1
|
Talbot LJ, Chabot A, Ross AB, Beckett A, Nguyen P, Fleming A, Chockley PJ, Shepphard H, Wang J, Gottschalk S, DeRenzo C. Redirecting B7-H3.CAR T Cells to Chemokines Expressed in Osteosarcoma Enhances Homing and Antitumor Activity in Preclinical Models. Clin Cancer Res 2024; 30:4434-4449. [PMID: 39101835 PMCID: PMC11443211 DOI: 10.1158/1078-0432.ccr-23-3298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Clinical efficacy of chimeric antigen receptor (CAR) T cells against pediatric osteosarcoma (OS) has been limited. One strategy to improve efficacy may be to drive chemokine-mediated homing of CAR T cells to tumors. We sought to determine the primary chemokines secreted by OS and evaluate the efficacy of B7-H3.CAR T cells expressing the cognate receptors. EXPERIMENTAL DESIGN We developed a pipeline to identify chemokines secreted by OS by correlating RNA-seq data with chemokine protein detected in media from fresh surgical specimens. We identified CXCR2 and CXCR6 as promising receptors for enhancing CAR T-cell homing against OS. We evaluated the homing kinetics and efficiency of CXCR2- and CXCR6.T cells and homing, cytokine production, and antitumor activity of CXCR2- and CXCR6.B7-H3.CAR T cells in vitro and in vivo. RESULTS T cells transgenically expressing CXCR2 or CXCR6 exhibited ligand-specific enhanced migration over T cells modified with nonfunctional control receptors. Differential homing kinetics were observed, with CXCR2.T-cell homing quickly and plateauing early, whereas CXCR6.T cells took longer to home but achieved a similar plateau. When expressed in B7-H3.CAR T cells, CXCR2- and CXCR6 modification conferred enhanced homing toward OS in vitro and in vivo. CXCR2- and CXCR6-B7-H3.CAR-treated mice experienced prolonged survival in a metastatic model compared with B7-H3.CAR T-cell-treated mice. CONCLUSIONS Our patient-based pipeline identified targets for chemokine receptor modification of CAR T cells targeting OS. CXCR2 and CXCR6 expression enhanced the homing and anti-OS activity of B7-H3.CAR T cells. These findings support clinical evaluation of CXCR-modified CAR T cells to improve adoptive cell therapy for patients with OS.
Collapse
MESH Headings
- Osteosarcoma/immunology
- Osteosarcoma/therapy
- Osteosarcoma/pathology
- Osteosarcoma/genetics
- Animals
- Humans
- Mice
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, CXCR6/genetics
- Receptors, CXCR6/metabolism
- Receptors, CXCR6/immunology
- B7 Antigens/genetics
- B7 Antigens/metabolism
- Xenograft Model Antitumor Assays
- Chemokines/metabolism
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Bone Neoplasms/immunology
- Bone Neoplasms/pathology
- Bone Neoplasms/therapy
- Cell Movement
Collapse
Affiliation(s)
- Lindsay J Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashley Chabot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aaron B Ross
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexandra Beckett
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew Fleming
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter J Chockley
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Shepphard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
2
|
Assimakopoulos SF, Bhagani S, Aggeletopoulou I, Tsounis EP, Tsochatzis EA. The role of gut barrier dysfunction in postoperative complications in liver transplantation: pathophysiological and therapeutic considerations. Infection 2024; 52:723-736. [PMID: 38324146 PMCID: PMC11143052 DOI: 10.1007/s15010-024-02182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Gut barrier dysfunction is a pivotal pathophysiological alteration in cirrhosis and end-stage liver disease, which is further aggravated during and after the operational procedures for liver transplantation (LT). In this review, we analyze the multifactorial disruption of all major levels of defense of the gut barrier (biological, mechanical, and immunological) and correlate with clinical implications. METHODS A narrative review of the literature was performed using PubMed, PubMed Central and Google from inception until November 29th, 2023. RESULTS Systemic translocation of indigenous bacteria through this dysfunctional barrier contributes to the early post-LT infectious complications, while endotoxin translocation, through activation of the systemic inflammatory response, is implicated in non-infectious complications including renal dysfunction and graft rejection. Bacterial infections are the main cause of early in-hospital mortality of LT patients and unraveling the pathophysiology of gut barrier failure is of outmost importance. CONCLUSION A pathophysiology-based approach to prophylactic or therapeutic interventions may lead to enhancement of gut barrier function eliminating its detrimental consequences and leading to better outcomes for LT patients.
Collapse
Affiliation(s)
- Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504, Patras, Greece.
| | - Sanjay Bhagani
- Department of Infectious Diseases/HIV Medicine, Royal Free Hospital, London, UK
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| |
Collapse
|
3
|
Dissecting Platelet's Role in Viral Infection: A Double-Edged Effector of the Immune System. Int J Mol Sci 2023; 24:ijms24032009. [PMID: 36768333 PMCID: PMC9916939 DOI: 10.3390/ijms24032009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Platelets play a major role in the processes of primary hemostasis and pathological inflammation-induced thrombosis. In the mid-2000s, several studies expanded the role of these particular cells, placing them in the "immune continuum" and thus changing the understanding of their function in both innate and adaptive immune responses. Among the many receptors they express on their surface, platelets express Toll-Like Receptors (TLRs), key receptors in the inflammatory cell-cell reaction and in the interaction between innate and adaptive immunity. In response to an infectious stimulus, platelets will become differentially activated. Platelet activation is variable depending on whether platelets are activated by a hemostatic or pathogen stimulus. This review highlights the role that platelets play in platelet modulation count and adaptative immune response during viral infection.
Collapse
|
4
|
Mariotti A, Ezzraimi AE, Camoin-Jau L. Effect of antiplatelet agents on Escherichia coli sepsis mechanisms: A review. Front Microbiol 2022; 13:1043334. [PMID: 36569083 PMCID: PMC9780297 DOI: 10.3389/fmicb.2022.1043334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Despite ever-increasing improvements in the prognosis of sepsis, this condition remains a frequent cause of hospitalization and mortality in Western countries. Sepsis exposes the patient to multiple complications, including thrombotic complications, due to the ability of circulating bacteria to activate platelets. One of the bacteria most frequently implicated in sepsis, Escherichia coli, a Gram-negative bacillus, has been described as being capable of inducing platelet activation during sepsis. However, to date, the mechanisms involved in this activation have not been clearly established, due to their multiple characteristics. Many signaling pathways are thought to be involved. At the same time, reports on the use of antiplatelet agents in sepsis to reduce platelet activation have been published, with variable results. To date, their use in sepsis remains controversial. The aim of this review is to summarize the currently available knowledge on the mechanisms of platelet activation secondary to Escherichia coli sepsis, as well as to provide an update on the effects of antiplatelet agents in these pathological circumstances.
Collapse
Affiliation(s)
- Antoine Mariotti
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France
| | - Amina Ezzeroug Ezzraimi
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France
| | - Laurence Camoin-Jau
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France,*Correspondence: Laurence Camoin-Jau,
| |
Collapse
|
5
|
Genetic Associations and Differential mRNA Expression Levels of Host Genes Suggest a Viral Trigger for Endemic Pemphigus Foliaceus. Viruses 2022; 14:v14050879. [PMID: 35632621 PMCID: PMC9144834 DOI: 10.3390/v14050879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
The long search for the environmental trigger of the endemic pemphigus foliaceus (EPF, fogo selvagem) has not yet resulted in any tangible findings. Here, we searched for genetic associations and the differential expression of host genes involved in early viral infections and innate antiviral defense. Genetic variants could alter the structure, expression sites, or levels of the gene products, impacting their functions. By analyzing 3063 variants of 166 candidate genes in 227 EPF patients and 194 controls, we found 12 variants within 11 genes associated with differential susceptibility (p < 0.005) to EPF. The products of genes TRIM5, TPCN2, EIF4E, EIF4E3, NUP37, NUP50, NUP88, TPR, USP15, IRF8, and JAK1 are involved in different mechanisms of viral control, for example, the regulation of viral entry into the host cell or recognition of viral nucleic acids and proteins. Only two of nine variants were also associated in an independent German cohort of sporadic PF (75 patients, 150 controls), aligning with our hypothesis that antiviral host genes play a major role in EPF due to a specific virus−human interaction in the endemic region. Moreover, CCL5, P4HB, and APOBEC3G mRNA levels were increased (p < 0.001) in CD4+ T lymphocytes of EPF patients. Because there is limited or no evidence that these genes are involved in autoimmunity, their crucial role in antiviral responses and the associations that we observed support the hypothesis of a viral trigger for EPF, presumably a still unnoticed flavivirus. This work opens new frontiers in searching for the trigger of EPF, with the potential to advance translational research that aims for disease prevention and treatment.
Collapse
|
6
|
Patil CD, Suryawanshi R, Ames J, Koganti R, Agelidis A, Kapoor D, Yadavalli T, Koujah L, Tseng HC, Shukla D. Intrinsic Antiviral Activity of Optineurin Prevents Hyperproliferation of a Primary Herpes Simplex Virus Type 2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:63-73. [PMID: 34880107 PMCID: PMC9015683 DOI: 10.4049/jimmunol.2100472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Very little knowledge exists on virus-specific host cell intrinsic mechanisms that prevent hyperproliferation of primary HSV type 2 (HSV-2) genital infections. In this study, we provide evidence that the Nemo-related protein, optineurin (OPTN), plays a key role in restricting HSV-2 infection both in vitro and in vivo. Contrary to previous reports regarding the proviral role of OPTN during Sendai virus infection, we demonstrate that lack of OPTN in cells causes enhanced virus production. OPTN deficiency negatively affects the host autophagy response and results in a marked reduction of CCL5 induction. OPTN knockout (OPTN-/-) mice display exacerbated genital disease and dysregulated T cell frequencies in infected tissues and lymph nodes. A human transcriptomic profile dataset provides further credence that a strong positive correlation exists between CCL5 upregulation and OPTN expression during HSV-2 genital infection. Our findings underscore a previously unknown OPTN/CCL5 nexus that restricts hyperproliferative spread of primary HSV-2 infection, which may constitute an intrinsic host defense mechanism against herpesviruses in general.
Collapse
Affiliation(s)
- Chandrashekhar D Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lulia Koujah
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Henry C Tseng
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27713, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.,Corresponding author. Phone number: 312-355-0908, Fax: 312-996-7773,
| |
Collapse
|
7
|
Promoting platelets is a therapeutic option to combat severe viral infection of the lung. Blood Adv 2021; 4:1640-1642. [PMID: 32315397 PMCID: PMC7189284 DOI: 10.1182/bloodadvances.2020001669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
|
8
|
Li M, Chen L, Gao Y, Li M, Wang X, Qiang L, Wang X. Recent advances targeting C-C chemokine receptor type 2 for liver diseases in monocyte/macrophage. Liver Int 2020; 40:2928-2936. [PMID: 33025657 DOI: 10.1111/liv.14687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Liver plays a critical role in metabolism, nutrient storage and detoxification. Emergency signals or appropriate immune response leads to pathological inflammation and breaks the steady state when liver dysfunction appears, which makes body more susceptible to chronic liver infection, autoimmune diseases and tumour. Compelling proof has illustrated the non-redundant importance of C-C chemokine receptor type 2 (CCR2), one of G-protein-coupled receptors, in different diseases. Selectively expressed on the surface of cells, CCR2 is involved in various signalling pathways and regulates the migration of cells. Especially, a peculiar role of CCR2 has been identified within decades in the onset and progression of hepatic diseases, which led to particular focusing on CCR2 as a new therapeutic and diagnostic target for non-alcoholic fatty liver disease and hepatocellular carcinoma. In this review, we discuss the effect of CCR2 in monocytes/macrophages on liver diseases. The application and translation of the decades of discoveries into therapies promise novel approaches in the treatment of liver disease.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Gao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Singh A, Bisht P, Bhattacharya S, Guchhait P. Role of Platelet Cytokines in Dengue Virus Infection. Front Cell Infect Microbiol 2020; 10:561366. [PMID: 33102253 PMCID: PMC7554584 DOI: 10.3389/fcimb.2020.561366] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
Platelets are anucleated blood cells derived from bone marrow megakaryocytes and play a crucial role in hemostasis and thrombosis. Platelets contain specialized storage organelles, called alpha-granules, contents of which are rich in cytokines such as C-X-C Motif Chemokine Ligand (CXCL) 1/4/7, (C-C motif) ligand (CCL) 5/3, CXCL8 (also called as interleukin 8, IL-8), and transforming growth factor β (TGF-β). Activation of platelets lead to degranulation and release of contents into the plasma. Platelet activation is a common event in many viral infections including human immunodeficiency virus (HIV), H1N1 influenza, Hepatitis C virus (HCV), Ebola virus (EBV), and Dengue virus (DENV). The cytokines CXCL8, CCL5 (also known as Regulated on Activation, Normal T Expressed and Secreted, RANTES), tumor necrosis factor α (TNF-α), CXCL1/5 and CCL3 released, promote development of a pro-inflammatory state along with the recruitment of other immune cells to the site of infection. Platelets also interact with Monocytes and Neutrophils and facilitate their activation to release different cytokines which further enhances inflammation. Upon activation, platelets also secrete factors such as CXCL4 (also known as platelet factor, PF4), CCL5 and fibrinopeptides which are critical regulators of replication and propagation of several viruses in the host. Studies suggest that CXCL4 can both inhibit as well as enhance HIV1 infection. Data from our lab show that CXCL4 inhibits interferon (IFN) pathway and promotes DENV replication in monocytes in vitro and in patients significantly. Inhibition of CXCL4 mediated signaling results in increased IFN production and suppressed DENV and JEV replication in monocytes. In this review, we discuss the role of platelets in viral disease progression with a focus on dengue infection.
Collapse
Affiliation(s)
- Anamika Singh
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Piyush Bisht
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sulagna Bhattacharya
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
10
|
Effect of bovine leukemia virus (BLV) infection on bovine mammary epithelial cells RNA-seq transcriptome profile. PLoS One 2020; 15:e0234939. [PMID: 32579585 PMCID: PMC7313955 DOI: 10.1371/journal.pone.0234939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023] Open
Abstract
Bovine leukemia virus (BLV) is a δ-retrovirus responsible for Enzootic Bovine Leukosis (EBL), a lymphoproliferative disease that affects cattle. The virus causes immune system deregulation, favoring the development of secondary infections. In that context, mastitis incidence is believed to be increased in BLV infected cattle. The aim of this study was to analyze the transcriptome profile of a BLV infected mammary epithelial cell line (MAC-T). Our results show that BLV infected MAC-T cells have an altered expression of IFN I signal pathway and genes involved in defense response to virus, as well as a collagen catabolic process and some protooncogenes and tumor suppressor genes. Our results provide evidence to better understand the effect of BLV on bovine mammary epithelial cell's immune response.
Collapse
|
11
|
|
12
|
Alex Pasternak J, MacPhee DJ, Harding JCS. Fetal cytokine response to porcine reproductive and respiratory syndrome virus-2 infection. Cytokine 2019; 126:154883. [PMID: 31629108 DOI: 10.1016/j.cyto.2019.154883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
To understand the fetal immune response to porcine reproductive and respiratory virus-2 (PRRSV) and to evaluate the association with fetal viability, pregnant gilts were challenged on gestation day 85 and euthanized 21 days post infection. Based on preservation status and viral load in serum and thymus, fetuses were classified as either uninfected-viable (UNIF), high viral load viable (HV-VIA), or high viral load meconium stained (HV-MEC) and were compared with age matched control (CON) fetuses derived from mock infected gilts. Gene expression of IFNB, IFNG, CCL2, CCL5, CXCL10 and IL10, were all found to be significantly upregulated in the thymus and spleen of both high viral load groups. UNIF fetuses remained largely unaffected, with only small upregulations in IFNA and IL10 in the thymus, and IFNA, CCL5 and CXCL10 in the spleen. Regarding fetal viability, expression of CCL5 was significantly elevated in the thymus and spleen of HV-MEC compared to HV-VIA fetuses. The concentrations of IFNα, IFNγ, TNFα and CCL2 were elevated in the sera of all infected fetuses, whereas IFNβ was below the detection limit in all fetal sera. Additional gene expression analysis in the thymus showed significant downregulation of CDK1, CDK2 and CDK4, and upregulation of the inhibitor CDKN1A, suggesting altered regulation of cell cycle progression. Collectively, these results show near complete compartmentalization of the fetal immune response to infected fetuses and suggest this immune response is not a major contributor to fetal death.
Collapse
Affiliation(s)
- J Alex Pasternak
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Dr., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| | - Daniel J MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, 52 Campus Dr., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Dr., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
13
|
Singh P, Venkatesan A, Padmanabhan P, Gulyas B, Dass J FP. Codon usage of human hepatitis C virus clearance genes in relation to its expression. J Cell Biochem 2019; 121:534-544. [PMID: 31310376 DOI: 10.1002/jcb.29290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 11/08/2022]
Abstract
Hepatitis C virus (HCV) infection is among the leading causes of hepatocellular carcinoma and liver cirrhosis globally, with a high economic burden. The disease progression is well established, but less is known about the spontaneous HCV infection clearance. This study tries to establish the relationship between codon biasness and expression of HCV clearance candidate genes in normal and HCV infected liver tissues. A total of 112 coding sequences comprising 151 679 codons were subjected to the computation of codon indices, namely relative synonymous codon usage, an effective number of codon (Nc), frequency of optimal codon, codon adaptation index, codon bias index, and base compositions. Codon indices report of GC3s, GC12, hydropathicity, and aromaticity implicates both mutational and translational selection in the candidate gene set. This was further correlated with the differentially expressed genes among the selected genes using BioGPS. A significant correlation is observed between the gene expression of normal liver and cancerous liver tissues with codon bias (Nc). Gene expression is also correlated with relative codon bias values, indicating that CCL5, APOA2, CD28, IFITM1, and TNFSF4 genes have higher expression. These results are quite encouraging in selecting the high responsive genes in HCV clearance. However, there could be additional genes which could also orchestrate the clearance role with the above mentioned first line of defensive genes.
Collapse
Affiliation(s)
- Pratichi Singh
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Arthi Venkatesan
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Parasuraman Padmanabhan
- Centre for Neuroimaging Research at NTU (CeNReN), Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Balazs Gulyas
- Centre for Neuroimaging Research at NTU (CeNReN), Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Febin Prabhu Dass J
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
Immune Dysfunction and Albumin-Related Immunity in Liver Cirrhosis. Mediators Inflamm 2019; 2019:7537649. [PMID: 30930689 PMCID: PMC6410448 DOI: 10.1155/2019/7537649] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/15/2019] [Accepted: 01/26/2019] [Indexed: 02/07/2023] Open
Abstract
Liver cirrhosis yearly causes 1.2 million deaths worldwide, ranking as the 10th leading cause of death in the most developed countries. High susceptibility to infections along with a significant risk for infection-related mortality justifies the description of liver cirrhosis as the world's most common immunodeficiency syndrome. Liver cirrhosis is an end-stage organic disease hallmarked by a multifaceted immune dysfunction due to deterioration of antimicrobial recognition and elimination mechanisms in macrophages along with an impaired antigen presentation ability in circulating monocytes. Bacterial translocation supports—and is supported by—uncontrolled activation of immune cell responses and/or loss of toll-like receptor (TLR) tolerance, which can turn exaggerated inflammatory responses to systemic inflammation. Lipopolysaccharide (LPS) or endotoxin boosts systemic inflammatory activity through activation of TLR-2- and TLR-4-dependent pathways and facilitate a massive production of cytokines. This, in turn, results into elevated secretion of reactive oxygen species (ROS), which further enhances intestinal hyperpermeability and thus sustains a vicious circle of events widely known as “leaky gut.” Albumin can be of particular benefit in cirrhotic patients with spontaneous bacterial peritonitis and/or hepatorenal syndrome type of acute kidney injury (HRS-AKI) due to anti-inflammatory and antioxidative stress as well as volume-expanding properties and endothelial-stabilizing attributes. However, presence of autoantibodies against albumin in patients with liver cirrhosis has been described. Although previous research suggested that these antibodies should be regarded as naturally occurring antibodies (NOA), the origin of the antialbumin immune response is obscure. High occurrence of NAO/albumin complexes in patients with liver disease might reflect a limited clearance capacity due to bypassing portal circulation. Moreover, high burden of oxidized albumin is associated with less favorable outcome in patients with liver cirrhosis. To date, there is no data available as to whether oxidized forms of albumin result in neoepitopes recognized by the immune system. Nevertheless, it is reasonable to hypothesize that these alterations may have the potential to induce antialbumin immune responses and thus favor systemic inflammation.
Collapse
|
15
|
Ojha A, Bhasym A, Mukherjee S, Annarapu GK, Bhakuni T, Akbar I, Seth T, Vikram NK, Vrati S, Basu A, Bhattacharyya S, Guchhait P. Platelet factor 4 promotes rapid replication and propagation of Dengue and Japanese encephalitis viruses. EBioMedicine 2018; 39:332-347. [PMID: 30527622 PMCID: PMC6354622 DOI: 10.1016/j.ebiom.2018.11.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/11/2018] [Accepted: 11/23/2018] [Indexed: 11/25/2022] Open
Abstract
Background Activated platelets release cytokines/proteins including CXCL4 (PF4), CCL5 and fibrinopeptides, which regulate infection of several pathogenic viruses such as HIV, H1N1 and HCV in human. Since platelet activation is the hallmark of Dengue virus (DV) infection, we investigated the role of platelets in DV replication and also in a closely related Japanese Encephalitis virus (JEV). Methods and findings Microscopy and PCR analysis revealed a 4-fold increase in DV replication in primary monocytes or monocytic THP-1 cells in vitro upon incubation with either DV-activated platelets or supernatant from DV-activated platelets. The mass spectrometry based proteomic data from extra-nuclear fraction of above THP-1 lysate showed the crucial association of PF4 with enhanced DV replication. Our cytokine analysis and immunoblot assay showed significant inhibition of IFN-α production in monocytes via p38MAPK-STAT2-IRF9 axis. Blocking PF4 through antibodies or its receptor CXCR3 through inhibitor i.e. AMG487, significantly rescued production of IFN-α resulting in potent inhibition of DV replication in monocytes. Further, flow cytometry and ELISA data showed the direct correlation between elevated plasma PF4 with increased viral NS1 in circulating monocytes in febrile DV patients at day-3 of fever than day-9. Similarly, PF4 also showed direct effects in promoting the JEV replication in monocytes and microglia cells in vitro. The in vitro results were also validated in mice, where AMG487 treatment significantly improved the survival of JEV infected animals. Interpretation: Our study suggests that PF4-CXCR3-IFN axis is a potential target for developing treatment regimen against viral infections including JEV and DV.
Collapse
Affiliation(s)
- Amrita Ojha
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Angika Bhasym
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | | | - Gowtham K Annarapu
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Teena Bhakuni
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Tulika Seth
- All India Institute of Medical Sciences, New Delhi, India
| | - Naval K Vikram
- All India Institute of Medical Sciences, New Delhi, India
| | - Sudhanshu Vrati
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Sankar Bhattacharyya
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
16
|
Umemura T, Yamazaki T, Joshita S, Sugiura A, Fujimori N, Matsumoto A, Ota M, Tanaka E. Quantitative analysis of serum chemokines associated with treatment failure of direct-acting antivirals in chronic hepatitis C. Cytokine 2018; 111:357-363. [PMID: 30296712 DOI: 10.1016/j.cyto.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
Although serum chemokine levels have been reported to influence the outcome of interferon-based treatment in patients with chronic hepatitis C, their effect on the hepatitis C virus (HCV) response to direct-acting antiviral agents (DAAs), which can achieve high rates of a sustained virological response (SVR), is largely unknown. To clarify this relationship, 9 chemokines (eotaxin, GRO-α, IL-8, IP-10, MCP-1, MIP-1α, MIP-1β, RANTES, and SDF-1α) were quantified before, during, and after DAA treatment using serum samples obtained from 57 patients with chronic hepatitis C. All baseline median chemokine levels were significantly higher in patients with chronic hepatitis C than in healthy subjects (P < 0.05). In particular, lower MIP-1β (≤71.5 pg/mL) and higher RANTES (>671.5 pg/mL) levels were significantly associated with patients who failed to clear HCV RNA (P = 0.0039 and 0.013, respectively). Prediction of a clinical response based on a combination of these chemokines demonstrated high sensitivity (82%), specificity (85%), negative predictive value (95%), and area under the curve (0.833). The non-SVR rate (56.3%; 9 of 16) was significantly higher in patients with low MIP-1β and high RANTES compared with other combinations. Moreover, baseline MIP-1β and RANTES were both additive and independent for predicting a non-SVR. Apart from an increase in eotaxin, all chemokines became decreased in patients with a SVR. In conclusion, a combination of serum MIP-1β and RANTES levels may be predictive of a treatment response to DAAs in Japanese patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Takeji Umemura
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan; Research Center for Next Generation Medicine, Shinshu University, Matsumoto, Japan.
| | - Tomoo Yamazaki
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan; Research Center for Next Generation Medicine, Shinshu University, Matsumoto, Japan
| | - Ayumi Sugiura
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoyuki Fujimori
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akihiro Matsumoto
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eiji Tanaka
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
17
|
Genetic variants in chemokine CC subfamily genes influence hepatitis C virus viral clearance. J Hum Genet 2018; 63:831-839. [PMID: 29703961 DOI: 10.1038/s10038-018-0452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/08/2022]
Abstract
Chemokine genes may influence both hepatitis C virus (HCV) spontaneous clearance in acute infection and treatment response in chronic infection. We conducted this study to evaluate whether the genetic variants in several CC family genes influence HCV spontaneous clearance and treatment response. The current research genotyped eight SNPs, including CCR1 rs3733096, rs13096371, CCR5 rs746492, rs1800874, CCL3 rs1130371, CCL5 rs3817656, CCL8 rs1133763, CCL14 rs854625, to explore their associations with HCV spontaneous clearance and response to treatment in two populations. We identified that the CCR1 rs3733096 (dominant model: adjusted OR = 2.29, 95% CI = 1.49-3.53, additive model: adjusted OR = 2.21, 95% CI = 1.50-3.25) and CCL5 rs3817656 (dominant model: OR = 1.37, 95% CI = 1.10-1.70, additive model: OR = 1.33, 95% CI = 1.12-1.58) were associated with HCV spontaneous clearance in Chinese Han population, while we found no association with treatment response. Moreover, the expression quantitative trait loci (eQTL) analysis showed that the risk alleles of rs3817656 were significantly associated with downregulated expression of CCL5 in whole blood (P < 0.001). The polymorphism of CCR1 rs3733096 and CCL5 rs3817656 are associated with spontaneous clearance of HCV in Chinese Han population.
Collapse
|
18
|
Wang A, Zhang F, Xu H, Xu M, Cao Y, Wang C, Xu Y, Su M, Zhang M, Zhuge Y. TWEAK/Fn14 promotes pro-inflammatory cytokine secretion in hepatic stellate cells via NF-κB/STAT3 pathways. Mol Immunol 2017; 87:67-75. [DOI: 10.1016/j.molimm.2017.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/04/2017] [Accepted: 04/04/2017] [Indexed: 02/08/2023]
|
19
|
Pryke KM, Abraham J, Sali TM, Gall BJ, Archer I, Liu A, Bambina S, Baird J, Gough M, Chakhtoura M, Haddad EK, Kirby IT, Nilsen A, Streblow DN, Hirsch AJ, Smith JL, DeFilippis VR. A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. mBio 2017; 8:e00452-17. [PMID: 28465426 PMCID: PMC5414005 DOI: 10.1128/mbio.00452-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 01/23/2023] Open
Abstract
The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy's potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity.IMPORTANCE The type I interferon system is part of the innate immune response that has evolved in vertebrates as a first line of broad-spectrum immunological defense against an unknowable diversity of microbial, especially viral, pathogens. Here, we characterize a novel small molecule that artificially activates this response and in so doing generates a cellular state antagonistic to growth of currently emerging viruses: Zika virus, Chikungunya virus, and dengue virus. We also show that this molecule is capable of eliciting cellular responses that are predictive of establishment of adaptive immunity. As such, this agent may represent a powerful and multipronged therapeutic tool to combat emerging and other viral diseases.
Collapse
Affiliation(s)
- Kara M Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tina M Sali
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Bryan J Gall
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Iris Archer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Andrew Liu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Jason Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Michael Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, Oregon, USA
| | - Marita Chakhtoura
- Division of Infectious Diseases and HIV Medicine, Drexel College of Medicine, Philadelphia, Pennsylvania, USA
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ilsa T Kirby
- Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jessica L Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Victor R DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
20
|
Association of TNF-α and CCL5 with response to interferon-based therapy in patients with HCV 1 genotype. Clin Exp Hepatol 2017; 3:16-22. [PMID: 28856285 PMCID: PMC5497450 DOI: 10.5114/ceh.2017.65279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023] Open
Abstract
Aim of the study To evaluate the role of potential genetic predictors –308G/A TNF-α and –403G/A CCL5 in treatment for HCV 1 genotype. Material and methods Treatment results of 130 patients with chronic hepatitis C 1 genotype according to different genotypes of IL28B, CCL5, and TNF-α were analysed using multiple logistic regression. Results IL28B genotypes CC/CT/TT were found in 27 (20.8%), 74 (56.9%), and 29 (22.3%) patients. Genotypes GG/GA/AA of –308G/A TNF-α were revealed in 98 (75.4%), 30 (23.1%), and 2 (1.5%) patients. Genotypes GG/GA/AA of –403G/A CCL5 were revealed in 86 (66.2%), 39 (30%), and 5 (3.8%) patients, respectively. The previously known effect of IL28B was observed. IL28B TT genotype decreased end of treatment response (EOTR) rates by a factor of 29.0 (95% CI: 6.4-183). The combination of CCL5 GG and IL28B CT genotypes increased the risk of failure to achieve EOTR by a factor of 28.5 (95% CI: 7.2-160). Genotypes GA and AA of TNF-α (–308) G/A SNP increased the risk of relapse in patients who achieved EOTR (OR = 9.4; 95% CI: 2.4-48). Conclusions Practitioners may benefit from using these predictors when considering indications for the antiviral therapy and deciding on the treatment regimen.
Collapse
|
21
|
Abstract
INTRODUCTION Acquired thrombocytopenia recognizes a myriad of causes. Among these, infectious diseases play a relevant role since a low platelet count is commonplace along with other abnormal laboratory data. Areas covered: This narrative review, after a brief presentation of the possible pathogenic mechanisms, is focused on the most prevalent infections associated with thrombocytopenia, namely those attributable to hepatitis C virus (HCV), human immunodeficiency virus (HIV) and Helicobacter pylori. Expert commentary: An underlying HCV or HIV infection should always be suspected in patients at risk who present with isolated thrombocytopenia. The eradication of Helicobacter pylori is advisable in infected patients with secondary immune thrombocytopenia, because this will increase the platelet count in a substantial number of cases, thus avoiding more aggressive and prolonged treatments.
Collapse
Affiliation(s)
- Massimo Franchini
- a Department of Hematology and Transfusion Medicine , Carlo Poma Hospital , Mantova , Italy
| | - Dino Veneri
- b Department of Medicine, Section of Haematology , University of Verona , Verona , Italy
| | - Giuseppe Lippi
- c Section of Clinical Biochemistry , University of Verona , Verona , Italy
| |
Collapse
|
22
|
Gonzalez-Aldaco K, Rebello Pinho JR, Roman S, Gleyzer K, Fierro NA, Oyakawa L, Ramos-Lopez O, Ferraz Santana RA, Sitnik R, Panduro A. Association with Spontaneous Hepatitis C Viral Clearance and Genetic Differentiation of IL28B/IFNL4 Haplotypes in Populations from Mexico. PLoS One 2016; 11:e0146258. [PMID: 26741362 PMCID: PMC4704808 DOI: 10.1371/journal.pone.0146258] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
AIM To analyze the genetic heterogeneity of the Amerindian and admixed population (Mestizos) based on the IL28B (rs12979860, rs8099917) and IFNL4 (rs368234815) haplotypes, and their association with spontaneous clearance (SC) and liver damage in patients with hepatitis C infection from West Mexico. METHODS A total of 711 subjects from West Mexico (181 Amerindians and 530 Mestizos) were studied for the prevalence of IL28B (rs12979860C/T, rs8099917G/T) and IFNL4 (rs368234815∆G/TT) genotypes. A case-control study was performed in 234 treatment-naïve HCV Mestizos (149 chronic hepatitis C and 85 with SC) for the association of haplotypes with SC and liver damage. A real-time PCR assay was used for genotyping, and transitional elastography staged liver damage. RESULTS Significant Fst-values indicated differentiation between the studied populations. The frequencies of the protective C, T, TT alleles were significantly lower in the Amerindians than in Mestizos (p<0.05). The r2 measure of linkage disequilibrium was significant for all variants and the T/G/ΔG risk haplotype predominated in Amerindians and secondly in Mestizos. The protective C/T/TT haplotype was associated with SC (OR = 0.46, 95% IC 0.22-0.95, p = 0.03) and less liver damage (OR = 0.32, 95% IC 0.10-0.97, p = 0.04) in chronic patients. The Structure software analysis demonstrated no significant differences in ancestry among SC and chronic patients. CONCLUSIONS West Mexico's population is genetically heterogeneous at the IL28B/IFNL4 polymorphisms. The T/G/ΔG high-risk haplotype predominated in Amerindians and the beneficial alternative haplotype in Mestizos. The C/T/TT haplotype was associated with SC and less liver damage in chronically infected Mestizo patients.
Collapse
Affiliation(s)
- Karina Gonzalez-Aldaco
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara, Jalisco Mexico and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - João R. Rebello Pinho
- Albert Einstein Medicina Diagnóstica, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Laboratorio de Gastroenterologia e Hepatologia Tropical. Instituto de Medicina Tropical, Departamento de Gastroenterologia, Faculdade da Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sonia Roman
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara, Jalisco Mexico and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ketti Gleyzer
- Departamento de Patologia Clínica e Anatomia Patológica, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Nora A. Fierro
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara, Jalisco Mexico and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Leticia Oyakawa
- Albert Einstein Medicina Diagnóstica, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Omar Ramos-Lopez
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara, Jalisco Mexico and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rubia A. Ferraz Santana
- Albert Einstein Medicina Diagnóstica, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Roberta Sitnik
- Albert Einstein Medicina Diagnóstica, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Arturo Panduro
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara, Jalisco Mexico and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
23
|
Jiang X, Kanda T, Wu S, Nakamoto S, Nakamura M, Sasaki R, Haga Y, Wakita T, Shirasawa H, Yokosuka O. Hepatitis C Virus Nonstructural Protein 5A Inhibits MG132-Induced Apoptosis of Hepatocytes in Line with NF-κB-Nuclear Translocation. PLoS One 2015; 10:e0131973. [PMID: 26133378 PMCID: PMC4489642 DOI: 10.1371/journal.pone.0131973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Background Hepatitis C virus (HCV) infection is one of the major causes of cirrhosis and hepatocellular carcinoma. HCV nonstructural protein 5A (NS5A) is an attractive antiviral target and plays an important role in HCV replication as well as hepatocarcinogenesis. The aim of this study was to assess the effect of HCV NS5A protein in the abrogation of apoptotic cell death induced by the proteasome inhibitor MG132. Methods Apoptotic responses to MG132 and the expression of molecules involved in NF-κB signaling pathways in human hepatocytes were investigated with or without the expression of HCV NS5A. Results HCV NS5A protected HepG2 cells against MG132-induced apoptosis, in line with NF-κB-nuclear translocation. A similar NF-κB-nuclear translocation was observed in Huh7 cells infected with HCV JFH1. In agreement with this, after treatment with MG132, HCV NS5A could elevate the transcription of several NF-κB target genes such as BCL2 and BCLXL to inhibit MG132-induced apoptosis in hepatocytes. HCV HCV NS5A also enhanced phosphorylation of IκBα. Consistent with a conferred prosurvival advantage, HCV NS5A reduced MG132-induced poly(adenosine diphosphate-ribose) polymerase cleavage. Conclusions HCV NS5A expression enhances phosphorylation of IκBα, liberates NF-κB for nuclear translocation and downregulates MG132-induced apoptotic pathways in human hepatocytes. It is possible that the disruption of proteasome-associated apoptosis plays a role in the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Xia Jiang
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tatsuo Kanda
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
- * E-mail:
| | - Shuang Wu
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shingo Nakamoto
- Departments of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Masato Nakamura
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Reina Sasaki
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Yuki Haga
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Shirasawa
- Departments of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Osamu Yokosuka
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
24
|
Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015; 6:98. [PMID: 25798138 PMCID: PMC4351644 DOI: 10.3389/fimmu.2015.00098] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets contribute to processes beyond thrombus formation and may play a so far underestimated role as an immune cell in various circumstances. This review outlines immune functions of platelets in host defense, but also how they may contribute to mechanisms of infectious diseases. A particular emphasis is placed on the interaction of platelets with other immune cells. Furthermore, this article outlines the features of atherosclerosis as an inflammatory vascular disease highlighting the role of platelet crosstalk with cellular and soluble factors involved in atheroprogression. Understanding, how platelets influence these processes of vascular remodeling will shed light on their role for tissue homeostasis beyond intravascular thrombosis. Finally, translational implications of platelet-mediated inflammation in atherosclerosis are discussed.
Collapse
Affiliation(s)
- Henry M. Nording
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Peter Seizer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Harald F. Langer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Hauff P, Gottwald U, Ocker M. Early to Phase II drugs currently under investigation for the treatment of liver fibrosis. Expert Opin Investig Drugs 2014; 24:309-27. [PMID: 25547844 DOI: 10.1517/13543784.2015.997874] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Chronic liver diseases represent a high unmet medical need and are characterized by persistent inflammation, parenchymal damage and fibrotic remodeling, leading eventually to cirrhosis and hepatic failure. Besides the persisting high prevalence of chronic viral hepatitis B and C, the dramatic increase in nonalcoholic steatohepatitis is now considered to be a major pathophysiologic driver for fibrosis development and subsequently cirrhosis. Increasing evidence suggests that also liver cirrhosis can regress when treated adequately. AREAS COVERED Herein, the authors review the underlying pathophysiologic mechanisms leading to fibrotic remodeling in the liver. They also highlight the options for novel treatment strategies by using molecular targeted agents. EXPERT OPINION New in vitro and preclinical animal models, and the careful selection of patients with high disease dynamics for clinical studies, provide a sound basis for the clinical development of antifibrotic agents in humans. Surrogate parameters of liver function, inflammation, tissue remodeling and damage, as well as noninvasive imaging techniques, can be applied in clinical trials to provide fast readouts and novel and reliable endpoints for trial design, and provide an attractive regulatory environment for this emerging disease area.
Collapse
|
26
|
Assinger A. Platelets and infection - an emerging role of platelets in viral infection. Front Immunol 2014; 5:649. [PMID: 25566260 PMCID: PMC4270245 DOI: 10.3389/fimmu.2014.00649] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022] Open
Abstract
Platelets are anucleate blood cells that play a crucial role in the maintenance of hemostasis. While platelet activation and elevated platelet counts (thrombocytosis) are associated with increased risk of thrombotic complications, low platelet counts (thrombocytopenia) and several platelet function disorders increase the risk of bleeding. Over the last years, more and more evidence has emerged that platelets and their activation state can also modulate innate and adaptive immune responses and low platelet counts have been identified as a surrogate marker for poor prognosis in septic patients. Viral infections often coincide with platelet activation. Host inflammatory responses result in the release of platelet activating mediators and a pro-oxidative and pro-coagulant environment, which favors platelet activation. However, viruses can also directly interact with platelets and megakaryocytes and modulate their function. Furthermore, platelets can be activated by viral antigen-antibody complexes and in response to some viruses B-lymphocytes also generate anti-platelet antibodies. All these processes contributing to platelet activation result in increased platelet consumption and removal and often lead to thrombocytopenia, which is frequently observed during viral infection. However, virus-induced platelet activation does not only modulate platelet count but also shape immune responses. Platelets and their released products have been reported to directly and indirectly suppress infection and to support virus persistence in response to certain viruses, making platelets a double-edged sword during viral infections. This review aims to summarize the current knowledge on platelet interaction with different types of viruses, the viral impact on platelet activation, and platelet-mediated modulations of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Alice Assinger
- Department of Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria ; Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
27
|
Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology 2014; 147:577-594.e1. [PMID: 25066692 DOI: 10.1053/j.gastro.2014.06.043] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 02/08/2023]
Abstract
Sustained hepatic inflammation is an important factor in progression of chronic liver diseases, including hepatitis C or non-alcoholic steatohepatitis. Liver inflammation is regulated by chemokines, which regulate the migration and activities of hepatocytes, Kupffer cells, hepatic stellate cells, endothelial cells, and circulating immune cells. However, the effects of the different chemokines and their receptors vary during pathogenesis of different liver diseases. During development of chronic viral hepatitis, CCL5 and CXCL10 regulate the cytopathic versus antiviral immune responses of T cells and natural killer cells. During development of nonalcoholic steatohepatitis, CCL2 and its receptor are up-regulated in the liver, where they promote macrophage accumulation, inflammation, fibrosis, and steatosis, as well as in adipose tissue. CCL2 signaling thereby links hepatic and systemic inflammation related to metabolic disorders and insulin resistance. Several chemokine signaling pathways also promote hepatic fibrosis. Recent studies have shown that other chemokines and immune cells have anti-inflammatory and antifibrotic activities. Chemokines and their receptors can also contribute to the pathogenesis of hepatocellular carcinoma, promoting proliferation of cancer cells, the inflammatory microenvironment of the tumor, evasion of the immune response, and angiogenesis. We review the roles of different chemokines in the pathogenesis of liver diseases and their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy.
| | - Frank Tacke
- Department of Medicine III, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
28
|
Komase K, Maekawa S, Miura M, Sueki R, Kadokura M, Shindo H, Shindo K, Amemiya F, Nakayama Y, Inoue T, Sakamoto M, Yamashita A, Moriishi K, Enomoto N. Serum RANTES level influences the response to pegylated interferon and ribavirin therapy in chronic hepatitis C. Hepatol Res 2013; 43:865-75. [PMID: 23279319 DOI: 10.1111/hepr.12032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/18/2012] [Accepted: 11/26/2012] [Indexed: 02/08/2023]
Abstract
AIM Prediction of treatment responses to pegylated interferon (PEG IFN) plus ribavirin (RBV) therapy is uncertain for genotype 1b chronic hepatitis C. METHODS In this study, 96 patients were investigated for the correlation between 36 pretreatment serum chemokine/cytokine levels and PEG IFN/RBV treatment efficacy by a sandwich enzyme-linked immunoassay (ELISA) and a bead array. RESULTS First, chemokines/cytokines were measured semiquantitatively by sandwich ELISA in 31 randomly-selected patients and the serum regulated on activation normal T-cell expressed and secreted (RANTES) level was found to be significantly higher in the sustained virological response (SVR) group than the non-SVR group (P = 0.048). Precise RANTES measurement in all 96 patients using a bead array confirmed this correlation (P = 0.002). However, the genetic RANTES haplotype was not significantly related to the serum level. The serum RANTES level was extracted by multivariate analysis (odds ratio = 4.09, 95% confidence interval = 1.02-16.5, P = 0.048) as an independent variable contributing to SVR. CONCLUSION The serum RANTES level is an important determinant influencing the virological response to PEG IFN/RBV therapy in chronic hepatitis C.
Collapse
Affiliation(s)
- Kazuki Komase
- First Department of Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Current World Literature. Curr Opin Rheumatol 2013; 25:275-83. [DOI: 10.1097/bor.0b013e32835eb755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F, Astemborski J, Bonkovsky HL, Edlin BR, Howell CD, Morgan TR, Thomas DL, Rehermann B, Donnelly RP, O'Brien TR. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 2013; 45:164-71. [PMID: 23291588 DOI: 10.1038/ng.2521] [Citation(s) in RCA: 751] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/07/2012] [Indexed: 02/06/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) is a common cause of liver cirrhosis and cancer. We performed RNA sequencing in primary human hepatocytes activated with synthetic double-stranded RNA to mimic HCV infection. Upstream of IFNL3 (IL28B) on chromosome 19q13.13, we discovered a new transiently induced region that harbors a dinucleotide variant ss469415590 (TT or ΔG), which is in high linkage disequilibrium with rs12979860, a genetic marker strongly associated with HCV clearance. ss469415590[ΔG] is a frameshift variant that creates a novel gene, designated IFNL4, encoding the interferon-λ4 protein (IFNL4), which is moderately similar to IFNL3. Compared to rs12979860, ss469415590 is more strongly associated with HCV clearance in individuals of African ancestry, although it provides comparable information in Europeans and Asians. Transient overexpression of IFNL4 in a hepatoma cell line induced STAT1 and STAT2 phosphorylation and the expression of interferon-stimulated genes. Our findings provide new insights into the genetic regulation of HCV clearance and its clinical management.
Collapse
Affiliation(s)
- Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vidal F, López-Dupla M, Laguno M, Veloso S, Mallolas J, Murillas J, Cifuentes C, Gallart L, Auguet T, Sampériz G, Payeras A, Hernandez P, Arnedo M, Gatell JM, Richart C. Pharmacogenetics of efficacy and safety of HCV treatment in HCV-HIV coinfected patients: significant associations with IL28B and SOCS3 gene variants. PLoS One 2012; 7:e47725. [PMID: 23133602 PMCID: PMC3487790 DOI: 10.1371/journal.pone.0047725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/14/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND AIMS This was a safety and efficacy pharmacogenetic study of a previously performed randomized trial which compared the effectiveness of treatment of hepatitis C virus infection with pegylated interferon alpha (pegIFNα) 2a vs. 2b, both with ribavirin, for 48 weeks, in HCV-HIV coinfected patients. METHODS The study groups were made of 99 patients (efficacy pharmacogenetic substudy) and of 114 patients (safety pharmacogenetic substudy). Polymorphisms in the following candidate genes IL28B, IL6, IL10, TNFα, IFNγ, CCL5, MxA, OAS1, SOCS3, CTLA4 and ITPA were assessed. Genotyping was carried out using Sequenom iPLEX-Gold, a single-base extension polymerase chain reaction. Efficacy end-points assessed were: rapid, early and sustained virological response (RVR, EVR and SVR, respectively). Safety end-points assessed were: anemia, neutropenia, thrombocytopenia, flu-like syndrome, gastrointestinal disturbances and depression. Chi square test, Student's T test, Mann-Whitney U test and logistic regression were used for statistic analyses. RESULTS As efficacy is concerned, IL28B and CTLA4 gene polymorphisms were associated with RVR (p<0.05 for both comparisons). Nevertheless, only polymorphism in the IL28B gene was associated with SVR (p = 0.004). In the multivariate analysis, the only gene independently associated with SVR was IL28B (OR 2.61, 95%CI 1.2-5.6, p = 0.01). With respect to safety, there were no significant associations between flu-like syndrome or depression and the genetic variants studied. Gastrointestinal disturbances were associated with ITPA gene polymorphism (p = 0.04). Anemia was associated with OAS1 and CTLA4 gene polymorphisms (p = 0.049 and p = 0.045, respectively), neutropenia and thromobocytopenia were associated with SOCS3 gene polymorphism (p = 0.02 and p = 0.002, respectively). In the multivariate analysis, the associations of the SOCS3 gene polymorphism with neutropenia (OR 0.26, 95%CI 0.09-0.75, p = 0.01) and thrombocytopenia (OR 0.07, 95%CI 0.008-0.57, p = 0.01) remained significant. CONCLUSIONS In HCV-HIV coinfected patients treated with PegIFNα and ribavirin, SVR is associated with IL28B rs8099917 polymorphism. HCV treatment-induced neutropenia and thrombocytopenia are associated with SOCS3 rs4969170 polymorphism.
Collapse
Affiliation(s)
- Francesc Vidal
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|