dephosphorylate various proteins and is therefore involved in the regulation of a wide range of physiological processes. It plays a crucial role in transcriptional regulation, cell proliferation, and apoptosis and has been suggested to be closely related to the occurrence and development of cancers of the lung, bladder, and breast, amongst others. Moreover, it is closely related to certain autoimmune diseases and neurodegenerative diseases. In this review, we provide an insight into currently available knowledge of PPM1A, including its structure, biological function, involvement in signaling pathways, and association with diseases. Lastly, we discuss whether PPM1A could be targeted for therapy of certain human conditions.
Collapse
Affiliation(s)
- Mao Li
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xingfeng Xu
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yan Su
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xiaoyun Shao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
34
|
Chen Y, Zhang JB, Wei N, Liu ZH, Li Y, Zheng Y, Li XB. A type-2C protein phosphatase (GhDRP1) participates in cotton (Gossypium hirsutum) response to drought stress. PLANT MOLECULAR BIOLOGY 2021; 107:499-517. [PMID: 34596817 DOI: 10.1007/s11103-021-01198-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
GhDRP1 acts as a negatively regulator to participate in response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton. Type-2C protein phosphatases (PP2C) may play important roles in plant stress signal transduction. Here, we show the evidence that a cotton PP2C protein GhDRP1 participates in plant response to drought stress. GhDRP1 gene encodes an active type-2C protein phosphatase (PP2C) and its expression is significantly induced in cotton by drought stress. Compared with wild type, the GhDRP1 overexpression (OE) transgenic cotton and Arabidopsis displayed reduced drought tolerance, whereas GhDRP1-silenced (RNAi) cotton showed enhanced drought tolerance. Under drought stress, malondialdehyde content was lower, whereas superoxide dismutase and peroxidase activities, proline content, stomata closure and relative water content were higher in GhDRP1 RNAi plants compared with those in wild type. In contrast, GhDRP1 OE plants showed the opposite phenotype under the same conditions. Expression levels of some stress-related and flavonoid biosynthesis-related genes were altered in GhDRP1 transgenic plants under drought stress. Additionally, GhDRP1 protein could interact with other proteins such as PYLs, SNF1-related protein kinase and GLK1-like protein. Collectively, these data suggest that GhDRP1 participates in plant response to drought stress possibly by modulating ABA signaling pathway and flavonoid biosynthesis pathway which affects stomata movement and thus water loss, ROS scavenging enzymes, and proline accumulation in cotton.
Collapse
Affiliation(s)
- Yun Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Jing-Bo Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ning Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhi-Hao Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- School of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yong Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
35
|
Kumari S, Chhillar H, Chopra P, Khanna RR, Khan MIR. Potassium: A track to develop salinity tolerant plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1011-1023. [PMID: 34598021 DOI: 10.1016/j.plaphy.2021.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
Salinity is one of the major constraints to plant growth and development across the globe that leads to the huge crop productivity loss. Salinity stress causes impairment in plant's metabolic and cellular processes including disruption in ionic homeostasis due to excess of sodium (Na+) ion influx and potassium (K+) efflux. This condition subsequently results in a significant reduction of the cytosolic K+ levels, eventually inhibiting plant growth attributes. K+ plays a crucial role in alleviating salinity stress by recasting key processes of plants. In addition, K+ acquisition and retention also serve as the perquisite trait to establish salt tolerant mechanism. In addition, an intricate network of genes and their regulatory elements are involved in coordinating salinity stress responses. Furthermore, plant growth regulators (PGRs) and other signalling molecules influence K+-mediated salinity tolerance in plants. Recently, nanoparticles (NPs) have also been found several implications in plants with respect to their roles in mediating K+ homoeostasis during salinity stress in plants. The present review describes salinity-induced adversities in plants and role of K+ in mitigating salinity-induced damages. The review also highlights the efficacy of PGRs and other signalling molecules in regulating K+ mediated salinity tolerance along with nano-technological perspective for improving K+ mediated salinity tolerance in plants.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - Priyanka Chopra
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - M Iqbal R Khan
- Department of Botany, Jamia Hamdard, New Delhi-110062, India.
| |
Collapse
|
36
|
Overexpression of antisense phosphatase 2C affords cold resistance in hybrid Populus davidiana × Populus bolleana. Genes Genomics 2021; 43:1209-1222. [PMID: 34338987 DOI: 10.1007/s13258-021-01143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Overexpression of the abiotic and biotic stress-resistance genes of the plant signaling pathway is well known for its significant role in the regulation of plant growth and enhancement of the productivity of agricultural land under changing climatic conditions. OBJECTIVES This research aimed to clone Populus davidiana × Populus bolleana PP2C (PdPP2C) gene and analyze its structure and function, and downregulate PdPP2C by overexpression of its antisense PdPP2C (AS-PdPP2C) gene for enhancing cold resistance in transgenic lines of hybrid P. davidiana × P. bolleana. METHODS PdPP2C was cloned and transformed to identify its function, and its antisense was overexpressed via downregulation to increase the cold resistance in transgenic lines of hybrid P. davidiana × P. bolleana. RESULTS Antisense inhibition of protein phosphatase 2C accelerates the cold acclimation of Poplar (P. davidiana × P. bolleana) gene in terms of antifreeze. CONCLUSION PdPP2C was expressed in the roots, stems, and leaves of P. davidiana × P. bolleana, and the expression was higher in the leaves. The expression of PdPP2C was also significantly downregulated at low-temperature (0 °C and 4 °C) stress. The relative conductivity and malondialdehyde content of non-transgenic lines were higher than those of AS-PdPP2C lines after 2 days of cold treatment at - 1 °C. The leaves of the transgenic lines were not wilted and showed no chlorosis compared with those of the non-transgenic lines. The AS-PdPP2C transgenic lines also showed higher freezing resistance than the non-transgenic lines. AS-PdPP2C participated in the regulation of freezing resistance.
Collapse
|
37
|
Functional divergence of Brassica napus BnaABI1 paralogs in the structurally conserved PP2CA gene subfamily of Brassicaceae. Genomics 2021; 113:3185-3197. [PMID: 34182082 DOI: 10.1016/j.ygeno.2021.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/26/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022]
Abstract
Group A PP2C (PP2CA) genes form a gene subfamily whose members play an important role in regulating many biological processes by dephosphorylation of target proteins. In this study we examined the effects of evolutionary changes responsible for functional divergence of BnaABI1 paralogs in Brassica napus against the background of the conserved PP2CA gene subfamily in Brassicaceae. We performed comprehensive phylogenetic analyses of 192 PP2CA genes in 15 species in combination with protein structure homology modeling. Fundamentally, the number of PP2CA genes remained relatively constant in these taxa, except in the Brassica genus and Camelina sativa. The expansion of this gene subfamily in these species has resulted from whole genome duplication. We demonstrated a high degree of structural conservation of the PP2CA genes, with a few minor variations between the different PP2CA groups. Furthermore, the pattern of conserved sequence motifs in the PP2CA proteins and their secondary and 3D structures revealed strong conservation of the key ion-binding sites. Syntenic analysis of triplicated regions including ABI1 paralogs revealed significant structural rearrangements of the Brassica genomes. The functional and syntenic data clearly show that triplication of BnaABI1 in B. napus has had an impact on its functions, as well as the positions of adjacent genes in the corresponding chromosomal regions. The expression profiling of BnaABI1 genes showed functional divergence, i.e. subfunctionalization, potentially leading to neofunctionalization. These differences in expression are likely due to changes in the promoters of the BnaABI1 paralogs. Our results highlight the complexity of PP2CA gene subfamily evolution in Brassicaceae.
Collapse
|
38
|
Liu X, Singh SK, Patra B, Liu Y, Wang B, Wang J, Pattanaik S, Yuan L. Protein phosphatase NtPP2C2b and MAP kinase NtMPK4 act in concert to modulate nicotine biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1661-1676. [PMID: 33258946 PMCID: PMC7921305 DOI: 10.1093/jxb/eraa568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/15/2020] [Indexed: 05/05/2023]
Abstract
Protein phosphatases (PPs) and protein kinases (PKs) regulate numerous developmental, defense, and phytohormone signaling processes in plants. However, the underlying regulatory mechanism governing biosynthesis of specialized metabolites, such as alkaloids, by the combined effects of PPs and PKs, is insufficiently understood. Here, we report the characterization of a group B protein phosphatase type 2C, NtPP2C2b, that likely acts upstream of the NICOTINE2 locus APETALA 2/Ethylene Response Factors (AP2/ERFs), to regulate nicotine biosynthesis in tobacco. Similar to the nicotine pathway genes, NtPP2C2b is highly expressed in roots and induced by jasmonic acid (JA). Overexpression of NtPP2C2b in transgenic hairy roots or stable transgenic tobacco plants repressed nicotine pathway gene expression and reduced nicotine accumulation. Additionally, transient overexpression of NtPP2C2b, together with the NtERF221, repressed transactivation of the quinolinate phosphoribosyltransferase promoter in tobacco cells. We further demonstrate that the JA-responsive tobacco mitogen-activated protein kinase (MAPK) 4 interacts with NtPP2C2b in yeast and plant cells. Conditional overexpression of NtMPK4 in tobacco hairy roots up-regulated nicotine pathway gene expression and increased nicotine accumulation. Our findings suggest that a previously uncharacterized PP-PK module acts to modulate alkaloid biosynthesis, highlighting the importance of post-translational control in the biosynthesis of specialized plant metabolites.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, University Drive, Lexington, KY USA
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, University Drive, Lexington, KY USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, University Drive, Lexington, KY USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, University Drive, Lexington, KY USA
| | - Bingwu Wang
- Tobacco Breeding Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Jinsheng Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, University Drive, Lexington, KY USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, University Drive, Lexington, KY USA
| |
Collapse
|
39
|
Fang S, Hou X, Liang X. Response Mechanisms of Plants Under Saline-Alkali Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:667458. [PMID: 34149764 PMCID: PMC8213028 DOI: 10.3389/fpls.2021.667458] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
As two coexisting abiotic stresses, salt stress and alkali stress have severely restricted the development of global agriculture. Clarifying the plant resistance mechanism and determining how to improve plant tolerance to salt stress and alkali stress have been popular research topics. At present, most related studies have focused mainly on salt stress, and salt-alkali mixed stress studies are relatively scarce. However, in nature, high concentrations of salt and high pH often occur simultaneously, and their synergistic effects can be more harmful to plant growth and development than the effects of either stress alone. Therefore, it is of great practical importance for the sustainable development of agriculture to study plant resistance mechanisms under saline-alkali mixed stress, screen new saline-alkali stress tolerance genes, and explore new plant salt-alkali tolerance strategies. Herein, we summarized how plants actively respond to saline-alkali stress through morphological adaptation, physiological adaptation and molecular regulation.
Collapse
Affiliation(s)
- Shumei Fang
- Department of Biotechnology, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Shumei Fang,
| | - Xue Hou
- Department of Biotechnology, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xilong Liang
- Department of Environmental Science, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, Daqing, China
- Xilong Liang,
| |
Collapse
|
40
|
Jung C, Nguyen NH, Cheong JJ. Transcriptional Regulation of Protein Phosphatase 2C Genes to Modulate Abscisic Acid Signaling. Int J Mol Sci 2020; 21:ijms21249517. [PMID: 33327661 PMCID: PMC7765119 DOI: 10.3390/ijms21249517] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023] Open
Abstract
The plant hormone abscisic acid (ABA) triggers cellular tolerance responses to osmotic stress caused by drought and salinity. ABA controls the turgor pressure of guard cells in the plant epidermis, leading to stomatal closure to minimize water loss. However, stomatal apertures open to uptake CO2 for photosynthesis even under stress conditions. ABA modulates its signaling pathway via negative feedback regulation to maintain plant homeostasis. In the nuclei of guard cells, the clade A type 2C protein phosphatases (PP2Cs) counteract SnRK2 kinases by physical interaction, and thereby inhibit activation of the transcription factors that mediate ABA-responsive gene expression. Under osmotic stress conditions, PP2Cs bind to soluble ABA receptors to capture ABA and release active SnRK2s. Thus, PP2Cs function as a switch at the center of the ABA signaling network. ABA induces the expression of genes encoding repressors or activators of PP2C gene transcription. These regulators mediate the conversion of PP2C chromatins from a repressive to an active state for gene transcription. The stress-induced chromatin remodeling states of ABA-responsive genes could be memorized and transmitted to plant progeny; i.e., transgenerational epigenetic inheritance. This review focuses on the mechanism by which PP2C gene transcription modulates ABA signaling.
Collapse
Affiliation(s)
- Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology, Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam;
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-4888; Fax: +82-2-873-5260
| |
Collapse
|
41
|
Plewiński P, Ćwiek-Kupczyńska H, Rudy E, Bielski W, Rychel-Bielska S, Stawiński S, Barzyk P, Krajewski P, Naganowska B, Wolko B, Książkiewicz M. Innovative transcriptome-based genotyping highlights environmentally responsive genes for phenology, growth and yield in a non-model grain legume. PLANT, CELL & ENVIRONMENT 2020; 43:2680-2698. [PMID: 32885839 DOI: 10.1111/pce.13880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume crop, cultivated both as a green manure and as a source of protein for animal feed and human food production. During its domestication process, numerous agronomic traits were improved, however, only two trait-related genes were identified hitherto, both by linkage mapping. Genome-wide association studies (GWAS), exploiting genomic sequencing, did not select any novel candidate gene. In the present study, an innovative method of 3'-end reduced representation transcriptomic profiling, a massive analysis of cDNA ends, has been used for genotyping of 126 L. angustifolius lines surveyed by field phenotyping. Significant genotype × environment interactions were identified for all phenology and yield traits analysed. Principal component analysis of population structure evidenced European domestication bottlenecks, visualized by clustering of breeding materials and cultivars. GWAS provided contribution towards deciphering vernalization pathway in legumes, and, apart from highlighting known domestication loci (Ku/Julius and mol), designated novel candidate genes for L. angustifolius traits. Early phenology was associated with genes from vernalization, cold-responsiveness and phosphatidylinositol signalling pathways whereas high yield with genes controlling photosynthesis performance and abiotic stress (drought or heat) tolerance. PCR-based toolbox was developed and validated to enable tracking desired alleles in marker-assisted selection. Narrow-leafed lupin was genotyped with an innovative method of transcriptome profiling and phenotyped for phenology, growth and yield traits in field. Early phenology was found associated with genes from cold-response, vernalization and phosphatidylinositol signalling pathways, whereas high yield with genes running photosystem II and drought or heat stress response. Key loci were supplied with PCR-based toolbox for marker-assisted selection.
Collapse
Affiliation(s)
- Piotr Plewiński
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Hanna Ćwiek-Kupczyńska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Elżbieta Rudy
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Wojciech Bielski
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Stanisław Stawiński
- Department in Przebędowo, Plant Breeding Smolice Ltd., Murowana Goślina, Poland
| | - Paweł Barzyk
- Department in Wiatrowo, Poznań Plant Breeding Ltd., Wiatrowo, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
42
|
Zhang Z, Ali S, Zhang T, Wang W, Xie L. Identification, Evolutionary and Expression Analysis of PYL-PP2C-SnRK2s Gene Families in Soybean. PLANTS 2020; 9:plants9101356. [PMID: 33066482 PMCID: PMC7602157 DOI: 10.3390/plants9101356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Abscisic acid (ABA) plays a crucial role in various aspects of plant growth and development, including fruit development and ripening, seed dormancy, and involvement in response to various environmental stresses. In almost all higher plants, ABA signal transduction requires three core components; namely, PYR/PYL/RCAR ABA receptors (PYLs), type 2C protein phosphatases (PP2Cs), and class III SNF-1-related protein kinase 2 (SnRK2s). The exploration of these three core components is not comprehensive in soybean. This study identified the GmPYL-PP2C-SnRK2s gene family members by using the JGI Phytozome and NCBI database. The gene family composition, conservation, gene structure, evolutionary relationship, cis-acting elements of promoter regions, and its coding protein domains were analyzed. In the entire genome of the soybean, there are 21 PYLs, 36 PP2Cs, and 21 SnRK2s genes; further, by phylogenetic and conservation analysis, 21 PYLs genes are classified into 3 groups, 36 PP2Cs genes are classified into seven groups, and 21 SnRK2s genes are classified into 3 groups. The conserved motifs and domain analysis showed that all the GmPYLs gene family members contain START-like domains, the GmPP2Cs gene family contains PP2Cc domains, and the GmSnRK2s gene family contains S_TK domains, respectively. Furthermore, based on the high-throughput transcriptome sequencing data, the results showed differences in the expression patterns of GmPYL-PP2C-SnRK2s gene families in different tissue parts of the same variety, and the same tissue part of different varieties. Our study provides a basis for further elucidation of the identification of GmPYL-PP2C-SnRK2s gene family members and analysis of their evolution and expression patterns, which helps to understand the molecular mechanism of soybean response to abiotic stress. In addition, this provides a conceptual basis for future studies of the soybean ABA core signal pathway.
Collapse
Affiliation(s)
- Zhaohan Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shahid Ali
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tianxu Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wanpeng Wang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Linan Xie
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (Z.Z.); (S.A.); (T.Z.); (W.W.)
- Key Laboratory of Saline-Alkali Vegetative Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
43
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
44
|
Fan K, Chen Y, Mao Z, Fang Y, Li Z, Lin W, Zhang Y, Liu J, Huang J, Lin W. Pervasive duplication, biased molecular evolution and comprehensive functional analysis of the PP2C family in Glycine max. BMC Genomics 2020; 21:465. [PMID: 32631220 PMCID: PMC7339511 DOI: 10.1186/s12864-020-06877-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Soybean (Glycine max) is an important oil provider and ecosystem participant. The protein phosphatase 2C (PP2C) plays important roles in key biological processes. Molecular evolution and functional analysis of the PP2C family in soybean are yet to be reported. RESULTS The present study identified 134 GmPP2Cs with 10 subfamilies in soybean. Duplication events were prominent in the GmPP2C family, and all duplicated gene pairs were involved in the segmental duplication events. The legume-common duplication event and soybean-specific tetraploid have primarily led to expanding GmPP2C members in soybean. Sub-functionalization was the main evolutionary fate of duplicated GmPP2C members. Meanwhile, massive genes were lost in the GmPP2C family, especially from the F subfamily. Compared with other genes, the evolutionary rates were slower in the GmPP2C family. The PP2C members from the H subfamily resembled their ancestral genes. In addition, some GmPP2Cs were identified as the putative key regulator that could control plant growth and development. CONCLUSIONS A total of 134 GmPP2Cs were identified in soybean, and their expansion, molecular evolution and putative functions were comprehensively analyzed. Our findings provided the detailed information on the evolutionary history of the GmPP2C family, and the candidate genes can be used in soybean breeding.
Collapse
Affiliation(s)
- Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Yunrui Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Zhijun Mao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Yao Fang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Zhaowei Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Weiwei Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Yongqiang Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Jianping Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Jinwen Huang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| | - Wenxiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 P. R. China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, 35002 P. R. China
| |
Collapse
|
45
|
Gietler M, Fidler J, Labudda M, Nykiel M. Abscisic Acid-Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int J Mol Sci 2020; 21:E4607. [PMID: 32610484 PMCID: PMC7369871 DOI: 10.3390/ijms21134607] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/12/2023] Open
Abstract
Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.
Collapse
Affiliation(s)
- Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (J.F.); (M.L.); (M.N.)
| | | | | | | |
Collapse
|
46
|
Min X, Lin X, Ndayambaza B, Wang Y, Liu W. Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L. BMC PLANT BIOLOGY 2020; 20:165. [PMID: 32293274 PMCID: PMC7161134 DOI: 10.1186/s12870-020-02358-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/24/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Common vetch (Vicia sativa L.) is an important self-pollinating annual forage legume and is of interest for drought prone regions as a protein source to feed livestock and human consumption. However, the development and production of common vetch are negatively affected by drought stress. Plants have evolved common or distinct metabolic pathways between the aboveground and underground in response to drought stress. Little is known regarding the coordinated response of aboveground and underground tissues of common vetch to drought stress. RESULTS Our results showed that a total of 30,427 full-length transcripts were identified in 12 samples, with an average length of 2278.89 bp. Global transcriptional profiles of the above 12 samples were then analysed via Illumina-Seq. A total of 3464 and 3062 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Gene Ontology (GO) enrichment analyses identified that the dehydrin genes and Δ1-pyrroline-5-carboxylate synthase were induced for the biosynthesis of proline and water conservation. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results indicated that the DEGs were significantly enriched in hormone signal transduction, starch and sucrose metabolism, and arginine and proline metabolism, and various drought response candidate genes were also identified. Abscisic acid (ABA; the AREB/ABF-SnRK2 pathway) regulates the activity of AMY3 and BAM1 to induce starch degradation in leaves and increase carbon export to roots, which may be associated with the drought stress responses in common vetch. Among the co-induced transcription factors (TFs), AREB/ABF, bHLH, MYB, WRKY, and AP2/ERF had divergent expression patterns and may be key in the crosstalk between leaves and roots during adaption to drought stress. In transgenic yeast, the overexpression of four TFs increased yeast tolerance to osmotic stresses. CONCLUSION The multipronged approach identified in the leaves and roots broadens our understanding of the coordinated mechanisms of drought response in common vetch, and further provides targets to improve drought resistance through genetic engineering.
Collapse
Affiliation(s)
- Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoshan Lin
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Boniface Ndayambaza
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, China; Western China Technology Innovation Centre for Grassland Industry, Gansu Province, China; Engineering Research Center of Grassland Industry, Ministry of Education, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
47
|
Lu K, Zhang YD, Zhao CF, Zhou LH, Zhao QY, Chen T, Wang CL. The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. PLANT MOLECULAR BIOLOGY 2020; 102:199-212. [PMID: 31813113 DOI: 10.1007/s11103-019-00941-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/29/2019] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE The kinase-associated protein phosphatase, KAPP, is negatively involved in abscisic acid (ABA) signaling. KAPP interacts physically with SnRK2.2, SnRK2.3 and SnRK2.6, and functionally acts upstream of SnRK2.2 and SnRK2.3. The kinase-associated protein phosphatase (KAPP) has been reported to be involved in the regulation of many developmental and signaling events, but it remains unknown whether KAPP is involved in ABA signaling. Here, we report that KAPP is negatively involved in ABA-mediated seed germination and early seedling growth in Arabidopsis thaliana. The two loss-of-function mutants of KAPP, kapp-1 and kapp-2, exhibit increased ABA sensitivity in ABA-induced seed germination inhibition and post-germination growth arrest. The three closely-related protein kinase, (SNF1)-related protein kinase SnRK2.2, SnRK2.3 and SnRK2.6, which play critical roles in ABA signaling, interact and co-localize with KAPP. Genetic evidence showed that the ABA-hypersensitive phenotypes caused by KAPP mutation were suppressed by the double mutation of SnRK2.2 and SnRK2.3, indicating that KAPP functions upstream of SnRK2.2 and SnRK2.3 in ABA signaling. RNA-sequencing analysis revealed that KAPP mutation affects expression of multiple ABA-responsive genes. These results demonstrated that KAPP is negatively involved in plant response to ABA, which help to understand the complicated ABA signaling mechanism.
Collapse
Affiliation(s)
- Kai Lu
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Ya-Dong Zhang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Chun-Fang Zhao
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Li-Hui Zhou
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Qing-Yong Zhao
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Tao Chen
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China
| | - Cai-Lin Wang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences/ Jiangsu High Quality Rice Research and Development Center / Nanjing Branch of China National Center for Rice Improvement, Nanjing, 210014, China.
| |
Collapse
|
48
|
Nguyen QTC, Lee SJ, Choi SW, Na YJ, Song MR, Hoang QTN, Sim SY, Kim MS, Kim JI, Soh MS, Kim SY. Arabidopsis Raf-Like Kinase Raf10 Is a Regulatory Component of Core ABA Signaling. Mol Cells 2019; 42:646-660. [PMID: 31480825 PMCID: PMC6776158 DOI: 10.14348/molcells.2019.0173] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 11/27/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone essential for seed development and seedling growth under unfavorable environmental conditions. The signaling pathway leading to ABA response has been established, but relatively little is known about the functional regulation of the constituent signaling components. Here, we present several lines of evidence that Arabidopsis Raf-like kinase Raf10 modulates the core ABA signaling downstream of signal perception step. In particular, Raf10 phosphorylates subclass III SnRK2s (SnRK2.2, SnRK2.3, and SnRK2.6), which are key positive regulators, and our study focused on SnRK2.3 indicates that Raf10 enhances its kinase activity and may facilitate its release from negative regulators. Raf10 also phosphorylates transcription factors (ABI5, ABF2, and ABI3) critical for ABAregulted gene expression. Furthermore, Raf10 was found to be essential for the in vivo functions of SnRK2s and ABI5. Collectively, our data demonstrate that Raf10 is a novel regulatory component of core ABA signaling.
Collapse
Affiliation(s)
- Quy Thi Cam Nguyen
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Sun-ji Lee
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Seo-wha Choi
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Yeon-ju Na
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Mi-ran Song
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Quyen Thi Ngoc Hoang
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Seo Young Sim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988,
Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988,
Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Moon-Soo Soh
- Department of Molecular Biology, Sejong University, Seoul 05006,
Korea
| | - Soo Young Kim
- Department of Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
49
|
Nguyen NH, Jung C, Cheong JJ. Chromatin remodeling for the transcription of type 2C protein phosphatase genes in response to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:325-331. [PMID: 31207493 DOI: 10.1016/j.plaphy.2019.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/16/2019] [Accepted: 06/10/2019] [Indexed: 05/01/2023]
Abstract
Type 2C protein phosphatases (PP2Cs) counteract protein kinases, thereby inhibiting the abscisic acid (ABA)-mediated response to abiotic stress in Arabidopsis thaliana. In the absence of stress, the promoters of PP2C genes (e.g., ABI1, ABI2, and HAI1) are negatively regulated by repressors that suppress gene transcription in a signal-independent manner. Quantitative reverse transcription PCR (RT-qPCR) and chromatin immunoprecipitation (ChIP) assays revealed that the levels of PP2C gene transcripts and RNA polymerase II (RNAPII) that stalled at the transcription start sites (TSS) of PP2C gene loci were increased under salt stress. The salt-induced increases in RNA polymerase-mediated transcription were reduced in 35S:AtMYB44 plants, confirming that AtMYB44 acts as a repressor of PP2C gene transcription. ChIP assays revealed that AtMYB44 repressors are released and nucleosomes are evicted from the promoter regions in response to salt stress. Under these conditions, histone H3 acetylation (H3ac) and methylation (H3K4me3) around the TSS regions significantly increased. The salt-induced increases in PP2C gene transcription were reduced in abf3 plants, indicating that ABF3 activates PP2C gene transcription. Overall, our data indicate that salt stress converts PP2C gene chromatin from a repressor-associated suppression status to an activator-mediated transcription status. In addition, we observed that the Arabidopsis mutant brm-3, which is moderately defective in SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) activity, produced more PP2C gene transcripts under salt stress conditions, indicating that BRM ATPase contributes to the repression of PP2C gene transcription.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
50
|
He Z, Wu J, Sun X, Dai M. The Maize Clade A PP2C Phosphatases Play Critical Roles in Multiple Abiotic Stress Responses. Int J Mol Sci 2019; 20:ijms20143573. [PMID: 31336603 PMCID: PMC6679055 DOI: 10.3390/ijms20143573] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
As the core components of abscisic acid (ABA) signal pathway, Clade A PP2C (PP2C-A) phosphatases in ABA-dependent stress responses have been well studied in Arabidopsis. However, the roles and natural variations of maize PP2C-A in stress responses remain largely unknown. In this study, we investigated the expression patterns of ZmPP2C-As treated with multiple stresses and generated transgenic Arabidopsis plants overexpressing most of the ZmPP2C-A genes. The results showed that the expression of most ZmPP2C-As were dramatically induced by multiple stresses (drought, salt, and ABA), indicating that these genes may have important roles in response to these stresses. Compared with wild-type plants, ZmPP2C-A1, ZmPP2C-A2, and ZmPP2C-A6 overexpression plants had higher germination rates after ABA and NaCl treatments. ZmPP2C-A2 and ZmPP2C-A6 negatively regulated drought responses as the plants overexpressing these genes had lower survival rates, higher leaf water loss rates, and lower proline accumulation compared to wild type plants. The natural variations of ZmPP2C-As associated with drought tolerance were also analyzed and favorable alleles were detected. We widely studied the roles of ZmPP2C-A genes in stress responses and the natural variations detected in these genes have the potential to be used as molecular markers in genetic improvement of maize drought tolerance.
Collapse
Affiliation(s)
- Zhenghua He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jinfeng Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|