1
|
Mo Y, Zhang Y, Zhang Q. The pulmonary effects of nickel-containing nanoparticles: Cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:1817-1846. [PMID: 38984270 PMCID: PMC11230653 DOI: 10.1039/d3en00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells in vitro, and rodent lungs in vivo, and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
2
|
Cary CM, Fournier SB, Adams S, Wang X, Yurkow EJ, Stapleton PA. Single pulmonary nanopolystyrene exposure in late-stage pregnancy dysregulates maternal and fetal cardiovascular function. Toxicol Sci 2024; 199:149-159. [PMID: 38366927 PMCID: PMC11057520 DOI: 10.1093/toxsci/kfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024] Open
Abstract
Large-scale production and waste of plastic materials have resulted in widespread environmental contamination by the breakdown product of bulk plastic materials to micro- and nanoplastics (MNPs). The small size of these particles enables their suspension in the air, making pulmonary exposure inevitable. Previous work has demonstrated that xenobiotic pulmonary exposure to nanoparticles during gestation leads to maternal vascular impairments, as well as cardiovascular dysfunction within the fetus. Few studies have assessed the toxicological consequences of maternal nanoplastic (NP) exposure; therefore, the objective of this study was to assess maternal and fetal health after a single maternal pulmonary exposure to polystyrene NP in late gestation. We hypothesized that this acute exposure would impair maternal and fetal cardiovascular function. Pregnant rats were exposed to nanopolystyrene on gestational day 19 via intratracheal instillation. 24 h later, maternal and fetal health outcomes were evaluated. Cardiovascular function was assessed in dams using vascular myography ex vivo and in fetuses in vivo function was measured via ultrasound. Both fetal and placental weight were reduced after maternal exposure to nanopolystyrene. Increased heart weight and vascular dysfunction in the aorta were evident in exposed dams. Maternal exposure led to vascular dysfunction in the radial artery of the uterus, a resistance vessel that controls blood flow to the fetoplacental compartment. Function of the fetal heart, fetal aorta, and umbilical artery after gestational exposure was dysregulated. Taken together, these data suggest that exposure to NPs negatively impacts maternal and fetal health, highlighting the concern of MNPs exposure on pregnancy and fetal development.
Collapse
Affiliation(s)
- C M Cary
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S Adams
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - X Wang
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - E J Yurkow
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
3
|
Tavakoli Pirzaman A, Sadeghnezhad G, Azmoun Z, Eslami A, Mansoori R, Kazemi S, Hosseini SM. The effect of geraniol on nickel-induced embryotoxicity and cardiotoxicity in rats. Int J Immunopathol Pharmacol 2024; 38:3946320241272693. [PMID: 39393811 PMCID: PMC11483796 DOI: 10.1177/03946320241272693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Nickel (Ni), commonly-used heavy metals in industrial activities, can lead to embryo and organ toxicity, especially cardiovascular damage. Geraniol (GER) has various beneficial effects such as anti-oxidant, anti-inflammatory, anti-tumor, anti-ulcer, anti-microbial, and neuroprotective activities. OBJECTIVE The objective of this study was to investigate the effect of GER on Ni-induced embryotoxicity and cardiotoxicity in rats. METHODS 40 mother Wistar rats were randomly divided into five groups: Control, GER 250, Ni, Ni + GER 100, and Ni + GER 250. On the 20th day of pregnancy, the animals were sacrificed and fetuses along with blood and tissue samples were collocated for morphological, serological, biochemical, and histopathologic analysis. RESULTS Morphological assessments revealed GER's capacity to mitigate the incomplete ossification of fetal skeletons, indicating a potential safeguarding against the impact of Ni-induced embryotoxicity. Serological and biochemical analyses further affirm GER's role, with noteworthy reductions in cardiac injury markers, such as CRP, CKMB, CPK, LDH, and troponin, in response to GER administration, thereby suggesting its cardioprotective potential. Moreover, treatment with GER 250 could significantly reduce the level of MDA and increase the level of TAC compared to the Ni group. Histopathological examinations corroborated these findings, underscoring GER's ability to counteract cardiac injury and diminish structural damage in affected tissue. CONCLUSIONS These multidimensional analyses indicate the protective prowess of GER against Ni-induced embryotoxic and cardiotoxic effects, shedding light on its potential therapeutic significance in combating adverse impacts stemming from Ni exposure.
Collapse
Affiliation(s)
| | - Ghazaleh Sadeghnezhad
- Department of Veterinary Pathology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Zahra Azmoun
- Department of Veterinary Pathology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Amirreza Eslami
- Department of Veterinary Pathology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Razieh Mansoori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
4
|
Pitzer CR, Aboaziza EA, O'Reilly JM, Mandler WK, Olfert IM. Nicotine and Microvascular Responses in Skeletal Muscle from Acute Exposure to Cigarettes and Vaping. Int J Mol Sci 2023; 24:10208. [PMID: 37373356 DOI: 10.3390/ijms241210208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite claims of safety or harm reduction for electronic cigarettes (E-cig) use (also known as vaping), emerging evidence indicates that E-cigs are not likely safe, or necessarily safer than traditional cigarettes, when considering the user's risk of developing vascular dysfunction/disease. E-cigs are different from regular cigarettes in that E-cig devices are highly customizable, and users can change the e-liquid composition (such as the base solution, flavors, and nicotine level). Since the effects of E-cigs on the microvascular responses in skeletal muscle are poorly understood, we used intravital microscopy with an acute (one-time 10 puff) exposure paradigm to evaluate the individual components of e-liquid on vascular tone and endothelial function in the arterioles of the gluteus maximus muscle of anesthetized C57Bl/6 mice. Consistent with the molecular responses seen with endothelial cells, we found that the peripheral vasoconstriction response was similar between mice exposed to E-cig aerosol or cigarette smoke (i.e., 3R4F reference cigarette); this response was not nicotine dependent, and endothelial cell-mediated vasodilation was not altered within this acute exposure paradigm. We also report that, regardless of the base solution component [i.e., vegetable glycerin (VG)-only or propylene glycol (PG)-only], the vasoconstriction responses were the same in mice with inhalation exposure to 3R4F cigarette smoke or E-cig aerosol. Key findings from this work reveal that some component other than nicotine, in inhaled smoke or aerosol, is responsible for triggering peripheral vasoconstriction in skeletal muscle, and that regardless of one's preference for an E-cig base solution composition (i.e., ratio of VG-to-PG), the acute physiological response to blood vessels appears to be the same. The data suggest that vaping is not likely to be 'safer' than smoking towards blood vessels and can be expected to produce and/or result in the same adverse vascular health outcomes associated with smoking cigarettes.
Collapse
Affiliation(s)
- Christopher R Pitzer
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Eiman A Aboaziza
- West Virginia Clinical and Translational Science Institute, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University, Morgantown, WV 26506, USA
| | - Juliana M O'Reilly
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - W Kyle Mandler
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - I Mark Olfert
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University, Morgantown, WV 26506, USA
- Department of Physiology, Pharmacology and Toxicology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
5
|
Cary CM, Seymore TN, Singh D, Vayas KN, Goedken MJ, Adams S, Polunas M, Sunil VR, Laskin DL, Demokritou P, Stapleton PA. Single inhalation exposure to polyamide micro and nanoplastic particles impairs vascular dilation without generating pulmonary inflammation in virgin female Sprague Dawley rats. Part Fibre Toxicol 2023; 20:16. [PMID: 37088832 PMCID: PMC10122824 DOI: 10.1186/s12989-023-00525-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17β-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.
Collapse
Affiliation(s)
- Chelsea M Cary
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Talia N Seymore
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 02115, Boston, MA, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, 08854, Piscataway, NJ, USA
| | - Samantha Adams
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Marianne Polunas
- Research Pathology Services, Rutgers University, 08854, Piscataway, NJ, USA
| | - Vasanthi R Sunil
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 02115, Boston, MA, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Rutgers University, 08854, Piscataway, NJ, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA.
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Wang Z, Xue K, Wang Z, Zhu X, Guo C, Qian Y, Li X, Li Z, Wei Y. Effects of e-waste exposure on biomarkers of coronary heart disease (CHD) and their associations with level of heavy metals in blood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49850-49857. [PMID: 35218494 DOI: 10.1007/s11356-021-15656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/22/2021] [Indexed: 06/14/2023]
Abstract
Excess heavy metals increase the risk of various diseases. Electronic waste (e-waste) is a potential route to heavy metal exposure, and Taizhou is a large e-waste dismantling area in China. In this study, we acquire blood samples from residents living near an e-waste recycling area (exposed group) and other residents in a selected reference area (reference group) for a comparative study in Taizhou in December 2017. Seven heavy metals, including cobalt (Co), nickel (Ni), cadmium (Cd), tin (Sn), copper (Cu), zinc (Zn), and lead (Pb), are quantitatively determined in all blood samples. It is discovered that the levels of Co, Ni, Sn, and Pb in the exposed group are higher than those in the reference group. Additionally, two crucial biomarkers of coronary heart disease (CHD), i.e., troponin (Tn) and myeloperoxidase (MPO), and two biomarkers of oxidative stress, i.e., malondialdehyde (MDA) and 8-isoprostane (8-I), are measured. We discovered that the levels of these indicators in the exposed group are significantly higher than those in the reference group. Meanwhile, both the Spearman correlation and multiple linear regression analysis show that Ni is positively correlated with Tn, MPO, 8-I, and MDA. Hence, we hypothesize that exposure to e-waste increases the risk of CHD and that Ni is an important contributor to the initiation of the disease.
Collapse
Affiliation(s)
- Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Kaibing Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Garcés M, Marchini T, Cáceres L, Calabró V, Mebert AM, Tuttolomondo MV, Vico T, Vanasco V, Tesan F, Salgueiro J, Zubillaga M, Desimone MF, Valacchi G, Alvarez S, Magnani ND, Evelson PA. Oxidative metabolism in the cardiorespiratory system after an acute exposure to nickel-doped nanoparticles in mice. Toxicology 2021; 464:153020. [PMID: 34740673 DOI: 10.1016/j.tox.2021.153020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022]
Abstract
There is an increasing concern over the harmful effects that metallic nanoparticles (NP) may produce on human health. Due to their redox properties, nickel (Ni) and Ni-containing NP are particularly relevant. Hence, the aim of this study was to establish the toxicological mechanisms in the cardiorespiratory oxidative metabolism initiated by an acute exposure to Ni-doped-NP. Mice were intranasally instilled with silica NP containing Ni (II) (Ni-NP) (1 mg Ni (II)/kg body weight) or empty NP as control, and 1 h after exposure lung, plasma, and heart samples were obtained to assess the redox metabolism. Results showed that, NP were mainly retained in the lungs triggering a significantly increased tissue O2 consumption rate, leading to Ni-NP-increased reactive oxygen species production by NOX activity, and mitochondrial H2O2 production rate. In addition, an oxidant redox status due to an altered antioxidant system showed by lung GSH/GSSG ratio decreased, and SOD activity increased, resulting in an increased phospholipid oxidation. Activation of circulating polymorphonuclear leukocytes, along with GSH/GSSG ratio decreased, and phospholipid oxidation were found in the Ni-NP-group plasma samples. Consequently, in distant organs such as heart, Ni-NP inhalation alters the tissue redox status. Our results showed that the O2 metabolism analysis is a critical area of study following Ni-NP inhalation. Therefore, this work provides novel data linking the redox metabolisms alterations elicited by exposure to Ni (II) adsorbed to NP and cardiorespiratory toxicity.
Collapse
Affiliation(s)
- Mariana Garcés
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| | - Lourdes Cáceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| | - Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| | - Andrea M Mebert
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica Instrumental, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina.
| | - María Victoria Tuttolomondo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica Instrumental, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina.
| | - Tamara Vico
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina.
| | - Virginia Vanasco
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina.
| | - Fiorella Tesan
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina.
| | - Jimena Salgueiro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina.
| | - Marcela Zubillaga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina.
| | - Martín F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica Instrumental, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina.
| | - Giuseppe Valacchi
- NC State University, Plants for Human Health Institute, Animal Science Department, United States; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Silvia Alvarez
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina.
| | - Natalia D Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| | - Pablo A Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| |
Collapse
|
8
|
More SL, Kovochich M, Lyons-Darden T, Taylor M, Schulte AM, Madl AK. Review and Evaluation of the Potential Health Effects of Oxidic Nickel Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:642. [PMID: 33807756 PMCID: PMC7999720 DOI: 10.3390/nano11030642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The exceptional physical and chemical properties of nickel nanomaterials have been exploited in a range of applications such as electrical conductors, batteries, and biomaterials. However, it has been suggested that these unique properties may allow for increased bioavailability, bio-reactivity, and potential adverse health effects. Thus, the purpose of this review was to critically evaluate data regarding the toxicity of oxidic nickel nanoparticles (nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) nanoparticles) with respect to: (1) physico-chemistry properties; (2) nanomaterial characterization in the defined delivery media; (3) appropriateness of model system and translation to potential human effects; (4) biodistribution, retention, and clearance; (5) routes and relevance of exposure; and (6) current research data gaps and likely directions of future research. Inhalation studies were prioritized for review as this represents a potential exposure route in humans. Oxidic nickel particle size ranged from 5 to 100 nm in the 60 studies that were identified. Inflammatory responses induced by exposure of oxidic nickel nanoparticles via inhalation in rodent studies was characterized as acute in nature and only displayed chronic effects after relatively large (high concentration and long duration) exposures. Furthermore, there is no evidence, thus far, to suggest that the effects induced by oxidic nickel nanoparticles are related to preneoplastic events. There are some data to suggest that nano- and micron-sized NiO particles follow a similar dose response when normalized to surface area. However, future experiments need to be conducted to better characterize the exposure-dose-response relationship according to specific surface area and reactivity as a dose metric, which drives particle dissolution and potential biological responses.
Collapse
Affiliation(s)
- Sharlee L. More
- Cardno ChemRisk, 6720 S Macadam Ave Suite 150, Portland, OR 97219, USA
| | - Michael Kovochich
- Cardno ChemRisk, 30 North LaSalle St Suite 3910, Chicago, IL 60602, USA;
| | - Tara Lyons-Darden
- NiPERA, 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA; (T.L.-D.); (M.T.)
| | - Michael Taylor
- NiPERA, 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA; (T.L.-D.); (M.T.)
| | - Alexandra M. Schulte
- Cardno ChemRisk, 65 Enterprise Drive Suite 150, Aliso Viejo, CA 92656, USA; (A.M.S.); (A.K.M.)
| | - Amy K. Madl
- Cardno ChemRisk, 65 Enterprise Drive Suite 150, Aliso Viejo, CA 92656, USA; (A.M.S.); (A.K.M.)
| |
Collapse
|
9
|
Martínez-Zapata D, Santamaria R. The damage of the Watson-Crick base pairs by nickel nanoparticles: A first-principles molecular dynamics study. Comput Biol Chem 2020; 87:107262. [PMID: 32623022 DOI: 10.1016/j.compbiolchem.2020.107262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
The nickel nanoparticles are harmful atmospheric pollutants, and the damage caused by them in humans has become a topic of great relevance. In this study we investigate the interaction of the Ni2 and Ni3 clusters with the AT and GC Watson-Crick base pairs in an aqueous medium. Molecular dynamics in combination with density functional theory are employed. A novel method is implemented to create realistic thermodynamic conditions (NVT) in the simulations. The energies, the charges of the interacting compounds, the temperature changes, and the geometric rearrangements are reported. The results show the formation of stable organometallic compounds of the nickel nanoparticles with the DNA nucleic acid bases. In this respect, the biological processes where the DNA is implicated may be altered by the formation of such super-structures.
Collapse
Affiliation(s)
| | - Ruben Santamaria
- Department of Theoretical Physics, Institute of Physics, UNAM, Mexico.
| |
Collapse
|
10
|
Vidanapathirana AK, Thompson LC, Herco M, Odom J, Sumner SJ, Fennell TR, Brown JM, Wingard CJ. Acute intravenous exposure to silver nanoparticles during pregnancy induces particle size and vehicle dependent changes in vascular tissue contractility in Sprague Dawley rats. Reprod Toxicol 2018; 75:10-22. [PMID: 29154916 PMCID: PMC6241519 DOI: 10.1016/j.reprotox.2017.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
The use of silver nanoparticles (AgNP) raises safety concerns during susceptible life stages such as pregnancy. We hypothesized that acute intravenous exposure to AgNP during late stages of pregnancy will increase vascular tissue contractility, potentially contributing to alterations in fetal growth. Sprague Dawley rats were exposed to a single dose of PVP or Citrate stabilized 20 or 110nm AgNP (700μg/kg). Differential vascular responses and EC50 values were observed in myographic studies in uterine, mesenteric arteries and thoracic aortic segments, 24h post-exposure. Reciprocal responses were observed in aortic and uterine vessels following PVP stabilized AgNP with an increased force of contraction in uterine artery and increased relaxation responses in aorta. Citrate stabilized AgNP exposure increased contractile force in both uterine and aortic vessels. Intravenous AgNP exposure during pregnancy displayed particle size and vehicle dependent moderate changes in vascular tissue contractility, potentially influencing fetal blood supply.
Collapse
Affiliation(s)
- A K Vidanapathirana
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - L C Thompson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - M Herco
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - J Odom
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - S J Sumner
- Discovery Sciences, RTI International, Research Triangle Park, NC, 27709, USA; Department of Nutrition School of Public Health University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - T R Fennell
- Discovery Sciences, RTI International, Research Triangle Park, NC, 27709, USA
| | - J M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, CO, 80045, USA
| | - C J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA; Department of Physical Therapy, Bellarmine University, Louisville, KY, 40205, USA.
| |
Collapse
|
11
|
Lightfoot NE, Berriault CJ, Seilkop SK, Conard BR. Nonrespiratory mortality and cancer incidence in a cohort of Canadian nickel workers. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2017; 72:187-203. [PMID: 27268254 DOI: 10.1080/19338244.2016.1197879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Mortality and cancer incidence were examined for an updated cohort of nonsinter nickel workers in Sudbury and Port Colborne, Ontario, Canada. Abstract results are provided for those with ≥ 15 years since first exposure. For circulatory disease mortality, significant elevations were observed overall in many Sudbury work areas and in Port Colborne staff. Underground miners, with first exposure before 1960, displayed significant elevations for pneumoconiosis, as well as silicosis and anthrasilicosis, likely due to crystalline silica. Significant elevations in colorectal cancer incidence were observed in Sudbury underground mining, mining maintenance, and maintenance work areas. Given a case-control study is not practical, the next cohort update should include more detailed occupational exposure assessment, including dust exposure, diesel engine emissions, solvents, various metals, silica, and sulphur dioxide.
Collapse
Affiliation(s)
- Nancy E Lightfoot
- a School of Rural and Northern Health , Laurentian University , Sudbury , Ontario , Canada
| | - Colin J Berriault
- b Occupational Cancer Research Centre , Cancer Care Ontario , Toronto , Ontario , Canada
| | | | - Bruce R Conard
- d BR Conard Consulting Inc. , Oakville , Ontario , Canada
| |
Collapse
|
12
|
Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia ACD, Andersen MHG, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, Jantzen K, Loft S. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol 2016; 46:437-76. [DOI: 10.3109/10408444.2016.1149451] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Clark J, Gregory CC, Matthews IP, Hoogendoorn B. The biological effects upon the cardiovascular system consequent to exposure to particulates of less than 500 nm in size. Biomarkers 2015; 21:1-47. [PMID: 26643755 DOI: 10.3109/1354750x.2015.1118540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Ultrafine particulate matter contribution to cardiovascular disease is not known and not regulated. PM up to 500 nm are abundant in urban air and alveolar deposition is significant. OBJECTIVE Effects beyond the alveolar barrier within the body or in vitro tissues exposed to particles <500 nm. METHODS AND RESULTS DATABASES MEDLINE; Ovid-MEDLINE PREM; Web of Science; PubMed (SciGlobe). 127 articles. Results in tables: "subject type exposed", "exposure type", "technique". CONCLUSION Heart rate, vasoactivity, atherosclerotic advancement, oxidative stress, coagulability, inflammatory changes are affected. Production of reactive oxygen species is a useful target to limit outcomes associated with UFP exposure.
Collapse
Affiliation(s)
- James Clark
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Clive C Gregory
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Ian P Matthews
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Bastiaan Hoogendoorn
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
14
|
Cuevas AK, Niu J, Zhong M, Liberda EN, Ghio A, Qu Q, Chen LC. Metal rich particulate matter impairs acetylcholine-mediated vasorelaxation of microvessels in mice. Part Fibre Toxicol 2015; 12:14. [PMID: 26041432 PMCID: PMC4456050 DOI: 10.1186/s12989-014-0077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background Exposure to PM2.5 (particulate matter <2.5 μm) has been associated with changes in endothelial function. PM2.5 was collected from two Chinese cities, Jinchang (JC) and Zhangye (ZH), both with similar PM2.5 concentrations. However, JC had levels of nickel (Ni), selenium (Se), copper (Cu), and arsenic (As) that were 76, 25, 17, and 7 fold higher than that measured in ZH, respectively. We used this unique PM sample to delineate the chemical components that drive pulmonary and systemic effects and explore the mechanism(s) by which vascular dysfunction is caused. Methods Male FVB/N mice received oropharyngeal aspiration of water or PM2.5 from JC, ZH or ZH spiked with one of the following elements at the same concentrations found in the JC PM (Ni = 4.76; As = 2.36; Se = 0.24; Cu = 2.43 μg/mg) followed by evaluation of markers of pulmonary and systemic inflammation. Mesenteric arteries were isolated for gene expression or functional response to various agonists (Phenylephrine, Acetylcholine, and Sodium Nitroprusside) and inhibitors (L-NAME, Apocynin, and VAS2870) ex vivo. Results Protein and total cell counts from lung lavage revealed significant pulmonary inflammation from ZH (p < 0.01) and JC and ZH + NiSO4 (p < 0.001) as compared to control and a significant decrease in mesenteric artery relaxation (p < 0.001) and this decrease is blunted in the presence of NADPH oxidase inhibitors. Significant increases in gene expression (TNF-α, IL-6, Nos3; p < 0.01; NOX4; p < 0.05) were observed in JC and ZH + NiSO4, as well as significantly higher concentrations of VEGF and IL-10 (p < 0.01, p < 0.001; respectively). Conclusions Our results indicate that the specific toxicity observed in PM from JC is likely due to the nickel component in the PM. Further, since VAS2870 was the most successful inhibitor to return vessels to baseline relaxation values, NADPH Oxidase is implicated as the primary source of PM-induced O2•-.
Collapse
Affiliation(s)
- Azita K Cuevas
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| | - Jingping Niu
- Lanzhou University School of Public Health, Lanzhou, China.
| | - Mianhua Zhong
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| | - Eric N Liberda
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| | - Andrew Ghio
- Human Studies Division, NHEERL, USEPA, Research Triangle Park, Chapel Hill, NC, USA.
| | - Qingshan Qu
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| | - Lung Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, 10987, NY, USA.
| |
Collapse
|
15
|
Oller AR, Oberdörster G, Seilkop SK. Derivation of PM10 size-selected human equivalent concentrations of inhaled nickel based on cancer and non-cancer effects on the respiratory tract. Inhal Toxicol 2015; 26:559-78. [PMID: 25055843 DOI: 10.3109/08958378.2014.932034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Nickel (Ni) in ambient air is predominantly present in the form of oxides and sulfates, with the distribution of Ni mass between the fine (particle aerodynamic diameter < 2.5 µm; PM2.5) and coarser (2.5-10 µm) size-selected aerosol fractions of PM10 dependent on the aerosol's origin. When deriving a long-term health protective reference concentration for Ni in ambient air, the respiratory toxicity and carcinogenicity effects of the predominant Ni compounds in ambient air must be considered. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rats, workers, and the general public were applied to experimentally- and epidemiologically-determined points of departure (PODs) such as no(low)-effect concentrations, for both cancer and non-cancer respiratory effects. This approach resulted in the derivation of threshold-based PM10 size-selected equivalent concentrations (modified PODs) of 0.5 µg Ni/m(3) based on workers' cancer effects and 9-11 µg Ni/m(3) based on rodent respiratory toxicity effects. Sources of uncertainty in exposure extrapolations are described. These are not reference concentrations; rather the derived PM10 size-selected modified PODs can be used as the starting point for the calculation of ambient air reference concentrations for Ni. The described approach is equally applicable to other particulates.
Collapse
|
16
|
Chen LC, Lippmann M. Inhalation toxicology methods: the generation and characterization of exposure atmospheres and inhalational exposures. CURRENT PROTOCOLS IN TOXICOLOGY 2015; 63:24.4.1-24.4.23. [PMID: 25645246 PMCID: PMC4332412 DOI: 10.1002/0471140856.tx2404s63] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this unit, the need for laboratory-based inhalation toxicology studies, the historical background on adverse health effects of airborne toxicants, and the benefits of advance planning for the building of analytic options into the study design to maximize the scientific gains to be derived from the investments in the study are outlined. The following methods are described: (1) the generation and characterization of exposure atmospheres for inhalation exposures in humans and laboratory animals; (2) the delivery and distribution into and within whole-body exposure chambers, head-only exposure chambers, face-masks, and mouthpieces or nasal catheters; (3) options for on-line functional assays during and between exposures; and (4) options for serial non-invasive assays of response. In doing so, a description beyond exposures to single agents and simple mixtures is presented, and included are methods for evaluating biological responses to complex environmental mixtures. It is also emphasized that great care should be taken in the design and execution of such studies so that the scientific returns can be maximized both initially, and in follow-up utilization of archived samples of the exposure atmospheres, excreta, and tissues collected for histology.
Collapse
Affiliation(s)
- Lung-Chi Chen
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Morton Lippmann
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| |
Collapse
|
17
|
PVP formulated fullerene (C60) increases Rho-kinase dependent vascular tissue contractility in pregnant Sprague Dawley rats. Reprod Toxicol 2014; 49:86-100. [PMID: 25088243 DOI: 10.1016/j.reprotox.2014.07.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/09/2014] [Accepted: 07/22/2014] [Indexed: 12/22/2022]
Abstract
Pregnancy is a unique physiological state, in which C60 fullerene is reported to be distributed in both maternal and fetal tissues. Tissue distribution of C60 differs between pregnant and non-pregnant states, presumably due to functional changes in vasculature during pregnancy. We hypothesized that polyvinylpyrrolidone (PVP) formulated C60 (C60/PVP) increases vascular tissue contractility during pregnancy by increasing Rho-kinase activity. C60/PVP was administered intravenously to pregnant and non-pregnant female Sprague Dawley rats. Vascular responses were assessed using wire myography 24h post-exposure. Increased stress generation was observed in uterine artery, thoracic aorta and umbilical vein. Rho-Rho-kinase mediated force maintenance was increased in arterial segments from C60/PVP exposed pregnant rats when compared to PVP exposed rats. Our findings suggest that intravenous exposure to C60/PVP during pregnancy increases vascular tissue contractility of the uterine artery through elements of Rho-Rho-kinase signaling during late stages of pregnancy.
Collapse
|
18
|
Liberda EN, Cuevas AK, Qu Q, Chen LC. The acute exposure effects of inhaled nickel nanoparticles on murine endothelial progenitor cells. Inhal Toxicol 2014; 26:588-97. [PMID: 25144474 PMCID: PMC4212263 DOI: 10.3109/08958378.2014.937882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The discovery of endothelial progenitor cells (EPCs) may help to explain observed cardiovascular effects associated with inhaled nickel nanoparticle exposures, such as increases in vascular inflammation, generation of reactive oxygen species, altered vasomotor tone and potentiated atherosclerosis in murine species. METHODS Following an acute whole body inhalation exposure to 500 µg/m(3) of nickel nanoparticles for 5 h, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells (CEPCs), circulating endothelial cells (CECs) and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the exposure. RESULTS AND CONCLUSIONS Acute exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation (CEPCs). CECs were significantly elevated indicating that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. These results coincided with a decrease in the mRNA of receptors involved in EPC mobilization and homing. These data provide new insight into how an acute nickel nanoparticle exposure to half of the current Occupational Safety & Health Administration (OSHA) permissible exposure limit may adversely affect EPCs and exacerbate cardiovascular disease states.
Collapse
Affiliation(s)
- Eric N Liberda
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY
- School of Occupational and Public Health, Ryerson University, Ontario, Canada
| | - Azita K Cuevas
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY
| | - Qingshan Qu
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY
| | - Lung Chi Chen
- New York University School of Medicine, Department of Environmental Medicine, Tuxedo, NY
| |
Collapse
|
19
|
Thompson LC, Urankar RN, Holland NA, Vidanapathirana AK, Pitzer JE, Han L, Sumner SJ, Lewin AH, Fennell TR, Lust RM, Brown JM, Wingard CJ. C₆₀ exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in Sprague Dawley rats. Toxicol Sci 2014; 138:365-78. [PMID: 24431213 DOI: 10.1093/toxsci/kfu008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The potential uses of engineered C₆₀ fullerene (C₆₀) have expanded in recent decades to include industrial and biomedical applications. Based on clinical findings associated with particulate matter exposure and our data with multi-walled carbon nanotubes, we hypothesized that ischemia/reperfusion (I/R) injury and pharmacological responses in isolated coronary arteries would depend upon the route of exposure and gender in rats instilled with C₆₀. Male and female Sprague Dawley rats were used to test this hypothesis by surgical induction of cardiac I/R injury in situ 24 h after intratracheal (IT) or intravenous (IV) instillation of 28 μg of C₆₀ formulated in polyvinylpyrrolidone (PVP) or PVP vehicle. Serum was collected for quantification of various cytokines. Coronary artery segments were isolated for assessment of vasoactive pharmacology via wire myography. Both IV and IT exposure to C₆₀ resulted in expansion of myocardial infarction in male and female rats following I/R injury. Serum-collected post-I/R showed elevated concentrations of interleukin-6 and monocyte chemotactic protein-1 in male rats exposed to IV C₆₀. Coronary arteries isolated from male rats exposed to IT C₆₀ demonstrated augmented vasocontraction in response to endothelin-1 that was attenuated with Indomethacin. IV C₆₀ exposure resulted in impaired acetylcholine relaxation in male rats and IT C₆₀ exposure resulted in depressed vasorelaxation in response to sodium nitroprusside in female rats. Based on these data, we conclude that IT and IV exposure to C₆₀ results in unique cardiovascular consequences that may favor heightened coronary resistance and myocardial susceptibility to I/R injury.
Collapse
Affiliation(s)
- Leslie C Thompson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Niu J, Liberda EN, Qu S, Guo X, Li X, Zhang J, Meng J, Yan B, Li N, Zhong M, Ito K, Wildman R, Liu H, Chen LC, Qu Q. The role of metal components in the cardiovascular effects of PM2.5. PLoS One 2013; 8:e83782. [PMID: 24386277 PMCID: PMC3873977 DOI: 10.1371/journal.pone.0083782] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022] Open
Abstract
Exposure to ambient fine particulate matter (PM2.5) increases risks for cardiovascular disorders (CVD). However, the mechanisms and components responsible for the effects are poorly understood. Based on our previous murine exposure studies, a translational pilot study was conducted in female residents of Jinchang and Zhangye, China, to test the hypothesis that specific chemical component of PM2.5 is responsible for PM2.5 associated CVD. Daily ambient and personal exposures to PM2.5 and 35 elements were measured in the two cities. A total of 60 healthy nonsmoking adult women residents were recruited for measurements of inflammation biomarkers. In addition, circulating endothelial progenitor cells (CEPCs) were also measured in 20 subjects. The ambient levels of PM2.5 were comparable between Jinchang and Zhangye (47.4 and 54.5µg/m3, respectively). However, the levels of nickel, copper, arsenic, and selenium in Jinchang were 82, 26, 12, and 6 fold higher than Zhangye, respectively. The levels of C-reactive protein (3.44±3.46 vs. 1.55±1.13), interleukin-6 (1.65±1.17 vs. 1.09±0.60), and vascular endothelial growth factor (117.6±217.0 vs. 22.7±21.3) were significantly higher in Jinchang. Furthermore, all phenotypes of CEPCs were significantly lower in subjects recruited from Jinchang than those from Zhangye. These results suggest that specific metals may be important components responsible for PM2.5-induced cardiovascular effects and that the reduced capacity of endothelial repair may play a critical role.
Collapse
Affiliation(s)
- Jingping Niu
- Lanzhou University School of Public Health, Lanzhou, China
| | - Eric N Liberda
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Song Qu
- New York University College of Arts and Sciences, New York City, New York, United States of America
| | - Xinbiao Guo
- Peking University School of Public Health, Beijing, China
| | - Xiaomei Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Jingjing Zhang
- Lanzhou University School of Public Health, Lanzhou, China
| | - Junliang Meng
- Lanzhou University School of Public Health, Lanzhou, China
| | - Bing Yan
- Lanzhou University School of Public Health, Lanzhou, China
| | - Nairong Li
- Lanzhou University School of Public Health, Lanzhou, China
| | - Mianhua Zhong
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Kazuhiko Ito
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Rachel Wildman
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hong Liu
- Peking University School of Public Health, Beijing, China
| | - Lung Chi Chen
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| | - Qingshan Qu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America
| |
Collapse
|
21
|
Ying Z, Xu X, Chen M, Liu D, Zhong M, Chen LC, Sun Q, Rajagopalan S. A synergistic vascular effect of airborne particulate matter and nickel in a mouse model. Toxicol Sci 2013; 135:72-80. [PMID: 23788629 DOI: 10.1093/toxsci/kft136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Both epidemiological and empirical studies have indicated that nickel (Ni) may play an important role in PM2.5 exposure-induced adverse cardiovascular effects. However, the underlying mechanism remains unclear. In the present study, we exposed mice to concentrated ambient PM2.5 (CAP), Ni, or coexposure to both CAP + Ni in a specially designed whole-body exposure system for a duration of 3 months and investigated their effects on vascular function, oxidative stress, and vascular inflammation. CAP + Ni exposure induced greater endothelial dysfunction compared with CAP or Ni alone. Ni exposure decreased endothelial nitric oxide synthase (eNOS) dimers in the aorta, which was potentiated by coexposure with CAP. CAP alone did not reduce NOS dimers but was more effective than Ni in decreasing phosphorylation of eNOS (S1177) and Akt (T308). Ni had minimal effects on the expression of vascular inflammatory genes but synergized with CAP in marked upregulation of tumor necrosis factor-alpha and monocyte chemotactic protein-1. The effects of Ni on NOS monomer formation in endothelial cells were redox dependent as evidenced by attenuation of effects by Tiron in cultured endothelial cells. Ni synergized with lipopolysaccharide, another bioactive component of CAP in reducing eNOS dimerization in cultured endothelial cells. Ni exposure induces endothelial dysfunction through oxidative stress-dependent inhibition of eNOS dimerization. Its interaction with other components of CAP may significantly contribute to the adverse cardiovascular effects of CAP exposure.
Collapse
Affiliation(s)
- Zhekang Ying
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ruiz-Esparza GU, Flores-Arredondo JH, Segura-Ibarra V, Torre-Amione G, Ferrari M, Blanco E, Serda RE. The physiology of cardiovascular disease and innovative liposomal platforms for therapy. Int J Nanomedicine 2013; 8:629-40. [PMID: 23413209 PMCID: PMC3572823 DOI: 10.2147/ijn.s30599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Heart disease remains the major cause of death in males and females, emphasizing the need for novel strategies to improve patient treatment and survival. A therapeutic approach, still in its infancy, is the development of site-specific drug-delivery systems. Nanoparticle-based delivery systems, such as liposomes, have evolved into robust platforms for site-specific delivery of therapeutics. In this review, the clinical impact of cardiovascular disease and the pathophysiology of different subsets of the disease are described. Potential pathological targets for therapy are introduced, and promising advances in nanotherapeutic cardiovascular applications involving liposomal platforms are presented.
Collapse
|
23
|
Lou S, Zhong L, Yang X, Xue T, Gai R, Zhu D, Zhao Y, Yang B, Ying M, He Q. Efficacy of all-trans retinoid acid in preventing nickel induced cardiotoxicity in myocardial cells of rats. Food Chem Toxicol 2013; 51:251-8. [DOI: 10.1016/j.fct.2012.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 12/11/2022]
|
24
|
Mann EE, Thompson LC, Shannahan JH, Wingard CJ. Changes in cardiopulmonary function induced by nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:691-702. [PMID: 22915448 DOI: 10.1002/wnan.1194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nanoparticles (NP) are highly applicable in a variety of technological and biomedical fields because of their unique physicochemical properties. The increased development and utilization of NP has amplified human exposure and raised concerns regarding their potential to generate toxicity. The biological impacts of NP exposures have been shown to be dependent on aerodynamic size, chemical composition, and the route of exposure (oral, dermal, intravenous, and inhalation), while recent research has demonstrated the cardiovascular (CV) system as an important site of toxicity. Proposed mechanisms responsible for these effects include inflammation, oxidative stress, autonomic dysregulation, and direct interactions of NP with CV cells. Specifically, NP have been shown to impact vascular endothelial cell (EC) integrity, which may disrupt the dynamic endothelial regulation of vascular tone, possibly altering systemic vascular resistance and impairing the appropriate distribution of blood flow throughout the circulation. Cardiac consequences of NP-induced toxicity include disruption of heart rate and electrical activity via catecholamine release, increased susceptibility to ischemia/reperfusion injury, and modified baroreceptor control of cardiac function. These and other CV outcomes likely contribute to adverse health effects promoting myocardial infarction, hypertension, cardiac arrhythmias, and thrombosis. This review will assess the current knowledge regarding the principle sites of CV toxicity following NP exposure. Furthermore, we will propose mechanisms contributing to altered CV function and hypothesize possible outcomes resulting in decrements in human health.
Collapse
Affiliation(s)
- Erin E Mann
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | | | | | |
Collapse
|
25
|
Magnetic nanovectors for drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8 Suppl 1:S37-50. [PMID: 22640907 DOI: 10.1016/j.nano.2012.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/25/2012] [Indexed: 12/12/2022]
Abstract
Nanotechnology holds the promise of novel and more effective treatments for vexing human health issues. Among these are the use of nanoparticle platforms for site-specific delivery of therapeutics to tumors, both by passive and active mechanisms; the latter includes magnetic vectoring of magnetically responsive nanoparticles (MNP) that are functionalized to carry a drug payload that is released at the tumor. The conceptual basis, which actually dates back a number of decades, resides in physical (magnetic) enhancement, with magnetic field gradients aligned non-parallel to the direction of flow in the tumor vasculature, of existing passive mechanisms for extravasation and accumulation of MNP in the tumor interstitial fluid, followed by MNP internalization. In this review, we will assess the most recent developments and current status of this approach, considering MNP that are composed of one or more of the three elements that are ferromagnetic at physiological temperature: nickel, cobalt and iron. The effects on cellular functions in vitro, the ability to successfully vector the platform in vivo, the anti-tumor effects of such localized nano-vectors, and any associated toxicities for these MNP will be presented. The merits and shortcomings of nanomaterials made of each of the three elements will be highlighted, and a roadmap for moving this long-established approach forward to clinical evaluation will be put forth.
Collapse
|
26
|
Klostergaard J, Seeney CE. Magnetic nanovectors for drug delivery. Maturitas 2012; 73:33-44. [PMID: 22402027 DOI: 10.1016/j.maturitas.2012.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 10/28/2022]
Abstract
Nanotechnology holds the promise of novel and more effective treatments for vexing human health issues. Among these are the use of nanoparticle platforms for site-specific delivery of therapeutics to tumors, both by passive and active mechanisms; the latter includes magnetic vectoring of magnetically responsive nanoparticles (MNP) that are functionalized to carry a drug payload that is released at the tumor. The conceptual basis, which actually dates back a number of decades, resides in physical (magnetic) enhancement, with magnetic field gradients aligned non-parallel to the direction of flow in the tumor vasculature, of existing passive mechanisms for extravasation and accumulation of MNP in the tumor interstitial fluid, followed by MNP internalization. In this review, we will assess the most recent developments and current status of this approach, considering MNP that are composed of one or more of the three elements that are ferromagnetic at physiological temperature: nickel, cobalt and iron. The effects on cellular functions in vitro, the ability to successfully vector the platform in vivo, the anti-tumor effects of such localized nano-vectors, and any associated toxicities for these MNP will be presented. The merits and shortcomings of nanomaterials made of each of the three elements will be highlighted, and a roadmap for moving this long-established approach forward to clinical evaluation will be put forth.
Collapse
Affiliation(s)
- Jim Klostergaard
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| | | |
Collapse
|
27
|
Li CH, Liao PL, Shyu MK, Liu CW, Kao CC, Huang SH, Cheng YW, Kang JJ. Zinc oxide nanoparticles-induced intercellular adhesion molecule 1 expression requires Rac1/Cdc42, mixed lineage kinase 3, and c-Jun N-terminal kinase activation in endothelial cells. Toxicol Sci 2012; 126:162-72. [PMID: 22166487 DOI: 10.1093/toxsci/kfr331] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The explosive development of nanotechnology has caused an increase in unintended biohazards in humans and in the ecosystem. Similar to particulate matter, nanoparticles (NPs) are strongly correlated with the increase in incidences of cardiovascular diseases, yet the mechanisms behind this correlation remain unclear. Within the testing concentrations of 0.1-10 μg/ml, which did not cause a marked drop in cell viability, zinc oxide NPs (ZnO-NPs) induced intercellular adhesion molecule-1 (ICAM-1) messenger RNA, and protein expression in both concentration- and time-dependent manner in treated human umbilical vein endothelial cells (HUVECs). ZnO-NPs treatment cause the activation of Ras-related C3 botulinum toxin substrate 1 (Rac1)/cell division control protein 42 homolog (Cdc42) and protein accumulation of mixed lineage kinase 3 (MLK3), followed by c-Jun N-terminal kinase (JNK) and transcription factor c-Jun activation. Induction of ICAM-1 and phosphorylation of JNK and c-Jun could be inhibited by either JNK inhibitor SP600125 or Rac guanosine triphosphatase inhibitor NSC23766 pretreatment. In addition, pretreatment with NSC23766 significantly reduced MLK3 accumulation, suggesting the involvement of Rac1/Cdc42-MLK3-JNK-c-Jun signaling in the regulation of ZnO-NPs-induced ICAM-1 expression, whereas these signaling factors were not activated in zinc oxide microparticles (ZnO-MPs)-treated HUVECs. The increase of ICAM-1 expression on ZnO-NPs-treated HUVECs enables leukocytes to adhere and has been identified as an indicator of vascular inflammation. Our data are essential for safety evaluation of the clinical usage of ZnO-NPs in daily supplements, cosmetics, and biomedicines.
Collapse
Affiliation(s)
- Ching-Hao Li
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Blum JL, Xiong JQ, Hoffman C, Zelikoff JT. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci 2012; 126:478-86. [PMID: 22240978 DOI: 10.1093/toxsci/kfs008] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One industrially important metal oxide nanoparticle (NP) is cadmium oxide (CdO). A study was performed using timed-pregnant CD-1 mice to determine if Cd associated with inhaled CdO NP could reach the placenta and adversely affect the developing fetus and/or neonate. Pregnant mice were exposed by inhalation either every other day to 100 μg of freshly generated CdO/m(3) (exposure 1) or daily to 230 μg CdO/m(3) (exposure 2). In each exposure, mice were exposed to CdO NP or carrier gas (control) for 2.5 h from 4.5 days post coitus (dpc) through 16.5 dpc. At 17.5 dpc, fetuses and placentas from both exposures 1 and 2 were collected, measured, and weighed. A subgroup from the second exposure was allowed to give birth, and neonates were weighed daily until weaning. Cadmium in the uterus and placenta, as well as in other maternal organs, was elevated in NP-treated mice, but was undetectable in fetuses at 17.5 dpc. Daily inhalation of 230 μg CdO NP/m(3) decreased the incidence of pregnancy (i.e., no evidence of implantation) by 23%, delayed maternal weight gain, altered placental weight, and decreased fetal length, as well as delayed neonatal growth. This study demonstrates that inhalation of CdO NP during pregnancy adversely affects reproductive fecundity and alters fetal and postnatal growth of the developing offspring.
Collapse
Affiliation(s)
- Jason L Blum
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | |
Collapse
|
29
|
|