1
|
Park SY, Hong SM, Lee HY, Kim MY, Lee HK, Han JY, Cho HJ, Oh SI, Lee H. Mitochondrial myopathy revealed postoperative acute respiratory failure: A case report. World J Clin Cases 2025; 13:102691. [DOI: 10.12998/wjcc.v13.i15.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND Mitochondrial myopathies are characterized by primary dysfunction of the mitochondrial respiratory chain; they typically present as chronic muscle weakness. Clinically visible acute respiratory dysfunctions associated with mitochondrial myopathies occur rarely.
CASE SUMMARY In this report, we present the case of a patient who developed postoperative hypoventilation after undergoing an uneventful administration of general anesthesia. A 34-year-old woman with no family history of myopathy underwent laparoscopic removal of a right-sided ureteric stone. Two days postoperatively, her oxygen saturation decreased rapidly, and blood gas analysis revealed hypercapnia. We promptly intubated and initiated the patient and initiated her on mechanical ventilation as she remained awake. Clinical examination findings were unremarkable; the results of laboratory investigations, including those for thyroid, hepatic, renal, and neuromuscular functions, were within normal limits. Muscle biopsy revealed muscle fibers of varying sizes as well as several degenerating and regenerating myofibers. Modified Gomori trichrome staining of the cross-sections revealed ragged red fibers. Based on these findings, we diagnosed the patient with mitochondrial myopathy. The patient’s condition gradually improved, and she was discharged on a home ventilator 73 days postoperatively.
CONCLUSION Our case highlights that mitochondrial myopathy should be considered in the differential diagnosis of patients with postoperative respiratory failure.
Collapse
Affiliation(s)
- Seon Yeong Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan 47392, South Korea
| | - Sung Min Hong
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan 47392, South Korea
| | - Ho Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan 47392, South Korea
| | - Mi-Yeong Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan 47392, South Korea
| | - Hyun-Kyung Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan 47392, South Korea
| | - Ji-Yeon Han
- Depart of Radiology, Inje University Busan Paik Hospital, Busan 47392, South Korea
| | - Hwa Jin Cho
- Department of Pathology, Busan and Gyeongnam Reference Lab, Seegene Medical Foundation, Busan 48792, South Korea
| | - Seong-Il Oh
- Department of Neurology, Kyung Hee University Hospital, Seoul 02447, South Korea
| | - Hongyeul Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan 47392, South Korea
| |
Collapse
|
2
|
Korandová Z, Pecina P, Pecinová A, Koňaříková E, Tesařová M, Houštěk J, Hansíková H, Ptáčková H, Zeman J, Honzík T, Mráček T. Cryopreserved PBMCs can be used for the analysis of mitochondrial respiration and serve as a diagnostic tool for mitochondrial diseases. Anal Biochem 2025; 698:115745. [PMID: 39645068 DOI: 10.1016/j.ab.2024.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Mitochondrial diseases are severe, inherited metabolic disorders that affect the paediatric population. They affect the functioning of mitochondrial oxidative phosphorylation (OXPHOS) apparatus either directly or indirectly. Since mutations in mtDNA are responsible for only 25 % of paediatric cases and next-generation sequencing does not always provide a conclusive diagnosis, the biochemical approach still represents a valuable tool in diagnostics. Mitochondrial defects can be identified in tissue biopsies (muscle or skin). However, they also often manifest in peripheral blood cells. We developed a protocol for isolation and cryopreservation of peripheral blood mononuclear cells (PBMCs) from 5 ml of children's blood using Ficoll centrifugation which can be utilised for subsequent functional measurements on thawed samples. Furthermore, we evaluated the diagnostic utility of the optimised high-resolution oxygraphy protocol using digitonin-permeabilized cryopreserved PBMCs on 47 samples from patients with confirmed or suspected mitochondrial disease. Overall, the diagnosis was confirmed in 72 % of cases, while the analysis of cryopreserved PBMCs provided a false negative outcome in 13 % of cases. Our study demonstrates a sensitive, fast, and non-invasive approach for the diagnostics of various types of mitochondrial disorders, especially those of nuclear genetic origin manifesting in paediatric patients.
Collapse
Affiliation(s)
- Zuzana Korandová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliška Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Tesařová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Josef Houštěk
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Ptáčková
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Honzík
- Department of Paediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Mráček
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Spencer KA, Howe MN, Mulholland MT, Truong V, Liao RW, Chen Y, Setha M, Snell JC, Hanaford A, James K, Morgan PG, Sedensky MM, Johnson SC. Impact of dietary ketosis on volatile anesthesia toxicity in a model of Leigh syndrome. Paediatr Anaesth 2024; 34:467-476. [PMID: 38358320 DOI: 10.1111/pan.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Genetic mitochondrial diseases impact over 1 in 4000 individuals, most often presenting in infancy or early childhood. Seizures are major clinical sequelae in some mitochondrial diseases including Leigh syndrome, the most common pediatric presentation of mitochondrial disease. Dietary ketosis has been used to manage seizures in mitochondrial disease patients. Mitochondrial disease patients often require surgical interventions, leading to anesthetic exposures. Anesthetics have been shown to be toxic in the setting of mitochondrial disease, but the impact of a ketogenic diet on anesthetic toxicities in this setting has not been studied. AIMS Our aim in this study was to determine whether dietary ketosis impacts volatile anesthetic toxicities in the setting of genetic mitochondrial disease. METHODS The impact of dietary ketosis on toxicities of volatile anesthetic exposure in mitochondrial disease was studied by exposing young Ndufs4(-/-) mice fed ketogenic or control diet to isoflurane anesthesia. Blood metabolites were measured before and at the end of exposures, and survival and weight were monitored. RESULTS Compared to a regular diet, the ketogenic diet exacerbated hyperlactatemia resulting from isoflurane exposure (control vs. ketogenic diet in anesthesia mean difference 1.96 mM, Tukey's multiple comparison adjusted p = .0271) and was associated with a significant increase in mortality during and immediately after exposures (27% vs. 87.5% mortality in the control and ketogenic diet groups, respectively, during the exposure period, Fisher's exact test p = .0121). Our data indicate that dietary ketosis and volatile anesthesia interact negatively in the setting of mitochondrial disease. CONCLUSIONS Our findings suggest that extra caution should be taken in the anesthetic management of mitochondrial disease patients in dietary ketosis.
Collapse
Affiliation(s)
- Kira A Spencer
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Miranda N Howe
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Michael T Mulholland
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Vivian Truong
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Ryan W Liao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Yihan Chen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Monyreak Setha
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - John C Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Allison Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Karaa A, Johnson N, Clarkson I, Newman W, Dorenbaum A, Cohen BH. Characterization of Fatigue in Primary Mitochondrial Myopathies: Findings From a Qualitative Interview Study. Neurol Clin Pract 2024; 14:e200229. [PMID: 38229875 PMCID: PMC10790285 DOI: 10.1212/cpj.0000000000200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 11/04/2023] [Indexed: 01/18/2024]
Abstract
Background and Objectives Primary mitochondrial myopathies are genetic disorders that primarily affect peripheral skeletal muscles. Patients with primary mitochondrial myopathies often experience muscle weakness, fatigue, and other significant impacts on health-related quality of life. The aim of this noninterventional qualitative study was to collect the most bothersome fatigue-related symptoms and impacts reported by patients with primary mitochondrial myopathies and determine whether the questions included in an existing patient-reported outcome measure, the Modified Fatigue Impact Scale, are relevant and interpretable for this population. Methods The interviews contained a concept elicitation exercise to understand the most bothersome primary mitochondrial myopathies symptoms and impacts and a cognitive debriefing section to review the questions included in the Modified Fatigue Impact Scale for relevance and interpretability. Transcripts were coded using ATLAS.ti software. Results Interviews were conducted with 16 patients who were aged 16 years and older with a genetically confirmed and clinical diagnosis of symptomatic primary mitochondrial myopathies. Concept elicitation interviews established that while patients with mitochondrial myopathies reported a wide variety of symptoms and impacts, one of the most impactful symptoms discussed was fatigue. Cognitive debriefing interview results confirmed that the Modified Fatigue Impact Scale items were relevant, were interpretable, and largely captured patients' experience with fatigue. Discussion Fatigue was one of the most widely discussed experiences discussed by participants and was considered the most important symptom/impact to treat by most of the participants. The Modified Fatigue Impact Scale could be used in future clinical trials to measure treatment benefit in fatigue-related impacts.
Collapse
Affiliation(s)
- Amel Karaa
- Division of Genetics (AK), Massachusetts General Hospital, Pediatric Department, Harvard Medical School; Endpoint Outcomes (NJ, IC), Boston, MA; Reneo Pharmaceuticals, Inc (WN, AD), San Diego, CA; and Akron Children's Hospital (BHC), Department of Pediatrics and Integrative Medical Sciences, Northeast Ohio Medical University
| | - Nathan Johnson
- Division of Genetics (AK), Massachusetts General Hospital, Pediatric Department, Harvard Medical School; Endpoint Outcomes (NJ, IC), Boston, MA; Reneo Pharmaceuticals, Inc (WN, AD), San Diego, CA; and Akron Children's Hospital (BHC), Department of Pediatrics and Integrative Medical Sciences, Northeast Ohio Medical University
| | - Ian Clarkson
- Division of Genetics (AK), Massachusetts General Hospital, Pediatric Department, Harvard Medical School; Endpoint Outcomes (NJ, IC), Boston, MA; Reneo Pharmaceuticals, Inc (WN, AD), San Diego, CA; and Akron Children's Hospital (BHC), Department of Pediatrics and Integrative Medical Sciences, Northeast Ohio Medical University
| | - Wendy Newman
- Division of Genetics (AK), Massachusetts General Hospital, Pediatric Department, Harvard Medical School; Endpoint Outcomes (NJ, IC), Boston, MA; Reneo Pharmaceuticals, Inc (WN, AD), San Diego, CA; and Akron Children's Hospital (BHC), Department of Pediatrics and Integrative Medical Sciences, Northeast Ohio Medical University
| | - Alejandro Dorenbaum
- Division of Genetics (AK), Massachusetts General Hospital, Pediatric Department, Harvard Medical School; Endpoint Outcomes (NJ, IC), Boston, MA; Reneo Pharmaceuticals, Inc (WN, AD), San Diego, CA; and Akron Children's Hospital (BHC), Department of Pediatrics and Integrative Medical Sciences, Northeast Ohio Medical University
| | - Bruce H Cohen
- Division of Genetics (AK), Massachusetts General Hospital, Pediatric Department, Harvard Medical School; Endpoint Outcomes (NJ, IC), Boston, MA; Reneo Pharmaceuticals, Inc (WN, AD), San Diego, CA; and Akron Children's Hospital (BHC), Department of Pediatrics and Integrative Medical Sciences, Northeast Ohio Medical University
| |
Collapse
|
5
|
Vinci M, Vitello GA, Greco D, Treccarichi S, Ragalmuto A, Musumeci A, Fallea A, Federico C, Calì F, Saccone S, Elia M. Next Generation Sequencing and Electromyography Reveal the Involvement of the P2RX6 Gene in Myopathy. Curr Issues Mol Biol 2024; 46:1150-1163. [PMID: 38392191 PMCID: PMC10887510 DOI: 10.3390/cimb46020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Ion channelopathies result from impaired ion channel protein function, due to mutations affecting ion transport across cell membranes. Over 40 diseases, including neuropathy, pain, migraine, epilepsy, and ataxia, are associated with ion channelopathies, impacting electrically excitable tissues and significantly affecting skeletal muscle. Gene mutations affecting transmembrane ionic flow are strongly linked to skeletal muscle disorders, particularly myopathies, disrupting muscle excitability and contraction. Electromyography (EMG) analysis performed on a patient who complained of weakness and fatigue revealed the presence of primary muscular damage, suggesting an early-stage myopathy. Whole exome sequencing (WES) did not detect potentially causative variants in known myopathy-associated genes but revealed a novel homozygous deletion of the P2RX6 gene likely disrupting protein function. The P2RX6 gene, predominantly expressed in skeletal muscle, is an ATP-gated ion channel receptor belonging to the purinergic receptors (P2RX) family. In addition, STRING pathways suggested a correlation with more proteins having a plausible role in myopathy. No previous studies have reported the implication of this gene in myopathy. Further studies are needed on patients with a defective ion channel pathway, and the use of in vitro functional assays in suppressing P2RX6 gene expression will be required to validate its functional role.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | | |
Collapse
|
6
|
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int J Mol Sci 2023; 24:16746. [PMID: 38069070 PMCID: PMC10706469 DOI: 10.3390/ijms242316746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95213 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| |
Collapse
|
7
|
Menon D, Nair SS, Radhakrishnan N, Saraf UU, Nair M. Clinical Spectrum of Biopsy Proven Mitochondrial Myopathy. Neurol India 2023; 71:1192-1196. [PMID: 38174457 DOI: 10.4103/0028-3886.391399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Objectives Clinical spectrum of mitochondrial myopathy extends beyond chronic progressive external ophthalmoplegia (CPEO). While information on encephalomyopathies is abundant, clinical data on predominant myopathic presentation of mitochondrial disorders are lacking. Materials and Methods Clinical, electrophysiological, biochemical, and follow-up data of patients with predominant myopathic presentation and muscle biopsy confirmed primary mitochondrial myopathy was obtained. We excluded known syndromes of mitochondrial cytopathies and encephalomyopathies. Results Among 16 patients, 7 had CPEO, 4 had CPEO with limb-girdle muscle weakness (LGMW), and 5 had isolated LGMW. Systemic features included seizures with photosensitivity (n = 3), diabetes (n = 1), cardiomyopathy (n = 1), and sensorineural hearing loss (n = 1) and were more common in isolated LGMW. Elevated serum creatine kinase (CK) and lactate levels and electromyography (EMG) myopathic potentials were more frequent with LGMW. During follow-up, LGMW had more severe progression of weakness. Conclusion We identified three subsets of mitochondrial myopathy with distinct clinical features and evolutionary patterns. Isolated LGMW was seen in 30% of patients and would represent severe end of the spectrum.
Collapse
Affiliation(s)
- Deepak Menon
- Department of Neurology, SCTIMST, Trivandrum, Kerala, India
| | - Sruthi S Nair
- Department of Neurology, SCTIMST, Trivandrum, Kerala, India
| | | | | | | |
Collapse
|
8
|
Karaa A, Bertini E, Carelli V, Cohen BH, Enns GM, Falk MJ, Goldstein A, Gorman GS, Haas R, Hirano M, Klopstock T, Koenig MK, Kornblum C, Lamperti C, Lehman A, Longo N, Molnar MJ, Parikh S, Phan H, Pitceathly RDS, Saneto R, Scaglia F, Servidei S, Tarnopolsky M, Toscano A, Van Hove JLK, Vissing J, Vockley J, Finman JS, Brown DA, Shiffer JA, Mancuso M. Efficacy and Safety of Elamipretide in Individuals With Primary Mitochondrial Myopathy: The MMPOWER-3 Randomized Clinical Trial. Neurology 2023; 101:e238-e252. [PMID: 37268435 PMCID: PMC10382259 DOI: 10.1212/wnl.0000000000207402] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/27/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Primary mitochondrial myopathies (PMMs) encompass a group of genetic disorders that impair mitochondrial oxidative phosphorylation, adversely affecting physical function, exercise capacity, and quality of life (QoL). Current PMM standards of care address symptoms, with limited clinical impact, constituting a significant therapeutic unmet need. We present data from MMPOWER-3, a pivotal, phase-3, randomized, double-blind, placebo-controlled clinical trial that evaluated the efficacy and safety of elamipretide in participants with genetically confirmed PMM. METHODS After screening, eligible participants were randomized 1:1 to receive either 24 weeks of elamipretide at a dose of 40 mg/d or placebo subcutaneously. Primary efficacy endpoints included change from baseline to week 24 on the distance walked on the 6-minute walk test (6MWT) and total fatigue on the Primary Mitochondrial Myopathy Symptom Assessment (PMMSA). Secondary endpoints included most bothersome symptom score on the PMMSA, NeuroQoL Fatigue Short-Form scores, and the patient global impression and clinician global impression of PMM symptoms. RESULTS Participants (N = 218) were randomized (n = 109 elamipretide; n = 109 placebo). The m0ean age was 45.6 years (64% women; 94% White). Most of the participants (n = 162 [74%]) had mitochondrial DNA (mtDNA) alteration, with the remainder having nuclear DNA (nDNA) defects. At screening, the most frequent bothersome PMM symptom on the PMMSA was tiredness during activities (28.9%). At baseline, the mean distance walked on the 6MWT was 336.7 ± 81.2 meters, the mean score for total fatigue on the PMMSA was 10.6 ± 2.5, and the mean T score for the Neuro-QoL Fatigue Short-Form was 54.7 ± 7.5. The study did not meet its primary endpoints assessing changes in the 6MWT and PMMSA total fatigue score (TFS). Between the participants receiving elamipretide and those receiving placebo, the difference in the least squares mean (SE) from baseline to week 24 on distance walked on the 6MWT was -3.2 (95% CI -18.7 to 12.3; p = 0.69) meters, and on the PMMSA, the total fatigue score was -0.07 (95% CI -0.10 to 0.26; p = 0.37). Elamipretide treatment was well-tolerated with most adverse events being mild to moderate in severity. DISCUSSION Subcutaneous elamipretide treatment did not improve outcomes in the 6MWT and PMMSA TFS in patients with PMM. However, this phase-3 study demonstrated that subcutaneous elamipretide is well-tolerated. TRIAL REGISTRATION INFORMATION Trial registered with clinicaltrials.gov, Clinical Trials Identifier: NCT03323749; submitted on October 12, 2017; first patient enrolled October 9, 2017. CLINICALTRIALS gov/ct2/show/NCT03323749?term = elamipretide&draw = 2&rank = 9. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that elamipretide does not improve the 6MWT or fatigue at 24 weeks compared with placebo in patients with primary mitochondrial myopathy.
Collapse
Affiliation(s)
- Amel Karaa
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy.
| | - Enrico Bertini
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Valerio Carelli
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Bruce H Cohen
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Gregory M Enns
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Marni J Falk
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Amy Goldstein
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Gráinne Siobhan Gorman
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Richard Haas
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Michio Hirano
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Thomas Klopstock
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Mary Kay Koenig
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Cornelia Kornblum
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Costanza Lamperti
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Anna Lehman
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Nicola Longo
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Maria Judit Molnar
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Sumit Parikh
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Han Phan
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Robert D S Pitceathly
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Russell Saneto
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Fernando Scaglia
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Serenella Servidei
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Mark Tarnopolsky
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Antonio Toscano
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Johan L K Van Hove
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - John Vissing
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Jerry Vockley
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Jeffrey S Finman
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - David A Brown
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - James A Shiffer
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| | - Michelango Mancuso
- From the Massachusetts General Hospital (A.K.), Harvard Medical School Boston; Neuromuscular Unit (E.B.), Bambino Gesù Ospedale Pediatrico, IRCCS, Rome; IRCCS Istituto delle Scienze Neurologiche di Bologna (V.C.), Programma di Neurogenetica; Department of Biomedical and Neuromotor Sciences (V.C.), University of Bologna, Italy; Rebecca D. Considine Research Institute (B.H.C.), Akron Children's Hospital, OH; Stanford University School of Medicine (G.M.E.), CA; Mitochondrial Medicine Frontier Program (M.J.F., A.G.), Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Royal Victoria Infirmary (G.S.G.), Newcastle upon Tyne, United Kingdom; University of California (R.H.), San Diego, La Jolla; Columbia University Irving Medical Center (M.H.), New York; Friedrich-Baur-Institute (T.K.), Department of Neurology, LMU Hospital, Ludwig Maximilian University of Munich; German Center for Neurodegenerative Diseases (DZNE); Munich Cluster for Systems Neurology (SyNergy), Germany; Department of Pediatrics (M.K.K.), University of Texas McGovern Medical School, Houston; Department of Neurology, Neuromuscular Diseases Section (C.K.), University Hospital of Bonn, Germany; Fondazione IRCCS Istituto Neurologico Carlo Besta (C.L.), Milano, Italy; Vancouver General Hospital (A.L.), British Columbia, Canada; University of Utah (N.L.), Salt Lake City; Institute of Genomic Medicine and Rare Disorders (M.J.M.), Semmelweis University, Budapest, Hungary; Cleveland Clinic Neurological Institute (S.P.), OH; Rare Disease Research (H.P.), Atlanta, GA; Department of Neuromuscular Diseases (R.D.S.P.), UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom; Seattle Children's Hospital (R.S.), WA; Baylor College of Medicine (F.S.), Houston, TX; Texas Children's Hospital (F.S.); Joint BCM-CUHK Center of Medical Genetics (F.S.), Hong Kong SAR; Fondazione Policlinico Universitario A. Gemelli and Istituto di Neurologia (S.S.), Università Cattolica del Sacro Cuore, Rome, Italy; McMaster University Medical Center (M.T.), Hamilton, Ontario, Canada; Neurology and Neuromuscular Unit (A.T.), Department of Clinical and Experimental Medicine, University of Messina, Italy; University of Colorado and Children's Hospital Colorado (J.L.K.V.H.), Aurora; Copenhagen Neuromuscular Center (John Vissing), Rigshospitalet University of Copenhagen, Denmark; Children's Hospital of Pittsburgh (Jerry Vockley), University of Pittsburgh School of Medicine, PA; Jupiter Point Pharma Consulting (J.S.F.), LLC; Stealth BioTherapeutics (D.A.B.)Write On Time Medical Communications (J.A.S.), LLC; and Department of Clinical and Experimental Medicine (M.M.), Neurological Institute, University of Pisa, Italy
| |
Collapse
|
9
|
Fang C, Lan M. Application of left ventricular endomyocardial biopsy in the diagnosis of mitochondrial cardiomyopathy: a case report. BMC Cardiovasc Disord 2023; 23:338. [PMID: 37403033 DOI: 10.1186/s12872-023-03373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The clinical features of mitochondrial cardiomyopathy (MCM) are diverse. It can present as hypertrophic cardiomyopathy or dilated cardiomyopathy. The diagnosis of MCM is challenging and usually based on biopsy. CASE PRESENTATION The 30-year-old man was admitted to hospital due to dyspnea for 1 month and edema of both lower extremities for 1 week. Echocardiography suggested a whole heart enlargement, a whole heart diminished function. Renal impairment and diabetes were observed. Coronary angiography showed single-vessel disease (90% stenosis in the ostium of a small marginal branch). Left ventricular endomyocardial biopsy was performed. CONCLUSION Myocardial histopathology demonstrated a large number of abnormal mitochondrial accumulation, so the diagnosis was considered as mitochondrial cardiomyopathy.
Collapse
Affiliation(s)
- Chuangsen Fang
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Ming Lan
- Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China.
| |
Collapse
|
10
|
Krishnan A, Wu K, Girgis L, Pamphlett R, Tomlinson S, Muthiah K. A mitochondrial cytopathy presenting with persistent troponin elevation: case report. Eur Heart J Case Rep 2023; 7:ytad132. [PMID: 37123645 PMCID: PMC10141452 DOI: 10.1093/ehjcr/ytad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/26/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023]
Abstract
Background Mitochondrial diseases represent an important potential cause of cardiomyopathy and should be considered in patients presenting with multisystem manifestations. Timely diagnosis of a mitochondrial disorder is needed as it can have reproductive implications for the offspring of the proband. Case Summary We describe a case of undifferentiated rising and persistent troponin elevation in a 70-year-old female with only mild heart failure symptoms and signs. An eventual diagnosis of a mitochondrial cytopathy was made after genetic testing, striated muscle, and endomyocardial biopsy. Multidisciplinary involvement was vital in securing the ultimate diagnosis and is a key lesson from this case. On follow up, with institution of heart failure therapy including cardiac resynchronisation device therapy there was improvement in exercise tolerance and symptoms. Discussion For discussion is the investigation of undifferentiated cardiomyopathies and consideration of mitochondrial disorders as an important diagnosis to exclude prior to diagnosis as an idiopathic cardiomyopathy.
Collapse
Affiliation(s)
- Anish Krishnan
- Corresponding author. Tel: +61 2 8382 1111, Fax: +61 2 9369 4155,
| | - Kathy Wu
- St Vincent’s Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- School of Medicine, University of Notre Dame Australia, Sydney, Australia
- Discipline of Genomic Medicine, University of Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - Laila Girgis
- St Vincent’s Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Roger Pamphlett
- Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Susan Tomlinson
- St Vincent’s Hospital, Sydney, Australia
- School of Medicine, University of Notre Dame Australia, Sydney, Australia
| | | |
Collapse
|
11
|
Baranowska E, Niedzwiecka K, Panja C, Charles C, Dautant A, Poznanski J, di Rago JP, Tribouillard-Tanvier D, Kucharczyk R. Probing the pathogenicity of patient-derived variants of MT-ATP6 in yeast. Dis Model Mech 2023; 16:307138. [PMID: 37083953 PMCID: PMC10151828 DOI: 10.1242/dmm.049783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/28/2023] [Indexed: 04/22/2023] Open
Abstract
The list of mitochondrial DNA (mtDNA) variants detected in individuals with neurodegenerative diseases is constantly growing. Evaluating their functional consequences and pathogenicity is not easy, especially when they are found in only a limited number of patients together with wild-type mtDNA (heteroplasmy). Owing to its amenability to mitochondrial genetic transformation and incapacity to stably maintain heteroplasmy, and the strong evolutionary conservation of the proteins encoded in mitochondria, Saccharomyces cerevisiae provides a convenient model to investigate the functional consequences of human mtDNA variants. We herein report the construction and energy-transducing properties of yeast models of eight MT-ATP6 gene variants identified in patients with various disorders: m.8843T>C, m.8950G>A, m.9016A>G, m.9025G>A, m.9029A>G, m.9058A>G, m.9139G>A and m.9160T>C. Significant defect in growth dependent on respiration and deficits in ATP production were observed in yeast models of m.8950G>A, m.9025G>A and m.9029A>G, providing evidence of pathogenicity for these variants. Yeast models of the five other variants showed very mild, if any, effect on mitochondrial function, suggesting that the variants do not have, at least alone, the potential to compromise human health.
Collapse
Affiliation(s)
- Emilia Baranowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Camille Charles
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Jarosław Poznanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| | - Jean-Paul di Rago
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- University of Bordeaux, Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02106 Warsaw, Poland
| |
Collapse
|
12
|
Liang M, Wu M, Jia C, Guo R, Cui R. Generalized Muscular Hypermetabolism Caused by Mitochondrial Myopathy Shown on 18 F-FDG PET/CT. Clin Nucl Med 2023; 48:359-360. [PMID: 36630887 DOI: 10.1097/rlu.0000000000004542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ABSTRACT An 18-year-old man presented with progressive exercise intolerance and muscle weakness for 1 year with recent acute exacerbation. Laboratory test demonstrated lactic acidosis. 18 F-FDG PET/CT was performed to exclude malignancy and showed generalized muscular hypermetabolism. Muscle biopsy combined with patient's history suggested mitochondrial myopathy. This report illustrates that mitochondrial myopathy may present as generalized muscular hypermetabolism on 18 F-FDG PET/CT and thus should be added to the differential diagnoses.
Collapse
Affiliation(s)
- Menglin Liang
- From the Department of Nuclear Medicine, Peking Union Medical College Hospital Chinese Academy of Medical Sciences and Peking Union Medical College; and Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | | | | | | | | |
Collapse
|
13
|
Hocaoglu H, Sieber M. Mitochondrial respiratory quiescence: A new model for examining the role of mitochondrial metabolism in development. Semin Cell Dev Biol 2023; 138:94-103. [PMID: 35450766 PMCID: PMC9576824 DOI: 10.1016/j.semcdb.2022.03.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
Abstract
Mitochondria are vital organelles with a central role in all aspects of cellular metabolism. As a means to support the ever-changing demands of the cell, mitochondria produce energy, drive biosynthetic processes, maintain redox homeostasis, and function as a hub for cell signaling. While mitochondria have been widely studied for their role in disease and metabolic dysfunction, this organelle has a continually evolving role in the regulation of development, wound repair, and regeneration. Mitochondrial metabolism dynamically changes as tissues transition through distinct phases of development. These organelles support the energetic and biosynthetic demands of developing cells and function as key structures that coordinate the nutrient status of the organism with developmental progression. This review will examine the mechanisms that link mitochondria to developmental processes. We will also examine the process of mitochondrial respiratory quiescence (MRQ), a novel mechanism for regulating cellular metabolism through the biochemical and physiological remodeling of mitochondria. Lastly, we will examine MRQ as a system to discover the mechanisms that drive mitochondrial remodeling during development.
Collapse
Affiliation(s)
- Helin Hocaoglu
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Ivanovic V, Peric S, Pesovic J, Tubic R, Bozovic I, Petrovic Djordjevic I, Savic-Pavicevic D, Meola G, Rakocevic-Stojanovic V. Clinical score for early diagnosis of myotonic dystrophy type 2. Neurol Sci 2023; 44:1059-1067. [PMID: 36401657 PMCID: PMC9925479 DOI: 10.1007/s10072-022-06507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Myotonic dystrophy type 2 (DM2) is a rare, multisystemic, autosomal dominant disease with highly variable clinical presentation. DM2 is considered to be highly underdiagnosed. OBJECTIVE The aim of this study was to determine which symptoms, signs, and diagnostic findings in patients referred to neurological outpatient units are the most indicative to arouse suspicion of DM2. We tried to make a useful and easy-to-administer clinical scoring system for early diagnosis of DM2-DM2 early diagnosis score (DM2-EDS). PATIENTS AND METHODS Two hundred ninety-one patients with a clinical suspicion of DM2 were included: 69 were genetically confirmed to have DM2, and 222 patients were DM2 negative. Relevant history, neurological, and paraclinical data were obtained from the electronic medical records. RESULTS The following parameters appeared as significant predictors of DM2 diagnosis: cataracts (beta = 0.410, p < 0.001), myotonia on needle EMG (beta = 0.298, p < 0.001), hand tremor (beta = 0.211, p = 0.001), positive family history (beta = 0.171, p = 0.012), and calf hypertrophy (beta = 0.120, p = 0.043). In the final DM2-EDS, based on the beta values, symptoms were associated with the following values: cataracts (present 3.4, absent 0), myotonia (present 2.5, absent 0), tremor (present 1.7, absent 0), family history (positive 1.4, negative 0), and calf hypertrophy (present 1.0, absent 0). A cut-off value on DM2-EDS of 3.25 of maximum 10 points had a sensitivity of 84% and specificity of 81% to diagnose DM2. CONCLUSION Significant predictors of DM2 diagnosis in the neurology outpatient unit were identified. We made an easy-to-administer DM2-EDS score for early diagnosis of DM2.
Collapse
Affiliation(s)
- Vukan Ivanovic
- University of Belgrade - Faculty of Medicine, University Clinical Center of Serbia - Neurology Clinic, Dr. Subotic Street, 11 000, Belgrade, Serbia
| | - Stojan Peric
- University of Belgrade - Faculty of Medicine, University Clinical Center of Serbia - Neurology Clinic, Dr. Subotic Street, 11 000, Belgrade, Serbia.
| | - Jovan Pesovic
- University of Belgrade - Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Radoje Tubic
- Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ivo Bozovic
- University of Belgrade - Faculty of Medicine, University Clinical Center of Serbia - Neurology Clinic, Dr. Subotic Street, 11 000, Belgrade, Serbia
| | - Ivana Petrovic Djordjevic
- University of Belgrade - Faculty of Medicine, University Clinical Center of Serbia - Cardiology Clinic, Belgrade, Serbia
| | - Dusanka Savic-Pavicevic
- University of Belgrade - Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Giovanni Meola
- Department of Neurorehabilitation Sciences - Casa Di Cura del Policlinico, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Vidosava Rakocevic-Stojanovic
- University of Belgrade - Faculty of Medicine, University Clinical Center of Serbia - Neurology Clinic, Dr. Subotic Street, 11 000, Belgrade, Serbia
| |
Collapse
|
15
|
Kornblum C, Lamperti C, Parikh S. Currently available therapies in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:189-206. [PMID: 36813313 DOI: 10.1016/b978-0-12-821751-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of multisystem disorders caused by impaired mitochondrial function. These disorders occur at any age and involve any tissue, typically affecting organs highly dependent on aerobic metabolism. Diagnosis and management are extremely difficult due to various underlying genetic defects and a wide range of clinical symptoms. Preventive care and active surveillance are strategies to try to reduce morbidity and mortality by timely treatment of organ-specific complications. More specific interventional therapies are in early phases of development and no effective treatment or cure currently exists. A variety of dietary supplements have been utilized based on biological logic. For several reasons, few randomized controlled trials have been completed to assess the efficacy of these supplements. The majority of the literature on supplement efficacy represents case reports, retrospective analyses and open-label studies. We briefly review selected supplements that have some degree of clinical research support. In mitochondrial diseases, potential triggers of metabolic decompensation or medications that are potentially toxic to mitochondrial function should be avoided. We shortly summarize current recommendations on safe medication in mitochondrial diseases. Finally, we focus on the frequent and debilitating symptoms of exercise intolerance and fatigue and their management including physical training strategies.
Collapse
Affiliation(s)
- Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany.
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sumit Parikh
- Center for Pediatric Neurosciences, Mitochondrial Medicine & Neurogenetics, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
16
|
Onofrei CD, Gottschall EB, Zell‐Baran L, Rose CS, Kraus R, Pang K, Krefft SD. Unexplained dyspnea linked to mitochondrial myopathy following military deployment to Southwest Asia and Afghanistan. Physiol Rep 2023; 11:e15520. [PMID: 36695704 PMCID: PMC9875744 DOI: 10.14814/phy2.15520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023] Open
Abstract
We identified a case of probable mitochondrial myopathy (MM) in a soldier with dyspnea and reduced exercise tolerance through cardiopulmonary exercise testing (CPET) following Southwest Asia (SWA) deployment. Muscle biopsy showed myopathic features. We compared demographic, occupational exposure, and clinical characteristics in symptomatic military deployers with and without probable MM diagnosed by CPET criteria. We evaluated 235 symptomatic military personnel who deployed to SWA and/or Afghanistan between 2010 and 2021. Of these, 168 underwent cycle ergometer maximal CPET with an indwelling arterial line. We defined probable MM based on five CPET criteria: arterial peak exercise lactate >12 mEq/L, anaerobic threshold (AT) ≤50%, maximum oxygen consumption (VO2max ) <95% predicted, oxygen (O2) pulse percent predicted (pp) at least 10% lower than heart rate pp, and elevated ventilatory equivalent for O2 at end exercise (VE/VO2 ≥ 40). We characterized demographics, smoking status/pack-years, spirometry, and deployment exposures, and used descriptive statistics to compare findings in those with and without probable MM. We found 9/168 (5.4%) deployers with probable MM. Compared to symptomatic deployers without probable MM, they were younger (p = 0.0025) and had lower mean BMI (p = 0.02). They had a higher mean forced expiratory volume (FEV1)pp (p = 0.02) and mean arterial oxygen partial pressure (PaO2) at maximum exercise (p = 0.0003). We found no significant differences in smoking status, deployment frequency/duration, or inhalational exposures. Our findings suggest that mitochondrial myopathy may be a cause of dyspnea and reduced exercise tolerance in a subset of previously deployed military personnel. CPET with arterial line may assist with MM diagnosis and management.
Collapse
Affiliation(s)
- Claudia Daniela Onofrei
- Division of Pulmonary and Critical Care Medicine, Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Eva Brigitte Gottschall
- Division of Environmental and Occupational Health Sciences, Department of MedicineNational Jewish HealthDenverColoradoUSA
- Division of Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Colorado Anschutz Medical CampusColoradoAuroraUSA
- Department of Environmental and Occupational HealthColorado School of Public HealthColoradoAuroraUSA
| | - Lauren Zell‐Baran
- Division of Environmental and Occupational Health Sciences, Department of MedicineNational Jewish HealthDenverColoradoUSA
- Department of Environmental and Occupational HealthColorado School of Public HealthColoradoAuroraUSA
| | - Cecile Stephanie Rose
- Division of Environmental and Occupational Health Sciences, Department of MedicineNational Jewish HealthDenverColoradoUSA
- Division of Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Colorado Anschutz Medical CampusColoradoAuroraUSA
- Department of Environmental and Occupational HealthColorado School of Public HealthColoradoAuroraUSA
| | - Richard Kraus
- Division of Environmental and Occupational Health Sciences, Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Kathy Pang
- Division of Environmental and Occupational Health Sciences, Department of MedicineNational Jewish HealthDenverColoradoUSA
| | - Silpa Dhoma Krefft
- Division of Environmental and Occupational Health Sciences, Department of MedicineNational Jewish HealthDenverColoradoUSA
- Division of Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Colorado Anschutz Medical CampusColoradoAuroraUSA
- Department of Environmental and Occupational HealthColorado School of Public HealthColoradoAuroraUSA
- Division of Pulmonary and Critical Care Medicine, Department of MedicineVeterans Administration Eastern Colorado Health Care SystemColoradoAuroraUSA
| |
Collapse
|
17
|
Na JH, Lee YM. Heteroplasmic Mutant Load Differences in Mitochondrial DNA-Associated Leigh Syndrome. Pediatr Neurol 2023; 138:27-32. [PMID: 36335839 DOI: 10.1016/j.pediatrneurol.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA)-associated Leigh syndrome is influenced by mutant pathogenicity and corresponding heteroplasmic loads; however, the manner in which heteroplasmic mutant load affects patient phenotypes and the relationship between mutant types and heteroplasmic mutant loads remain unknown. We aimed to investigate the distribution of the mutant load of different mtDNA mutations in a single-center cohort. METHODS We used next-generation sequencing to confirm mtDNA mutations in 31 patients with Leigh syndrome. Subsequently, we counted the number of mtDNA reads to quantitatively analyze the heteroplasmic mutant load and categorize the patients according to the mtDNA mutations they harbored. Confirmed cases of mtDNA-associated Leigh syndrome were classified according to the mutations observed in six genes and 10 nucleotides. RESULTS Of the 31 patients with Leigh syndrome, 27 harbored known pathogenic mutations. We discovered that MT-ATP6 was the most commonly mutated gene (n = 13 patients), followed by MT-ND3 (n = 7) and MT-ND5 (n = 4). MT-ATP6 had a significantly higher mutant load than MT-ND3 and MT-ND5 (P < 0.001, each). By contrast, MT-ND5 had a significantly lower mutant load than MT-ND3 (P = 0.007). Notably, the mutation loads varied significantly among patients carrying the MT-ATP6, MT-ND3, and MT-ND5 mutations. CONCLUSIONS Our study illustrated the heteroplasmic diversity and phenotypic expression threshold of mutated mitochondrial genes in mtDNA-associated Leigh syndrome. The results provide promising insights into the genotype-phenotype correlation in mtDNA-associated Leigh syndrome that are expected to guide the development of tailored treatments for Leigh syndrome.
Collapse
Affiliation(s)
- Ji-Hoon Na
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Mock Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
18
|
Pokrovsky MV, Korokin MV, Krayushkina AM, Zhunusov NS, Lapin KN, Soldatova MO, Kuzmin EA, Gudyrev OS, Kochkarova IS, Deikin AV. CONVENTIONAL APPROACHES TO THE THERAPY OF HEREDITARY MYOPATHIES. PHARMACY & PHARMACOLOGY 2022. [DOI: 10.19163/2307-9266-2022-10-5-416-431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the work was to analyze the available therapeutic options for the conventional therapy of hereditary myopathies.Materials and methods. When searching for the material for writing a review article, such abstract databases as PubMed and Google Scholar were used. The search was carried out on the publications during the period from 1980 to September 2022. The following words and their combinations were selected as parameters for the literature selection: “myopathy”, “Duchenne”, “myodystrophy”, “metabolic”, “mitochondrial”, “congenital”, “symptoms”, “replacement”, “recombinant”, “corticosteroids”, “vitamins”, “tirasemtiv”, “therapy”, “treatment”, “evidence”, “clinical trials”, “patients”, “dichloracetate”.Results. Congenital myopathies are a heterogeneous group of pathologies that are caused by atrophy and degeneration of muscle fibers due to mutations in genes. Based on a number of clinical and pathogenetic features, hereditary myopathies are divided into: 1) congenital myopathies; 2) muscular dystrophy; 3) mitochondrial and 4) metabolic myopathies. At the same time, treatment approaches vary significantly depending on the type of myopathy and can be based on 1) substitution of the mutant protein; 2) an increase in its expression; 3) stimulation of the internal compensatory pathways expression; 4) restoration of the compounds balance associated with the mutant protein function (for enzymes); 5) impact on the mitochondrial function (with metabolic and mitochondrial myopathies); 6) reduction of inflammation and fibrosis (with muscular dystrophies); as well as 7) an increase in muscle mass and strength. The current review presents current data on each of the listed approaches, as well as specific pharmacological agents with a description of their action mechanisms.Conclusion. Currently, the following pharmacological groups are used or undergoing clinical trials for the treatment of various myopathies types: inotropic, anti-inflammatory and antifibrotic drugs, antimyostatin therapy and the drugs that promote translation through stop codons (applicable for nonsense mutations). In addition, metabolic drugs, metabolic enzyme cofactors, mitochondrial biogenesis stimulators, and antioxidants can be used to treat myopathies. Finally, the recombinant drugs alglucosidase and avalglucosidase have been clinically approved for the replacement therapy of metabolic myopathies (Pompe’s disease).
Collapse
Affiliation(s)
| | | | | | | | - K. N. Lapin
- V.A. Negovsky Research Institute of General Reanimatology, Federal Scientific and Clinical Center for Resuscitation and Rehabilitology
| | | | - E. A. Kuzmin
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | |
Collapse
|
19
|
Hedberg‐Oldfors C, Lindgren U, Visuttijai K, Lööf D, Roos S, Thomsen C, Oldfors A. Respiratory chain dysfunction in perifascicular muscle fibres in patients with dermatomyositis is associated with mitochondrial DNA depletion. Neuropathol Appl Neurobiol 2022; 48:e12841. [PMID: 35894812 PMCID: PMC9805229 DOI: 10.1111/nan.12841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 01/09/2023]
Abstract
AIMS Patients with dermatomyositis (DM) suffer from reduced aerobic metabolism contributing to impaired muscle function, which has been linked to cytochrome c oxidase (COX) deficiency in muscle tissue. This mitochondrial respiratory chain dysfunction is typically seen in perifascicular regions, which also show the most intense inflammatory reaction along with capillary loss and muscle fibre atrophy. The objective of this study was to investigate the pathobiology of the oxidative phosphorylation deficiency in DM. METHODS Muscle biopsy specimens with perifascicular COX deficiency from five juveniles and seven adults with DM were investigated. We combined immunohistochemical analyses of subunits in the respiratory chain including complex I (subunit NDUFB8), complex II (succinate dehydrogenase, subunit SDHB) and complex IV (COX, subunit MTCO1) with in situ hybridisation, next generation deep sequencing and quantitative polymerase chain reaction (PCR). RESULTS There was a profound deficiency of complexes I and IV in the perifascicular regions with enzyme histochemical COX deficiency, whereas succinate dehydrogenase activity and complex II were preserved. In situ hybridisation of mitochondrial RNA showed depletion of mitochondrial DNA (mtDNA) transcripts in the perifascicular regions. Analysis of mtDNA by next generation deep sequencing and quantitative PCR in affected muscle regions showed an overall reduction of mtDNA copy number particularly in the perifascicular regions. CONCLUSION The respiratory chain dysfunction in DM muscle is associated with mtDNA depletion causing deficiency of complexes I and IV, which are partially encoded by mtDNA, whereas complex II, which is entirely encoded by nuclear DNA, is preserved. The depletion of mtDNA indicates a perturbed replication of mtDNA explaining the muscle pathology and the disturbed aerobic metabolism.
Collapse
Affiliation(s)
- Carola Hedberg‐Oldfors
- Department of Laboratory Medicine, Institute of BiomedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Ulrika Lindgren
- Department of Laboratory Medicine, Institute of BiomedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden,Neuromuscular Center, Department of NeurologySahlgrenska University HospitalGothenburgSweden
| | - Kittichate Visuttijai
- Department of Laboratory Medicine, Institute of BiomedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Daniel Lööf
- Department of Laboratory Medicine, Institute of BiomedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Sara Roos
- Department of Laboratory Medicine, Institute of BiomedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Christer Thomsen
- Department of Laboratory Medicine, Institute of BiomedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of BiomedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden
| |
Collapse
|
20
|
Chinnery PF. Precision mitochondrial medicine. CAMBRIDGE PRISMS. PRECISION MEDICINE 2022; 1:e6. [PMID: 38550943 PMCID: PMC10953752 DOI: 10.1017/pcm.2022.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2024]
Abstract
Mitochondria play a key role in cell homeostasis as a major source of intracellular energy (adenosine triphosphate), and as metabolic hubs regulating many canonical cell processes. Mitochondrial dysfunction has been widely documented in many common diseases, and genetic studies point towards a causal role in the pathogenesis of specific late-onset disorder. Together this makes targeting mitochondrial genes an attractive strategy for precision medicine. However, the genetics of mitochondrial biogenesis is complex, with over 1,100 candidate genes found in two different genomes: the nuclear DNA and mitochondrial DNA (mtDNA). Here, we review the current evidence associating mitochondrial genetic variants with distinct clinical phenotypes, with some having clear therapeutic implications. The strongest evidence has emerged through the investigation of rare inherited mitochondrial disorders, but genome-wide association studies also implicate mtDNA variants in the risk of developing common diseases, opening to door for the incorporation of mitochondrial genetic variant analysis in population disease risk stratification.
Collapse
Affiliation(s)
- Patrick F. Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
21
|
Savvatis K, Vissing CR, Klouvi L, Florian A, Rahman M, Béhin A, Fayssoil A, Masingue M, Stojkovic T, Bécane HM, Berber N, Mochel F, Duboc D, Fontaine B, Krett B, Stalens C, Lejeune J, Pitceathly RDS, Lopes L, Saadi M, Gossios T, Procaccio V, Spinazzi M, Tard C, De Groote P, Dhaenens CM, Douillard C, Echaniz-Laguna A, Quinlivan R, Hanna MG, Yilmaz A, Vissing J, Laforêt P, Elliott P, Wahbi K. Cardiac Outcomes in Adults With Mitochondrial Diseases. J Am Coll Cardiol 2022; 80:1421-1430. [PMID: 36202532 DOI: 10.1016/j.jacc.2022.08.716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Patients with mitochondrial diseases are at risk of heart failure (HF) and arrhythmic major adverse cardiac events (MACE). OBJECTIVES We developed prediction models to estimate the risk of HF and arrhythmic MACE in this population. METHODS We determined the incidence and searched for predictors of HF and arrhythmic MACE using Cox regression in 600 adult patients from a multicenter registry with genetically confirmed mitochondrial diseases. RESULTS Over a median follow-up time of 6.67 years, 29 patients (4.9%) reached the HF endpoint, including 19 hospitalizations for nonterminal HF, 2 cardiac transplantations, and 8 deaths from HF. Thirty others (5.1%) reached the arrhythmic MACE, including 21 with third-degree or type II second-degree atrioventricular blocks, 4 with sinus node dysfunction, and 5 sudden cardiac deaths. Predictors of HF were the m.3243A>G variant (HR: 4.3; 95% CI: 1.8-10.1), conduction defects (HR: 3.0; 95% CI: 1.3-6.9), left ventricular (LV) hypertrophy (HR: 2.6; 95% CI: 1.1-5.8), LV ejection fraction <50% (HR: 10.2; 95% CI: 4.6-22.3), and premature ventricular beats (HR: 4.1; 95% CI: 1.7-9.9). Independent predictors for arrhythmia were single, large-scale mtDNA deletions (HR: 4.3; 95% CI: 1.7-10.4), conduction defects (HR: 6.8; 95% CI: 3.0-15.4), and LV ejection fraction <50% (HR: 2.7; 95% CI: 1.1-7.1). C-indexes of the Cox regression models were 0.91 (95% CI: 0.88-0.95) and 0.80 (95% CI: 0.70-0.90) for the HF and arrhythmic MACE, respectively. CONCLUSIONS We developed the first prediction models for HF and arrhythmic MACE in patients with mitochondrial diseases using genetic variant type and simple cardiac assessments.
Collapse
Affiliation(s)
- Konstantinos Savvatis
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; William Harvey Research Institute, Queen Mary University London, London, United Kingdom; Centre for Heart Muscle Disease, Institute for Cardiovascular Science, University College London, London, United Kingdom
| | - Christoffer Rasmus Vissing
- Copenhagen Neuromuscular Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; The Capital Region's Unit for Inherited Cardiac Diseases, Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Anca Florian
- Department of Cardiology I, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - Mehjabin Rahman
- Centre for Heart Muscle Disease, Institute for Cardiovascular Science, University College London, London, United Kingdom
| | - Anthony Béhin
- AP-HP, Pitié-Salpêtrière Hospital, Reference Center for Muscle Diseases Paris-Est, Myology Institute, Paris, France
| | - Abdallah Fayssoil
- AP-HP, Raymond Poincare University Hospital, Garches, France; Université de Versailles-Saint Quentin, Boulogne-Billancourt, France
| | - Marion Masingue
- AP-HP, Pitié-Salpêtrière Hospital, Reference Center for Muscle Diseases Paris-Est, Myology Institute, Paris, France
| | - Tanya Stojkovic
- AP-HP, Pitié-Salpêtrière Hospital, Reference Center for Muscle Diseases Paris-Est, Myology Institute, Paris, France
| | - Henri Marc Bécane
- AP-HP, Pitié-Salpêtrière Hospital, Reference Center for Muscle Diseases Paris-Est, Myology Institute, Paris, France
| | - Nawal Berber
- AP-HP, Pitié-Salpêtrière Hospital, Reference Center for Muscle Diseases Paris-Est, Myology Institute, Paris, France
| | - Fanny Mochel
- AP-HP, Pitié-Salpêtrière Hospital, Genetics Department, Inserm UMR S975, CNRS UMR7225, ICM, Paris, France; Pierre et Marie Curie-Paris 6 University, Myology Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - Denis Duboc
- AP-HP, Pitié-Salpêtrière Hospital, Reference Center for Muscle Diseases Paris-Est, Myology Institute, Paris, France; AP-HP, Cochin Hospital, Cardiology Department, Paris Cedex, France; Université de Paris, Paris, France
| | - Bertrand Fontaine
- Sorbonne-Université, INSERM, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre de Recherche en Myologie-UMR 974, Service de Neuro-Myologie, Institut de Myologie, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Bjørg Krett
- Copenhagen Neuromuscular Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Luis Lopes
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Centre for Heart Muscle Disease, Institute for Cardiovascular Science, University College London, London, United Kingdom
| | - Malika Saadi
- AP-HP, Cochin Hospital, Cardiology Department, Paris Cedex, France
| | - Thomas Gossios
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Vincent Procaccio
- Equipe Mitolab, Unité Mixte de Recherche MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France; Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - Marco Spinazzi
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France; Neuromuscular Reference Center, Department of Neurology, CHU Angers, Angers, France
| | - Céline Tard
- Université de Lille, INSERMU1172, Lille, France; Centre de Référence des Maladies Neuromusculaires Nord Est Ile de France, CHU de Lille, Lille, France
| | - Pascal De Groote
- Service de Cardiologie, Pôle Cardio-vasculaire et Pulmonaire, CHRU de Lille, Lille, France; Inserm U1167, Institut Pasteur de Lille, Université de Lille 2, Lille, France
| | - Claire-Marie Dhaenens
- Université de Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France
| | - Claire Douillard
- CHU de Lille, Département d'Endocrinologie et Métabolisme, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Huriez, Lille, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France; French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin-Bicêtre, France; INSERM U1195, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Ros Quinlivan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Ali Yilmaz
- Department of Cardiology I, Division of Cardiovascular Imaging, University Hospital Münster, Münster, Germany
| | - John Vissing
- Copenhagen Neuromuscular Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Pascal Laforêt
- Inserm U1167, Institut Pasteur de Lille, Université de Lille 2, Lille, France; Nord/Est/Île-de-France Neuromuscular Reference Center, Neurology Department, Raymond-Poincaré Teaching Hospital, AP-HP, Garches, France; INSERM U1179, END-ICAP, Versailles-Saint-Quentin-en-Yvelines University, Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Perry Elliott
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom; Centre for Heart Muscle Disease, Institute for Cardiovascular Science, University College London, London, United Kingdom
| | - Karim Wahbi
- AP-HP, Pitié-Salpêtrière Hospital, Reference Center for Muscle Diseases Paris-Est, Myology Institute, Paris, France; AP-HP, Cochin Hospital, Cardiology Department, Paris Cedex, France; Université de Paris, Paris, France; Paris Cardiovascular Research Center (PARCC), INSERM Unit 970, Paris, France.
| |
Collapse
|
22
|
Groh WJ, Bhakta D, Tomaselli GF, Aleong RG, Teixeira RA, Amato A, Asirvatham SJ, Cha YM, Corrado D, Duboc D, Goldberger ZD, Horie M, Hornyak JE, Jefferies JL, Kääb S, Kalman JM, Kertesz NJ, Lakdawala NK, Lambiase PD, Lubitz SA, McMillan HJ, McNally EM, Milone M, Namboodiri N, Nazarian S, Patton KK, Russo V, Sacher F, Santangeli P, Shen WK, Sobral Filho DC, Stambler BS, Stöllberger C, Wahbi K, Wehrens XHT, Weiner MM, Wheeler MT, Zeppenfeld K. 2022 HRS expert consensus statement on evaluation and management of arrhythmic risk in neuromuscular disorders. Heart Rhythm 2022; 19:e61-e120. [PMID: 35500790 DOI: 10.1016/j.hrthm.2022.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
This international multidisciplinary document is intended to guide electrophysiologists, cardiologists, other clinicians, and health care professionals in caring for patients with arrhythmic complications of neuromuscular disorders (NMDs). The document presents an overview of arrhythmias in NMDs followed by detailed sections on specific disorders: Duchenne muscular dystrophy, Becker muscular dystrophy, and limb-girdle muscular dystrophy type 2; myotonic dystrophy type 1 and type 2; Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B; facioscapulohumeral muscular dystrophy; and mitochondrial myopathies, including Friedreich ataxia and Kearns-Sayre syndrome, with an emphasis on managing arrhythmic cardiac manifestations. End-of-life management of arrhythmias in patients with NMDs is also covered. The document sections were drafted by the writing committee members according to their area of expertise. The recommendations represent the consensus opinion of the expert writing group, graded by class of recommendation and level of evidence utilizing defined criteria. The recommendations were made available for public comment; the document underwent review by the Heart Rhythm Society Scientific and Clinical Documents Committee and external review and endorsement by the partner and collaborating societies. Changes were incorporated based on these reviews. By using a breadth of accumulated available evidence, the document is designed to provide practical and actionable clinical information and recommendations for the diagnosis and management of arrhythmias and thus improve the care of patients with NMDs.
Collapse
Affiliation(s)
- William J Groh
- Ralph H. Johnson VA Medical Center and Medical University of South Carolina, Charleston, South Carolina
| | - Deepak Bhakta
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | - Anthony Amato
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Domenico Corrado
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Denis Duboc
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Minoru Horie
- Shiga University of Medical Sciences, Otsu, Japan
| | | | | | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jonathan M Kalman
- Royal Melbourne Hospital and University of Melbourne, Melbourne, Victoria, Australia
| | | | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, University College London, and St Bartholomew's Hospital London, London, United Kingdom
| | | | - Hugh J McMillan
- Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute, Bordeaux, France
| | | | | | | | | | - Claudia Stöllberger
- Second Medical Department with Cardiology and Intensive Care Medicine, Klinik Landstraße, Vienna, Austria
| | - Karim Wahbi
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Hsueh HW, Weng WC, Fan PC, Chien YH, Yang FJ, Lee WT, Lin RJ, Hwu WL, Yang CC, Lee NC. The diversity of hereditary neuromuscular diseases: Experiences from molecular diagnosis. J Formos Med Assoc 2022; 121:2574-2583. [PMID: 35821219 DOI: 10.1016/j.jfma.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/02/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hereditary neuromuscular diseases (NMDs) are a group of rare disorders, and the diagnosis of these diseases is a substantial burden for referral centers. Although next-generation sequencing (NGS) has identified a large number of genes associated with hereditary NMDs, the diagnostic rates still vary across centers. METHODS Patients with a suspected hereditary NMD were referred to neuromuscular specialists at the National Taiwan University Hospital. Molecular diagnoses were performed by employing a capture panel containing 194 genes associated with NMDs. RESULTS Among the 50 patients referred, 43 had a suspicion of myopathy, and seven had polyneuropathy. The overall diagnostic rate was 58%. Pathogenic variants in 19 genes were observed; the most frequent pathogenic variant found in this cohort (DYSF) was observed in only four patients, and 10 pathogenic variants were observed in one patient each. One case of motor neuron disease was clinically mistaken for myopathy. A positive family history increased the diagnostic rate (positive: 72.7% vs. negative: 56.3%). Fourteen patients with elevated plasma creatine kinase levels remained without a diagnosis. CONCLUSION The application of NGS in this single-center study proves the great diversity of hereditary NMDs. A capture panel is essential, but high-quality clinical and laboratory evaluations of patients are also indispensable.
Collapse
Affiliation(s)
- Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pi-Chuan Fan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Feng-Jung Yang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ru-Jen Lin
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
24
|
Hendrix CLF, van den Heuvel FMA, Rodwell L, Timmermans J, Nijveldt R, Janssen MCH, Saris CGJ. Screening and prevalence of cardiac abnormalities on electro- and echocardiography in a large cohort of patients with mitochondrial disease. Mol Genet Metab 2022; 136:219-225. [PMID: 35659503 DOI: 10.1016/j.ymgme.2022.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND In patients with primary mitochondrial disease (MD), screening with electrocardiogram (ECG) and transthoracic echocardiography (TTE) is warranted according to current guidelines as structural cardiac abnormalities are frequent. This study aims to evaluate the cardiac phenotype of a large Dutch cohort of patients with MD and investigates whether ECG alone is sufficient for predicting structural cardiac abnormalities on TTE. METHODS In this retrospective cohort study, genetically confirmed MD patients >18 years old with an available ECG and TTE were included. Newcastle Mitochondrial Disease Scale for Adults (NMDAS) scores were assessed. ECG's were evaluated for rhythm and conduction disorders, voltage criteria for left ventricular hypertrophy (LVH) and repolarization disorders. Echocardiographic evaluation included left and right ventricular volumes and function, and presence of LVH or concentric remodeling. RESULTS In total, 200 MD patients were included with a median age of 45 years (IQR; 37-57) of whom 36% were male. Of all MD patients, 35% had abnormalities on ECG and 61% on TTE. Most frequent structural cardiac abnormalities on TTE were: global longitudinal strain > - 18% (54%), concentric remodeling (27%) and left ventricular (LV) ejection fraction <52% (14%). Patients with maternally inherited diabetes and deafness (MIDD) and mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) had the highest prevalence of ECG abnormalities (50% and 47%). TTE abnormalities were most prevalent in patients with MIDD (75%), followed by mitochondrial myopathy (MM) (55%), MELAS (47%) and Mitochondrial Epilepsy and Ragged Red Fibers (MERRF) (47%). MD patients with a high disease severity (NMDAS ≥21) had a higher prevalence of ECG abnormalities (44%, p = 0.039) and structural cardiac abnormalities (72%, p = 0.004) compared to patients with a NMDAS score of 11-20 and ≤ 10 (ECG: 34% and 19%; TTE: 63% and 39%). ECG abnormalities had a positive predictive value of 74% and a negative predictive value of 53% for structural cardiac abnormalities on TTE. CONCLUSION MD patients frequently have cardiac involvement especially patients with MIDD, MELAS or high NMDAS score. ECG as sole screening parameter is insufficient to detect structural cardiac abnormalities.
Collapse
Affiliation(s)
- Constant L F Hendrix
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Laura Rodwell
- Radboud Institute for Health Sciences, Health Evidence, Section Biostatistics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janneke Timmermans
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine (RCMM), Radboudumc, Nijmegen, the Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine (RCMM), Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
25
|
Saoji M, Petersen CE, Sen A, Tripoli BA, Smyth JT, Cox RT. Reduction of Drosophila Mitochondrial RNase P in Skeletal and Heart Muscle Causes Muscle Degeneration, Cardiomyopathy, and Heart Arrhythmia. Front Cell Dev Biol 2022; 10:788516. [PMID: 35663400 PMCID: PMC9162060 DOI: 10.3389/fcell.2022.788516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we examine the cause and progression of mitochondrial diseases linked to the loss of mtRNase P, a three-protein complex responsible for processing and cleaving mitochondrial transfer RNAs (tRNA) from their nascent transcripts. When mtRNase P function is missing, mature mitochondrial tRNA levels are decreased, resulting in mitochondrial dysfunction. mtRNase P is composed of Mitochondrial RNase P Protein (MRPP) 1, 2, and 3. MRPP1 and 2 have their own enzymatic activity separate from MRPP3, which is the endonuclease responsible for cleaving tRNA. Human mutations in all subunits cause mitochondrial disease. The loss of mitochondrial function can cause devastating, often multisystemic failures. When mitochondria do not provide enough energy and metabolites, the result can be skeletal muscle weakness, cardiomyopathy, and heart arrhythmias. These symptoms are complex and often difficult to interpret, making disease models useful for diagnosing disease onset and progression. Previously, we identified Drosophila orthologs of each mtRNase P subunit (Roswell/MRPP1, Scully/MRPP2, Mulder/MRPP3) and found that the loss of each subunit causes lethality and decreased mitochondrial tRNA processing in vivo. Here, we use Drosophila to model mtRNase P mitochondrial diseases by reducing the level of each subunit in skeletal and heart muscle using tissue-specific RNAi knockdown. We find that mtRNase P reduction in skeletal muscle decreases adult eclosion and causes reduced muscle mass and function. Adult flies exhibit significant age-progressive locomotor defects. Cardiac-specific mtRNase P knockdowns reduce fly lifespan for Roswell and Scully, but not Mulder. Using intravital imaging, we find that adult hearts have impaired contractility and exhibit substantial arrhythmia. This occurs for roswell and mulder knockdowns, but with little effect for scully. The phenotypes shown here are similar to those exhibited by patients with mitochondrial disease, including disease caused by mutations in MRPP1 and 2. These findings also suggest that skeletal and cardiac deficiencies induced by mtRNase P loss are differentially affected by the three subunits. These differences could have implications for disease progression in skeletal and heart muscle and shed light on how the enzyme complex functions in different tissues.
Collapse
Affiliation(s)
- Maithili Saoji
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States.
| | - Courtney E. Petersen
- Henry M. Jackson Foundation, Bethesda, MD, United States.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Aditya Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States.
| | - Benjamin A. Tripoli
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Jeremy T. Smyth
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Rachel T. Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
26
|
Vásquez-Trincado C, Dunn J, Han JI, Hymms B, Tamaroff J, Patel M, Nguyen S, Dedio A, Wade K, Enigwe C, Nichtova Z, Lynch DR, Csordas G, McCormack SE, Seifert EL. Frataxin deficiency lowers lean mass and triggers the integrated stress response in skeletal muscle. JCI Insight 2022; 7:e155201. [PMID: 35531957 PMCID: PMC9090249 DOI: 10.1172/jci.insight.155201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an inherited disorder caused by reduced levels of frataxin (FXN), which is required for iron-sulfur cluster biogenesis. Neurological and cardiac comorbidities are prominent and have been a major focus of study. Skeletal muscle has received less attention despite indications that FXN loss affects it. Here, we show that lean mass is lower, whereas body mass index is unaltered, in separate cohorts of adults and children with FRDA. In adults, lower lean mass correlated with disease severity. To further investigate FXN loss in skeletal muscle, we used a transgenic mouse model of whole-body inducible and progressive FXN depletion. There was little impact of FXN loss when FXN was approximately 20% of control levels. When residual FXN was approximately 5% of control levels, muscle mass was lower along with absolute grip strength. When we examined mechanisms that can affect muscle mass, only global protein translation was lower, accompanied by integrated stress response (ISR) activation. Also in mice, aerobic exercise training, initiated prior to the muscle mass difference, improved running capacity, yet, muscle mass and the ISR remained as in untrained mice. Thus, FXN loss can lead to lower lean mass, with ISR activation, both of which are insensitive to exercise training.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julia Dunn
- Division of Endocrinology and Diabetes and
| | - Ji In Han
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Briyanna Hymms
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Monika Patel
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Anna Dedio
- Division of Endocrinology and Diabetes and
| | | | | | - Zuzana Nichtova
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology and
| | - Gyorgy Csordas
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shana E. McCormack
- Division of Endocrinology and Diabetes and
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin L. Seifert
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College and
- MitoCare Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Effect of training on skeletal muscle bioenergetic system in patients with mitochondrial myopathies: A computational study. Respir Physiol Neurobiol 2021; 296:103799. [PMID: 34624544 DOI: 10.1016/j.resp.2021.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022]
Abstract
A computer model of the skeletal muscle bioenergetic system, involving the "Pi double-threshold" mechanism of muscle fatigue, was used to investigate the effect of muscle training on system kinetic properties in mitochondrial myopathies (MM) patients with inborn OXPHOS deficiencies. An increase in OXPHOS activity and decrease in peak Pi can account for the training-induced increase in V̇O2max, acceleration of the primary phase II of the V̇O2 on-kinetics, delay of muscle fatigue and prolongation of exercise at a given work intensity encountered in experimental studies. Depending on the mutation load and work intensity, training can bring the muscle from severe- to very-heavy- to moderate-exercise-like behavior, thus lessening the exertional fatigue and lengthening the physical activity of a given intensity. Training significantly increases critical power (CP) and slightly decreases the curvature constant (W') of the power-duration relationship. Generally, a mechanism underlying the training-induced changes in the skeletal muscle bioenergetic system in MM patients is proposed.
Collapse
|
28
|
Flickinger J, Fan J, Wellik A, Ganetzky R, Goldstein A, Muraresku CC, Glanzman AM, Ballance E, Leonhardt K, McCormick EM, Soreth B, Nguyen S, Gornish J, George-Sankoh I, Peterson J, MacMullen LE, Vishnubhatt S, McBride M, Haas R, Falk MJ, Xiao R, Zolkipli-Cunningham Z. Development of a Mitochondrial Myopathy-Composite Assessment Tool. JCSM CLINICAL REPORTS 2021; 6:109-127. [PMID: 35071983 PMCID: PMC8782422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND 'Mitochondrial Myopathy' (MM) refers to genetically-confirmed Primary Mitochondrial Disease (PMD) that predominantly impairs skeletal muscle function. Validated outcome measures encompassing core MM domains of muscle weakness, muscle fatigue, imbalance, impaired dexterity, and exercise intolerance do not exist. The goal of this study was to validate clinically-meaningful, quantitative outcome measures specific to MM. METHODS This was a single centre study. Objective measures evaluated included hand-held dynamometry, balance assessments, Nine Hole Peg Test (9HPT), Functional Dexterity Test (FDT), 30 second Sit to Stand (30s STS), and 6-minute walk test (6MWT). Results were assessed as z-scores, with < -2 standard deviations considered abnormal. Performance relative to the North Star Ambulatory Assessment (NSAA) of functional mobility was assessed by Pearson's correlation. RESULTS In genetically-confirmed MM participants [n = 59, mean age 21.6 ± 13.9 (range 7 - 64.6 years), 44.1% male], with nuclear gene aetiologies, n = 18/59, or mitochondrial (mtDNA) aetiologies, n = 41/59, dynamometry measurements demonstrated both proximal [dominant elbow flexion (-2.6 ± 2.1, mean z-score ± standard deviation, SD), hip flexion (-2.5 ± 2.3), and knee flexion (-2.8 ± 1.3)] and distal muscle weakness [wrist extension (-3.4 ± 1.7), palmar pinch (-2.5 ± 2.8), and ankle dorsiflexion (-2.4 ± 2.5)]. Balance [Tandem Stance (TS) Eyes Open (-3.2 ± 8.8, n = 53) and TS Eyes Closed (-2.6 ± 2.7, n = 52)] and dexterity [FDT (-5.9 ± 6.0, n = 44) and 9HPT (-8.3 ± 11.2, n = 53)] assessments also revealed impairment. Exercise intolerance was confirmed by strength-based 30s STS test (-2.0 ± 0.8, n = 38) and mobility-based 6MWT mean z-score (-2.9 ± 1.3, n = 46) with significant decline in minute distances (slope -0.9, p = 0.03, n = 46). Muscle fatigue was quantified by dynamometry repetitions with strength decrement noted between first and sixth repetitions at dominant elbow flexors (-14.7 ± 2.2%, mean ± standard error, SEM, n = 21). All assessments were incorporated in the MM-Composite Assessment Tool (MM-COAST). MM-COAST composite score for MM participants was 1.3± 0.1(n = 53) with a higher score indicating greater MM disease severity, and correlated to NSAA (r = 0.64, p < 0.0001, n = 52) to indicate clinical meaning. Test-retest reliability of MM-COAST assessments in an MM subset (n = 14) revealed an intraclass correlation coefficient (ICC) of 0.81 (95% confidence interval: 0.59-0.92) indicating good reliability. CONCLUSIONS We have developed and successfully validated a MM-specific Composite Assessment Tool to quantify the key domains of MM, shown to be abnormal in a Definite MM cohort. MM-COAST may hold particular utility as a meaningful outcome measure in future MM intervention trials.
Collapse
Affiliation(s)
- Jean Flickinger
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Wellik
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Colleen C. Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Allan M. Glanzman
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Ballance
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristin Leonhardt
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brianna Soreth
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sara Nguyen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer Gornish
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ibrahim George-Sankoh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura E. MacMullen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shailee Vishnubhatt
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael McBride
- Cardiovascular Exercise Physiology Laboratory, Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard Haas
- Metabolic and Mitochondrial Disease Center, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
29
|
Cardiac hybrid imaging: novel tracers for novel targets. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2021; 18:748-758. [PMID: 34659381 PMCID: PMC8501382 DOI: 10.11909/j.issn.1671-5411.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-invasive cardiac imaging has explored enormous advances in the last few decades. In particular, hybrid imaging represents the fusion of information from multiple imaging modalities, allowing to provide a more comprehensive dataset compared to traditional imaging techniques in patients with cardiovascular diseases. The complementary anatomical, functional and molecular information provided by hybrid systems are able to simplify the evaluation procedure of various pathologies in a routine clinical setting. The diagnostic capability of hybrid imaging modalities can be further enhanced by introducing novel and specific imaging biomarkers. The aim of this review is to cover the most recent advancements in radiotracers development for SPECT/CT, PET/CT, and PET/MRI for cardiovascular diseases.
Collapse
|
30
|
Flickinger J, Fan J, Wellik A, Ganetzky R, Goldstein A, Muraresku CC, Glanzman AM, Ballance E, Leonhardt K, McCormick EM, Soreth B, Nguyen S, Gornish J, George‐Sankoh I, Peterson J, MacMullen LE, Vishnubhatt S, McBride M, Haas R, Falk MJ, Xiao R, Zolkipli‐Cunningham Z. Development of a Mitochondrial Myopathy‐Composite Assessment Tool. JCSM CLINICAL REPORTS 2021. [DOI: 10.1002/crt2.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jean Flickinger
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Amanda Wellik
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Rebecca Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Colleen C. Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Allan M. Glanzman
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Elizabeth Ballance
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Kristin Leonhardt
- Department of Physical Therapy Children's Hospital of Philadelphia Philadelphia PA USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Brianna Soreth
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Sara Nguyen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Jennifer Gornish
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Ibrahim George‐Sankoh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - James Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Laura E. MacMullen
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Shailee Vishnubhatt
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Michael McBride
- Cardiovascular Exercise Physiology Laboratory, Division of Cardiology Children's Hospital of Philadelphia Philadelphia PA USA
| | - Richard Haas
- Metabolic and Mitochondrial Disease Center La Jolla CA USA
- Department of Neurosciences University of California San Diego School of Medicine La Jolla CA USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Zarazuela Zolkipli‐Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| |
Collapse
|
31
|
Korzeniewski B. Mechanisms of the effect of oxidative phosphorylation deficiencies on the skeletal muscle bioenergetic system in patients with mitochondrial myopathies. J Appl Physiol (1985) 2021; 131:768-777. [PMID: 34197225 DOI: 10.1152/japplphysiol.00196.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Simulations carried out using a previously developed model of the skeletal muscle bioenergetic system, involving the "inorganic phosphate (Pi) double-threshold" mechanism of muscle fatigue, lead to the conclusion that a decrease in the oxidative phosphorylation (OXPHOS) activity, caused by mutations in mitochondrial or nuclear DNA, is the main mechanism underlying the changes in the kinetic properties of the system in mitochondrial myopathies (MM). These changes generally involve the very-heavy-exercise-like behavior and exercise termination because of fatigue at low work intensities. In particular, a sufficiently large (at a given work intensity) decrease in OXPHOS activity leads to slowing of the primary phase II of the oxygen uptake (V̇o2) on-kinetics, decrease in maximal V̇o2 (V̇o2max), appearance of the slow component of the V̇o2 on-kinetics, exercise intolerance, and lactic acidosis at relatively low power outputs encountered in experimental studies in patients with MM. Thus, the "Pi double-threshold" mechanism of muscle fatigue is able to account, at least semiquantitatively, for various kinetic effects of inborn OXPHOS deficiencies of the skeletal muscle bioenergetic system. Exercise can be potentially lengthened and V̇o2max elevated in patients with MM through an increase in peak Pi (Pipeak), at which exercise is terminated because of fatigue. Generally, a mechanism underlying the kinetic effects of OXPHOS deficiencies on the skeletal muscle bioenergetic system in MM is proposed that was absent in the literature.NEW & NOTEWORTHY A mechanism of the OXPHOS deficiencies-induced changes of the skeletal muscle bioenergetic system in patients with mitochondrial myopathies (MM), namely, appearance of the slow component of the V̇o2 on-kinetics at relatively low work intensities, slowed primary phase II of the V̇o2 on-kinetics, lowered V̇o2max, and lactic acidosis is proposed. It involves a decrease in OXPHOS activity acting through the "Pi double-threshold" mechanism of muscle fatigue comprising initiation of the additional ATP usage and termination of exercise.
Collapse
|
32
|
Long JC, Best S, Hatem S, Theodorou T, Catton T, Murray S, Braithwaite J, Christodoulou J. The long and winding road: perspectives of people and parents of children with mitochondrial conditions negotiating management after diagnosis. Orphanet J Rare Dis 2021; 16:310. [PMID: 34256797 PMCID: PMC8276535 DOI: 10.1186/s13023-021-01939-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
Background The diagnostic odyssey for people with a rare disease is well known, but difficulties do not stop at diagnosis. Here we investigate the experience of people, or parents of children with a diagnosed mitochondrial respiratory chain disorder (MRCD) in the management of their disease. The work complements ongoing projects around implementation of consensus recommendations for management of people with MRCD. People with or caring for a child with a formally diagnosed MRCD were invited to take part in an hour-long focus group held via videoconference. Questions elicited experiences of receiving management advice or information specific to their MRCD in four areas drawn from the consensus recommendations: diet and supplements, exercise, access to social services, and mental health. Sessions were audio-recorded, transcribed and analysed using a combination of inductive and deductive coding. Results Focus groups were conducted with 20 participants from five Australian states in June–September 2020. Fourteen adults with a MRCD (three of whom also had a child with a MRCD), and six who cared for a child with a MRCD took part. The overarching finding was that of the need for ongoing negotiation to access the advice and service required to manage their condition. The nature of these negotiations varied across contexts but mostly related to joint decision-making, and more commonly, the need to advocate for their care with non-specialist services (e.g., dieticians, schools). The effort required for this self-advocacy was a prominent theme. While most participants reported receiving adequate advice around supplements, and to a lesser extent diet and exercise, the majority reported no formal advice around mental health or practical assistance accessing social services. Conclusion These focus groups have revealed several gaps in the system for people with a MRCD, interacting with care providers after diagnosis. Focus group participants had to negotiate with a range of different stakeholders in order to secure appropriate advice or services. Notable was the gap in appropriate generalist services (e.g., dieticians) with sufficient knowledge of MRCD to support people with their day-to-day challenges. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01939-6.
Collapse
Affiliation(s)
- Janet C Long
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.
| | - Stephanie Best
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia.,Australian Genomics Health Alliance, Murdoch Children's Research Institute, Melbourne, Australia
| | - Sarah Hatem
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - Tahlia Theodorou
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | | | | | - Jeffrey Braithwaite
- Australian Institute of Health Innovation, Macquarie University, Sydney, Australia
| | - John Christodoulou
- Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| |
Collapse
|
33
|
Birtel J, von Landenberg C, Gliem M, Gliem C, Reimann J, Kunz WS, Herrmann P, Betz C, Caswell R, Nesbitt V, Kornblum C, Issa PC. Mitochondrial Retinopathy. Ophthalmol Retina 2021; 6:65-79. [PMID: 34257060 DOI: 10.1016/j.oret.2021.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To report the retinal phenotype and the associated genetic and systemic findings in patients with mitochondrial disease. DESIGN Retrospective case series. PARTICIPANTS Twenty-three patients with retinopathy and mitochondrial disease, including chronic progressive external ophthalmoplegia (CPEO), maternally inherited diabetes and deafness (MIDD), mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Kearns-Sayre syndrome, neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome, and other systemic manifestations. METHODS Review of case notes, retinal imaging, electrophysiologic assessment, molecular genetic testing including protein modeling, and histologic analysis of muscle biopsy. MAIN OUTCOME MEASURES Phenotypic characteristics of mitochondrial retinopathy. RESULTS Genetic testing identified sporadic large-scale mitochondrial DNA deletions and variants in MT-TL1, MT-ATP6, MT-TK, MT-RNR1, or RRM2B. Based on retinal imaging, 3 phenotypes could be differentiated: type 1 with mild, focal pigmentary abnormalities; type 2 characterized by multifocal white-yellowish subretinal deposits and pigment changes limited to the posterior pole; and type 3 with widespread granular pigment alterations. Advanced type 2 and 3 retinopathy presented with chorioretinal atrophy that typically started in the peripapillary and paracentral areas with foveal sparing. Two patients exhibited a different phenotype: 1 revealed an occult retinopathy, and the patient with RRM2B-associated retinopathy showed no foveal sparing, no severe peripapillary involvement, and substantial photoreceptor atrophy before loss of the retinal pigment epithelium. Two patients with type 1 disease showed additional characteristics of mild macular telangiectasia type 2. Patients with type 1 and mild type 2 or 3 disease demonstrated good visual acuity and no symptoms associated with the retinopathy. In contrast, patients with advanced type 2 or 3 disease often reported vision problems in dim light conditions, reduced visual acuity, or both. Short-wavelength autofluorescence usually revealed a distinct pattern, and near-infrared autofluorescence may be severely reduced in type 3 disease. The retinal phenotype was key to suspecting mitochondrial disease in 11 patients, whereas 12 patients were diagnosed before retinal examination. CONCLUSIONS Different types of mitochondrial retinopathy show characteristic features. Even in absence of visual symptoms, their recognition may facilitate the often challenging and delayed diagnosis of mitochondrial disease, in particular in patients with mild or nebulous multisystem disease.
Collapse
Affiliation(s)
- Johannes Birtel
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christina von Landenberg
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carla Gliem
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Wolfram S Kunz
- Department of Epileptology, Life & Brain Center, University Hospital Bonn, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany
| | - Christian Betz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Richard Caswell
- Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom; Institute of Biomedical and Clinical Science, University of Exeter School of Medicine, Exeter, United Kingdom
| | - Victoria Nesbitt
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Nuffield Department of Women's & Reproductive Health, The Churchill Hospital, Oxford, United Kingdom
| | - Cornelia Kornblum
- Center for Rare Diseases Bonn (ZSEB), University Hospital Bonn, Bonn, Germany; Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Bonn, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
34
|
Díaz-Santiago E, Claros MG, Yahyaoui R, de Diego-Otero Y, Calvo R, Hoenicka J, Palau F, Ranea JAG, Perkins JR. Decoding Neuromuscular Disorders Using Phenotypic Clusters Obtained From Co-Occurrence Networks. Front Mol Biosci 2021; 8:635074. [PMID: 34046427 PMCID: PMC8147726 DOI: 10.3389/fmolb.2021.635074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Neuromuscular disorders (NMDs) represent an important subset of rare diseases associated with elevated morbidity and mortality whose diagnosis can take years. Here we present a novel approach using systems biology to produce functionally-coherent phenotype clusters that provide insight into the cellular functions and phenotypic patterns underlying NMDs, using the Human Phenotype Ontology as a common framework. Gene and phenotype information was obtained for 424 NMDs in OMIM and 126 NMDs in Orphanet, and 335 and 216 phenotypes were identified as typical for NMDs, respectively. ‘Elevated serum creatine kinase’ was the most specific to NMDs, in agreement with the clinical test of elevated serum creatinine kinase that is conducted on NMD patients. The approach to obtain co-occurring NMD phenotypes was validated based on co-mention in PubMed abstracts. A total of 231 (OMIM) and 150 (Orphanet) clusters of highly connected co-occurrent NMD phenotypes were obtained. In parallel, a tripartite network based on phenotypes, diseases and genes was used to associate NMD phenotypes with functions, an approach also validated by literature co-mention, with KEGG pathways showing proportionally higher overlap than Gene Ontology and Reactome. Phenotype-function pairs were crossed with the co-occurrent NMD phenotype clusters to obtain 40 (OMIM) and 72 (Orphanet) functionally coherent phenotype clusters. As expected, many of these overlapped with known diseases and confirmed existing knowledge. Other clusters revealed interesting new findings, indicating informative phenotypes for differential diagnosis, providing deeper knowledge of NMDs, and pointing towards specific cell dysfunction caused by pleiotropic genes. This work is an example of reproducible research that i) can help better understand NMDs and support their diagnosis by providing a new tool that exploits existing information to obtain novel clusters of functionally-related phenotypes, and ii) takes us another step towards personalised medicine for NMDs.
Collapse
Affiliation(s)
- Elena Díaz-Santiago
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
| | - M Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | - Raquel Yahyaoui
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Laboratory of Metabolopathies and Neonatal Screening, Málaga Regional University Hospital, Málaga, Spain
| | | | - Rocío Calvo
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Laboratory of Metabolopathies and Neonatal Screening, Málaga Regional University Hospital, Málaga, Spain
| | - Janet Hoenicka
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Sant Joan de Déu Hospital and Research Institute, Barcelona, Spain
| | - Francesc Palau
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Sant Joan de Déu Hospital and Research Institute, Barcelona, Spain.,Hospital Clínic and University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Juan A G Ranea
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain
| | - James R Perkins
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain
| |
Collapse
|
35
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
36
|
Scott Binder M, Roda RH, Corse AM, Sidhu S, Stewart S, Barth AS. Prevalence of heart disease in patients with mitochondrial abnormalities on skeletal muscle biopsy. Ann Clin Transl Neurol 2021; 8:825-830. [PMID: 33638621 PMCID: PMC8045917 DOI: 10.1002/acn3.51327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Objective Mitochondrial DNA mutations are associated with an increased risk of heart disease. Whether an increased prevalence of cardiovascular disease is present in patients presenting with mitochondrial abnormalities on skeletal muscle biopsy remains unknown. This study was designed to determine the prevalence of cardiac conduction disease and structural heart disease in patients presenting with mitochondrial abnormalities on skeletal muscle biopsy. Methods This is a retrospective cohort study of 103 patients with mitochondrial abnormalities on skeletal muscle biopsy who were referred for evaluation of muscle weakness at a single tertiary care referral center from 2012 to 2018. Of these patients, 59 (57.3%) had an electrocardiogram available and were evaluated for the presence of conduction disease. An echocardiogram was available in 43 patients (42%) who were evaluated for the presence of structural heart disease. The prevalence of cardiac disease was compared to control cohort populations (Framingham and the Atherosclerosis Risk in Communities, ARIC cohorts). Results Mitochondrial abnormalities associated with cardiac conduction disease (defined as QRS duration ≥ 120 msec) were present in 8.9%, versus 2.0% (p < 0.001) in the Framingham population and 2.6% (p = 0.003) in the ARIC cohort. LV systolic dysfunction (LVEF ≤ 50%) was present in 11.6%, versus 3.6% (p < 0.01) in the Framingham and 3% (p < 0.01) in the ARIC populations. Left ventricular hypertrophy was present in 28.6%, versus 13.6% (p < 0.02) in the Framingham and 10.4% (p < 0.001) in the ARIC populations. Interpretation Given the increased prevalence of cardiovascular disease, patients with mitochondrial abnormalities on skeletal muscle biopsy should undergo routine cardiac screening with physical exam, electrocardiography, and cardiac imaging.
Collapse
Affiliation(s)
- M Scott Binder
- Department of Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | - Ricardo H Roda
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea M Corse
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sunjeet Sidhu
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah Stewart
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andreas S Barth
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol (Oxf) 2021; 231:e13535. [PMID: 32640094 DOI: 10.1111/apha.13535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
This review examines kinetic properties and distribution of the 11 isoforms of myosin heavy chain (MyHC) expressed in extraocular muscle (EOM) fibre types and the regulation and function of these MyHCs. Although recruitment and discharge characteristics of ocular motoneurons during fixation and eye movements are well documented, work directly linking these properties with motor unit contractile speed and MyHC composition is lacking. Recruitment of motor units according to Henneman's size principle has some support in EOMs but needs consolidation. Both neurogenic and myogenic mechanisms regulate MyHC expression as in other muscle allotypes. Developmentally, multiply-innervated (MIFs) and singly-innervated fibres (SIFs) are derived presumably from distinct myoblast lineages, ending up expressing MyHCs in the slow and fast ends of the kinetic spectrum respectively. They modulate the synaptic inputs of their motoneurons through different retrogradely transported neurotrophins, thereby specifying their tonic and phasic impulse patterns. Immunohistochemical analyses of EOMs regenerating in situ and in limb muscle beds suggest that the very impulse patterns driving various ocular movements equip effectors with appropriate MyHC compositions and speeds to accomplish their tasks. These experiments also suggest that satellite cells of SIFs and MIFs are distinct lineages expressing different MyHCs during regeneration. MyHC compositions and functional characteristics of orbital fibres show longitudinal variations that facilitate linear ocular rotation during saccades. Palisade endings on global MIFs are postulated to respond to active and passive tensions by triggering axon reflexes that play important roles during fixation, saccades and vergence. How EOMs implement Listings law during ocular rotation is discussed.
Collapse
Affiliation(s)
- Joseph F. Y. Hoh
- Discipline of Physiology and the Bosch Institute School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
38
|
Nix JS, Moore SA. What Every Neuropathologist Needs to Know: The Muscle Biopsy. J Neuropathol Exp Neurol 2020; 79:719-733. [PMID: 32529201 PMCID: PMC7304986 DOI: 10.1093/jnen/nlaa046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Competence in muscle biopsy evaluation is a core component of neuropathology practice. The practicing neuropathologist should be able to prepare frozen sections of muscle biopsies with minimal artifacts and identify key histopathologic features of neuromuscular disease in hematoxylin and eosin-stained sections as well as implement and interpret a basic panel of additional histochemical, enzyme histochemical, and immunohistochemical stains. Important to everyday practice is a working knowledge of normal muscle histology at different ages, muscle motor units, pitfalls of myotendinous junctions, nonpathologic variations encountered at traditional and nontraditional muscle sites, the pathophysiology of myonecrosis and regeneration, and approaches to distinguish muscular dystrophies from inflammatory myopathies and other necrotizing myopathies. Here, we provide a brief overview of what every neuropathologist needs to know concerning the muscle biopsy.
Collapse
Affiliation(s)
- James S Nix
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
39
|
Wali G, Kumar KR, Liyanage E, Davis RL, Mackay-Sim A, Sue CM. Mitochondrial Function in Hereditary Spastic Paraplegia: Deficits in SPG7 but Not SPAST Patient-Derived Stem Cells. Front Neurosci 2020; 14:820. [PMID: 32973427 PMCID: PMC7469654 DOI: 10.3389/fnins.2020.00820] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Mutations in SPG7 and SPAST are common causes of hereditary spastic paraplegia (HSP). While some SPG7 mutations cause paraplegin deficiency, other SPG7 mutations cause increased paraplegin expression. Mitochondrial function has been studied in models that are paraplegin-deficient (human, mouse, and Drosophila models with large exonic deletions, null mutations, or knockout models) but not in models of mutations that express paraplegin. Here, we evaluated mitochondrial function in olfactory neurosphere-derived cells, derived from patients with a variety of SPG7 mutations that express paraplegin and compared them to cells derived from healthy controls and HSP patients with SPAST mutations, as a disease control. We quantified paraplegin expression and an extensive range of mitochondrial morphology measures (fragmentation, interconnectivity, and mass), mitochondrial function measures (membrane potential, oxidative phosphorylation, and oxidative stress), and cell proliferation. Compared to control cells, SPG7 patient cells had increased paraplegin expression, fragmented mitochondria with low interconnectivity, reduced mitochondrial mass, decreased mitochondrial membrane potential, reduced oxidative phosphorylation, reduced ATP content, increased mitochondrial oxidative stress, and reduced cellular proliferation. Mitochondrial dysfunction was specific to SPG7 patient cells and not present in SPAST patient cells, which displayed mitochondrial functions similar to control cells. The mitochondrial dysfunction observed here in SPG7 patient cells that express paraplegin was similar to the dysfunction reported in cell models without paraplegin expression. The p.A510V mutation was common to all patients and was the likely species associated with increased expression, albeit seemingly non-functional. The lack of a mitochondrial phenotype in SPAST patient cells indicates genotype-specific mechanisms of disease in these HSP patients.
Collapse
Affiliation(s)
- Gautam Wali
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Kishore Raj Kumar
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Molecular Medicine Laboratory, Department of Neurology, Concord Hospital, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Erandhi Liyanage
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ryan L Davis
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Alan Mackay-Sim
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Royal North Shore Hospital, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
40
|
Luo M, Zhou W, Patel H, Srivastava AP, Symersky J, Bonar MM, Faraldo-Gómez JD, Liao M, Mueller DM. Bedaquiline inhibits the yeast and human mitochondrial ATP synthases. Commun Biol 2020; 3:452. [PMID: 32814813 PMCID: PMC7438494 DOI: 10.1038/s42003-020-01173-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Bedaquiline (BDQ, Sirturo) has been approved to treat multidrug resistant forms of Mycobacterium tuberculosis. Prior studies suggested that BDQ was a selective inhibitor of the ATP synthase from M. tuberculosis. However, Sirturo treatment leads to an increased risk of cardiac arrhythmias and death, raising the concern that this adverse effect results from inhibition at a secondary site. Here we show that BDQ is a potent inhibitor of the yeast and human mitochondrial ATP synthases. Single-particle cryo-EM reveals that the site of BDQ inhibition partially overlaps with that of the inhibitor oligomycin. Molecular dynamics simulations indicate that the binding mode of BDQ to this site is similar to that previously seen for a mycobacterial enzyme, explaining the observed lack of selectivity. We propose that derivatives of BDQ ought to be made to increase its specificity toward the mycobacterial enzyme and thereby reduce the side effects for patients that are treated with Sirturo. Luo, Zhou et al. show that Bedaquiline (BDQ, Sirturo), approved to treat multi-drug-resistant tuberculosis, inhibits the yeast and human mitochondrial ATP synthases in addition to its intended target, the Mycobacterium tuberculosis ATP synthase. The structure of the mitochondrial ATP synthase bound to BDQ suggests a means to modify this inhibitor to increase its specificity for the M. tuberculosis enzyme, thereby reducing its side effects for patients.
Collapse
Affiliation(s)
- Min Luo
- Department of Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA
| | - Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Hiral Patel
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Anurag P Srivastava
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Jindrich Symersky
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Michał M Bonar
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA, 02115, USA.
| | - David M Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| |
Collapse
|
41
|
Cicero AFG, Fogacci F, Bove M, Borghi C. Successful treatment of a patient with mitochondrial myopathy with alirocumab. J Clin Lipidol 2020; 14:646-648. [PMID: 32800583 DOI: 10.1016/j.jacl.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/26/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022]
Abstract
A 48-year-old man presented to our lipid clinic with statin intolerance and elevated serum creatine kinase levels, being affected by mitochondrial myopathy because of heteroplasmic mitochondrial DNA missense mutation in MTCO1 gene (m.7671T>A). He had just been treated with a coronary artery bypass 4 years before because of acute coronary syndrome, and he had consistently high levels of both low-density lipoprotein cholesterol and triglycerides. Dyslipidemia was successfully treated using 75 mg of alirocumab subcutaneously every 2 weeks, 10 mg of ezetimibe daily, 2 g of marine omega-3 fatty acids daily, and 145 mg of micronized fenofibrate every 2 days. Although muscle weakness persisted, myalgia did not reoccur and serum creatine kinase levels remained almost stable over the time.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy.
| | - Federica Fogacci
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Marilisa Bove
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Claudio Borghi
- Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Karaa A, Haas R, Goldstein A, Vockley J, Cohen BH. A randomized crossover trial of elamipretide in adults with primary mitochondrial myopathy. J Cachexia Sarcopenia Muscle 2020; 11:909-918. [PMID: 32096613 PMCID: PMC7432581 DOI: 10.1002/jcsm.12559] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND This study aims to evaluate the effect of subcutaneous (SC) elamipretide dosing on exercise performance using the 6 min walk test (6MWT), patient-reported outcomes measuring fatigue, functional assessments, and safety to guide the development of the Phase 3 trial. METHODS MMPOWER-2 was a randomized, double-blind, placebo-controlled, crossover trial that enrolled participants (N = 30) with genetically confirmed primary mitochondrial myopathy. Participants were randomly assigned (1:1) to 40 mg/day SC elamipretide for 4 weeks followed by placebo SC for 4 weeks, separated by a 4-week washout period, or the opposite sequence. The primary endpoint was the distance walked on the 6MWT. RESULTS The distance walked on the 6MWT by the elamipretide-treated participants was 398.3 (±134.16) meters compared with 378.5 (±125.10) meters in the placebo-treated group, a difference of 19.8 m (95% confidence interval, -2.8, 42.5; P = 0.0833). The results of the Primary Mitochondrial Myopathy Symptom Assessment Total Fatigue and Total Fatigue During Activities scores showed that participants treated with elamipretide reported less fatigue and muscle complaints compared with placebo (P = 0.0006 and P = 0.0018, respectively). Additionally, the Neuro-QoL Fatigue Short Form and Patient Global Assessment showed reductions in symptoms (P = 0.0115 and P = 0.0421, respectively). In this 4-week treatment period, no statistically significant change was observed in the Physician Global Assessment (P = 0.0636), the Triple Timed Up and Go (P = 0.8423) test, and wrist/hip accelerometry (P = 0.9345 and P = 0.7326, respectively). Injection site reactions were the most commonly reported adverse events with elamipretide (80%), the majority of which were mild. No serious adverse events or deaths were reported. CONCLUSIONS Participants who received a short-course treatment of daily SC elamipretide for 4 weeks experienced a clinically meaningful change in the 6MWT, which did not achieve statistical significance as the primary endpoint of the study. Secondary endpoints were suggestive of an elamipretide treatment effect compared with placebo. Nominal statistically significant and clinically meaningful improvements were seen in patient-reported outcomes. The results of this trial provided an efficacy signal and data to support the initiation of MMPOWER-3, a 6-month long, Phase 3 treatment trial in patients with primary mitochondrial myopathy.
Collapse
Affiliation(s)
- Amel Karaa
- Genetics UnitMassachusetts General HospitalBostonMAUSA
| | - Richard Haas
- Rady Children's Hospital, UC San Diego School of MedicineLa JollaCAUSA
| | - Amy Goldstein
- Children's Hospital of PittsburghUniversity of PittsburghPittsburghPAUSA
| | - Jerry Vockley
- Children's Hospital of PittsburghUniversity of PittsburghPittsburghPAUSA
| | - Bruce H. Cohen
- Department of Pediatrics, Rebecca D. Considine Research InstituteAkron Children's HospitalAkronOHUSA
| |
Collapse
|
43
|
Comment on: "Mitochondrial Mechanisms of Neuromuscular Junction Degeneration with Aging. Cells 2020, 9, 197". Cells 2020; 9:cells9081796. [PMID: 32751058 PMCID: PMC7464736 DOI: 10.3390/cells9081796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 12/28/2022] Open
|
44
|
Mazzoni M, Soglia F, Petracci M, Sirri F, Lattanzio G, Clavenzani P. Fiber Metabolism, Procollagen and Collagen Type III Immunoreactivity in Broiler Pectoralis Major Affected by Muscle Abnormalities. Animals (Basel) 2020; 10:E1081. [PMID: 32585889 PMCID: PMC7341214 DOI: 10.3390/ani10061081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to evaluate the muscle fiber metabolism and assess the presence and distribution of both procollagen and collagen type III in pectoralis major muscles affected by white striping (WS), wooden breast (WB), and spaghetti meat (SM), as well as in those with macroscopically normal appearance (NORM). For this purpose, 20 pectoralis major muscles (five per group) were selected from the same flock of fast-growing broilers (Ross 308, males, 45-days-old, 3.0 kg live weight) and were used for histochemical (nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) and alpha-glycerophosphate dehydrogenase (α-GPD)) and immunohistochemical (procollagen and collagen type III) analyses. When compared to NORM, we found an increased proportion (p < 0.001) of fibers positively stained to NADH-TR in myopathic muscles along with a relevant decrease (p < 0.001) in the percentage of those exhibiting a positive reaction to α-GPD. In addition, an increased proportion of fibers exhibiting a positive reaction to both stainings was observed in SM, in comparison with NORM (14.3 vs. 7.2%; p < 0.001). After reacting to NADH-TR, SM exhibited the lowest (p < 0.001) cross-sectional area (CSA) of the fibers (-12% with respect to NORM). On the other hand, after reacting to α-GPD, the CSA of WS was found to be significantly larger (+10%) in comparison with NORM (7480 vs. 6776 µm2; p < 0.05). A profound modification of the connective tissue architecture involving a different presence and distribution of procollagen and collagen type III was observed. Intriguingly, an altered metabolism and differences in the presence and distribution of procollagen and collagen type III were even observed in pectoralis major muscle classified as NORM.
Collapse
Affiliation(s)
- Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum–University of Bologna, 40064 Ozzano Emilia (B.O.), Italy; (G.L.); (P.C.)
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, 47521 Cesena (F.C.), Italy; (F.S.); (M.P.); (F.S.)
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, 47521 Cesena (F.C.), Italy; (F.S.); (M.P.); (F.S.)
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum–University of Bologna, 47521 Cesena (F.C.), Italy; (F.S.); (M.P.); (F.S.)
| | - Giulia Lattanzio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum–University of Bologna, 40064 Ozzano Emilia (B.O.), Italy; (G.L.); (P.C.)
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum–University of Bologna, 40064 Ozzano Emilia (B.O.), Italy; (G.L.); (P.C.)
| |
Collapse
|
45
|
Abstract
PURPOSE OF THE REVIEW The aim of this review was to discuss the role of cardiac magnetic resonance (CMR) for the prognostic stratification of cardiomyopathies, highlighting strengths and limitations. RECENT FINDINGS CMR is considered as a diagnostic pillar in the management of non-ischemic cardiomyopathies. Over the last years, attention has shifted from CMR's diagnostic capability towards prognostication in the various settings of cardiomyopathies. CMR is considered the gold standard imaging technique for the evaluation of ventricular volumes and systolic function as well as providing non-invasive virtual-histology by means of specific myocardial tissue characterization pulse sequences. CMR is an additive tool to risk stratifying patients and to identify those that require strict monitoring and more aggressive treatment.
Collapse
|
46
|
Alpert NM, Pelletier-Galarneau M, Kim SJW, Petibon Y, Sun T, Ramos-Torres KM, Normandin MD, El Fakhri G. In-vivo Imaging of Mitochondrial Depolarization of Myocardium With Positron Emission Tomography and a Proton Gradient Uncoupler. Front Physiol 2020; 11:491. [PMID: 32499721 PMCID: PMC7243673 DOI: 10.3389/fphys.2020.00491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND We recently reported a method using positron emission tomography (PET) and the tracer 18F-labeled tetraphenylphosphonium (18F-TPP+) for mapping the tissue (i.e., cellular plus mitochondrial) membrane potential (ΔΨT) in the myocardium. The purpose of this work is to provide additional experimental evidence that our methods can be used to observe transient changes in the volume of distribution for 18F-TPP+ and mitochondrial membrane potential (ΔΨm). METHODS We tested these hypotheses by measuring decreases of 18F-TPP+ concentration elicited when a proton gradient uncoupler, BAM15, is administered by intracoronary infusion during PET scanning. BAM15 is the first proton gradient uncoupler shown to affect the mitochondrial membrane without affecting the cellular membrane potential. Preliminary dose response experiments were conducted in two pigs to determine the concentration of BAM15 infusate necessary to perturb the 18F-TPP+ concentration. More definitive experiments were performed in two additional pigs, in which we administered an intravenous bolus plus infusion of 18F-TPP+ to reach secular equilibrium followed by an intracoronary infusion of BAM15. RESULTS Intracoronary BAM15 infusion led to a clear decrease in 18F-TPP+ concentration, falling to a lower level, and then recovering. A second BAM15 infusion reduced the 18F-TPP+ level in a similar fashion. We observed a maximum depolarization of 10 mV as a result of the BAM15 infusion. SUMMARY This work provides evidence that the total membrane potential measured with 18F-TPP+ PET is sensitive to temporal changes in mitochondrial membrane potential.
Collapse
Affiliation(s)
- Nathaniel M. Alpert
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Matthieu Pelletier-Galarneau
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Medical Imaging, Montreal Heart Institute, Montreal, QC, Canada
| | - Sally Ji Who Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tao Sun
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Karla M. Ramos-Torres
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Although mitochondrial diseases impose a significant functional limitation in the lives of patients, treatment of these conditions has been limited to dietary supplements, exercise, and physical therapy. In the past few years, however, translational medicine has identified potential therapies for these patients. RECENT FINDINGS For patients with primary mitochondrial myopathies, preliminary phase I and II multicenter clinical trials of elamipretide indicate safety and suggest improvement in 6-min walk test (6MWT) performance and fatigue scales. In addition, for thymidine kinase 2-deficient (TK2d) myopathy, compassionate-use oral administration of pyrimidine deoxynucleosides have shown preliminary evidence of safety and efficacy in survival of early onset patients and motor functions relative to historical TK2d controls. SUMMARY The prospects of effective therapies that improve the quality of life for patients with mitochondrial myopathy underscore the necessity for definitive diagnoses natural history studies for better understanding of the diseases.
Collapse
|
48
|
Papadopoulos C, Wahbi K, Behin A, Bougouin W, Stojkovic T, Leonard-Louis S, Berber N, Lombès A, Duboc D, Jardel C, Eymard B, Laforêt P. Incidence and predictors of total mortality in 267 adults presenting with mitochondrial diseases. J Inherit Metab Dis 2020; 43:459-466. [PMID: 31652339 DOI: 10.1002/jimd.12185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 11/10/2022]
Abstract
Assessing long-term mortality and identifying predictors of death in adults with mitochondrial diseases. We retrospectively included adult patients with genetically proven mitochondrial diseases referred to our centre between January 2000 and June 2016, and collected information relative to their genetic testing, clinical assessments, and vital status. We performed single and multiple variable analyses in search of predictors of total mortality, and calculated hazard ratios (HR) and 95% confidence intervals (CI). We included 267 patients (women 59%; median age 43.3 [31.3-54.2] years), including 111 with mitochondrial DNA (mtDNA) single large-scale deletions, 65 with m.3243A>G, 24 with m.8344A>G, 32 with other mtDNA point mutations, and 36 patients with nuclear genes mutations. Over a median follow-up of 8.9 years (0.3 to 18.7), 61 patients (22.8%) died, at a median age of 50.7 (37.9-51.9) years. Primary cause of death was cardiovascular disease in 16 patients (26.2%), respiratory in 11 (18.0%), and gastrointestinal in 5 (8.1%). By multiple variable analysis, diabetes (HR 2.75; 95% CI 1.46-5.18), intraventricular cardiac conduction defects (HR 3.38; 95% CI 1.71-6.76) and focal brain involvement (HR 2.39; 95% CI 1.25-4.57) were independent predictors of death. Adult patients with mitochondrial diseases present high morbidity that can be independently predicted by the presence of diabetes, intraventricular cardiac conduction defects, and focal brain involvement.
Collapse
Affiliation(s)
- Constantinos Papadopoulos
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
- INSERM Unit 970, Paris Cardiovascular Research Centre (PARCC), Paris, France
| | - Anthony Behin
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Wulfran Bougouin
- INSERM Unit 970, Paris Cardiovascular Research Centre (PARCC), Paris, France
- Medical Intensive Care Unit, AP-HP, Cochin Hospital, Paris, France
| | - Tanya Stojkovic
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Sarah Leonard-Louis
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Nawal Berber
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Anne Lombès
- INSERM, UMRS 975, APHP, Cochin Hospital, Paris, France
| | - Denis Duboc
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
| | - Claude Jardel
- Biochemistry Department and Genetic Center, APHP, Pitié-Salpêtrière Hospital, Paris, France
- Inserm U 1016, CNRS UMR 8104, Institut Cochin, Paris, France
- GRC-UPMC Neuro-métabolisme, Université Pierre et Marie Curie, Paris, France
| | - Bruno Eymard
- APHP, Pitié-Salpêtrère Hospital, Nord/Est/Ile de France Neuromuscular Reference Center, Myology Institute, Paris, France
| | - Pascal Laforêt
- APHP, Raymond-Poincaré Teaching Hospital, Neurology department, Nord/Est/Ile de France Neuromuscular Reference Center, Garches, France
| |
Collapse
|
49
|
Kakoty V, K C S, Tang RD, Yang CH, Dubey SK, Taliyan R. Fibroblast growth factor 21 and autophagy: A complex interplay in Parkinson disease. Biomed Pharmacother 2020; 127:110145. [PMID: 32361164 DOI: 10.1016/j.biopha.2020.110145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Parkinson disease (PD) is the second common neurodegenerative disorder after Alzheimer's disease (AD). The predominant pathological hallmark is progressive loss of dopaminergic (DA) neurones in the substantia nigra (SN) complicated by aggregation of misfolded forms of alpha-synuclein (α-syn). α-syn is a cytosolic synaptic protein localized in the presynaptic neuron under normal circumstances. What drives misfolding of this protein is largely unknown. However, recent studies suggest that autophagy might be an important risk factor for contributing towards PD. Autophagy is an evolutionarily conserved mechanism that causes the clearance or degradation of misfolded, mutated and damaged proteins, organelles etc. However, in an aging individual this process might deteriorate which could possibly lead to the accumulation of damaged proteins. Hence, autophagy modulation might provide some interesting cues for the treatment of PD. Additionally, Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective in various neurodegenerative conditions possibly via mediation of autophagy.
Collapse
Affiliation(s)
- Violina Kakoty
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| | - Sarathlal K C
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| | - Ruei-Dun Tang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| | - Chih Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
50
|
Omer S, Koumangoye R, Delpire E. A mutation in the Na-K-2Cl cotransporter-1 leads to changes in cellular metabolism. J Cell Physiol 2020; 235:7239-7250. [PMID: 32039487 DOI: 10.1002/jcp.29623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
The Na-K-Cl cotransporter-1 (NKCC1), by mediating the electroneutral transport of Na+ , K+ , and Cl- plays an important role in cell volume regulation, epithelial transport, and the control of neuronal excitability. Recently, we reported the first known human mutation in SLC12A2, the gene encoding NKCC1. The 17-year old patient suffers from multiorgan failure. Laboratory tests conducted on muscle and liver biopsies of the patient showed abnormal increase in mitochondrial DNA copy number and increased glycogen levels, indicating the possibility that the transporter may play a role in energy metabolism. Here, we show that fibroblasts isolated from the patient demonstrate a significant increase in mitochondrial respiration, compared to fibroblasts isolated from healthy individuals. Similarly, Madin Darby canine kidney (MDCK) cells transfected with enhanced green fluorescent protein (EGFP)-tagged mutant NKCC1 DNA demonstrated increased mitochondrial respiration when compared to MDCK cells expressing EGFP-tagged wild-type (WT) cotransporter. Direct inhibition of the cotransporter through addition of bumetanide did not change the rate of basal respiration, but led to increased maximal mitochondrial respiration. Fibroblasts extracted from NKCC1WT/DFX and NKCC1DFX/DFX mice also demonstrated a significant elevation in mitochondrial respiration, compared to fibroblasts isolated from their WT littermates. Expression of the mutant protein was associated with an increase in hydrogen peroxide and peroxidase activity and a decrease in messenger RNA transcript levels for protein involved in the unfolded protein response. These data reveal that cells expressing the mutant cotransporter demonstrate increased mitochondrial respiration and behave like they are experiencing a state of starvation.
Collapse
Affiliation(s)
- Salma Omer
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee
| | - Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|