1
|
Zhang L, Ke X, Liu S, You J, Wang X, Li N, Yin C, Zhang Y, Bai Y, Wang M, Zheng S. A longitudinal study on the effect of PM 2.5 components on blood pressure in the hypertensive patients from 2011 to 2019. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117054. [PMID: 39305771 DOI: 10.1016/j.ecoenv.2024.117054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/17/2024]
Abstract
Extensive research has established the link between PM2.5 exposure and blood pressure (BP) levels among normal individuals. However, the association between PM2.5 components and BP levels in hypertensive patients has not been fully explored. In this study, 12 971 hypertensive cases from Jinchang cohort (in Jinchang City, China) with nearly 9 years of follow-up were enrolled. Based on the linear mixed-effect model, the effects of fine particulate matter (PM2.5) and five major components [sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), black carbon (BC) and organic matter (OM)]on BP [systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP)]were evaluated by single-component model, component-joint model and component-residual model, respectively. A positive correlation was found between PM2.5 as well as its components (SO42-, NO3-, NH4+, BC and OM) exposure and BP levels. The effects of SO42-, BC and OM on BP were observed to be the most robust among the three models. Based on the results of interaction effects and stratified analysis, the effect of BC exposure on SBP, and the effect of PM2.5 and its five components on PP were greater in female than in males. Compared with elderly hypertensive patients, OM had more significant effects on SBP, DBP and MAP in young and (or) middle-aged hypertensive patients. During the heating season, the effect of PM2.5 and its components on BP was grater compared to the non-heating season. Meanwhile, PM2.5 and its components have a greater influence on BP in patients with hypertension combined with diabetes. Therefore, the findings suggested that both PM2.5 exposure and its components had a significant effect on BP in patients with hypertension. Women and young and middle-aged hypertensive patient were the sensitive population. The implementation of source control and reduction of PM2.5 emission (mainly for SO42-, BC and OM) may be of great significance to control BP level and could reduce the risk of cardiovascular disease in patients with hypertension.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ximeng Ke
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shaodong Liu
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jinlong You
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xue Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Na Li
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737102, China
| | - Chun Yin
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang 737102, China
| | - Yaqun Zhang
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730020, China
| | - Yana Bai
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Minzhen Wang
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Shan Zheng
- Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Luo J, Jones RR, Jin Z, Polonsky T, Kim K, Olopade CO, Pinto J, Ahsan H, Aschebrook-Kilfoy B. Differing associations of PM 2.5 exposure with systolic and diastolic blood pressures across exposure durations in a predominantly non-Hispanic Black cohort. Sci Rep 2024; 14:20256. [PMID: 39217205 PMCID: PMC11366009 DOI: 10.1038/s41598-024-64851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/13/2024] [Indexed: 09/04/2024] Open
Abstract
Environmental health research has suggested that fine particulate matter (PM2.5) exposure can lead to high blood pressures, but it is unclear whether the impacts remain the same for systolic and diastolic blood pressures (SBP and DBP). This study aimed to examine whether the effects of PM2.5 exposure on SBP and DBP differ using data from a predominantly non-Hispanic Black cohort collected between 2013 and 2019 in the US. PM2.5 exposure was assessed based on a satellite-derived model across exposure durations from 1 to 36 months. The average PM2.5 exposure level was between 9.5 and 9.8 μg/m3 from 1 through 36 months. Mixed effects models were used to estimate the association of PM2.5 with SBP, DBP, and related hypertension types, adjusted for potential confounders. A total of 6381 participants were included. PM2.5 exposure was positively associated with both SBP and DBP. The association magnitudes depended on exposure durations. The association with SBP was null at the 1-month duration (β = 0.05, 95% CI: - 0.23, 0.33), strengthened as duration increased, and plateaued at the 24-month duration (β = 1.14, 95% CI: 0.54, 1.73). The association with DBP started with β = 0.29 (95% CI: 0.11, 0.47) at the 1-month duration, and plateaued at the 12-month duration (β = 1.61, 95% CI: 1.23, 1.99). PM2.5 was associated with isolated diastolic hypertension (12-month duration: odds ratio = 1.20, 95% CI: 1.07, 1.34) and systolic-diastolic hypertension (12-month duration: odds ratio = 1.18, 95% CI: 1.10, 1.26), but not with isolated systolic hypertension. The findings suggest DBP is more sensitive to PM2.5 exposure and support differing effects of PM2.5 exposure on SBP and DBP. As elevation of SBP and DBP differentially predict CVD outcomes, this finding is relevant for prevention and treatment.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Public Health Sciences, The University of Chicago, Chicago, USA
- Institute for Population and Precision Health, The University of Chicago, Chicago, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, USA
| | - Zhihao Jin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Tamar Polonsky
- Department of Medicine, The University of Chicago, Chicago, USA
| | - Karen Kim
- Department of Medicine, The University of Chicago, Chicago, USA
| | | | - Jayant Pinto
- Department of Medicine, The University of Chicago, Chicago, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, USA
- Institute for Population and Precision Health, The University of Chicago, Chicago, USA
| | - Briseis Aschebrook-Kilfoy
- Department of Public Health Sciences, The University of Chicago, Chicago, USA.
- Institute for Population and Precision Health, The University of Chicago, Chicago, USA.
- Institute for Population and Precision Health, The University of Chicago, 5841 S. Maryland Ave., MC 6100, Room TC-620, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Niu Z, Duan Z, Yu H, Xue L, Liu F, Yu D, Zhang K, Han D, Wen W, Xiang H, Qin W. Association between long-term exposure to ambient particulate matter and blood pressure, hypertension: an updated systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:268-283. [PMID: 34983264 DOI: 10.1080/09603123.2021.2022106] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Evidence of more recent studies should be updated to evaluate the effect of long-term exposure to particulate matter (PM) on blood pressure and hypertension. Studies of long-term effects of PM1, PM2.5 and PM10 on blood pressure (SBP, DBP, MAP), hypertension were searched in Pubmed, Web of Science and Embase before May, 2021. Meta-analysis of 41 studies showed that exposure to PM1, PM2.5 was associated with SBP (1.76 mmHg (95%CI:0.71, 2.80) and 0.63 mmHg (95%CI:0.40, 0.85), per 10 μg/m3 increase in PM), all three air pollutants (PM1, PM2.5, PM10) was associated with DBP (1.16 mmHg (95%CI:0.34, 1.99), 0.31 mmHg (95%CI:0.16, 0.47), 1.17 mmHg (95%CI:0.24, 2.09), respectively. As for hypertension, PM1, PM2.5 and PM10 were all significantly associated with higher risk of hypertension (OR=1.27 (95%CI:1.06, 1.52), 1.15 (95%CI:1.10, 1.20) and 1.11 (95%CI:1.07, 1.16). In conclusion, our study indicated a positive association between long-term exposure to particulate matter and increased blood pressure, hypertension.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Jiangxi, China
| | - Hongmei Yu
- Pukou District Center for Disease Control and Prevention, Nanjing, China
| | - Lina Xue
- Department of Medical Affairs, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Dong Yu
- Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Wang S, Wang M, Peng H, Tian Y, Guo H, Wang J, Yu H, Xue E, Chen X, Wang X, Fan M, Zhang Y, Wang X, Qin X, Wu Y, Li J, Ye Y, Chen D, Hu Y, Wu T. Synergism of cell adhesion regulatory genes and instant air pollutants on blood pressure elevation. CHEMOSPHERE 2023; 312:136992. [PMID: 36334751 DOI: 10.1016/j.chemosphere.2022.136992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Accumulating evidence suggests that an instant exposure to particulate matter (PM) may elevate blood pressure (BP), where cell-adhesion regulatory genes may be involved in the interplay. However, few studies to date critically examined their interaction, and it remained unclear whether these genes modified the association. To assess the association between instant PM exposure and BP, and to examine whether single-nucleotide polymorphisms (SNPs) mapped in four cell adhesion regulatory genes modify the relationship, a cross-sectional study was performed, based on the baseline of an ongoing family-based cohort in Beijing, China. A total of 4418 persons from 2089 families in Northern China were included in the analysis. Four tagged SNPs in cell adhesion regulatory genes were selected among ZFHX3, CXCL12, RASGRP1 and MIR146A. A generalized additive model (GAM) with a Gaussian link was adopted to estimate the change in blood pressure after instant PM2.5 or PM10 exposure. A cross-product term of PM2.5/PM10 and genotype was incorporated into the GAM model to test for interaction. The study observed that an instant exposure to either PM2.5 or PM10 was found to be associated with elevated systolic blood pressure (SBP). On average, a 10 μg/m3 increase in instant exposure to PM2.5 and PM10 concentration corresponded to 0.140% (95% CI: 0.014%-0.265%, P = 0.029) and 0.173% (95% CI: 0.080%-0.266%, P < 0.001) higher SBP. However, diastolic blood pressure (DBP) was not elevated as the PM2.5 or PM10 concentration increased (P > 0.05). A synergetic interaction on SBP was observed between SNPs in four cell adhesion regulatory genes (rs2910164 in MIR146A, rs2297630 in CXCL12, rs7403531 in RASGRP1, and rs7193343 in ZFHX3) and instant PM2.5 exposure (Pfor interaction <0.05). Briefly, as carriers of risk alleles in each of these four genes increased, an enhanced association was found between instant PM2.5 exposure and SBP.
Collapse
Affiliation(s)
- Siyue Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Mengying Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Hexiang Peng
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Huazhong University of Science and Technology, 430030, China
| | - Huangda Guo
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiating Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Huan Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Enci Xue
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xi Chen
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Xueheng Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Meng Fan
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaochen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xueying Qin
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yiqun Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Jin Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Ying Ye
- Department of Local Diseases Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350001, China
| | - Dafang Chen
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Yonghua Hu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Tao Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's China.
| |
Collapse
|
5
|
Zheng XY, Tang SL, Liu T, Wang Y, Xu XJ, Xiao N, Li C, Xu YJ, He ZX, Ma SL, Chen YL, Meng RL, Lin LF. Effects of long-term PM 2.5 exposure on metabolic syndrome among adults and elderly in Guangdong, China. Environ Health 2022; 21:84. [PMID: 36088422 PMCID: PMC9464395 DOI: 10.1186/s12940-022-00888-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/29/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND We aimed to explore the association between long-term exposure to particulate matter ≤ 2.5 µm (PM2.5) and metabolic syndrome (MetS) and its components including fasting blood glucose (FBG), blood pressure, triglyceride (TG), high-density lipoprotein cholesterol (HDL-c) and waist circumference among adults and elderly in south China. METHODS We surveyed 6628 participants in the chronic disease and risk factors surveillance conducted in 14 districts of Guangdong province in 2015. MetS was defined based on the recommendation by the Joint Interim Societies' criteria. We used the spatiotemporal land-use regression (LUR) model to estimate the two-year average exposure of ambient air pollutants (PM2.5, PM10, SO2, NO2, and O3) at individual levels. We recorded other covariates by using a structured questionnaire. Generalized linear mixed model was used for analysis. RESULTS A 10-μg/m3 increase in the two-year mean PM2.5 exposure was associated with a higher risk of developing MetS [odd ratio (OR): 1.17, 95% confidence interval (CI): 1.01, 1.35], increased risk of fasting blood glucose level. (OR: 1.18, 95% CI: 1.02, 1.36), and hypertriglyceridemia (OR: 1.36, 95% CI: 1.18, 1.58) in the adjusted/unadjusted models (all P < 0.05). We found significant interaction between PM2.5 and the region, exercise on the high TG levels, and an interaction with the region, age, exercise and grain consumption on FBG (P interaction < 0.05). CONCLUSIONS Long-term exposure to PM2.5 was associated with MetS, dyslipidemia and FBG impairment. Efforts should be made for environment improvement to reduce the burden of MetS-associated non-communicable disease.
Collapse
Affiliation(s)
- Xue-yan Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Si-li Tang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Tao Liu
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou, China
| | - Ye Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Xiao-jun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Ni Xiao
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Chuan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Yan-jun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Zhao-xuan He
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Shu-li Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-liang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rui-lin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Li-feng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Huang CC, Chen YH, Hung CS, Lee JK, Hsu TP, Wu HW, Chuang PY, Chen MF, Ho YL. The Association Between Short-term Exposure to Ambient Air Pollution and Patient-Level Home Blood Pressure Among Patients With Chronic Cardiovascular Diseases in a Web-Based Synchronous Telehealth Care Program: Retrospective Study. JMIR Public Health Surveill 2021; 7:e26605. [PMID: 34100764 PMCID: PMC8238492 DOI: 10.2196/26605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The association between short-term exposure to ambient air pollution and blood pressure has been inconsistent, as reported in the literature. OBJECTIVE This study aimed to investigate the relationship between short-term ambient air pollution exposure and patient-level home blood pressure (HBP). METHODS Patients with chronic cardiovascular diseases from a telehealth care program at a university-affiliated hospital were enrolled as the study population. HBP was measured by patients or their caregivers. Hourly meteorological data (including temperature, relative humidity, wind speed, and rainfall) and ambient air pollution monitoring data (including CO, NO2, particulate matter with a diameter of <10 µm, particulate matter with a diameter of <2.5 µm, and SO2) during the same time period were obtained from the Central Weather Bureau and the Environmental Protection Administration in Taiwan, respectively. A stepwise multivariate repeated generalized estimating equation model was used to assess the significant factors for predicting systolic and diastolic blood pressure (SBP and DBP). RESULTS A total of 253 patients and 110,715 HBP measurements were evaluated in this study. On multivariate analysis, demographic, clinical, meteorological factors, and air pollutants significantly affected the HBP (both SBP and DBP). All 5 air pollutants evaluated in this study showed a significant, nonlinear association with both home SBP and DBP. Compared with demographic and clinical factors, environmental factors (meteorological factors and air pollutants) played a minor yet significant role in the regulation of HBP. CONCLUSIONS Short-term exposure to ambient air pollution significantly affects HBP in patients with chronic cardiovascular disease.
Collapse
Affiliation(s)
- Ching-Chang Huang
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Hsien Chen
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Sheng Hung
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Kuang Lee
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tse-Pin Hsu
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Wen Wu
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yu Chuang
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Fong Chen
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Lwun Ho
- Telehealth Center, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Khosravi A, Rajabi HR, Vakhshoori M, Rabiei K, Hosseini SM, Mansouri A, Roghani-Dehkordi F, Najafian J, Rahimi M, Jafari-Koshki T, Sadeghian B, Shishehforoush M, Lahijanzadeh A, Taheri M, Sarrafzadegan N. Association between ambient fine particulate matter with blood pressure levels among Iranian individuals admitted for cardiac and respiratory diseases: Data from CAPACITY study. ARYA ATHEROSCLEROSIS 2021; 16:178-184. [PMID: 33598038 PMCID: PMC7867310 DOI: 10.22122/arya.v16i4.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The relation between air pollution and cardiovascular diseases (CVDs) risk factors, especially blood pressure (BP) levels, has been less frequently assessed. The aim of this study was evaluating the association between air pollutants of less than 2.5 µm [particulate matter (PM2.5)] and BP indices among individuals admitted with CVDs and pulmonary diseases. METHODS This cross-sectional study was in context of air pollution associated with hospitalization and mortality of CVDs and respiratory diseases (CAPACITY) study. Data of 792 Iranian patients referring to two hospitals in Isfahan, Iran, for cardiovascular or respiratory problems from March 2011 to March 2012 were used for analysis. BP indices including systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP) were obtained from patients’ medical forms and mean PM2.5 concentrations during 24 hours prior to admission of each patient were obtained from Isfahan Department of Environment (DOE). RESULTS Mean ± standard deviation (SD) of participants’ age were 62.5 ± 15.9 years. All BP indices on admission were significantly higher in women compared with men. Adjustment of all potential confounders including age, sex, temperature, wind speed, and dew point revealed that increasing one quartile in PM2.5 concentrations had been associated with 1.98 mmHg raising in SBP at the time of admission [95% confidence interval (CI) = 0.41-3.54, P = 0.010]. Women with cardiac diseases had higher all BP indices with increased PM2.5 concentration [SBP: β: 4.30, 95% CI = 0.90-7.70, P = 0.010; DBP: β: 1.89, 95% CI = 0.09-3.69, P = 0.040; MAP: β: 3.09, 95% CI = 0.68-5.51, P= 0.010, respectively). CONCLUSION Our findings suggest that increasing PM2.5 concentration has been positively associated with raising SBP in total population and all BP indices among women with cardiac problems at admission time. Several comprehensive studies are required for confirming these relations.
Collapse
Affiliation(s)
- Alireza Khosravi
- Professor, Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Rajabi
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrbod Vakhshoori
- General Practitioner, Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Katayoun Rabiei
- General Practitioner, Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohsen Hosseini
- Professor, Department of Biostatics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Asieh Mansouri
- Assistant Professor, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshad Roghani-Dehkordi
- Professor, Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Najafian
- Associate Professor, Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Rahimi
- Associate Professor, Department of Anesthesiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tohid Jafari-Koshki
- Molecular Medicine Research Center, Department of Statistics and Epidemiology, School of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sadeghian
- Central Laboratory and Air Pollution Monitoring, Isfahan Province Environmental Monitoring Center, Isfahan Department of Environment, Isfahan, Iran
| | | | | | - Marzieh Taheri
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Professor, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Xu N, Lv X, Yu C, Guo Y, Zhang K, Wang Q. The association between short-term exposure to extremely high level of ambient fine particulate matter and blood pressure: a panel study in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28113-28122. [PMID: 32415440 DOI: 10.1007/s11356-020-09126-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/29/2020] [Indexed: 05/22/2023]
Abstract
High blood pressure (BP) is known as the main determinant of high cerebrovascular disease levels in China. Many studies discovered the associations between short-term exposure to PM2.5 and BP, while most of those focused on low or medium PM2.5 concentration. The aim of this study was to reveal the association between extremely high level ambient PM2.5 exposure and BP. We conducted a repeated-measures panel study in Beijing, China, during December 1, 2016 to December 28, 2016. BP was monitored daily for all 133 participants. Daily concentration of PM2.5 was obtained from local monitoring sites. A linear mixed-effect model combined with the distributed lag non-linear model was used to evaluate the associations between PM2.5 and daily variations in BP. This study showed short-term exposure to PM2.5 that was significantly associated with increased DBP (on lags of 0-8 days, Beta = 0.12, 95% confidence interval 0.04, 0.20). The single day effect of PM2.5 on DBP had a 2-day lag, and the cumulative effect lags 5 days. The effects of PM2.5 on SBP and DBP on hypertensive adults were significant. The cumulative effect of PM2.5 on SBP and DBP had 2 rapidly increasing periods in hypertensive adults: lags of 0-2 days and lags of 0-7 days to lags of 0-11 days. Our study revealed that short-term exposure in the extreme high level of ambient PM2.5 may increase BP among adults. Hypertensive adults may more sensitive than normotensive adults. The periodic high concentration of ambient PM2.5 might magnify the effect of PM2.5 on BP increase.
Collapse
Affiliation(s)
- Ning Xu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xifang Lv
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuanchuan Yu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yafei Guo
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kexing Zhang
- Xinwu District Center for Disease Control and Prevention, Wuxi, Jiangsu, China
| | - Qiang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
9
|
Ren M, Zhang H, Benmarhnia T, Jalaludin B, Dong H, Wu K, Wang Q, Huang C. Short-term effects of real-time personal PM2.5 exposure on ambulatory blood pressure: A panel study in young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134079. [PMID: 31484088 DOI: 10.1016/j.scitotenv.2019.134079] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/03/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Short-term exposure to PM2.5 has been shown to be associated with changes in blood pressure. However, most of the evidence is based on PM2.5 measurements from fixed stations and resting blood pressure measured at a regular time. OBJECTIVES To evaluate the short-term daily and hourly effects of real-time personal PM2.5 exposure on ambulatory blood pressure, and to compare the effects with those of PM2.5 exposure from fixed stations. METHODS Between April 2017 and December 2017, 37 young adults were recruited in a panel study from a central urban area and a suburban area, to measure personal hourly PM2.5 and ambulatory systolic blood pressure (SBP) as well as diastolic blood pressure (DBP) for three consecutive days. Hourly PM2.5 concentrations were also obtained from the nearest monitoring station operated by Guangdong Environmental Monitoring Center. Generalized additive mixed model was employed to evaluate the effects of PM2.5 on ambulatory blood pressure. RESULTS During the study period, the mean concentration of personal PM2.5 exposure was 60.30 ± 52.14 μg/m3, while the value of PM2.5 from fixed stations was 36.77 ± 21.52 μg/m3. Both personal PM2.5 exposure and exposure from fixed stations averaged over the previous 1 to 3 days decreased blood pressure. During daytime, a 10 μg/m3 increase in 1-day moving average of personal PM2.5 was associated with a 0.54 mmHg (95% CI: -1.03, -0.05) and 0.22 mmHg (95% CI: -0.59, 0.15) decrease in SBP and DBP, respectively. When using PM2.5 exposures from fixed stations, the decrease in SBP and DBP were 0.95 mmHg (95% CI: -1.82, -0.07) and 0.74 mmHg (95% CI: -1.46, -0.03). Stratified analysis showed stronger effects in the central urban area and among males. CONCLUSIONS Both personal PM2.5 exposure and exposure from fixed stations averaged over the previous 1 to 3 days decreased blood pressure. Stronger effects were found in a central urban area and among males.
Collapse
Affiliation(s)
- Meng Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Huanhuan Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Tarik Benmarhnia
- Department of Family Medicine and Public Health & Scripps Institution of Oceanography, University of California San Diego, USA.
| | - Bin Jalaludin
- Population Health Intelligence, Healthy People and Places Unit, South Western Sydney Local Health District, Australia.
| | - Haotian Dong
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Kaipu Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Cunrui Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Li D, Wang JB, Yu ZB, Lin HB, Chen K. Air pollution exposures and blood pressure variation in type-2 diabetes mellitus patients: A retrospective cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:206-210. [PMID: 30605850 DOI: 10.1016/j.ecoenv.2018.12.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 05/06/2023]
Abstract
Air pollution exposure has been associated with hypertension, but limited studies have examined the associations in diabetic patients. We aimed to examine the associations of exposure to air pollution with blood pressure in diabetic patients. We identified patients who were previously diagnosed as type-2 diabetes mellitus from hospital records from January 2013 to May 2017. We used generalized linear models to estimate adverse effects of air pollution on systolic/diastolic blood pressure in diabetic patients. A total of 40,125 patients were enrolled in this study. An IQR increase in PM2.5, PM10, NO2, SO2, and O3 exposure was associated with an increased risk of higher systolic blood pressure level (β = 0.628 for PM2.5, β = 0.758 for PM10, β = 0.766 for NO2, β = 0.516 for SO2, β = 0.482 for O3, all P value < 0.05). Significant associations were observed for some air pollutants and SBP among patients with fasting blood glucose (FBG) ≥ 7.0 mmol/L, normal weight, and younger age. Little evidence was available for the associations between particulate matter (PM) or O3 exposure and diastolic blood pressure in present study. In our study, diabetic patients were at increased risk of higher blood pressure when exposed to higher residential PM, NO2 and SO2. Individuals with lower BMI, younger age, and FBG ≥ 7.0 mmol/L were more susceptible to the adverse effects of ambient air pollution.
Collapse
Affiliation(s)
- Die Li
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, NO. 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310058, China
| | - Jian-Bing Wang
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, NO. 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310058, China; Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang 315100, China.
| | - Zhe-Bin Yu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, NO. 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310058, China
| | - Hong-Bo Lin
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Chen
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, NO. 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310058, China; Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang 315100, China; Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
11
|
The Association between Indoor Air Quality and Adult Blood Pressure Levels in a High-Income Setting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15092026. [PMID: 30227637 PMCID: PMC6164223 DOI: 10.3390/ijerph15092026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
Background: Indoor air pollution is still considered one of the leading causes of morbidity and mortality worldwide. We aimed to investigate the potential association between indoor particulate matter (PM) and fasting clinic blood pressure in adult Australians. Methods: Sixty-three participants residing within the Perth metropolitan area were studied. Participants were aged between 18 and 65 years and free of major medical conditions. We conducted 24-h monitoring of residential PM concentrations, including the size fractions PM1, PM2.5, PM4, and PM10. All participants attended a clinical assessment at Curtin University following a 10–12 h overnight fast. Results: In this study we found that PM1 and PM2.5 were significantly associated with heart rate: a one interquartile range (IQR) increase in PM1 or PM2.5 was associated with a 4–6 beats per minute (bpm) increase in heart rate. Both PM10 and total PM exposure had a significant impact on systolic blood pressure (SBP): a one IQR increase in PM10 and total PM were associated with a 10 mmHg (95% CI: 0.77–20.05) and 12 mmHg (2.28–22.43 mmHg) increase in SBP, respectively. Conclusion: The study findings provide additional support to the thesis that indoor air pollution is an important modifiable factor in the risk of hypertension.
Collapse
|
12
|
Yang BY, Qian Z, Howard SW, Vaughn MG, Fan SJ, Liu KK, Dong GH. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:576-588. [PMID: 29331891 DOI: 10.1016/j.envpol.2018.01.001] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/07/2017] [Accepted: 01/01/2018] [Indexed: 05/21/2023]
Abstract
Although numerous studies have investigated the association of ambient air pollution with hypertension and blood pressure (BP), the results were inconsistent. We performed a comprehensive systematic review and meta-analysis of these studies. Seven international and Chinese databases were searched for studies examining the associations of particulate (diameter<2.5 μm (PM2.5), 2.5-10 μm (PM2.5-10) or >10 μm (PM10)) and gaseous (sulfur dioxide (SO2), nitrogen dioxide (NO2), nitrogen oxides (NOx), ozone (O3), carbon monoxide (CO)) air pollutants with hypertension or BP. Odds ratios (OR), regression coefficients (β) and their 95% confidence intervals were calculated to evaluate the strength of the associations. Subgroup analysis, sensitivity analysis, and meta-regression analysis were also conducted. The overall meta-analysis showed significant associations of long-term exposures to PM2.5 with hypertension (OR = 1.05), and of PM10, PM2.5, and NO2 with DBP (β values: 0.47-0.86 mmHg). In addition, short-term exposures to four (PM10, PM2.5, SO2, NO2), two (PM2.5 and SO2), and four air pollutants (PM10, PM2.5, SO2, and NO2), were significantly associated with hypertension (ORs: 1.05-1.10), SBP (β values: 0.53-0.75 mmHg) and DBP (β values: 0.15-0.64 mmHg), respectively. Stratified analyses showed a generally stronger relationship among studies of men, Asians, North Americans, and areas with higher air pollutant levels. In conclusion, our study indicates a positive association between ambient air pollution and increased BP and hypertension. Geographical and socio-demographic factors may modify the pro-hypertensive effects of air pollutants.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Steven W Howard
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Shu-Jun Fan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Kang-Kang Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Lim YH, Bae HJ, Yi SM, Park E, Lee BE, Hong YC. Vascular and cardiac autonomic function and PM 2.5 constituents among the elderly: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:847-854. [PMID: 28711846 DOI: 10.1016/j.scitotenv.2017.07.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/11/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Although epidemiologic studies have shown an association between the total mass of particulate matter <2.5μm in aerodynamic diameter (PM2.5) and cardiovascular disease, few studies have examined PM2.5 constituents associated with vascular and cardiac autonomic dysfunction. METHODS In this longitudinal study, we investigated the relationship between PM2.5 constituents and blood pressure (BP), and markers of the autonomic nervous system. In 466 elderly subjects residing in communities in Seoul, Korea, we examined 16 constituents, seven sources, and total mass concentrations of PM2.5. We measured the BP, heart rate (HR), and indices of heart rate variability (HRV), such as the standard deviation of normal-to-normal intervals (SDNN), square root of the mean squared differences of successive NN intervals (rMSSD), and two frequency-domain variables (low frequency [LF] and high frequency [HF]). We used linear mixed effects models to assess the association of PM2.5 constituents and sources with cardiovascular markers. RESULTS BP, HR, and rMSSD were associated with concentration of total mass of PM2.5. For each increase of the interquartile range in PM2.5 constituents, systolic and diastolic BP, and HR increased by 2.1-3.3mmHg, 1.2-2.3mmHg, and 1.2-1.9bpm, respectively, while the rMSSD, LF, and HF decreased by 8.1-9.3%, 16.6%, and 20.4%, respectively. Particularly, elemental carbon, sulfate, ammonium, lead, and strontium in the PM2.5 constituents and emissions from oil combustion and incineration were associated with increased BP, HR, and decreased HRV. CONCLUSIONS Our results suggest an association between specific PM2.5 constituents and vascular and cardiac autonomic functions. These findings may provide supportive evidence for developing a pollution reduction plan to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Joo Bae
- Korea Environment Institute, Sejong, Republic of Korea
| | - Seung-Muk Yi
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - EunHa Park
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Bo-Eun Lee
- Department of Environmental Health Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Yun-Chul Hong
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Lin Z, Niu Y, Chen R, Xu W, Li H, Liu C, Cai J, Zhao Z, Kan H, Qiao L. Fine particulate matter constituents and blood pressure in patients with chronic obstructive pulmonary disease: A panel study in Shanghai, China. ENVIRONMENTAL RESEARCH 2017; 159:291-296. [PMID: 28825983 DOI: 10.1016/j.envres.2017.08.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE The evidence is limited about the potentially different health effects of various chemical constituents of fine particulate matter (PM2.5). We thus assessed the acute effects of various chemical constituents of PM2.5 on blood pressure (BP). METHODS We performed a longitudinal panel study with six repeated visits in 28 urban residents with chronic obstructive pulmonary disease in Shanghai, China from May to July, 2014. Twelve (43%) of them took antihypertensive medications. We measured resting BP by using a mercury sphygmomanometer and monitored real-time concentrations of PM2.5 constituents at a nearby site. Based on the linear mixed-effects model, we evaluated the effects of 10 major constituents in PM2.5 on BP, using a single-constituent model and a constituent-residual model after accounting for the multicollinearity. RESULTS We obtained a total of 168 pairs of effective BP measurements during the study period. There are moderate or high correlations among various PM2.5 constituents. An interquartile range increase of PM2.5 (19.1μg/m3) was associated with increments of 1.90mmHg [95% confidence interval (CI): 0.66, 3.13] in systolic BP, 0.68mmHg (95%CI: -0.02, 1.37) in diastolic BP and 1.23mmHg (95%CI: 0.19, 2.29) in pulse pressure. Some constituents of PM2.5, including organic carbon, elemental carbon, nitrate and ammonium, were robustly associated with elevated BP after controlling for total PM2.5 mass and accounting for multi-collinearity. Two constituents (magnesium and calcium) were associated with decreased BP. CONCLUSIONS Organic carbon, elemental carbon, nitrate and ammonium may be mainly responsible for elevated BP from a short-term exposure to PM2.5.
Collapse
Affiliation(s)
- Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Wenxi Xu
- Huangpu District Center for Disease Control and Prevention, Shanghai 200023, China
| | - Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Zhuohui Zhao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| | - Liping Qiao
- State Environmental Protection Key Lab of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
15
|
Li H, Cai J, Chen R, Zhao Z, Ying Z, Wang L, Chen J, Hao K, Kinney PL, Chen H, Kan H. Particulate Matter Exposure and Stress Hormone Levels. Circulation 2017; 136:618-627. [DOI: 10.1161/circulationaha.116.026796] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/26/2017] [Indexed: 11/16/2022]
Abstract
Background:
Exposure to ambient particulate matter (PM) is associated with a number of adverse health outcomes, but potential mechanisms are largely unknown. Metabolomics represents a powerful approach to study global metabolic changes in response to environmental exposures. We therefore conducted this study to investigate changes in serum metabolites in response to the reduction of PM exposure among healthy college students.
Methods:
We conducted a randomized, double-blind crossover trial in 55 healthy college students in Shanghai, China. Real and sham air purifiers were placed in participants’ dormitories in random order for 9 days with a 12-day washout period. Serum metabolites were quantified by using gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-mass spectrometry. Between-treatment differences in metabolites were examined using orthogonal partial least square-discriminant analysis and mixed-effect models. Secondary outcomes include blood pressure, corticotropin-releasing hormone, adrenocorticotropic hormone, insulin resistance, and biomarkers of oxidative stress and inflammation.
Results:
The average personal exposure to PMs with aerodynamic diameters ≤2.5 μm was 24.3 μg/m
3
during the real purification and 53.1 μg/m
3
during the sham purification. Metabolomics analysis showed that higher exposure to PMs with aerodynamic diameters ≤2.5 μm led to significant increases in cortisol, cortisone, epinephrine, and norepinephrine. Between-treatment differences were also observed for glucose, amino acids, fatty acids, and lipids. We found significantly higher blood pressure, hormones, insulin resistance, and biomarkers of oxidative stress and inflammation among individuals exposed to higher PMs with aerodynamic diameters ≤2.5 μm.
Conclusions:
This study suggests that higher PM may induce metabolic alterations that are consistent with activations of the hypothalamus-pituitary-adrenal and sympathetic-adrenal-medullary axes, adding potential mechanistic insights into the adverse health outcomes associated with PM. Furthermore, our study demonstrated short-term reductions in stress hormone following indoor air purification.
Clinical Trial Registration:
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT02712333.
Collapse
Affiliation(s)
- Huichu Li
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Jing Cai
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Renjie Chen
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Zhuohui Zhao
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Zhekang Ying
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Lin Wang
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Jianmin Chen
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Ke Hao
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Patrick L. Kinney
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Honglei Chen
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| | - Haidong Kan
- From School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai, China (H.L., J.C., R.C., Z.Z., Z.Y., H.K.); Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, China (J.C., R.C., Z.Y., L.W., J.C.); Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (K.H.); The Icahn Institute for
| |
Collapse
|