1
|
Zheng H, Wu X, Guo L, Liu J. MyD88 signaling pathways: role in breast cancer. Front Oncol 2024; 14:1336696. [PMID: 38347830 PMCID: PMC10859757 DOI: 10.3389/fonc.2024.1336696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
MyD88 plays a central role in breast cancer, exerting a multitude of effects that carry substantial implications. Elevated MyD88 expression is closely associated with aggressive tumor characteristics, suggesting its potential as a valuable prognostic marker and therapeutic target. MyD88 exerts influence over several critical aspects of breast cancer, including metastasis, recurrence, drug resistance, and the regulation of cancer stem cell properties. Furthermore, MyD88 modulates the release of inflammatory and chemotactic factors, thereby shaping the tumor's immune microenvironment. Its role in immune response modulation underscores its potential in influencing the dynamic interplay between tumors and the immune system. MyD88 primarily exerts intricate effects on tumor progression through pathways such as Phosphoinositide 3-kinases/Protein kinase B (PI3K/Akt), Toll-like Receptor/Nuclear Factor Kappa B (TLR/NF-κB), and others. Nevertheless, in-depth research is essential to unveil the precise mechanisms underlying the diverse roles of MyD88 in breast cancer. The translation of these findings into clinical applications holds great promise for advancing precision medicine approaches for breast cancer patients, ultimately enhancing prognosis and enabling the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Xinhong Wu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhua Liu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| |
Collapse
|
2
|
Jędrzejewski T, Pawlikowska M, Sobocińska J, Wrotek S. COVID-19 and Cancer Diseases-The Potential of Coriolus versicolor Mushroom to Combat Global Health Challenges. Int J Mol Sci 2023; 24:ijms24054864. [PMID: 36902290 PMCID: PMC10003402 DOI: 10.3390/ijms24054864] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Coriolus versicolor (CV) is a common species from the Polyporaceae family that has been used in traditional Chinese herbal medicine for over 2000 years. Among well-described and most active compounds identified in CV are polysaccharopeptides, such as polysaccharide peptide (PSP) and Polysaccharide-K (PSK, krestin), which, in some countries, are already used as an adjuvant agent in cancer therapy. In this paper, research advances in the field of anti-cancer and anti-viral action of CV are analyzed. The results of data obtained in in vitro and in vivo studies using animal models as well as in clinical research trials have been discussed. The present update provides a brief overview regarding the immunomodulatory effects of CV. A particular focus has been given to the mechanisms of direct effects of CV on cancer cells and angiogenesis. A potential use of CV compounds in anti-viral treatment, including therapy against COVID-19 disease, has also been analyzed based on the most recent literature. Additionally, the significance of fever in viral infection and cancer has been debated, providing evidence that CV affects this phenomenon.
Collapse
|
3
|
He Z, Lin J, He Y, Liu S. Polysaccharide-Peptide from Trametes versicolor: The Potential Medicine for Colorectal Cancer Treatment. Biomedicines 2022; 10:2841. [PMID: 36359361 PMCID: PMC9687461 DOI: 10.3390/biomedicines10112841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2023] Open
Abstract
The incidence and mortality of colorectal cancer have shown an upward trend in the past decade. Therefore, the prevention, diagnosis, and treatment of colorectal cancer still need our continuous attention. Finding compounds with strong anticancer activity and low toxicity is a good strategy for colorectal cancer (CRC) therapy. Trametes versicolor is a traditional Chinese medicinal mushroom with a long history of being used to regulate immunity and prevent cancer. Its extractions were demonstrated with strong cell growth inhibitory activity on human colorectal tumor cells, while the anticancer activity of them is not acted through a direct cytotoxic effect. However, the intricacy and high molecular weight make mechanistic research difficult, which restricts their further application as a medication in clinical cancer treatment. Recent research has discovered a small molecule polysaccharide peptide derived from Trametes versicolor that has a distinct structure after decades of Trametes versicolor investigation. Uncertain molecular weight and a complex composition are problems that have been solved through studies on its structure, and it was demonstrated to have strong anti-proliferation activity on colorectal cancer in vitro and in vivo via interaction with EGFR signaling pathway. It opens up new horizons for research in this field, and these low molecular weight polysaccharide peptides provide a new insight of regulation of colorectal cancer proliferation and have great potential as drugs in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhicheng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying He
- School of Chemical Science & Technology, Yunnan University, Kunming 650091, China
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Habtemariam S. Trametes versicolor (Synn. Coriolus versicolor) Polysaccharides in Cancer Therapy: Targets and Efficacy. Biomedicines 2020; 8:biomedicines8050135. [PMID: 32466253 PMCID: PMC7277906 DOI: 10.3390/biomedicines8050135] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Coriolus versicolor (L.) Quél. is a higher fungi or mushroom which is now known by its accepted scientific name as Trametes versicolor (L.) Lloyd (family Polyporaceae). The polysaccharides, primarily two commercial products from China and Japan as PSP and PSK, respectively, have been claimed to serve as adjuvant therapy for cancer. In this paper, research advances in this field, including direct cytotoxicity in cancer cells and immunostimulatory effects, are scrutinised at three levels: in vitro, in vivo and clinical outcomes. The level of activity in the various cancers, key targets (both in cancer and immune cells) and pharmacological efficacies are discussed.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
5
|
Astragalus polysaccharides (PG2) Enhances the M1 Polarization of Macrophages, Functional Maturation of Dendritic Cells, and T Cell-Mediated Anticancer Immune Responses in Patients with Lung Cancer. Nutrients 2019; 11:nu11102264. [PMID: 31547048 PMCID: PMC6836209 DOI: 10.3390/nu11102264] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Recently, we demonstrated that Astragalus polysaccharide (PG2), the active ingredient in dried roots of astragalus membranaceus, ameliorates cancer symptom clusters and improves quality of life (QoL) in patients with metastatic disease by modulating inflammatory cascade against the background roles of inflammatory cells, including macrophages, dendritic cells (DCs), and cytotoxic T lymphocytes (CTLs) in tumor initiation, metastasis, and progression. Nevertheless, the role of PG2 in the modulation of anticancer immunogenicity and therapeutic response remains relatively underexplored and unclear. Purpose: The present study investigates how and to what extent PG2 modulates cellular and biochemical components of the inflammatory cascade and enhances anticancer immunity, as well as the therapeutic implication of these bio-events in patients with lung cancer. Methods and Results: Herein, we demonstrated that PG2 significantly increased the M1/M2 macrophage polarization ratio in non-small cell carcinoma (NSCLC) H441 and H1299 cells. This PG2-induced preferential pharmacologic up-regulation of tumoral M1 population in vitro positively correlated with the downregulation of tumor-promoting IL-6 and IL-10 expression in NSCLC cell-conditioned medium, with concomitant marked inhibition of cell proliferation, clonogenicity, and tumorsphere formation. Our ex vivo results, using clinical sample from our NSCLC cohort, demonstrated that PG2 also promoted the functional maturation of DCs with consequent enhancement of T cell-mediated anticancer immune responses. Consistent with the in vitro and ex vivo results, our in vivo studies showed that treatment with PG2 elicited significant time-dependent depletion of the tumor-associated M2 population, synergistically enhanced the anti-M2-based anticancer effect of cisplatin, and inhibited xenograft tumor growth in the NSCLC mice models. Moreover, in the presence of PG2, cisplatin-associated dyscrasia and weight-loss was markedly suppressed. Conclusion: These results do indicate a therapeutically-relevant role for PG2 in modulating the M1/M2 macrophage pool, facilitating DC maturation and synergistically enhancing the anticancer effect of conventional chemotherapeutic agent, cisplatin, thus laying the foundation for further exploration of the curative relevance of PG2 as surrogate immunotherapy and/or clinical feasibility of its use for maintenance therapy in patients with lung cancer.
Collapse
|
6
|
Huang WC, Kuo KT, Bamodu OA, Lin YK, Wang CH, Lee KY, Wang LS, Yeh CT, Tsai JT. Astragalus polysaccharide (PG2) Ameliorates Cancer Symptom Clusters, as well as Improves Quality of Life in Patients with Metastatic Disease, through Modulation of the Inflammatory Cascade. Cancers (Basel) 2019; 11:cancers11081054. [PMID: 31349728 PMCID: PMC6721312 DOI: 10.3390/cancers11081054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Improving patients' quality of life (QoL) is a principal objective of all treatment in any clinical setting, including oncology practices. Cancer-associated inflammation is implicated in disease progression and worsening of patients' QoL. Conventional anticancer therapeutics while selectively eliminating cancerous cells, are evaded by stem cell-like cells, and associated with varying degrees of adverse effects, thus reducing patients' QoL. This necessitates novel therapeutic approaches with enhanced efficacy, minimal or no treatment-related adverse effects, and improved QoL in patients with cancer, especially those with metastatic/advance stage disease. Methods: Sequel to our team's previous publication, the present study explores probable effects of Astragalus polysaccharides (PG2) on cancer-related inflammatory landscape and known determinants of QoL, as well as the probable link between the two to provide mechanistic insight. In an exploratory double blind randomized controlled trial using patients with metastatic disease (n = 23), we comparatively evaluated the therapeutic efficacy of high (500 mg) or low (250 mg) dose PG2 administered intravenously (i.v.), with particular focus on its suggested anti-inflammatory function and the probable effect of same on QoL indices at baseline, then at weeks 4 and 8 post-PG2 treatment. Results: All 23 patients with metastatic disease treated with either low or high PG2 experienced reduced pain, nausea, vomiting, and fatigue, as well as better appetite and sleep, culminating in improved global QoL. This was most apparent in the high dose group, with significant co-suppression of pro-inflammatory interleukin (IL)-1β, IL-4, IL-6, IL-13, IL-17, monocytes chemotactic protein (MCP)1, granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), tumor growth factor (TGF)-β1, interferon (IFN)-γ, and immune suppressors IL-10 and IL-12. Univariate and multivariate analyses revealed that IL-1β, IL-13 and GM-CSF are independent prognosticators of improved QoL. Conclusion: This proof-of-concept study provides premier evidence of functional association between PG2 anti-inflammatory effects and improved QoL in patients with advanced stage cancers, laying the groundwork for future larger cohort blinded controlled trials to establish the efficacy of PG2 as adjuvant anticancer therapy in metastatic or advanced stage clinical settings.
Collapse
Affiliation(s)
- Wen-Chien Huang
- Department of Medicine, MacKay Medical College, Taipei 110, Taiwan
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 110, Taiwan
| | - Kuang-Tai Kuo
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Division of Hematology/Oncology, Department of Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Yen-Kuang Lin
- Biostatistics Center, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hua Wang
- Department of Dermatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 235, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Liang-Shun Wang
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
- Division of Hematology/Oncology, Department of Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan.
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 235, Taiwan.
| |
Collapse
|
7
|
Jędrzejewski T, Piotrowski J, Pawlikowska M, Wrotek S, Kozak W. Extract from Coriolus versicolor fungus partially prevents endotoxin tolerance development by maintaining febrile response and increasing IL-6 generation. J Therm Biol 2019; 83:69-79. [PMID: 31331527 DOI: 10.1016/j.jtherbio.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022]
Abstract
Endotoxin tolerance is defined as a reduced endotoxin-induced fever following repeated injections of lipopolysaccharide (LPS). Clinical examples of endotoxin tolerance include sepsis or cystic fibrosis. This state is characterized by inhibition of pro-inflammatory cytokines production and decrease in nuclear factor-kappa B (NF-κB) activation. Extract from Coriolus versicolor (CV) fungus is classified as a biological response modifier, which exhibits various biological activities, including immunopotentiating properties. The aim of study was to examine the effect of CV extract injection on body core temperature of Wistar rats during LPS-induced endotoxin tolerance. Body temperature was measured using biotelemetry. CV extract was injected intraperitoneally (100 mg kg-1) 2 h prior to the first LPS peritoneal administration (50 μg/kg). Endotoxin tolerance was induced by three consecutive daily injections of LPS at the same dose. We also investigated the influence of CV extract pre-injection on the properties of peripheral blood mononuclear cells (PBMCs) isolated from LPS-treated rats in response to LPS stimulation ex vivo. PBMCs were isolated 2 h after the first LPS injection. After 24 h pre-incubation, the cells were stimulated with LPS (1 μg ml-1) for 4 h. Our results revealed that CV extract partially prevents endotoxin tolerance through maintaining febrile response in rats following consecutive exposure to LPS. This state was accompanied by the ability of PBMCs isolated from rats injected with CV extract and LPS to release larger amounts of interleukin 6 and greater NF-κB activation in response to LPS stimulation ex vivo compared with the cells derived from rats injected only with LPS. Data also showed that CV extract augmented mitogenic effect of LPS on PBMCs and caused increase in reactive oxygen species generation. We concluded that CV extract, by a modifying effect on body temperature during endotoxin tolerance, can be consider as the immunostimulating agent, which prevents the non-specific refractoriness described in patients with sepsis or ischemia.
Collapse
Affiliation(s)
- Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| | - Jakub Piotrowski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| | - Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| | - Wieslaw Kozak
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| |
Collapse
|
8
|
Lucius K, Hill J. Combining immunotherapy and natural immune stimulants: mechanisms and clinical implications. J Cancer Res Clin Oncol 2019; 145:2633-2635. [PMID: 30673870 DOI: 10.1007/s00432-018-02830-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Khara Lucius
- Center for Integrative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Jacob Hill
- Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Wong JH, Sze SCW, Ng TB, Cheung RCF, Tam C, Zhang KY, Dan X, Chan YS, Shing Cho WC, Ng CCW, Waye MMY, Liang W, Zhang J, Yang J, Ye X, Lin J, Ye X, Wang H, Liu F, Chan DW, Ngan HYS, Sha O, Li G, Tse R, Tse TF, Chan H. Apoptosis and Anti-cancer Drug Discovery: The Power of Medicinal Fungi and Plants. Curr Med Chem 2019; 25:5613-5630. [DOI: 10.2174/0929867324666170720165005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this account is to review the compounds capable of eliciting
mitochondria-mediated apoptosis in cancer cells produced by medicinal fungi and plants.
The medicinal fungi discussed encompass Cordyceps, Ganoderma species, Coriolus versicolor
and Hypsizygus marmoreus. The medicinal plants discussed comprise Astragalus
complanatus, Dendrobium spp, Dioscorea spp, Glycyrrhiza spp, Panax notoginseng,
Panax ginseng, and Momordica charantia. These compounds have the potential of development
into anticancer drugs.
Collapse
Affiliation(s)
- Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chit Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kalin Yanbo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | | | - Mary Miu Yee Waye
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weicheng Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinfang Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiujuan Ye
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - David Wai Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hextan Yuen Sheung Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ou Sha
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Guohui Li
- Vita Green Pharmaceuticals (HK) Ltd, Vita Green Health Products (HK) Ltd Genning Partners Company Limited, and Hong Kong Institute of Medical Research, Hong Kong, China
| | - Ryan Tse
- Vita Green Pharmaceuticals (HK) Ltd, Vita Green Health Products (HK) Ltd Genning Partners Company Limited, and Hong Kong Institute of Medical Research, Hong Kong, China
| | - Tak Fu Tse
- Vita Green Pharmaceuticals (HK) Ltd, Vita Green Health Products (HK) Ltd Genning Partners Company Limited, and Hong Kong Institute of Medical Research, Hong Kong, China
| | - Helen Chan
- Vita Green Pharmaceuticals (HK) Ltd, Vita Green Health Products (HK) Ltd Genning Partners Company Limited, and Hong Kong Institute of Medical Research, Hong Kong, China
| |
Collapse
|
10
|
Wu K, Zhang H, Fu Y, Zhu Y, Kong L, Chen L, Zhao F, Yu L, Chen X. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol Med Rep 2018; 18:3411-3420. [PMID: 30066873 PMCID: PMC6102647 DOI: 10.3892/mmr.2018.9326] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The influence of Toll-like receptor (TLR)4/myeloid differentiation factor (MyD)88 signaling on the invasion and metastasis of cancer cells has been previously reported. The purpose of the present study was to determine the role of TLR4/MyD88 in breast cancer cell migration and invasion, and to discover novel therapeutic targets for breast cancer treatment. TLR4, MyD88 and high mobility group box 1 (HMGB1) mRNA expression levels were assessed in highly invasive human MDA-MB-231 breast cancer cells, breast cancer cells with a low rate of invasion (MCF-7) and normal human MDA-Kb2 mammary gland cells by reverse transcription-quantitative polymerase chain reaction. The protein expression levels of these markers were detected by western blotting and immunofluorescence. Randomly selected breast cancer and paracarcinoma tissues were used to measure TLR4 and MyD88 protein expression levels by immunohistochemistry. The mRNA and protein expression levels of TLR4 and MyD88 were significantly higher in MDA-MB-231 cells compared with either MCF-7 cells or MDA-Kb2 cells. The mRNA and protein expression levels of HMGB1 were comparable in the two breast cancer cell lines, with no statistical difference (P>0.05). TLR4 and MyD88 protein expression levels were also significantly higher in breast cancer tissues compared with paracarcinoma tissues (P<0.05). TLR4 and MyD88 protein expression levels were positively correlated with axillary lymph node metastasis and histological grade (P<0.05). TLR4/MyD88 expression levels were positively correlated with the metastasis of breast cancer cells. TLR4/MyD88 may be useful as a novel biomarker to evaluate the prognosis and treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huihao Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yajuan Fu
- Southern Biomedical Research Center, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Feng Zhao
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Liangfei Yu
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
11
|
Naturally Derived Anti-HIV Polysaccharide Peptide (PSP) Triggers a Toll-Like Receptor 4-Dependent Antiviral Immune Response. J Immunol Res 2018; 2018:8741698. [PMID: 30116757 PMCID: PMC6079438 DOI: 10.1155/2018/8741698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/17/2018] [Accepted: 05/27/2018] [Indexed: 12/26/2022] Open
Abstract
Aim Intense interest remains in the identification of compounds to reduce human immunodeficiency virus type 1 (HIV-1) replication. Coriolus versicolor's polysaccharide peptide (PSP) has been demonstrated to possess immunomodulatory properties with the ability to activate an innate immune response through Toll-like receptor 4 (TLR4) showing insignificant toxicity. This study sought to determine the potential use of PSP as an anti-HIV agent and whether its antiviral immune response was TLR4 dependent. Materials and Methods HIV-1 p24 and anti-HIV chemokine release was assessed in HIV-positive (HIV+) THP1 cells and validated in HIV+ peripheral blood mononuclear cells (PBMCs), to determine PSP antiviral activity. The involvement of TLR4 activation in PSP anti-HIV activity was evaluated by inhibition. Results PSP showed a promising potential as an anti-HIV agent, by downregulating viral replication and promoting the upregulation of specific antiviral chemokines (RANTES, MIP-1α/β, and SDF-1α) known to block HIV-1 coreceptors in THP1 cells and human PBMCs. PSP produced a 61% viral inhibition after PSP treatment in HIV-1-infected THP1 cells. Additionally, PSP upregulated the expression of TLR4 and TLR4 inhibition led to countereffects in chemokine expression and HIV-1 replication. Conclusion Taken together, these findings put forward the first evidence that PSP exerts an anti-HIV activity mediated by TLR4 and key antiviral chemokines. Elucidating these new molecular mediators may reveal additional drug targets and open novel therapeutic avenues for HIV-1 infection.
Collapse
|
12
|
Blagodatski A, Yatsunskaya M, Mikhailova V, Tiasto V, Kagansky A, Katanaev VL. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018; 9:29259-29274. [PMID: 30018750 PMCID: PMC6044372 DOI: 10.18632/oncotarget.25660] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Medicinal mushrooms have been used throughout the history of mankind for treatment of various diseases including cancer. Nowadays they have been intensively studied in order to reveal the chemical nature and mechanisms of action of their biomedical capacity. Targeted treatment of cancer, non-harmful for healthy tissues, has become a desired goal in recent decades and compounds of fungal origin provide a vast reservoir of potential innovational drugs. Here, on example of four mushrooms common for use in Asian and Far Eastern folk medicine we demonstrate the complex and multilevel nature of their anticancer potential, basing upon different groups of compounds that can simultaneously target diverse biological processes relevant for cancer treatment, focusing on targeted approaches specific to malignant tissues. We show that some aspects of fungotherapy of tumors are studied relatively well, while others are still waiting to be fully unraveled. We also pay attention to the cancer types that are especially susceptible to the fungal treatments.
Collapse
Affiliation(s)
- Artem Blagodatski
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation.,Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Margarita Yatsunskaya
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, Russia
| | - Valeriia Mikhailova
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladlena Tiasto
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Vladimir L Katanaev
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russian Federation.,Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Hepatoprotective Effects of a Functional Formula of Three Chinese Medicinal Herbs: Experimental Evidence and Network Pharmacology-Based Identification of Mechanism of Action and Potential Bioactive Components. Molecules 2018; 23:molecules23020352. [PMID: 29414910 PMCID: PMC6017312 DOI: 10.3390/molecules23020352] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/27/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022] Open
Abstract
Various Chinese herbal medicines (CHMs) have shown beneficial liver protection effects. Jian-Gan-Bao (JGB), a functional herbal formula, consists of three famous CHMs, including Coriolus versicolor, Salvia miltiorrhiza and Schisandra chinensis, which has been used as a folk medicine for several chronic liver diseases. In the present study, we aim systemically to evaluate the effects of JGB on acute and chronic alcoholic liver diseases (ALD) as well as non-alcoholic fatty liver disease (NAFLD) in mouse models, and identify its potential bioactive components and mechanism of action. JGB showed preventive effects for acute and chronic ALD as well as NAFLD, while post-treatment of JGB showed no significant effect, suggesting the nature of JGB as a health supplement rather than a drug. Furthermore, a compound-target network was constructed to identify the potential bioactive compounds and pathways that regulate its hepatoprotective effects. There are 40 bioactive compounds and 15 related targets that have been identified via this network pharmacology study. Among them are miltirone, neocryptotanshinone II and deoxyshikonin, with desirable pharmaceutical properties. Pathways relating to inflammation, fatty acid oxidation, tumor necrosis factor (TNF) production and cell proliferation were predicted as bioactive compounds and potential underlying mechanisms, which should be the focus of study in this field in the future.
Collapse
|
14
|
Li W, Zhang H, Nie M, Wang W, Liu Z, Chen C, Chen H, Liu R, Baloch Z, Ma K. A novel synthetic ursolic acid derivative inhibits growth and induces apoptosis in breast cancer cell lines. Oncol Lett 2017; 15:2323-2329. [PMID: 29434940 PMCID: PMC5776946 DOI: 10.3892/ol.2017.7578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
The present study investigated the anticancer functions of ursolic acid (UA) and its novel derivatives, with a nitrogen-containing heterocyclic scaffold and the privileged fragment at the C-28 position on apoptosis induction, cell proliferation and cell cycle in human BC lines. UA was chemically modified in the present study to increase its antitumor activity and bioavailability. A novel UA derivative, FZU3010, was synthesized using a nitrogen-containing heterocyclic scaffold and a privileged fragment at the C-28 position. Sulforhodimine B assays were used to measure the effect of UA and different concentrations of FZU3010 on the viability of breast cancer (BC) SUM149PT and HCC1937 cells. FZU3010 significantly repressed the proliferation of the two cancer cell lines in a dose-dependent manner, with a half-maximal inhibitory concentration of 4-6 µM, and exhibited decreased cytotoxicity compared with vehicle-treated cell lines. The effect of FZU3010 on cell cycle distribution and cellular apoptosis was also investigated. The results of this investigation indicated that FZU3010 significantly increased the number of SUM149PT and breast cancer HCC1937 cells in the G0/G1 phase in a dose-dependent manner. Additionally, at a concentration of 5 µM, the capability of FZU3010 to induce BC apoptosis was significantly higher than the capability of UA. Thus, the results of the current study indicated that FZU3010 induced apoptosis in BC cells, together with induction of cell cycle arrest at the S and G0/G1 phase. FZU3010 may therefore be considered as a potential therapeutic agent for the treatment of BC.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China.,Medical College of Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Hongxiu Zhang
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China.,Medical College of Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Mingxiu Nie
- Department of Urology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China.,Medical College of Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Wei Wang
- College of Pharmacy, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Zongtao Liu
- College of Pharmacy, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| | - Zulqarnain Baloch
- Medical College of Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| |
Collapse
|
15
|
Saleh MH, Rashedi I, Keating A. Immunomodulatory Properties of Coriolus versicolor: The Role of Polysaccharopeptide. Front Immunol 2017; 8:1087. [PMID: 28932226 PMCID: PMC5592279 DOI: 10.3389/fimmu.2017.01087] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/21/2017] [Indexed: 01/10/2023] Open
Abstract
Traditional uses of herbal medicine have depended mostly on anecdotal evidence for much of history. The increasing application of scientific rigor to the study some of these traditional therapies in recent years has revealed potent bioactivity, notably demonstrated by the 2015 Nobel Prize for the discovery of an antimalarial compound from traditional Chinese herbs. Given the recent successes of immunotherapy and checkpoint blockade, there is a renewed interest in identifying new drugs with immunomodulatory effects. As an estimated 45-60% of cancer patients worldwide are reported to use complementary alternative medicine alongside traditional therapy, this review will highlight the literature on the immunomodulatory effects of one of these compounds. We report on the induction of a largely pro-inflammatory cytokine profile by the polysaccharopeptide (PSP) isolated from the Coriolus versicolor (Yun zhi) mushroom, as well as its effects on various immune subsets, and the clinical data that have led to its widespread adoption as an adjunct cancer therapeutic in many Eastern cultures. Particular focus is given to the potential mechanisms underlying the bioactivity of PSP and reports of its ability to promote antitumor immunity by helping overcome tolerogenic tumor microenvironments.
Collapse
Affiliation(s)
- Mohammad H Saleh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Cell Therapy Program, Princess Margaret Cancer Centre, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Iran Rashedi
- Cell Therapy Program, Princess Margaret Cancer Centre, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Armand Keating
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Cell Therapy Program, Princess Margaret Cancer Centre, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Pawlikowska M, Jędrzejewski T, Piotrowski J, Kozak W. Fever-range hyperthermia inhibits cells immune response to protein-bound polysaccharides derived from Coriolus versicolor extract. Mol Immunol 2016; 80:50-57. [PMID: 27825050 DOI: 10.1016/j.molimm.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 01/15/2023]
Abstract
The aim of the study was to explore whether fever-range hyperthermia (FRH) might enhance the anticancer and immunoregulatory activities of protein-bound polysaccharides (PBP), a class of fungus derived immunomodifiers used in the cancer adjuvant therapy. Blood lymphocytes and breast cancer cells (MCF-7) were cultured at 39.5°C in humidified atmosphere containing 5% CO2 for 2h. After rested at 37°C for 6h, the cells were treated with PBP extract at 100- and 300μg/ml concentration. After indicated time, the proliferative response was analyzed and cytokine mRNA expression assessment was performed by qRT-PCR. In animal model, the FRH was induced by placing rats in the Homeothermic Controller with heating blanket. Animals were heated until Tb reached 39.5°C (±0.2°C) and were maintained at this temperature for 30min. The protein-bound polysaccharides solution was injected i.p. at a dose of 100 mg/kg 6h post FRH. Twenty four hours after treatment, the blood was collected and cytokines expression analysis were performed. The results have shown that fever-range hyperthermia has an inhibitory effect on PBP extract-induced proliferative response of blood lymphocytes, as well as IL-1β and IL-6 mRNA expression. Moreover, the temperature of 39.5°C blocks PBP-induced cytotoxicity against MCF-7 cells, which correlates with significant reduction in TNF-α level. Combined treatment of rats (FRH+PBP) results in decrease of IL-1β, IL-6 and TNF-α mRNA expression in peripheral blood mononuclear cells compared to cells derived from rats treated with protein-bound polysaccharides extract alone. This study demonstrates that fever-range temperature inhibits immunostimulatory as well as anticancer effects mediated by protein-bound polysaccharides.
Collapse
Affiliation(s)
- Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Torun, Poland.
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Torun, Poland.
| | - Jakub Piotrowski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Torun, Poland.
| | - Wiesław Kozak
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1 Street, 87-100 Torun, Poland.
| |
Collapse
|
17
|
Wang Z, Liu Z, Zhou L, Long T, Zhou X, Bao Y. Immunomodulatory effect of APS and PSP is mediated by Ca2 +-cAMP and TLR4/NF-κB signaling pathway in macrophage. Int J Biol Macromol 2016; 94:283-289. [PMID: 27732877 DOI: 10.1016/j.ijbiomac.2016.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study is to investigate the role of second messengers and TLR4/NF-κB signaling pathway in the immunomodulatory activities of Astragalus polysaccharide (APS) and Polysaccharopeptide (PSP) in macrophages. METHODS RAW 264.7 macrophage cells were treated with APS, PSP, lipopolysaccharide (LPS), or NiCl2. Power-spectral method was used to detect protein kinase C (PKC) and Griess reaction to detect nitric oxide (NO). ELISA was conducted to detect cyclic adenosine monophosphate (cAMP), diglycerides (DAG), inositol 1, 4, 5-triphosphate (IP3), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Confocal laser scanning microscopy was performed to detect calcium level. qRT-PCR and Western blot was used to detect mRNA and protein expression of NF-κB. RESULTS APS and PSP significantly increased the concentrations of intracellular second messengers (NO, cAMP, DAG, IP3, Ca2+) and the activity of PKC in macrophages (p<0.05).The intracellular NF-κB mRNA and protein levels were significantly increased in macrophages treated by APS and PSP (p<0.05), whereas those were significantly decreased after NiCl2 incubation (p<0.05). Similarly, the secretion of TNF-α and IL-6 were significantly decreased by the treatment of NiCl2. CONCLUSION Our findings strongly suggest that Ca2+-cAMP and TLR4/NF-κB signaling pathways are, at least partly, involved in APS and PSP mediated immunomodulatory activities in macrophages.
Collapse
Affiliation(s)
- Zhixue Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zijing Liu
- Department of Clinical Medicine, Xinjiang Medical University, Urumqi 830054, China
| | - Lijng Zhou
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Tingting Long
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xing Zhou
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yixi Bao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
18
|
Jędrzejewski T, Pawlikowska M, Piotrowski J, Kozak W. Protein-bound polysaccharides from Coriolus versicolor attenuate LPS-induced synthesis of pro-inflammatory cytokines and stimulate PBMCs proliferation. Immunol Lett 2016; 178:140-7. [PMID: 27594322 DOI: 10.1016/j.imlet.2016.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Protein-bound polysaccharides (PBP) isolated from Coriolus versicolor (CV) are classified as biological response modifiers capable of exhibiting various biological activities, such as anti-tumour and immunopotentiating activity. Since we have found in vivo studies that the tested PBP induced prolongation of endotoxin fever in rats, the aim of the present study was to investigate the in vitro effect of the PBP on the production of pro-inflammatory cytokines by the lipolysaccharide (LPS)-stimulated rat peripheral blood mononuclear cells (PBMCs). The results showed that the PBP affect the immunomodulating properties of the LPS-treated PBMCs by the enhancement of mitogenic activity and attenuation of the LPS-induced production of interleukin (IL)-1β and IL-6. Moreover, the tested polysaccharides peptides themselves also exhibit immunomodulatory properties manifested in the increased cell proliferation and pro-inflammatory cytokine release from PBMCs. The effect of PBP on the both phenomena was time-dependent and occurred in the U-shaped dose response manner. These findings are significant when considering the use of commercially available PBP from CV extract by cancer patients suffering from immunodeficiency, who may experience microbial infections during therapy.
Collapse
Affiliation(s)
- Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University,1 Lwowska Street, 87-100 Torun, Poland.
| | - Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University,1 Lwowska Street, 87-100 Torun, Poland.
| | - Jakub Piotrowski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University,1 Lwowska Street, 87-100 Torun, Poland.
| | - Wiesław Kozak
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University,1 Lwowska Street, 87-100 Torun, Poland.
| |
Collapse
|
19
|
Zhang X, Qi C, Guo Y, Zhou W, Zhang Y. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models. Carbohydr Polym 2016; 149:186-206. [PMID: 27261743 DOI: 10.1016/j.carbpol.2016.04.097] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022]
Abstract
Toll-like receptor (TLR) 4 is an important polysaccharide receptor; however, the relationships between the structures and biological activities of TLR4 and polysaccharides remain unknown. Many recent findings have revealed the primary structure of TLR4/MD-2-related polysaccharides, and several three-dimensional structure models of polysaccharide-binding proteins have been reported; and these models provide insights into the mechanisms through which polysaccharides interact with TLR4. In this review, we first discuss the origins of polysaccharides related to TLR4, including polysaccharides from higher plants, fungi, bacteria, algae, and animals. We then briefly describe the glucosidic bond types of TLR4-related heteroglycans and homoglycans and describe the typical molecular weights of TLR4-related polysaccharides. The primary structures and activity relationships of polysaccharides with TLR4/MD-2 are also discussed. Finally, based on the existing interaction models of LPS with TLR4/MD-2 and linear polysaccharides with proteins, we provide insights into the possible interaction models of polysaccharide ligands with TLR4/MD-2. To our knowledge, this review is the first to summarize the primary structures and activity relationships of TLR4-related polysaccharides and the possible mechanisms of interaction for TLR4 and TLR4-related polysaccharides.
Collapse
Affiliation(s)
- Xiaorui Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Chunhui Qi
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Yan Guo
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| |
Collapse
|
20
|
Polysaccharide peptides from Coriolus versicolor exert differential immunomodulatory effects on blood lymphocytes and breast cancer cell line MCF-7 in vitro. Immunol Lett 2016; 174:37-44. [PMID: 27091479 DOI: 10.1016/j.imlet.2016.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 01/31/2023]
Abstract
The protein-bound polysaccharides (PBP), isolated from Coriolus versicolor (CV) fungus, are considered as natural compounds with potential therapeutic applications. The immunopotentiating and antitumor activity of polysaccharopeptides has been previously examined, however similar findings could not be achieved. The source of PBP, variations in extraction process as well as environmental factors seems to affect the biological properties of these active CV components. Since further analysis are needed to draw more definite conclusion, the present study aimed to investigate the immunomodulatory properties of the PBP extract, isolated from commercially available capsules of C. versicolor. Our results revealed that the effect mediated by PBP extract depends on the target cells. We reported that the polysaccharopeptides induced a significant decrease in breast cancer MCF-7 cells growth, which was TNF-α-dependent phenomenon. Interestingly, the level of two others cytokines, IL-1β and IL-6 was not affected. On the other hand, in this study we noticed that protein-bound polysaccharides extracted from CV significantly augmented the proliferative response of blood lymphocytes in a time-dependent manner, which was associated with IL-6 and IL-1β mRNA upregulation. Moreover we found that the cells response to PBP stimuli might be inversely related to its concentration.
Collapse
|
21
|
Feng Z, Wang Z, Yang M, Zhou L, Bao Y. Polysaccharopeptide exerts immunoregulatory effects via MyD88-dependent signaling pathway. Int J Biol Macromol 2016; 82:201-7. [DOI: 10.1016/j.ijbiomac.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/15/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
|
22
|
Jedrzejewski T, Piotrowski J, Kowalczewska M, Wrotek S, Kozak W. Polysaccharide peptide fromCoriolus versicolorinduces interleukin 6-related extension of endotoxin fever in rats. Int J Hyperthermia 2015; 31:626-34. [DOI: 10.3109/02656736.2015.1046953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Wang Z, Dong B, Feng Z, Yu S, Bao Y. A study on immunomodulatory mechanism of Polysaccharopeptide mediated by TLR4 signaling pathway. BMC Immunol 2015; 16:34. [PMID: 26032186 PMCID: PMC4450994 DOI: 10.1186/s12865-015-0100-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/20/2015] [Indexed: 11/17/2022] Open
Abstract
Background Polysaccharopeptide (PSP), isolated from Coriolus versicolor COV-1 strain, is a protein-bound polysaccharide widely used as immunoadjuvant for cancer immunotherapy. Although the immunomodulatory activity of PSP has been well established, the precise molecule mechanisms of its biological activity have yet to be fully elucidated. Methods In the present study, we first investigated the immunomodulatory activity of PSP in peritoneal macrophages from C57BL/10J (TLR4+/+) and C57BL/10ScCr (TLR4-/-) mice carrying a defective toll-like receptor-4 (TLR4) gene and then evaluated PSP for its effect on tumor inhibition rates and the immune organ index in above two different strains of mice. In addition, PSP were also evaluated for its activation of TLR4, TLR4-downstream molecules (TRAF6, NF-κB and AP-1) in spleens of tumor-bearing C57BL/10J (TLR4+/+) and C57BL/10ScCr (TLR4-/-) mice. Results The results showed that PSP had adjuvant activities in stimulating expressions of cytokines as well as TLR4, TRAF6, phosphorylation of NF-κB p65 transcription factors and phosphorylation of c-Jun (a component of the transcription factor AP-1) in peritoneal macrophages from C57BL/10J (TLR4+/+) mice but not from C57BL/10ScCr (TLR4-/-) mice. In vivo PSP as well as Adriamycin (ADM) decreased the mean weights of tumors compared with normal saline and PSP increased thymus index and spleen index relative to ADM in tumor-bearing C57BL/10J (TLR4+/+) mice but not in C57BL/10ScCr (TLR4-/-) mice. Conclusions We demonstrated that PSP activates peritoneal macrophages in vitro via TLR4 signaling pathway and PSP functions its immunoregulatory effect in vivo also via TLR4 signaling pathway. These data strongly suggest TLR4 signaling pathway is involved in PSP-mediated immunomodulatory activities.
Collapse
Affiliation(s)
- Zhixue Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Lin Jiang Rd. #76, Yuzhong District, 400010, Chongqing, China.
| | - Bing Dong
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Lin Jiang Rd. #76, Yuzhong District, 400010, Chongqing, China.
| | - Zifang Feng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Lin Jiang Rd. #76, Yuzhong District, 400010, Chongqing, China.
| | - Shuang Yu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Lin Jiang Rd. #76, Yuzhong District, 400010, Chongqing, China.
| | - Yixi Bao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Chongqing Medical University, Lin Jiang Rd. #76, Yuzhong District, 400010, Chongqing, China.
| |
Collapse
|