1
|
Molcan L, Babarikova K, Cvikova D, Kincelova N, Kubincova L, Mauer Sutovska H. Artificial light at night suppresses the day-night cardiovascular variability: evidence from humans and rats. Pflugers Arch 2024; 476:295-306. [PMID: 38177874 PMCID: PMC10847188 DOI: 10.1007/s00424-023-02901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Artificial light at night (ALAN) affects most of the population. Through the retinohypothalamic tract, ALAN modulates the activity of the central circadian oscillator and, consequently, various physiological systems, including the cardiovascular one. We summarised the current knowledge about the effects of ALAN on the cardiovascular system in diurnal and nocturnal animals. Based on published data, ALAN reduces the day-night variability of the blood pressure and heart rate in diurnal and nocturnal animals by increasing the nocturnal values of cardiovascular variables in diurnal animals and decreasing them in nocturnal animals. The effects of ALAN on the cardiovascular system are mainly transmitted through the autonomic nervous system. ALAN is also considered a stress-inducing factor, as glucocorticoid and glucose level changes indicate. Moreover, in nocturnal rats, ALAN increases the pressure response to load. In addition, ALAN induces molecular changes in the heart and blood vessels. Changes in the cardiovascular system significantly depend on the duration of ALAN exposure. To some extent, alterations in physical activity can explain the changes observed in the cardiovascular system after ALAN exposure. Although ALAN acts differently on nocturnal and diurnal animals, we can conclude that both exhibit a weakened circadian coordination among physiological systems, which increases the risk of future cardiovascular complications and reduces the ability to anticipate stress.
Collapse
Affiliation(s)
- Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Katarina Babarikova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Diana Cvikova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Natalia Kincelova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Lenka Kubincova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia
| | - Hana Mauer Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, Slovakia.
| |
Collapse
|
2
|
Hattori A, Suzuki N. Receptor-Mediated and Receptor-Independent Actions of Melatonin in Vertebrates. Zoolog Sci 2024; 41:105-116. [PMID: 38587523 DOI: 10.2108/zs230057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 04/09/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine that is synthesized from tryptophan in the pineal glands of vertebrates through four enzymatic reactions. Melatonin is a quite unique bioactive substance, characterized by a combination of both receptor-mediated and receptor-independent actions, which promote the diverse effects of melatonin. One of the main functions of melatonin, via its membrane receptors, is to regulate the circadian or seasonal rhythm. In mammals, light information, which controls melatonin synthesis, is received in the eye, and transmitted to the pineal gland, via the suprachiasmatic nucleus, where the central clock is located. Alternatively, in many vertebrates other than mammals, the pineal gland cells, which are involved in melatonin synthesis and secretion and in the circadian clock, directly receive light. Recently, it has been reported that melatonin possesses several metabolic functions, which involve bone and glucose, in addition to regulating the circadian rhythm. Melatonin improves bone strength by inhibiting osteoclast activity. It is also known to maintain brain activity during sleep by increasing glucose uptake at night, in an insulin-independent manner. Moreover, as a non-receptor-mediated action, melatonin has antioxidant properties. Melatonin has been proven to be a potent free radical scavenger and a broad-spectrum antioxidant, even protecting organisms against radiation from space. Melatonin is a ubiquitously distributed molecule and is found in bacteria, unicellular organisms, fungi, and plants. It is hypothesized that melatonin initially functioned as an antioxidant, then, in vertebrates, it combined this role with the ability to regulate rhythm and metabolism, via its receptors.
Collapse
Affiliation(s)
- Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama 352-8558, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan,
| |
Collapse
|
3
|
Pesti-Asbóth G, Molnár-Bíróné P, Forgács I, Remenyik J, Dobránszki J. Ultrasonication affects the melatonin and auxin levels and the antioxidant system in potato in vitro. FRONTIERS IN PLANT SCIENCE 2022; 13:979141. [PMID: 36247572 PMCID: PMC9558230 DOI: 10.3389/fpls.2022.979141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Melatonin is an ancient hormone whose physiological effects have been extensively studied in animals and human. We now know that it also plays a prominent role in the growth and development of plants. In our present experiment, the relationship between endogenous melatonin and the antioxidant system was investigated in potato plant grown in vitro. Changes in redox homeostasis under ultrasound stress were examined. The concentration of small molecule antioxidants and enzymes of the three-level antioxidant pathway was measured. ELISA method was used to determine the melatonin levels in plant tissues at each growth stage (0 h, 24 h, 48 h, 1 week, and 4 weeks after subculturing the explants) both in control and ultrasound-treated plants. Ultrasound stress activated the three-level defense system and decreased the endogenous melatonin levels. Melatonin was able to provide protection against membrane damage caused by drastic ultrasound treatment. Melatonin at the heart of the redox network is a key component regulating various biochemical, cellular, and physiological responses. It has a dual role, as it is able to act both as a growth regulator and an antioxidant. A close relationship was evidenced between the plant hormone indole-3-acetic acid and melatonin and ascorbic acid.
Collapse
Affiliation(s)
- Georgina Pesti-Asbóth
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Piroska Molnár-Bíróné
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Ildikó Forgács
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
4
|
Circadian depression: A mood disorder phenotype. Neurosci Biobehav Rev 2021; 126:79-101. [PMID: 33689801 DOI: 10.1016/j.neubiorev.2021.02.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Major mood syndromes are among the most common and disabling mental disorders. However, a lack of clear delineation of their underlying pathophysiological mechanisms is a major barrier to prevention and optimised treatments. Dysfunction of the 24-h circadian system is a candidate mechanism that has genetic, behavioural, and neurobiological links to mood syndromes. Here, we outline evidence for a new clinical phenotype, which we have called 'circadian depression'. We propose that key clinical characteristics of circadian depression include disrupted 24-h sleep-wake cycles, reduced motor activity, low subjective energy, and weight gain. The illness course includes early age-of-onset, phenomena suggestive of bipolarity (defined by bidirectional associations between objective motor and subjective energy/mood states), poor response to conventional antidepressant medications, and concurrent cardiometabolic and inflammatory disturbances. Identifying this phenotype could be clinically valuable, as circadian-targeted strategies show promise for reducing depressive symptoms and stabilising illness course. Further investigation of underlying circadian disturbances in mood syndromes is needed to evaluate the clinical utility of this phenotype and guide the optimal use of circadian-targeted interventions.
Collapse
|
5
|
Singh A, Zutshi B. Photoperiodic effects on somatic growth and gonadal maturation in Mickey Mouse platy, Xiphophorus maculatus (Gunther, 1866). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1483-1495. [PMID: 32372327 DOI: 10.1007/s10695-020-00806-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Photoperiod is important in initiation or suppression of reproductive timing and gonadal maturation which varies with species. The aim of the present study was to investigate the effect of two photoperiodic manipulating regimes, i.e., long (18L:6D) and short (10L:14D) photoperiods for a period of 60 days on somatic growth and gonadal maturation of a live-bearer ornamental fish, Mickey Mouse platy (Xiphophorus maculatus). The control fish were further kept under the laboratory environmental condition. The results showed a significant increase in weight gain, specific growth rate, and gonadosomatic index in fish under long photoperiod than those exposed to short photoperiod and control condition (P < 0.05). A condition factor showed significant variations between long photoperiod and control groups. Furthermore, a long photoperiod also induced a significant increase in the number of fish with mature embryo and middle-eyed embryo in the ovary. Similarly, histological analysis of testes of males showed an increase in the number of mature spermatid and spermatozoa under long photoperiod when compared to those of control and short photoperiod ones. Thus, it can be concluded that long-day photoperiodic manipulation may be applied for healthy growth and early gonadal maturation of live-bearer ornamental fishes.
Collapse
Affiliation(s)
- Aradhana Singh
- Department of Zoology, Aquaculture Laboratory, Bangalore University, Bengaluru, India
| | - Bela Zutshi
- Department of Zoology, Aquaculture Laboratory, Bangalore University, Bengaluru, India.
| |
Collapse
|
6
|
Tsotinis A, Kompogennitaki R, Papanastasiou I, Garratt PJ, Bocianowska A, Sugden D. Fluorine substituted methoxyphenylalkyl amides as potent melatonin receptor agonists. MEDCHEMCOMM 2019; 10:460-464. [PMID: 31191854 PMCID: PMC6530086 DOI: 10.1039/c8md00604k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/10/2019] [Indexed: 11/21/2022]
Abstract
A series of fluorine substituted methoxyphenylalkyl amides were prepared with different orientations of the fluorine and methoxy groups with respect to the alkylamide side chain and with alkyl sides of differing lengths (n = 1-3). β-Dimethyl and α-methyl derivatives were also synthesised. The compounds were tested as melatonin agonists and antagonists using the pigment aggregation of Xenopus melanophores as the biological assay. A number of these compounds were potent melatonin agonists, the potency depending on the length of the alkyl chain, the orientation of the methoxy and fluorine substituents, the amide chain length and, for the ethyl side-chain analogues, the presence of β-substituents.
Collapse
Affiliation(s)
- Andrew Tsotinis
- School of Health Sciences , Department of Pharmacy , Division of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Rodanthi Kompogennitaki
- School of Health Sciences , Department of Pharmacy , Division of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Ioannis Papanastasiou
- School of Health Sciences , Department of Pharmacy , Division of Pharmaceutical Chemistry , National and Kapodistrian University of Athens , Panepistimioupoli-Zografou , 157 84 Athens , Greece .
| | - Peter J Garratt
- Department of Chemistry , University College London , 20 Gordon Street , London WC1H 0AJ , UK
| | - Alina Bocianowska
- School of Biomedical and Health Sciences , Division of Reproduction and Endocrinology , King's College London , London SE1 1UL , UK
| | - David Sugden
- School of Biomedical and Health Sciences , Division of Reproduction and Endocrinology , King's College London , London SE1 1UL , UK
| |
Collapse
|
7
|
Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 2019; 51:109-138. [PMID: 30633846 DOI: 10.1111/ejn.14343] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
Twenty-four-hour rhythmicity in physiology and behavior are driven by changes in neurophysiological activity that vary across the light-dark and rest-activity cycle. Although this neural code is most prominent in neurons of the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, there are many other regions in the brain where region-specific function and behavioral rhythmicity may be encoded by changes in electrical properties of those neurons. In this review, we explore the existing evidence for molecular clocks and/or neurophysiological rhythms (i.e., 24 hr) in brain regions outside the SCN. In addition, we highlight the brain regions that are ripe for future investigation into the critical role of circadian rhythmicity for local oscillators. For example, the cerebellum expresses rhythmicity in over 2,000 gene transcripts, and yet we know very little about how circadian regulation drives 24-hr changes in the neural coding responsible for motor coordination. Finally, we conclude with a discussion of how our understanding of circadian regulation of electrical properties may yield insight into disease mechanisms which may lead to novel chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Allison Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aidan Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Adamska I, Malz M, Lewczuk B, Blügental N, Markowska MA, Meronka R, Majewski PM. Daily Profiles of Neuropeptides, Catecholamines, and Neurotransmitter Receptors in the Chicken Pineal Gland. Front Physiol 2019; 9:1972. [PMID: 30697171 PMCID: PMC6340997 DOI: 10.3389/fphys.2018.01972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/31/2018] [Indexed: 11/21/2022] Open
Abstract
The avian pineal gland is one of three central biological clocks that contain all the components of a circadian system: a photoreceptive input, oscillator, and rhythmically secreted melatonin (MEL) as an effector. The biosynthesis of MEL is regulated by the neurotransmitters noradrenaline (NA), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating polypeptide (PACAP). The aim of the present study was to characterize the daily profile of neurotransmitters and their receptors in the pineal gland of male Hy-Line chickens housed under controlled light (12:12 light:dark) conditions. The pineal glands were isolated from 16-day-old birds every 2 h over a 24-h period, immediately after decapitation. The catecholamine content was measured using HPLC with electrochemical detection, whereas expression of VIP and PACAP was measured using quantitative real-time PCR (RT-qPCR) assays and Western blotting. Expression of the neurotransmitter receptors was also measured using RT-qPCR. We found daily changes in NA content, with elevated nocturnal levels, whereas the NA receptor was expressed in antiphase. Although we did not observe daily changes in VIP and PACAP protein levels, we found prominent diurnal changes in the expression of the Vip and Pacap genes. We also detected precursors of NA, 3,4-dihydroxy-L-phenylalanine (DOPA), and dopamine (DA) in the pineal glands, in addition to the DA metabolites. Our results provide the first evidence that the pineal gland itself may synthetize the neurotransmitters needed to regulate MEL biosynthesis.
Collapse
Affiliation(s)
- Iwona Adamska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Malz
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Natalia Blügental
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Robert Meronka
- Department of Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Marek Majewski
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Paulose JK, Wang C, O'Hara BF, Cassone VM. The effects of aging on sleep parameters in a healthy, melatonin-competent mouse model. Nat Sci Sleep 2019; 11:113-121. [PMID: 31496853 PMCID: PMC6697669 DOI: 10.2147/nss.s214423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/24/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sleep disturbances are common maladies associated with human age. Sleep duration is decreased, sleep fragmentation is increased, and the timing of sleep onset and sleep offset is earlier. These disturbances have been associated with several neurodegenerative diseases. Mouse models for human sleep disturbances can be powerful due to the accessibility to neuroscientific and genetic approaches, but these are hampered by the fact that most mouse models employed in sleep research have spontaneous mutations in the biosynthetic pathway(s) regulating the rhythmic production of the pineal hormone melatonin, which has been implicated in human sleep. PURPOSE AND METHOD The present study employed a non-invasive piezoelectric measure of sleep wake cycles in young, middle-aged and old CBA mice, a strain capable of melatonin biosynthesis, to investigate naturally-occurring changes in sleep and circadian parameters as the result of aging. RESULTS The results indicate that young mice sleep less than do middle-aged or aged mice, especially during the night, while the timing of activity onset and acrophase is delayed in aged mice compared to younger mice. CONCLUSION These data point to an effect of aging on the quality and timing of sleep in these mice but also that there are fundamental differences between control of sleep in humans and in laboratory mice.
Collapse
Affiliation(s)
- Jiffin K Paulose
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA
| | - Chanung Wang
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce F O'Hara
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA
| | - Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40515, USA
| |
Collapse
|
10
|
Paulose JK, Cassone CV, Cassone VM. Aging, melatonin biosynthesis, and circadian clockworks in the gastrointestinal system of the laboratory mouse. Physiol Genomics 2018; 51:1-9. [PMID: 30444453 DOI: 10.1152/physiolgenomics.00095.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The gastrointestinal (GI) system is vital in its capacities for nutrient and water uptake, immune function, metabolism and detoxification, and stem-cell derived regeneration. Of significance to human health are a myriad of GI disorders associated with aging that integrate with the circadian clock. Here we present data from three groups of mice: young (3 mo old), middle aged (12 mo old), and old aged (24 mo old). Small intestine and colon samples taken every 4 h under light-dark (LD) conditions were assayed for gene expression related to molecular circadian rhythmicity, transcription, cell signaling, and immune function. Transcripts related to melatonin biosynthesis and signaling, as well as melatonin content from stool, were also included, as GI melatonin and aging have been associated in contexts outside of the circadian clock. With respect to circadian genes, the data here are congruent with data from other peripheral tissues: age does not affect the rhythmic expression of core clock genes in the gut. The same can be said for several clock-controlled transcripts. In contrast, diurnal patterns in the expression of nitric oxide synthase 1 and of immune factors irak4 and interleukin-8 were observed in the colon of young mice that were lost in middle-aged and aged animals. Furthermore, the diurnal pattern of melatonin synthesis genes was altered by age, and stool melatonin levels showed significant decline between young mice and aged cohorts. These data expand the evidence for the persistence of the circadian clock throughout the aging process and highlight its importance to health.
Collapse
Affiliation(s)
- Jiffin K Paulose
- Department of Biology, University of Kentucky , Lexington, Kentucky
| | | | | |
Collapse
|
11
|
Chakrabarty S, DiTucci MJ, Berden G, Oomens J, Williams ER. Structural Investigation of the Hormone Melatonin and Its Alkali and Alkaline Earth Metal Complexes in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1835-1847. [PMID: 30006822 DOI: 10.1007/s13361-018-2020-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Gas phase infrared dissociation spectra of the radical cation, deprotonated and protonated forms of the hormone melatonin, and its complexes with alkali (Li+, Na+, and K+) and alkaline earth metal ions (Mg2+, Ca2+, and Sr2+) are measured in the spectral range 800-1800 cm-1. Minimum energy geometries calculated at the B3LYP/LACVP++** level are used to assign structural motifs to absorption bands in the experimental spectra. The melatonin anion is deprotonated at the indole-N. The indole-C linking the amide chain is the most favored protonation site. Comparisons between the experimental and calculated spectra for alkali and alkaline earth metal ion complexes reveal that the metal ions interact similarly with the amide and methoxy oxygen atoms. The amide I band undergoes a red shift with increasing charge density of the metal ion and the amide II band shows a concomitant blue shift. Another binding motif in which the metal ions interact with the amide-O and the π-electron cloud of the aromatic group is identified but is higher in energy by at least 18 kJ/mol. Melatonin is deprotonated at the amide-N with Mg2+ and the metal ion coordinates to the amide-N and an indole-C or the methoxy-O. These results provide information about the intrinsic binding of metal ions to melatonin and combined with future studies on solvated melatonin-metal ion complexes may help elucidate the solvent effects on metal ion binding in solution and the biochemistry of melatonin. These results also serve as benchmarks for future theoretical studies on melatonin-metal ion interactions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Satrajit Chakrabarty
- Department of Chemistry, University of California, B-42 Hildebrand Hall, Berkeley, CA, 94720, USA.
- Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich, Switzerland.
| | - Matthew J DiTucci
- Department of Chemistry, University of California, B-42 Hildebrand Hall, Berkeley, CA, 94720, USA
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Nijmegen, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Nijmegen, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Evan R Williams
- Department of Chemistry, University of California, B-42 Hildebrand Hall, Berkeley, CA, 94720, USA.
| |
Collapse
|
12
|
Li Y, Lv Y, Bian C, You X, Deng L, Shi Q. A Comparative Genomic Survey Provides Novel Insights into Molecular Evolution of l-Aromatic Amino Acid Decarboxylase in Vertebrates. Molecules 2018; 23:molecules23040917. [PMID: 29659490 PMCID: PMC6017361 DOI: 10.3390/molecules23040917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
Melatonin is a pleiotropic molecule with various important physiological roles in vertebrates. l-aromatic amino acid decarboxylase (AAAD) is the second enzyme for melatonin synthesis. By far, a clear-cut gene function of AAAD in the biosynthesis of melatonin has been unclear in vertebrates. Here, we provide novel insights into the evolution of AAAD based on 77 vertebrate genomes. According to our genome-wide alignments, we extracted a total of 151 aaad nucleotide sequences. A phylogenetic tree was constructed on the basis of these sequences and corresponding protein alignments, indicating that tetrapods and diploid bony fish genomes contained one aaad gene and a new aaad-like gene, which formed a novel AAAD family. However, in tetraploid teleosts, there were two copies of the aaad gene due to whole genome duplication. A subsequent synteny analysis investigated 81 aaad sequences and revealed their collinearity and systematic evolution. Interestingly, we discovered that platypus (Ornithorhynchus anatinus), Atlantic cod (Guadus morhua), Mexican tetra (Astyanax mexicanus), and a Sinocyclocheilus cavefish (S. anshuiensis) have long evolutionary branches in the phylogenetic topology. We also performed pseudogene identification and selection pressure analysis; however, the results revealed a deletion of 37 amino acids in Atlantic cod and premature stop codons in the cave-restricted S. anshuiensis and A. mexicanus, suggesting weakening or disappearing rhythms in these cavefishes. Selective pressure analysis of aaad between platypus and other tetrapods showed that rates of nonsynonymous (Ka) and synonymous (Ks) substitutions were higher when comparing the platypus to other representative tetrapods, indicating that, in this semiaquatic mammal, the aaad gene experienced selection during the process of evolution. In summary, our current work provides novel insights into aaad genes in vertebrates from a genome-wide view.
Collapse
Affiliation(s)
- Yanping Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Li Deng
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Adamska I, Lewczuk B, Markowska M, Majewski PM. Daily profiles of melatonin synthesis-related indoles in the pineal glands of young chickens (Gallus gallus domesticus L.). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 164:335-343. [DOI: 10.1016/j.jphotobiol.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 11/16/2022]
|
14
|
Lee HR, Kim TD, Kim HJ, Jung Y, Lee D, Lee KH, Kim DY, Woo KC, Kim KT. Heterogeneous ribonucleoprotein R regulates arylalkylamine N-acetyltransferase synthesis via internal ribosomal entry site-mediated translation in a circadian manner. J Pineal Res 2015; 59:518-29. [PMID: 26444903 DOI: 10.1111/jpi.12284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/02/2015] [Indexed: 01/07/2023]
Abstract
Rhythmic arylalkylamine N-acetyltransferase (AANAT) synthesis is a prominent circadian-controlled response that occurs in most mammals. AANAT is the core enzyme in melatonin production; because melatonin participates in many physiological processes, the regulation of AANAT is an important research topic. In this study, we focused on the role of heterogeneous ribonucleoprotein R (hnRNP R) in the translation of AANAT. A novel RNA-binding protein hnRNP R widely interacted with the 5' untranslated region (UTR) of AANAT mRNA and contributed to translation through an internal ribosomal entry site (IRES). Fine-tuning of AANAT protein synthesis occurred in response to knockdown and overexpression of hnRNP R. Nocturnal elevation of AANAT protein was dependent on the rhythmic changes of hnRNP R, whose levels are elevated in the pineal gland during nighttime. Increases in hnRNP R additionally improved AANAT production in rat pinealocytes under norepinephrine (NE) treatment. These results suggest that cap-independent translation of AANAT mRNA plays a role in the rhythmic synthesis of melatonin through the recruitment of translational machinery to hnRNP R-bound AANAT mRNA.
Collapse
Affiliation(s)
- Hwa-Rim Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Tae-Don Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Hyo-Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Youngseob Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Kyung-Ha Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Kyung-Chul Woo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Newlife Cosmetics R&D Center for Skin Science, Gyeongsansi, Gyeongbuk, Korea
| | - Kyong-Tai Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| |
Collapse
|
15
|
Li Y, Cassone VM. A simple, specific high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin in cell culture medium. Int Immunopharmacol 2015; 28:230-4. [PMID: 26093267 DOI: 10.1016/j.intimp.2015.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/30/2015] [Accepted: 06/05/2015] [Indexed: 11/28/2022]
Abstract
A simple, specific, high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin was developed for directly measuring melatonin in cell culture medium with 10% FBS. This assay adopts a commercial monoclonal melatonin antibody and melatonin-HRP conjugate, so it can be applied in multiple labs rapidly with low cost compared with commercial RIA and ELISA kits. In addition, the procedure is much simpler with only four steps: 1) sample/conjugate incubation, 2) plate washing, 3) TMB color reaction and 4) reading of results. The standards of the assay cover a wide working range from 100 pg/mL to 10 ng/mL. The sensitivity was 68 pg/mL in cell culture medium with 10% FBS and 26 pg/mL in PBS with as little as 25 μL sample volume. The recovery of melatonin from cell culture medium was 101.0%. The principal cross-reacting compound was 5-methoxytryptophol (0.1%). The variation coefficients of the assay, within and between runs, ranged between 6.68% and 15.76% in cell culture medium. The mean linearity of a series diluted cell culture medium sample was 105% (CV=5%), ranging between 98% and 111%, y=5.5263x+0.0646, R(2)=0.99. The assay enables small research and teaching labs to reliably measure this important neurohormone.
Collapse
Affiliation(s)
- Ye Li
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States.
| |
Collapse
|
16
|
Lazado CC, Kumaratunga HPS, Nagasawa K, Babiak I, Caipang CMA, Fernandes JMO. In vitro and ex vivo models indicate that the molecular clock in fast skeletal muscle of Atlantic cod is not autonomous. Mol Biol Rep 2014; 41:6679-89. [PMID: 24993118 DOI: 10.1007/s11033-014-3551-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
The notion that the circadian rhythm is exclusively regulated by a central clock has been challenged by the discovery of peripheral oscillators. These peripheral clocks are known to have a direct influence on the biological processes in a tissue or cell. In fish, several peripheral clocks respond directly to light, thus raising the hypothesis of autonomous regulation. Several clock genes are expressed with daily rhythmicity in Atlantic cod (Gadus morhua) fast skeletal muscle. In the present study, myosatellite cell culture and short-term cultured fast skeletal muscle explant models were developed and characterized, in order to investigate the autonomy of the clock system in skeletal muscle of Atlantic cod. Myosatellite cells proliferated and differentiated in vitro, as shown by the changes in cellular and myogenic gene markers. The high expression of myogenic differentiation 1 during the early days post-isolation implied the commitment to myogenic lineage and the increasing mRNA levels of proliferating cell nuclear antigen (pcna) indicated the proliferation of the cells in vitro. Transcript levels of myogenic marker genes such as pcna and myogenin increased during 5 days in culture of skeletal muscle explants, indicating that the muscle cells were proliferating and differentiating under ex vivo conditions. Transcript levels of the clock gene aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2) in myosatellite cells showed no daily oscillation regardless of photoperiod manipulation. On the other hand, mRNA levels of the clock gene circadian locomotor output cycles kaput (clock) showed circadian rhythmicity in 5-day-old skeletal muscle explant under different photoperiod regimes. The expression of arntl2, cryptochrome2 (cry2), period 2a (per2a) and nuclear receptor subfamily 1, group D, member 1 was not rhythmic in muscle explants but photoperiod manipulation had a significant effect on mRNA levels of cry2 and per2a. Taken together, the lack of rhythmicity of molecular clocks in vitro and ex vivo indicate that the putative peripheral clock in Atlantic cod fast skeletal muscle is not likely to be autonomous.
Collapse
Affiliation(s)
- Carlo C Lazado
- Faculty of Biosciences and Aquaculture, University of Nordland, 8049, Bodø, Norway
| | | | | | | | | | | |
Collapse
|
17
|
Magalhães Moraes MNDC, de Oliveira Poletini M, Ribeiro Ramos BC, de Lima LHRG, de Lauro Castrucci AM. Effect of light on expression of clock genes in Xenopus laevis melanophores. Photochem Photobiol 2014; 90:696-701. [PMID: 24438110 DOI: 10.1111/php.12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
Light-dark cycles are considered important cues to entrain biological clocks. A feedback loop of clock gene transcription and translation is the molecular basis underlying the mechanism of both central and peripheral clocks. Xenopus laevis embryonic melanophores respond to light with melanin granule dispersion, response possibly mediated by the photopigment melanopsin. To test whether light modulates clock gene expression in Xenopus melanophores, we used qPCR to evaluate the relative mRNA levels of Per1, Per2, Clock and Bmal1 in cultured melanophores exposed to light-dark (LD) cycle or constant darkness (DD). LD cycles elicited temporal changes in the expression of Per1, Per2 and Bmal1. A 10-min pulse of blue light was able to increases the expression of Per1 and Per2. Red light had no effect on the expression of these clock genes. These data suggest the participation of a blue-wavelength sensitive pigment in the light-dark cycle-mediated oscillation of the endogenous clock. Our results add an important contribution to the emerging field of peripheral clocks, which in nonmammalian vertebrates have been mostly studied in Drosophila and Danio rerio. Within this context, we show that X. laevis melanophores, which have already led to melanopsin discovery, represent an ideal model to understanding circadian rhythms.
Collapse
|
18
|
Esteban MÁ, Cuesta A, Chaves-Pozo E, Meseguer J. Influence of melatonin on the immune system of fish: a review. Int J Mol Sci 2013; 14:7979-99. [PMID: 23579958 PMCID: PMC3645727 DOI: 10.3390/ijms14047979] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023] Open
Abstract
Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates.
Collapse
Affiliation(s)
- M. Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, International Excellence Campus, “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; E-Mails: (A.C.); (J.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-868-887-665; Fax: +34-868-883-963
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, International Excellence Campus, “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; E-Mails: (A.C.); (J.M.)
| | - Elena Chaves-Pozo
- Marine Culture Plant of Mazarrón, Spanish Institute of Oceanography (IEO), Azohía Street, Puerto de Mazarrón, 30860 Murcia, Spain; E-Mail:
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, International Excellence Campus, “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; E-Mails: (A.C.); (J.M.)
| |
Collapse
|
19
|
Servili A, Herrera-Pérez P, del Carmen Rendón M, Muñoz-Cueto JA. Melatonin inhibits GnRH-1, GnRH-3 and GnRH receptor expression in the brain of the European Sea Bass, Dicentrarchus labrax. Int J Mol Sci 2013; 14:7603-16. [PMID: 23567273 PMCID: PMC3645706 DOI: 10.3390/ijms14047603] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 12/11/2022] Open
Abstract
Several evidences supported the existence of melatonin effects on reproductive system in fish. In order to investigate whether melatonin is involved in the modulation of GnRH systems in the European sea bass, we have injected melatonin (0.5 μg/g body mass) in male specimens. The brain mRNA transcript levels of the three GnRH forms and the five GnRH receptors present in this species were determined by real time quantitative PCR. Our findings revealed day–night variations in the brain expression of GnRH-1, GnRH-3 and several GnRH receptors (dlGnRHR-II-1c, -2a), which exhibited higher transcript levels at mid-light compared to mid-dark phase of the photocycle. Moreover, an inhibitory effect of melatonin on the nocturnal expression of GnRH-1, GnRH-3, and GnRH receptors subtypes 1c, 2a and 2b was also demonstrated. Interestingly, the inhibitory effect of melatonin affected the expression of hypophysiotrophic GnRH forms and GnRH receptors that exhibit day–night fluctuations, suggesting that exogenous melatonin reinforce physiological mechanisms already established. These interactions between melatoninergic and GnRH systems could be mediating photoperiod effects on reproductive and other rhythmic physiological events in the European sea bass.
Collapse
Affiliation(s)
- Arianna Servili
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Marine International Campus of Excellence (CEI·MAR), University Campus of Puerto Real, Puerto Real E-11510, Spain; E-Mails: (P.H.-P.); (M.C.R.)
| | - Patricia Herrera-Pérez
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Marine International Campus of Excellence (CEI·MAR), University Campus of Puerto Real, Puerto Real E-11510, Spain; E-Mails: (P.H.-P.); (M.C.R.)
- Andalusian Center of Marine Sciences and Technologies (CACYTMAR), Research Institutes, University Campus of Puerto Real, Puerto Real E-11510, Spain
| | - María del Carmen Rendón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Marine International Campus of Excellence (CEI·MAR), University Campus of Puerto Real, Puerto Real E-11510, Spain; E-Mails: (P.H.-P.); (M.C.R.)
| | - José Antonio Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Marine International Campus of Excellence (CEI·MAR), University Campus of Puerto Real, Puerto Real E-11510, Spain; E-Mails: (P.H.-P.); (M.C.R.)
- Andalusian Center of Marine Sciences and Technologies (CACYTMAR), Research Institutes, University Campus of Puerto Real, Puerto Real E-11510, Spain
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +34-956-016-023; Fax: +34-956-016-019
| |
Collapse
|
20
|
Prendergast BJ, Cable EJ, Cisse YM, Stevenson TJ, Zucker I. Pineal and gonadal influences on ultradian locomotor rhythms of male Siberian hamsters. Horm Behav 2013; 63:54-64. [PMID: 23142326 PMCID: PMC3660102 DOI: 10.1016/j.yhbeh.2012.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/25/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
The extent to which changes in ultradian and circadian rhythms (URs and CRs) reflect seasonal variations in pineal melatonin secretion was assessed in male Siberian hamsters transferred from long to short day lengths. The period of the locomotor activity UR increased from 2.5 h in long days to 4.5 h in short day lengths, but this and most other features of the short-day ultradian phenotype were unaffected by pinealectomy; only the short-day increase in UR amplitude was counteracted by pineal extirpation. Virtually all UR components were unaffected by gonadectomy or replacement testosterone or estradiol treatment; changes in testicular hormone secretion appear insufficient to account for seasonal fluctuation in URs. Pinealectomy did not affect activity onsets and offsets or phase angles of CR entrainment in short and long day lengths; the duration of nocturnal activity was equivalently longer in short than long days in both pinealectomized and pineal-intact hamsters. CR robustness of pinealectomized hamsters in short days was intermediate between values of long-day and short-day sham-pinealectomized males. Hourly nocturnal locomotor activity was markedly reduced in SD, and this effect was completely reversed by PINx. We conclude that seasonal transitions in UR and CR waveforms controlled by day length are mediated primarily by melatonin-independent mechanisms, with lesser contributions from melatonin-dependent processes. Most seasonal changes in ultradian and circadian rhythms in males of this species are not influenced by gonadal hormones. URs may allow animals to respond appropriately to changing environmental contingencies. In winter reduced activity combined with temporal restructuring of activity to include longer intervals of rest may be adaptive in maintaining body temperature at lower values and down-regulating energy expenditure when above ground temperatures are extremely low.
Collapse
|
21
|
Piesiewicz A, Kedzierska U, Adamska I, Usarek M, Zeman M, Skwarlo-Sonta K, Majewski PM. Pineal arylalkylamine N-acetyltransferase (Aanat) gene expression as a target of inflammatory mediators in the chicken. Gen Comp Endocrinol 2012; 179:143-51. [PMID: 22935823 DOI: 10.1016/j.ygcen.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 08/02/2012] [Accepted: 08/10/2012] [Indexed: 01/06/2023]
Abstract
Previously, we demonstrated that experimental peritonitis in chickens was attenuated by treatment with exogenous melatonin, while the developing inflammation decreased pineal AANAT activity. This suggested the existence of a bidirectional relationship between the activated immune system and pineal gland function. The aim of the present study was to identify the step(s) in the chicken pineal melatonin biosynthetic pathway that are affected by inflammation. Peritonitis was evoked by i.p. injection of thioglycollate solution, either 2h after the start, or 2h before the end of the light period, and the animals were sacrificed 4h later. The effect of inflammation on the expression of genes encoding enzymes participating in melatonin biosynthesis in the pineal gland, i.e. tryptophan hydroxylase 1 (Tph1), dopa decarboxylase (Ddc), arylalkylamine N-acetyltransferase (Aanat) and acetylserotonin O-methyltransferase (Asmt), was evaluated by qPCR. The pineal and serum melatonin concentration as well as the content of its precursors in the pineal gland were measured, along with the activity of the relevant biosynthetic enzymes. Developing peritonitis caused an increase in the pineal levels of the Tph1 mRNA during the night and the Asmt mRNA during the day, while nocturnal Aanat transcription was reduced. Both the pineal and serum melatonin level and the pineal content of N-acetylserotonin (NAS) were decreased during the night in birds with peritonitis. The amount and activity of pineal AANAT were significantly reduced, while the activity of HIOMT was increased under these experimental conditions. These results indicate that the observed decrease in MEL biosynthesis in chickens with developing inflammation is a result of transcriptional downregulation of the Aanat gene, followed by reduced synthesis and activity of the encoded enzyme.
Collapse
Affiliation(s)
- Aneta Piesiewicz
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Melatonin is a hormone synthesized and secreted during the night by the pineal gland. Its production is mainly driven by the Orcadian clock, which, in mammals, is situated in the suprachiasmatic nucleus of the hypothalamus. The melatonin production and release displays characteristic daily (nocturnal) and seasonal patterns (changes in duration proportional to the length of the night) of secretion. These rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes. In mammals, the role of melatonin in the control of seasonality is well documented, and the sites and mechanisms of action involved are beginning to be identified. The exact role of the hormone in the diurnal (Orcadian) timing system remains to be determined. However, exogenous melatonin has been shown to affect the circadian clock. The molecular and cellular mechanisms involved in this well-characterized “chronobiotic” effect have also begun to be characterized. The circadian clock itself appears to be an important site for the entrapment effect of melatonin and the presence of melatonin receptors appears to be a prerequisite. A better understanding of such “chronobiotic” effects of melatonin will allow clarification of the role of endogenous melatonin in circadian organization.
Collapse
Affiliation(s)
- Paul Pévet
- Laboratoire de Neurobiologie des Rythmes, UMR 7518 CNRS-Université Louis Pasteur, Strasbourg, France
| |
Collapse
|
23
|
Valdez DJ, Garbarino-Pico E, Díaz NM, Silvestre DC, Guido ME. Differential Regulation of ArylalkylamineN-Acetyltransferase Activity in Chicken Retinal Ganglion Cells by Light and Circadian Clock. Chronobiol Int 2012; 29:1011-20. [DOI: 10.3109/07420528.2012.707160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
O'Brien CS, Bourdo R, Bradshaw WE, Holzapfel CM, Cresko WA. Conservation of the photoperiodic neuroendocrine axis among vertebrates: evidence from the teleost fish, Gasterosteus aculeatus. Gen Comp Endocrinol 2012; 178:19-27. [PMID: 22504272 PMCID: PMC3389224 DOI: 10.1016/j.ygcen.2012.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/11/2023]
Abstract
Photoperiod, or length of day, has a predictable annual cycle, making it an important cue for the timing of seasonal behavior and development in many organisms. Photoperiod is widely used among temperate and polar animals to regulate the timing of sexual maturation. The proper sensing and interpretation of photoperiod can be tightly tied to an organism's overall fitness. In photoperiodic mammals and birds the thyroid hormone pathway initiates sexual maturation, but the degree to which this pathway is conserved across other vertebrates is not well known. We use the threespine stickleback Gasterosteus aculeatus, as a representative teleost to quantify the photoperiodic response of key genes in the thyroid hormone pathway under controlled laboratory conditions. We find that the photoperiodic responses of the hormones are largely consistent amongst multiple populations, although differences suggest physiological adaptation to various climates. We conclude that the thyroid hormone pathway initiates sexual maturation in response to photoperiod in G. aculeatus, and our results show that more components of this pathway are conserved among mammals, birds, and teleost fish than was previously known. However, additional endocrinology, cell biology and molecular research will be required to define precisely which aspects of the pathway are conserved across vertebrates.
Collapse
Affiliation(s)
- Conor S O'Brien
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| | | | | | | | | |
Collapse
|
25
|
Wahl C, Li T, Takagi Y, Howland H. The effects of light regimes and hormones on corneal growth in vivo and in organ culture. J Anat 2011; 219:766-75. [PMID: 21951233 DOI: 10.1111/j.1469-7580.2011.01429.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
When chicks are exposed to constant light (CL) during growth, their corneas become flatter and lighter in weight, and their anterior segments become shallower than those of chicks exposed to cyclical periods of light and dark. These effects have been correlated with CL suppression of cyclical changes in melatonin levels. The question of whether light directly influences corneal growth (e.g. via cryptochromes in the cornea) or acts remotely via the suppression of the melatonin rhythm has not yet been answered. Retinoic acid (RA), an ubiquitous morphogen, also causes non-functional flattening during corneal growth, but its effect in vivo has not been correlated with light regimes. We wished to characterize and distinguish between hormonal and light effects on corneal growth. We used organ culture to study the direct effects of light regimes, melatonin, and RA, and compared these results with those of parallel in vivo experiments. In this study, eye drops containing melatonin or RA were applied to corneas exposed to CL in vivo or in organ culture, and effects on corneal mass and hydration were measured. We applied a melatonin blocker, luzindole, to chick corneas in normal light/dark conditions to confirm that the observed melatonin effects are mediated at the cell membrane. Anterior chamber depth and refraction in vivo were measured. We found that, during CL exposure, combined application of melatonin and RA eye drops increased the depth of the anterior segment in vivo, (P = 0.003) and interestingly, both also reduced the hyperopia of CL exposure after 2 weeks (P = 0.002), thus partially reversing the effects of CL. RA increased corneal hydration in vivo (P = 0.030) but not in organ culture. Melatonin had no effect on corneal hydration in vivo, but in organ culture, melatonin significantly decreased hydration (P < 0.001). We found no evidence for a direct effect of light on corneal hydration in growing chick corneas in culture. Melatonin is required for normal corneal growth in vivo, and together melatonin and RA, or RA alone, affects the regulation of water content within the chick cornea. Melatonin also affects corneal hydration in vitro, but RA does not.
Collapse
Affiliation(s)
- Christina Wahl
- Department of Biological and Chemical Sciences, Wells College, Aurora, NY, USA
| | | | | | | |
Collapse
|
26
|
Zeman M, Herichová I. Circadian melatonin production develops faster in birds than in mammals. Gen Comp Endocrinol 2011; 172:23-30. [PMID: 21199656 DOI: 10.1016/j.ygcen.2010.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/24/2010] [Indexed: 11/17/2022]
Abstract
The development of circadian rhythmicity of melatonin biosynthesis in the pineal gland starts during embryonic period in birds while it is delayed to the postnatal life in mammals. Daily rhythms of melatonin in isolated pinealocytes and in intact pineal glands under in vivo conditions were demonstrated during the last third of embryonic development in chick embryos, with higher levels during the dark (D) than during the light (L) phase. In addition to the LD cycle, rhythmic temperature changes with the amplitude of 4.5°C can entrain rhythmic melatonin biosynthesis in chick embryos, with higher concentrations found during the low-temperature phase (33.0 vs 37.5°C). Molecular clockwork starts to operate during the embryonic life in birds in line with the early development of melatonin rhythmicity. Expression of per2 and cry genes is rhythmic at least at day 16 and 18, respectively, and the circadian system operates in a mature-like manner soon after hatching. Rhythmic oscillations are detected earlier in the central oscillator (the pineal gland) than in the peripheral structures, reflecting the synchronization of individual cells which is necessary for detection of the rhythm. The early development of the circadian system in birds reflects an absence of rhythmic maternal melatonin which in mammals synchronizes physiological processes of offspring. Developmental consequences of modified development of circadian system for its stability later in development are not known and should be studied.
Collapse
Affiliation(s)
- Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.
| | | |
Collapse
|
27
|
Lee CH, Yoo KY, Choi JH, Park OK, Hwang IK, Kwon YG, Kim YM, Won MH. Melatonin's protective action against ischemic neuronal damage is associated with up-regulation of the MT2 melatonin receptor. J Neurosci Res 2011; 88:2630-40. [PMID: 20544829 DOI: 10.1002/jnr.22430] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin is a potent free radical scavenger and antioxidant and has protective effects against ischemic damage. In the present study, we examined the relationship between the neuroprotective effects of melatonin and the activation of MT2 melatonin receptor in the hippocampal CA1 region (CA1) after transient cerebral ischemia. MT2 immunoreactivity and protein levels were increased in the CA1 after ischemic damage. Most of MT2-immunoreactive cells were colocalized with astrocytes, not microglia, in the ischemic CA1. In the melatonin-sham group, MT2 immunoreaction and protein levels were increased compared with the sham group, and MT2 immunoreactivity and its protein levels in the melatonin-ischemia group were similar to those in the melatonin-sham group. In addition, melatonin treatment attenuated the activation of astrocytes and microglia. These results indicate that MT2 are increased and expressed in astrocytes in the ischemic region after an ischemic insult. The activation of MT2 melatonin receptor in the CA1 after melatonin treatment may be involved in the neuroprotective effect associated with melatonin after ischemic injury.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Naidu KS, Morgan LW, Bailey MJ. Inflammation in the avian spleen: timing is everything. BMC Mol Biol 2010; 11:104. [PMID: 21194436 PMCID: PMC3027090 DOI: 10.1186/1471-2199-11-104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 12/31/2010] [Indexed: 12/03/2022] Open
Abstract
Background The synchrony of an organism with both its external and internal environment is critical to well-being and survival. As a result, organisms display daily cycles of physiology and behavior termed circadian rhythms. At the cellular level, circadian rhythms originate via interlocked autoregulatory feedback loops consisting of circadian clock genes and their proteins. These regulatory loops provide the molecular framework that enables the intracellular circadian timing system necessary to generate and maintain subsequent 24 hr rhythms. In the present study we examine the daily control of circadian clock genes and regulation of the inflammatory response by the circadian clock in the spleen. Results Our results reveal that circadian clock genes as well as proinflammatory cytokines, including Tnfά and IL-1β, display rhythmic oscillations of mRNA abundance over a 24 hr cycle. LPS-induced systemic inflammation applied at midday vs. midnight reveals a differential response of proinflammatory cytokine induction in the spleen, suggesting a daily rhythm of inflammation. Exogenous melatonin administration at midday prior to LPS stimulation conveys pleiotropic effects, enhancing and repressing inflammatory cytokines, indicating melatonin functions as both a pro- and anti-inflammatory molecule in the spleen. Conclusion In summary, a daily oscillation of circadian clock genes and inflammatory cytokines as well as the ability of melatonin to function as a daily mediator of inflammation provides valuable information to aid in deciphering how the circadian timing system regulates immune function at the molecular level. However, further research is needed to clarify the precise mechanisms by which the circadian clock and melatonin have an impact upon daily immune functions in the periphery.
Collapse
Affiliation(s)
- Kallur S Naidu
- The Center for Biological Clocks Research, Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | | | | |
Collapse
|
29
|
Vosko AM, Colwell CS, Avidan AY. Jet lag syndrome: circadian organization, pathophysiology, and management strategies. Nat Sci Sleep 2010; 2:187-98. [PMID: 23616709 PMCID: PMC3630947 DOI: 10.2147/nss.s6683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The circadian system regulates the cyclical occurrence of wakefulness and sleep through a series of oscillatory networks that comprise two different theoretical processes. The suprachiasmatic nucleus (SCN) of the hypothalamus contains the master oscillatory network necessary for coordinating these daily rhythms, and in addition to its ability to robustly generate rhythms, it can also synchronize to environmental light cues. During jet lag, abrupt shifts in the environmental light-dark cycle temporarily desynchronize the SCN and downstream oscillatory networks from each other, resulting in increased sleepiness and impaired daytime functioning. Polysomnographic data show that not only does jet lag result in changes of sleep-wake timing, but also in different aspects of sleep architecture. This type of circadian misalignment can further lead to a cluster of symptoms including major metabolic, cardiovascular, psychiatric, and neurological impairments. There are a number of treatment options for jet lag involving bright light exposure, melatonin, and use of hypnotics, but their efficacy greatly depends on their time of use, the length of time in the new time zone, and the specific circadian disturbance involved. The aim of this review is to provide mechanistic links between the fields of sleep and circadian rhythms to understand the biological basis of jet lag and to apply this information to clinical management strategies.
Collapse
Affiliation(s)
- Andrew M Vosko
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
30
|
Lewy AJ, Emens JS, Lefler BJ, Yuhas K, Jackman AR. Melatonin Entrains Free‐running Blind People According to a Physiological Dose‐response Curve. Chronobiol Int 2009; 22:1093-106. [PMID: 16393710 DOI: 10.1080/07420520500398064] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The specific circadian role proposed for endogenous melatonin production was based on a study of sighted people who took low pharmacological doses (500 microg) of this chemical signal for the "biological night": the magnitude and direction of the induced phase shifts were dependent on what time of day exogenous melatonin was administered and were described by a phase-response curve that turned out to be the opposite of that for light. We now report that lower (physiological) doses of up to 300 microg can entrain (synchronize) free-running circadian rhythms of 10 totally blind subjects that would otherwise drift later each day. The resulting log-linear dose-response curve in the physiological range adds support for a circadian function of endogenous melatonin in humans. Efficacy of exogenous doses in the physiological range are of clinical significance for totally blind people who will need to take melatonin daily over their entire lifetimes in order to remain entrained to the 24 h day. Left untreated, their free-running endocrine, metabolic, behavioral, and sleep/wake cycles can be almost as burdensome as not having vision.
Collapse
Affiliation(s)
- Alfred J Lewy
- Sleep and Mood Disorders Laboratory, Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | | | | | |
Collapse
|
31
|
Paulose JK, Peters JL, Karaganis SP, Cassone VM. Pineal melatonin acts as a circadian zeitgeber and growth factor in chick astrocytes. J Pineal Res 2009; 46:286-94. [PMID: 19196435 PMCID: PMC2674028 DOI: 10.1111/j.1600-079x.2008.00659.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melatonin is rhythmically synthesized and released by the avian pineal gland and retina during the night, targeting an array of tissues and affecting a variety of physiological and behavioral processes. Among these targets, astrocytes express two melatonin receptor subtypes in vitro, the Mel(1A) and Mel(1C) receptors, which play a role in regulating metabolic activity and calcium homeostasis in these cells. Molecular characterization of chick astrocytes has revealed the expression of orthologs of the mammalian clock genes including clock, cry1, cry2, per2, and per3. To test the hypothesis that pineal melatonin entrains molecular clockworks in downstream cells, we asked whether coculturing astrocytes with pinealocytes or administration of exogenous melatonin cycles would entrain metabolic rhythms of 2-deoxy [14C]-glucose (2DG] uptake and/or clock gene expression in cultured astrocytes. Rhythmic secretion of melatonin from light-entrained pinealocytes in coculture as well as cyclic administration of exogenous melatonin entrained rhythms of 2DG uptake and expression of Gallus per2 (gper2) and/or gper3, but not of gcry1 mRNA. Surprisingly, melatonin also caused a dose-dependent increase in mitotic activity of astrocytes, both in coculture and when administered exogenously. The observation that melatonin stimulates mitotic activity in diencephalic astrocytes suggests a trophic role of the hormone in brain development. The data suggest a dual role for melatonin in avian astrocytes: synchronization of rhythmic processes in these cells and regulation of growth and differentiation. These two processes may or may not be mutually exclusive.
Collapse
Affiliation(s)
| | - Jennifer L. Peters
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas
| | | | - Vincent M. Cassone
- Department of Biology, Texas A&M University, College Station, Texas
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
32
|
Yan JH, Su HR, Boutin JA, Renard MP, Wang MW. High-throughput screening assay for new ligands at human melatonin receptors. Acta Pharmacol Sin 2008; 29:1515-21. [PMID: 19026172 DOI: 10.1111/j.1745-7254.2008.00903.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM Melatonin (MT) is a neurohormone produced and secreted primarily by the pineal gland in a circadian manner, and mainly acts through 2 receptor subtypes: MT1 and MT2 in humans. The diversity in their tissue distribution is in favor of different functions for each receptor subtype. Selective modulators are therefore required to determine the physiological roles of these melatonin receptor subtypes and their implications in pathological processes. METHODS A homogenous MT1/MT2 receptor binding assay was established for high-throughput screening of new ligands at the hMT1 and/or hMT2 receptors. The functional properties (agonists or antagonists) were assessed by a conventional guanosine-5'[gamma-(35)S] triphosphate (GTP-gammaS) assay. RESULTS Three hMT1 receptor-selective small molecule antagonists and 1 hMT2 receptor-selective small molecule antagonist with novel structural features were identified following a high-throughput screening campaign of 48,240 synthetic and natural compounds. CONCLUSION The findings may assist in the expansion of chemical probes to these 2 receptor subtypes.
Collapse
Affiliation(s)
- Jian-hua Yan
- The National Center for Drug Screening and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | |
Collapse
|
33
|
Circadian genomics of the chick pineal gland in vitro. BMC Genomics 2008; 9:206. [PMID: 18454867 PMCID: PMC2405806 DOI: 10.1186/1471-2164-9-206] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 05/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chick pinealocytes exhibit all the characteristics of a complete circadian system, comprising photoreceptive inputs, molecular clockworks and an easily measured rhythmic output, melatonin biosynthesis. These properties make the in vitro pineal a particularly useful model for exploring circadian control of gene transcription in a pacemaker tissue, as well as regulation of the transcriptome by primary inputs to the clock (both photic and noradrenergic). RESULTS We used microarray analysis to investigate the expression of approximately 8000 genes within cultured pinealocytes subjected to both LD and DD. We report that a reduced subset of genes was rhythmically expressed in vitro compared to those previously published in vivo, and that gene expression rhythms were lower in amplitude, although the functional distribution of the rhythmic transcriptome was largely similar. We also investigated the effects of 6-hour pulses of light or of norepinephrine on gene expression in free-running cultures during both subjective day and night. As expected, both light and norepinephrine inhibited melatonin production; however, the two treatments differentially enhanced or suppressed specific sets of genes in a fashion that was dependent upon time of day. CONCLUSION Our combined approach of utilizing a temporal, photic and pharmacological microarray experiment allowed us to identify novel genes linking clock input to clock function within the pineal. We identified approximately 30 rhythmic, light-responsive, NE-insensitive genes with no previously known clock function, which may play a role in circadian regulation of the pineal. These are candidates for future functional genomics experiments to elucidate their potential role in circadian physiology. Further, we hypothesize that the pineal circadian transcriptome is reduced but functionally conserved in vitro, and supports an endogenous role for the pineal in regulating local rhythms in metabolism, immune function, and other conserved pathways.
Collapse
|
34
|
Ceinos RM, Polakof S, Illamola AR, Soengas JL, Míguez JM. Food deprivation and refeeding effects on pineal indoles metabolism and melatonin synthesis in the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 2008; 156:410-7. [PMID: 18275959 DOI: 10.1016/j.ygcen.2008.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/27/2007] [Accepted: 01/02/2008] [Indexed: 11/27/2022]
Abstract
The effects of food deprivation and refeeding on daily rhythms of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and melatonin contents, as well as on arylalkylamine N-acetyltransferase (AANAT) activity were evaluated in the pineal organ of rainbow trout. In addition, changes in circulating melatonin and cortisol levels were tested at one single point at day and night. Immature rainbow trout were distributed in 3 experimental groups: fish fed, fish fasted (7 days), and fish fasted for 7 days and refed for 5 days. All fish were sampled from each treatment group at different times of the day-night cycle. Pineal melatonin levels and AANAT activity showed daily variations in either fed, fasted and refed trout, displaying highest values at night. Fasted trout showed reduced melatonin content throughout the 24-h cycle, which was associated with decreased AANAT activity. Rhythms of pineal 5-HT and 5-HIAA levels were evident in all groups and were negatively correlated to melatonin in fed fish groups, but not in fasted fish. A higher content of 5-HT and 5-HIAA was observed in fasted fish during the night with no apparent changes during daytime for 5-HT and increased 5-HIAA levels. Furthermore, decreased circulating levels of melatonin were observed at midday, but not at night, in food deprived trout. Refeeding for 5 days generally counteracted the effects of food deprivation. Cortisol levels in plasma were reduced after food deprivation and remained low in refed fish. The results show that food deprivation impairs daily rhythms of melatonin content in trout pineal organ by affecting the activity of melatonin synthesizing enzymes rather than by a deficiency in substrate availability.
Collapse
Affiliation(s)
- Rosa M Ceinos
- Departamento de Bioloxía Funcional e Ciencias da Saude, Edificio de Ciencias Experimentais, Facultade de Bioloxía, Universidade de Vigo, Vigo, Pontevedra, Spain
| | | | | | | | | |
Collapse
|
35
|
Bradshaw WE, Holzapfel CM. Evolution of Animal Photoperiodism. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.37.091305.110115] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- William E. Bradshaw
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403;
| | - Christina M. Holzapfel
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403;
| |
Collapse
|
36
|
Olszańska B, Bozenna O, Majewski P, Paweł M, Lewczuk B, Bogdan L, Stepińska U, Urszula S. Melatonin and its synthesizing enzymes (arylalkylamine N-acetyltransferase-like and hydroxyindole-O-methyltransferase) in avian eggs and early embryos. J Pineal Res 2007; 42:310-8. [PMID: 17349030 DOI: 10.1111/j.1600-079x.2007.00421.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of melatonin and the enzymes (transcripts and activities) involved in its synthesis, i.e. arylalkylamine N-acetyltransferase (AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT), was investigated in the eggs and early embryos of Japanese quail at Hamburger-Hamilton stages 1-10. Melatonin was present in the egg yolk (approximately 70 pg/g) and albumen (approximately 20 pg/g). The average content of melatonin was approximately 416 pg/egg. AA-NAT and HIOMT transcripts were present in the oocytes, blastoderms, and ovarian follicles. AA-NAT-like and HIOMT activities were detected in quail egg yolk. The activity of AA-NAT in yolk was comparable with that found in the pineal gland when calculated per milligram of yolk or pineal gland, but was significantly lower when re-calculated per milligram of protein in the yolk or pineal gland. AA-NAT-like activity was also identified in the ovarian follicles. Low HIOMT activity was detected in yolk, but not in the ovarian follicle. Both enzymes were essentially absent from early embryos although some residual activities, probably of yolk origin, were present in the stage 1 embryo. Melatonin and all the constituents needed for its synthesis (serotonin, AA-NAT and HIOMT activities) are contained within the avian yolk and could be used by the embryo from the very beginning of its development. The role of extrapineal melatonin in early avian development may be in protecting the embryo from the action of free radicals formed during intensive embryonic metabolism and/or it may participate (together with serotonin) in a 'diffuse neuroendocrine system' acting at early developmental stages, before differentiation of the nervous system.
Collapse
Affiliation(s)
- Bozenna Olszańska
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec n/Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Esteban MA, Cuesta A, Rodríguez A, Meseguer J. Effect of photoperiod on the fish innate immune system: a link between fish pineal gland and the immune system. J Pineal Res 2006; 41:261-6. [PMID: 16948787 DOI: 10.1111/j.1600-079x.2006.00362.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pineal gland via its secretory product, melatonin, influences the light-dark rhythm in most vertebrates including fish. Apart from the information concerning this circadian rhythm, the interrelation of the melatonin with other physiological processes has not been considered in fish. Thus, we evaluated the changes in the humoral innate immune system of seabream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.) specimens exposed to a constant light-dark photoperiod (12 hr L:12 hr D). Serum was obtained from blood samples collected at 02:00, 08:00 hr (light-on), 14:00, 20:00 hr (light-off) and at 08:00 hr again. Among the humoral innate immune responses, complement, lysozyme and peroxidase activities were determined. Complement activity was higher during the day than during the night in both fish species. Seabream lysozyme activity reached its maximum at 20:00 and 02:00 hr but was hardly affected in sea bass. Finally, the peroxidase activity of seabream was significantly higher at 08:00 hr than during the rest of the cycle while, in sea bass, it showed little variation. The present results demonstrate that the humoral innate immune system has a circadian rhythm based on the light-dark cycle and that this cycle might be affected by the pineal gland.
Collapse
Affiliation(s)
- M Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology, Faculty of Biology, University of Murcia, Murcia, Spain.
| | | | | | | |
Collapse
|
38
|
Cantwell EL, Cassone VM. Chicken suprachiasmatic nuclei: I. Efferent and afferent connections. J Comp Neurol 2006; 496:97-120. [PMID: 16528725 PMCID: PMC2590781 DOI: 10.1002/cne.20935] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The avian circadian system is composed of multiple inputs, oscillators, and outputs. Among its oscillators are the pineal gland, retinae, and a hypothalamic structure assumed to be homologous to the mammalian suprachiasmatic nucleus (SCN). Two structures have been suggested as this homolog -- the medial SCN (mSCN) and the visual SCN (vSCN). The present study employed biotin dextran amine (BDA) and cholera toxin B subunit (CTB) as anterograde and retrograde tracers to investigate the connectivity of the mSCN and vSCN in order to address this issue. Intravitreal injections of CTB were used to determine whether one or both of these structures receives afferent input from retinal ganglion cells. Both the vSCN and mSCN receive terminal retinal input, with the strongest input terminating in the vSCN. Precise iontophoretic injections of BDA and CTB in the mSCN and vSCN were used to identify efferents and afferents. The avian mSCN and vSCN collectively express more efferents and afferents than does the mammalian SCN. A subset of these connections matches the connections that have been established in rodent species. Individually, both the mSCN and vSCN are similar to the mammalian SCN in terms of their connections. Based on these data and other studies, we present a working model of the avian SCN that includes both the mSCN and vSCN as hypothalamic oscillators. We contend that both structures are involved in a suprachiasmatic complex that, as a functional group, may be homologous to the mammalian SCN.
Collapse
Affiliation(s)
- Elizabeth L Cantwell
- Department of Biology and Center for Research on Biological Clocks, Texas A and M University, College Station, Texas 77843, USA
| | | |
Collapse
|
39
|
Guglielmotti V, Cristino L. The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Res Bull 2006; 69:475-88. [PMID: 16647576 DOI: 10.1016/j.brainresbull.2006.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 02/24/2006] [Accepted: 03/19/2006] [Indexed: 10/24/2022]
Abstract
This paper presents an overview on the epithalamus of vertebrates, with particular reference to the pineal and to the asymmetrical organization of the habenular nuclei in lower vertebrates. The relationship between the pineal and the habenulae in the course of phylogenesis is here emphasized, taking data in the frog as example. Altogether the data support the hypothesis, put forward also in earlier studies, of a correlation of habenular asymmetry in lower vertebrates with phylogenetic modification of the pineal complex. The present re-visitation was also stimulated by recent data on the asymmetrical expression of Nodal genes, which involves the pineal and habenular structures in zebrafish. The comparative analysis of data, from cyclostomes to mammals, suggests that transformation of epithalamic structures may play an important role in brain evolution. In addition, in mammals, including rodents, a remarkable complexity has evolved in the organization of the habenulae and their functional interactions with the pineal gland. The evolution of these two epithalamic structures seems to open also new perspectives of knowledge on their implication in the regulation of biological rhythms.
Collapse
Affiliation(s)
- Vittorio Guglielmotti
- Institute of Cybernetics E. Caianiello, Consiglio Nazionale delle Ricerche, via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| | | |
Collapse
|
40
|
Reddy KL, Rovani MK, Wohlwill A, Katzen A, Storti RV. The Drosophila Par domain protein I gene, Pdp1, is a regulator of larval growth, mitosis and endoreplication. Dev Biol 2006; 289:100-14. [PMID: 16313897 DOI: 10.1016/j.ydbio.2005.10.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 09/30/2005] [Accepted: 10/17/2005] [Indexed: 12/17/2022]
Abstract
PDP1 is a basic leucine zipper (bZip) transcription factor that is expressed at high levels in the muscle, epidermis, gut and fat body of the developing Drosophila embryo. We have identified three mutant alleles of Pdp1, each having a similar phenotype. Here, we describe in detail the Pdp1 mutant allele, Pdp1(p205), which is null for both Pdp1 RNA and protein. Interestingly, homozygous Pdp1(p205) embryos develop normally, hatch and become viable larvae. Analyses of Pdp1 null mutant embryos reveal that the overall muscle pattern is normal as is the patterning of the gut and fat body. Pdp1(p205) larvae also appear to have normal muscle and gut function and respond to ecdysone. These larvae, however, are severely growth delayed and arrested. Furthermore, although Pdp1 null larvae live a normal life span, they do not form pupae and thus do not give rise to eclosed flies. The stunted growth of Pdp1(p205) larvae is accompanied by defects in mitosis and endoreplication similar to that associated with nutritional deprivation. The cellular defects resulting from the Pdp1(p205) mutation are not cell autonomous. Moreover, PDP1 expression is sensitive to nutritional conditions, suggesting a link between nutrition, PDP1 isotype expression and growth. These results indicate that Pdp1 has a critical role in coordinating growth and DNA replication.
Collapse
Affiliation(s)
- Karen L Reddy
- Department of Biochemistry and Molecular Genetics M/C 669, University of Illinois College of Medicine, Chicago, 60612, USA
| | | | | | | | | |
Collapse
|
41
|
Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 2005; 6:544-56. [PMID: 15951747 PMCID: PMC2735866 DOI: 10.1038/nrg1633] [Citation(s) in RCA: 959] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The organization of biological activities into daily cycles is universal in organisms as diverse as cyanobacteria, fungi, algae, plants, flies, birds and man. Comparisons of circadian clocks in unicellular and multicellular organisms using molecular genetics and genomics have provided new insights into the mechanisms and complexity of clock systems. Whereas unicellular organisms require stand-alone clocks that can generate 24-hour rhythms for diverse processes, organisms with differentiated tissues can partition clock function to generate and coordinate different rhythms. In both cases, the temporal coordination of a multi-oscillator system is essential for producing robust circadian rhythms of gene expression and biological activity.
Collapse
Affiliation(s)
- Deborah Bell-Pedersen
- Center for Research on Biological Clocks, Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Melatonin is a hormone exerting its multiple actions mainly through two G-protein-coupled receptors MT(1) and MT(2). Exploring the physiological role of each of these subtypes requires subtype selective MT(1) and MT(2) ligands. While several MT(2)-selective ligands were developed in the 1990s, no selective agonists and antagonists for the MT(1) subtype were described. The present article reviews mela toninergic ligands developed in the current millennium focusing on subtype selective agents and on drug candidates. Notable compounds are the MT(1)-selective agonists 35 and 134, MT(1)-selective antagonists 117 and 131, MT(2)-selective agonists 58, 70, 79, 97 and 125, MT(2)-selective antagonists 27, 73 and 119, and the highly potent non-selective agonist 120. The non-selective agonists agomelatine 2, and ramelteon 87 are drug candidates as antidepressive agent and for the treatment of insomnia and circadian rhythm disfunction, respectively.
Collapse
MESH Headings
- Animals
- Chemistry, Pharmaceutical/methods
- Chemistry, Pharmaceutical/trends
- Humans
- Ligands
- Molecular Structure
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/physiology
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/chemistry
- Receptor, Melatonin, MT2/physiology
Collapse
|
43
|
Lepage O, Larson ET, Mayer I, Winberg S. Tryptophan affects both gastrointestinal melatonin production and interrenal activity in stressed and nonstressed rainbow trout. J Pineal Res 2005; 38:264-71. [PMID: 15813903 DOI: 10.1111/j.1600-079x.2004.00201.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present experiments were designed to test the hypothesis that elevated dietary levels of l-tryptophan (Trp) result in elevated plasma levels of melatonin and that this increase in plasma melatonin concentration is caused by elevated melatonin production and secretion by the gastro-intestinal-tract (GIT). Feeding juvenile rainbow trout (Oncorhynchus mykiss) Trp-supplemented feed for 7 days resulted in elevated daytime plasma levels of melatonin and reduced poststress plasma cortisol concentrations. Nighttime plasma melatonin concentrations were, however, not affected by elevated dietary Trp. Moreover, stress caused a reduction in daytime plasma levels of melatonin in fish fed Trp-supplemented feed, an effect that was counteracted by treatment with an alpha-receptor antagonist. These results clearly suggest that elevated dietary intake of Trp results in an increase in the GIT production of melatonin in rainbow trout. A suggestion that was further supported by the results from an in vitro experiment demonstrating that addition of Trp to the incubation medium stimulates melatonin production and release by incubated rainbow trout GIT. The results from this study led us to suggest a possible mechanism for melatonin in mediating the effects of elevated dietary Trp on poststress plasma cortisol concentrations and aggressive behavior in rainbow trout.
Collapse
Affiliation(s)
- Olivier Lepage
- Department of Comparative Physiology, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
44
|
Earnest DJ, Cassone VM. Cell Culture Models for Oscillator and Pacemaker Function: Recipes for Dishes with Circadian Clocks? Methods Enzymol 2005; 393:558-78. [PMID: 15817312 DOI: 10.1016/s0076-6879(05)93029-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Primary cell cultures of avian pinealocytes and the mammalian suprachiasmatic nucleus (SCN), immortalized cell lines derived from the SCN (SCN2.2), and fibroblasts derived from mice and rats have been employed as in vitro models to study the cellular and molecular mechanisms underlying circadian biological clocks. This article compares and contrasts these model systems and describes methods for avian pinealocyte cultures, immortalized SCN2.2 cells, and mouse fibroblast culture. Each of these culture models has advantages and disadvantages. Avian pinealocytes are photoreceptive, contain a circadian pacemaker, and produce rhythms of an easily assayed endocrine output-melatonin. However, the molecular mechanisms underlying pinealocyte function are not understood. SCN2.2 cells express metabolic and molecular rhythms and can impose rhythmicity on cocultured cells as well as rat behavior when transplanted into the brain. Yet, the entrainment pathways are not experimentally established in these cells. Fibroblast cultures are simple to produce and express molecular clock gene rhythms, but they express neither physiological rhythmicity nor pacemaker properties. The relative merits of these culture systems, as well as their impact on understanding circadian organization in vivo, are also considered.
Collapse
Affiliation(s)
- David J Earnest
- Department of Human Anatomy and Medical Neurobiology, Center for Research on Biological Clocks, Texas A&M University Health Sciences Center, College Station, Texas 77843, USA
| | | |
Collapse
|
45
|
Peters JL, Cassone VM, Zoran MJ. Melatonin modulates intercellular communication among cultured chick astrocytes. Brain Res 2005; 1031:10-9. [PMID: 15621008 DOI: 10.1016/j.brainres.2004.09.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2004] [Indexed: 11/24/2022]
Abstract
Melatonin, a pineal neurohormone, mediates circadian and seasonal processes in birds and mammals. Diencephalic astrocytes are sites of action, at least in birds, since they express melatonin receptors and melatonin affects their metabolism. We tested whether astrocytic calcium waves are also modulated by melatonin. Calcium waves, which we found to be regulated in cultured chick glial cells by an IP(3)-dependent mechanism, were potentiated by physiological concentrations of melatonin. Melatonin also increased resting calcium levels and reduced gap junctional coupling among astrocytes, at concentrations that facilitated calcium waves. These modulatory effects were diminished by melatonin receptor blockade and pertussis toxin (PTX). Thus, melatonin induced a functional shift in the mode of intercellular communication, between junctional coupling and calcium waves, among glial cells. We suggest a mechanism where neuroglial physiology, involving GTP-binding protein signaling pathways, links rhythmic circadian outputs to pervasive neurobehavioral states.
Collapse
Affiliation(s)
- Jennifer L Peters
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, Room 231, College Station, TX 77843-3258, USA.
| | | | | |
Collapse
|
46
|
Obłap R, Olszańska B. Transition from embryonic to adult transcription pattern of serotonin N-acetyltransferase gene in avian pineal gland. Mol Reprod Dev 2004; 67:145-53. [PMID: 14694429 DOI: 10.1002/mrd.10391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The study reports the change of transcription pattern of serotonin N-acetyltransferase gene and melatonin receptor genes during ontogenesis of the avian pineal gland. The RT-PCR technique was used to investigate the expression of the arylalkylamine N-acetyltransferase (AA-NAT) and melatonin receptor genes during development of the pineal glands isolated from Japanese quail (Coturnix coturnix japonica) embryos incubated from 3 days on until hatching (17 days), and in some organs (pineal, brain hemisphere, eye, leg, heart) of the 3-day-old quail embryo. It was shown that two phases of AA-NAT expression are observed during pineal gland development. The first, embryonic-type phase, lasts from the beginning until 7-10 days of incubation, and is marked by the presence of two RT-PCR products for AA-NAT: the shorter mature form without intron (238 bp), and the longer form (323 bp) containing an unprocessed intron of 85 bp. The second, adult-type phase is characterized by the presence of a single mature transcript, containing no intron; it starts from 7 to 10 days of incubation and lasts until hatching and in the adult pineal. The duration of this transition time from the embryonic to the adult transcription pattern in the quail pineal gland from 7 to 10 days of incubation we attribute to asynchronic embryo development, because quail chicks usually hatch between the 16th and 19th day of incubation. Analysis of the AA-NAT protein sequences for chick and quail (GeneBank accession no. U 46 502 and AF 007 068, respectively) revealed their perfect homology with the part of protein read from the sequence present in the adult-type phase of the pineal gland (the RT-PCR product of 238 bp). The presence of the intron (in the 323 bp RT-PCR product, accession no. AY 197 460) in the embryonic-phase of the pineal gland changes the reading frame of the mRNA sequence and the hypothetical resulting protein loses its homology with the chick and quail AA-NAT enzyme starting with 105th amino acid of the complete chick AA-NAT protein comprising 205 amino acids (accession no. U 46 502). In the whole embryos at stages 1-8 (according to the Hamburger-Hamilton classification) both RT-PCR products with and without intron were consistently found, and individual tissues from 3-day-old embryos also produced two AA-NAT products, i.e., the expression was of the embryonic-type. At the time of transition from the embryonic to the adult AA-NAT transcription pattern, in 7-11-day-old embryos, all three melatonin receptor transcripts (mel-1a, mel-1b, and mel-1c) were observed in the pineals, without consistent modifications of the band intensity. In the adult pineal, a single mature AA-NAT transcript was present as well as all three melatonin receptor transcripts, usually with preferential expression of the mel-1a band. The transition time from the embryonic to adult AA-NAT expression pattern coincides well with the acquisition of functional activity and the appearance of melatonin synthesis in the embryonic pineal reported for chicken, as related to quail. We suggest that the change in transcription pattern of the AA-NAT gene may reflect another, still unknown mechanism of regulating AA-NAT activity during ontogenesis, at the level of mRNA processing, whose specificity (or not) for embryonic development we wish to establish in the future.
Collapse
Affiliation(s)
- Ruslan Obłap
- Institute of Genetics and Animal Breeding, Polish Academy of Science, Jastrzebiec n/Warsaw, Poland
| | | |
Collapse
|
47
|
Bailey MJ, Beremand PD, Hammer R, Reidel E, Thomas TL, Cassone VM. Transcriptional Profiling of Circadian Patterns of mRNA Expression in the Chick Retina. J Biol Chem 2004; 279:52247-54. [PMID: 15448147 DOI: 10.1074/jbc.m405679200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous transcriptome analyses have identified candidate molecular components of the avian pineal clock, and herein we employ high density cDNA microarrays of pineal gland transcripts to determine oscillating transcripts in the chick retina under daily and constant darkness conditions. Subsequent comparative transcriptome analysis of the pineal and retinal oscillators distinguished several transcriptional similarities between the two as well as significant differences. Rhythmic retinal transcripts were classified according to functional categories including phototransductive elements, transcription/translation factors, carrier proteins, cell signaling molecules, and stress response genes. Candidate retinal clock transcripts were also organized relative to time of day mRNA abundance, revealing groups accumulating peak mRNA levels across the circadian day but primarily reaching peak values at subjective dawn or subjective dusk. Comparison of the chick retina transcriptome to the pineal transcriptome under constant conditions yields an interesting group of conserved genes. This group includes putative clock elements cry1 and per3 in addition to several previously unidentified and uninvestigated genes exhibiting profiles of mRNA abundance that varied markedly under daily and constant conditions. In contrast, many transcripts were differentially regulated, including those believed to be involved in both melatonin biosynthesis and circadian clock mechanisms. Our results indicate an intimate transcriptional relationship between the avian pineal and retina in addition to providing previously uncharacterized molecular elements that we hypothesize to be involved in circadian rhythm generation.
Collapse
Affiliation(s)
- Michael J Bailey
- Center for Biological Clocks Research, Department of Biology, and Laboratory for Functional Genomics, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | | | | | |
Collapse
|
48
|
Larson ET, Winberg S, Mayer I, Lepage O, Summers CH, Øverli Ø. Social stress affects circulating melatonin levels in rainbow trout. Gen Comp Endocrinol 2004; 136:322-7. [PMID: 15081831 DOI: 10.1016/j.ygcen.2004.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/25/2003] [Accepted: 01/13/2004] [Indexed: 11/20/2022]
Abstract
In salmonid fishes there are indications that socially subordinate individuals avoid competition with larger, dominant fish by adjusting daily feeding and activity cycles. As in other vertebrates, the pineal organ and its hormone melatonin act as synchronizers of daily rhythms to the external light/dark cycle in salmonids. Social defeat may act as a potent stressor; inducing elevated glucocorticoid secretion and a general behavioral inhibition. Here, we show that social stress also affects circulating melatonin levels in rainbow trout, a species known to display strong dominance hierarchies both in the wild and under captive rearing. Subordinate individuals had significantly higher nighttime melatonin levels than dominant fish or controls. There was no effect of social rank on the much lower melatonin levels observed in animals sampled during the day. Correlations between circulating glucocorticoids and melatonin depended on circadian cycles as well as social context. This study suggests that altered melatonin production contributes to the physiological and behavioral profile of subordinate animals. Social status, and other determinants of the stress level of experimental animals, therefore should be taken into consideration as potential factors influencing the results from in vivo research on this hormone.
Collapse
Affiliation(s)
- Earl T Larson
- Department of Comparative Physiology, Evolutionary Biology Centre, Norbyvägen 18A, Uppsala University, SE-75236 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
49
|
Bayarri MJ, Rodríguez L, Zanuy S, Madrid JA, Sánchez-Vázquez FJ, Kagawa H, Okuzawa K, Carrillo M. Effect of photoperiod manipulation on the daily rhythms of melatonin and reproductive hormones in caged European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2004; 136:72-81. [PMID: 14980798 DOI: 10.1016/j.ygcen.2003.12.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 12/01/2003] [Accepted: 12/05/2003] [Indexed: 10/26/2022]
Abstract
Reproduction in fish is cyclical and timed to guarantee the survival of the offspring. Seasonal variations in reproductive hormones of fish have been deeply investigated in fish over the last years. However, there are few studies regarding the daily changes in reproductive hormone profiles in teleosts. The aim of the present research was to investigate the effects of photoperiod manipulation on melatonin and reproductive hormones (pituitary sbGnRH, pituitary LH and plasma LH, testosterone [T], and 11-ketotestosterone [11KT]) daily rhythms in male sea bass, kept in net cages under farming conditions in winter (9L:15D). Fish were distributed in two groups, one under constant long photoperiod (18L:6D) and the other under natural photoperiod. The photoperiod strongly influenced the daily melatonin profile, so that the duration of the nocturnal melatonin rise was longer in the control group than in the group exposed to the artificial photoperiod (18L:6D). A daily rhythm was observed in the pituitary sbGnRH profile in both groups, showing the lowest levels during the dark period. A daily rhythm of pituitary LH was detected in the control group, which was suppressed in the group under long photoperiod. Daily variations in plasma LH were observed, the highest levels being found in the dark phase in both groups, although this profile was significantly altered by artificial light, maintaining a fixed relationship between the first nocturnal rise of melatonin and the nocturnal peaks of plasma LH in both groups. Plasma T levels showed significant fluctuations in their daily cycle following a sinusoidal pattern with an acrophase around sunrise in both groups, without any influence of light regime. No significant daily variations in plasma levels of 11-KT were observed in none of the groups. Our results provide the first evidence of the presence of daily variations in pituitary sbGnRH content, pituitary and plasma LH, and plasma T in sea bass. Artificial lights suppressed the circulating melatonin and significantly affected the daily rhythm of LH storage and release.
Collapse
Affiliation(s)
- M J Bayarri
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Epperson JR, Deskus JA, Gentile AJ, Iben LG, Ryan E, Sarbin NS. 4-Substituted anilides as selective melatonin MT 2 receptor agonists. Bioorg Med Chem Lett 2004; 14:1023-6. [PMID: 15013015 DOI: 10.1016/j.bmcl.2003.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 11/07/2003] [Accepted: 11/14/2003] [Indexed: 12/15/2022]
Abstract
A series of 4-substituted anilides with human melatonergic affinity is reported. Butyramides 26, 39, 42, 52, 57, and 58 all demonstrated subnanomolar MT(2) binding affinity and MT(2) selectivity of at least 70-fold over the MT(1) receptor. Compound 26 demonstrated full agonism at the MT(2) receptor.
Collapse
Affiliation(s)
- James R Epperson
- Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492-7660, USA.
| | | | | | | | | | | |
Collapse
|