1
|
Yan X, Zhao Z, Weaver J, Sun T, Yun JW, Roneker CA, Hu F, Doliba NM, McCormick CCW, Vatamaniuk MZ, Lei XG. Role and mechanism of REG2 depletion in insulin secretion augmented by glutathione peroxidase-1 overproduction. Redox Biol 2022; 56:102457. [PMID: 36063729 PMCID: PMC9463454 DOI: 10.1016/j.redox.2022.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
We previously reported a depletion of murine regenerating islet-derived protein 2 (REG2) in pancreatic islets of glutathione peroxidase-1 (Gpx1) overexpressing (OE) mice. The present study was to explore if and how the REG2 depletion contributed to an augmented glucose stimulated insulin secretion (GSIS) in OE islets. After we verified a consistent depletion (90%, p < 0.05) of REG2 mRNA, transcript, and protein in OE islets compared with wild-type (WT) controls, we treated cultured and perifused OE islets (70 islets/sample) with REG2 (1 μg/ml or ml · min) and observed 30-40% (p < 0.05) inhibitions of GSIS by REG2. Subsequently, we obtained evidences of co-immunoprecipitation, cell surface ligand binding, and co-immunofluorescence for a ligand-receptor binding between REG2 and transmembrane, L-type voltage-dependent Ca2+ channel (CaV1.2) in beta TC3 cells. Mutating the C-type lectin binding domain of REG2 or deglycosylating CaV1.2 removed the inhibition of REG2 on GSIS and(or) the putative binding between the two proteins. Treating cultured OE and perifused WT islets with REG2 (1 μg/ml or ml · min) decreased (p < 0.05) Ca2+ influx triggered by glucose or KCl. An intraperitoneal (ip) injection of REG2 (2 μg/g) to OE mice (6-month old, n = 10) decreased their plasma insulin concentration (46%, p < 0.05) and elevated their plasma glucose concentration (25%, p < 0.05) over a 60 min period after glucose challenge (ip, 1 g/kg). In conclusion, our study identifies REG2 as a novel regulator of Ca2+ influx and insulin secretion, and reveals a new cascade of GPX1/REG2/CaV1.2 to explain how REG2 depletion in OE islets could decrease its binding to CaV1.2, resulting in uninhibited Ca2+ influx and augmented GSIS. These findings create new links to bridge redox biology, tissue regeneration, and insulin secretion.
Collapse
Affiliation(s)
- Xi Yan
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jeremy Weaver
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Tao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jun-Won Yun
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA; Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Carol A Roneker
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Nicolai M Doliba
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Marko Z Vatamaniuk
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) confers protection against hepatic fibrosis through downregulation of transforming growth factor β receptor II. J Transl Med 2020; 100:466-482. [PMID: 31641222 DOI: 10.1038/s41374-019-0314-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023] Open
Abstract
Hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) has antimicrobial, antioxidant, anti-inflammatory, mitogenic, and antiapoptotic effects and thus exerts important functions in the maintenance of integrity and homeostasis of several organs, such as the gastrointestinal tract, pancreas, and liver. Although the potent hepatoprotective effect of HIP/PAP has been validated, its impact on liver fibrosis has not been reported. In this study, we evaluated the role of HIP/PAP on hepatic fibrosis and explored the possible underlying mechanisms. We found that the expression of HIP/PAP and its mouse counterpart, Reg3B, was markedly upregulated in fibrotic human or mouse livers. Intraperitoneal (i.p.) interleukin (IL)-10, IL-6, and TNF-α but not TGF-β1 significantly induced hepatic overexpression of Reg3B in mice. In both CCl4 and BDL liver fibrosis models, adenovirus-mediated ectopic expression of HIP/PAP markedly alleviated liver injury, inflammation, collagen deposition, hepatic stellate cell activation, and the overexpression of profibrotic cytokines, including transforming growth factor β1 (TGF-β1), platelet-derived growth factor (PDGF)-A, B, connective tissue growth factor (CTGF), and plasminogen activator inhibitor-1 (PAI-1), in mice. In vitro experiments demonstrated that, in addition to suppressing hepatic stellate cell proliferation and accelerating hepatocyte proliferation, HIP/PAP mitigated TGF-β1-induced hepatic stellate cell activation, hepatocyte epithelial-mesenchymal transition (EMT) and upregulated expression of profibrotic cytokines in both hepatic stellate cells and hepatocytes. Moreover, HIP/PAP attenuated the overexpression of TGF-β receptor II (TGF-βRII) in fibrotic mouse livers and decreased the basal expression of TGF-βRII in nonfibrotic mouse livers as well as in cultured hepatocytes and hepatic stellate cells, which is at least partly attributable to the TGF-β1-antagonizing function of HIP/PAP. This study indicates that increased expression of hepatic HIP/PAP serves as a countermeasure against liver injury and fibrosis. Exogenous supplementation of HIP/PAP might be a promising therapeutic agent for hepatic fibrosis as well as liver injury.
Collapse
|
3
|
Zhang MY, Wang J, Guo J. Role of Regenerating Islet-Derived Protein 3A in Gastrointestinal Cancer. Front Oncol 2019; 9:1449. [PMID: 31921694 PMCID: PMC6928188 DOI: 10.3389/fonc.2019.01449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Regenerating islet-derived protein 3A (Reg3A), a protein mainly expressed in the digestive system, has been found over-expressed in many kinds of gastrointestinal cancer, including hepatocellular carcinoma, pancreatic cancer, gastric cancer, and colorectal cancer, therefore has been considered as a promising tumor marker. In recent years, considerable attention has been focused on the tumorigenesis effects of Reg3A, which were mainly manifested as cell proliferation promotion, cell apoptosis inhibition, the regulation of cancer cell migration and invasion. In particular, based on the significant up-regulation of Reg3A during pancreatic inflammation as well as its tumorigenic potential, Reg3A has been considered to play a key role in inflammation-linked pancreatic carcinogenesis. In addition, we here systematically generalized the reported Reg3A-related signaling molecules, which included JAK2-STAT3- NF-κB, SOCS3, EXTL3-PI3K-Akt, GSK3β, Wnt/β-catenin as well as some invasion and migration-related genes (Snail, MMP-2, MMP-9, E-cadherin, RhoC, and MTA1). And gp130, EGFR, EXTL3, and Fibronectin 1 might act as potential receptors for Reg3A.
Collapse
Affiliation(s)
- Meng-Ya Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
5
|
Yun JW, Zhao Z, Yan X, Vatamaniuk MZ, Lei XG. Glutathione peroxidase-1 inhibits transcription of regenerating islet-derived protein-2 in pancreatic islets. Free Radic Biol Med 2019; 134:385-393. [PMID: 30703484 PMCID: PMC6588445 DOI: 10.1016/j.freeradbiomed.2019.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/06/2019] [Accepted: 01/20/2019] [Indexed: 12/22/2022]
Abstract
Our group previously demonstrated that overexpression of selenium-dependent glutathione peroxidase-1 (GPX1) in mice (OE) led to escalated glucose-stimulated insulin secretion and hyperinsulinemia. Because we found a strong correlation of this phenotype with a diminished expression of regenerating islet-derived protein 2 (REG2) in the OE pancreatic islets, the present study was to reveal underlying mechanisms for that down-regulation of REG2 by GPX1 as a major scavenger of reactive oxygen species. We first treated the OE and wild-type (WT) mice and their islets with ROS-generating diquat, streptozotocin, and H2O2 and ROS-scavenging ebselen and N-acetylcysteine (NAC). Their effects on pancreatic and islet REG2 protein and(or) secretion were opposite (P < 0.05). Thereafter, we identified 13 transcriptional factors with putative binding sites in the Reg2 proximate promoter, and found that only activator protein-1 (AP-1) and albumin D box-binding protein (DBP) mRNA and protein levels were affected (elevated) (P < 0.05) by the GPX1 overproduction in the OE pancreatic islets compared with the WT islets. Contrary to that of Reg2 expression, their mRNA abundances in the cultured islets were elevated (P < 0.05) by ebselen and NAC, but decreased (P < 0.05) by H2O2. Both AP-1 and DBP could bind to the Reg2 promoter at the location of -168 to 0 base pair (bp) in the OE islets. Deleting the AP-1 (-143/-137 and -60/-57 bp) and(or) DBP (-35/-29 bp) binding domains in the Reg2 promoter attenuated and(or) abolished the inhibition of Reg2 promoter activation by ebselen as the GPX1 mimic in βTC-3 cells. In conclusion, the down-regulation of Reg2 expression in the GPX1-overproducing pancreatic islets was mediated by a transcriptional inhibition of the gene through two ROS responsive transcription factors AP-1 and DBP. Our findings reveal GPX1 as a novel regulator of Reg2 expression, and linking these two previously-unrelated proteins will have broad biomedical implications.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA; Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Xi Yan
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Okano S, Yasui A, Kanno SI, Satoh K, Igarashi M, Nakajima O. Karyopherin Alpha 2-Expressing Pancreatic Duct Glands and Intra-Islet Ducts in Aged Diabetic C414A-Mutant-CRY1 Transgenic Mice. J Diabetes Res 2019; 2019:7234549. [PMID: 31179341 PMCID: PMC6507265 DOI: 10.1155/2019/7234549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/04/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022] Open
Abstract
Our earlier studies demonstrated that cysteine414- (zinc-binding site of mCRY1-) alanine mutant mCRY1 transgenic mice (Tg mice) exhibit diabetes characterized by the reduction of β-cell proliferation and by β-cell dysfunction, presumably caused by senescence-associated secretory phenotype- (SASP-) like characters of islets. Earlier studies also showed that atypical duct-like structures in the pancreas developed age-dependently in Tg mice. Numerous reports have described that karyopherin alpha 2 (KPNA2) is highly expressed in cancers of different kinds. However, details of the expression of KPNA2 in pancreatic ductal atypia and in normal pancreatic tissues remain unclear. To assess the feature of the expression of KPNA2 in the development of the ductal atypia and islet architectures, we scrutinized the pancreas of Tg mice histopathologically. Results showed that considerable expression of KPNA2 was observed in pancreatic β-cells, suggesting its importance in maintaining the functions of β-cells. In mature stages, the level of KPNA2 expression was lower in islets of Tg mice than in wild-type controls. At 4 weeks, the expression levels of KPNA2 in islets of Tg mice were the same as those in wild-type controls. These results suggest that the reduction of KPNA2 might contribute to β-cell dysfunction in mature Tg mice. Additionally, the formation of mucin-producing intra-islet ducts, islet fibrosis, and massive T cell recruitment to the islet occurred in aged Tg mice. In exocrine areas, primary pancreatic intraepithelial neoplasias (PanINs) with mucinous pancreatic duct glands (PDGs) emerged in aged Tg mice. High expression of KPNA2 was observed in the ductal atypia. By contrast, KPNA2 expression in normal ducts was quite low. Thus, upregulation of KPNA2 seemed to be correlated with progression of the degree of atypia in pancreatic ductal cells. The SASP-like microenvironment inside islets might play stimulatory roles in the formation of ductal metaplasia inside islets and in islet fibrosis in Tg mice.
Collapse
Affiliation(s)
- Satoshi Okano
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
- Department of Functional Genomics, Innovative Medical Science Research, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Shin-ichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai 983-8512, Japan
| | - Masahiko Igarashi
- Division of Diabetes and Endocrinology, Yamagata City Hospital Saiseikan, Yamagata 990-8533, Japan
| | - Osamu Nakajima
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
- Department of Functional Genomics, Innovative Medical Science Research, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
7
|
Lörchner H, Widera C, Hou Y, Elsässer A, Warnecke H, Giannitsis E, Hulot JS, Braun T, Wollert KC, Pöling J. Reg3β is associated with cardiac inflammation and provides prognostic information in patients with acute coronary syndrome. Int J Cardiol 2018; 258:7-13. [PMID: 29544958 DOI: 10.1016/j.ijcard.2018.01.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Regenerating islet-derived protein 3 beta (Reg3β) is a cardiomyocyte-derived chemokine for macrophages that is upregulated after myocardial infarction (MI) in mice. Here, we hypothesized that monitoring Reg3β expression might provide specific information on the degree of cardiac inflammation, which is a key determinant in disease progression and prognosis of patients with acute coronary syndrome (ACS). METHODS AND RESULTS The expression of Reg3β and other inflammatory markers including C-reactive protein (CRP) and myeloperoxidase (MPO) was measured by immunoblotting at serial time points in the hearts and serum of mice with acute MI. We identified a rapid increase of Reg3β, CRP and MPO expression in cardiac tissue and serum within the first 24 h after MI. The expression of Reg3β peaked at day 4 and thereby paralleled the kinetic profile of the early immune-inflammatory response at sites of cardiac injury, which has been characterized by multicolor flow cytometry. In a retrospective analysis including 322 ACS patients and 117 apparently healthy individuals, we detected increased Reg3β serum concentrations in ACS patients on admission by ELISA. Multiple regression analysis revealed significant relationships between Reg3β and hs-CRP, age, diabetes and NT-proBNP in ACS. Moreover, elevated Reg3β levels on admission were associated with an increased risk of death independent of cardiovascular risk factors and hs-CRP. CONCLUSIONS Reg3β is a prognostic biomarker for ACS and is strongly associated with the intensity of cardiac inflammation. Accordingly, Reg3β may complement established strategies of acute risk assessment in the management of ACS.
Collapse
Affiliation(s)
- Holger Lörchner
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Christian Widera
- Division of Molecular and Translational Cardiology, Hannover Medical School, Hannover, Germany; Department of Cardiology und Angiology, Hannover Medical School, Hannover, Germany; Department of Cardiology, Heart Center Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Yunlong Hou
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Albrecht Elsässer
- Department of Cardiology, Heart Center Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Henning Warnecke
- Department of Cardiac Surgery, Schüchtermann-Clinic, Bad Rothenfelde, Germany; Faculty of Health, Witten/Herdecke University, Witten, Germany
| | | | - Jean-Sebastien Hulot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U970, Paris, France; Cardiovascular Research Center (PARCC), Université Paris Descartes, Paris, France
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Hannover Medical School, Hannover, Germany; Department of Cardiology und Angiology, Hannover Medical School, Hannover, Germany.
| | - Jochen Pöling
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Cardiac Surgery, Schüchtermann-Clinic, Bad Rothenfelde, Germany.
| |
Collapse
|
8
|
Villagarcía HG, Román CL, Castro MC, González LA, Ronco MT, Francés DE, Massa ML, Maiztegui B, Flores LE, Gagliardino JJ, Francini F. Liver carbohydrates metabolism: A new islet-neogenesis associated protein peptide (INGAP-PP) target. Peptides 2018; 101:44-50. [PMID: 29305881 DOI: 10.1016/j.peptides.2018.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022]
Abstract
Islet-Neogenesis Associated Protein-Pentadecapeptide (INGAP-PP) increases β-cell mass and enhances glucose and amino acids-induced insulin secretion. Our aim was to demonstrate its effect on liver metabolism. For that purpose, adult male Wistar rats were injected twice-daily (10 days) with saline solution or INGAP-PP (250 μg). Thereafter, serum glucose, triglyceride and insulin levels were measured and homeostasis model assessment (HOMA-IR) and hepatic insulin sensitivity (HIS) were determined. Liver glucokinase and glucose-6-phosphatase (G-6-Pase) expression and activity, phosphoenolpyruvate carboxykinase (PEPCK) expression, phosphofructokinase-2 (PFK-2) protein content, P-Akt/Akt and glycogen synthase kinase-3β (P-GSK3/GSK3) protein ratios and glycogen deposit were also determined. Additionally, glucokinase activity and G-6-Pase and PEPCK gene expression were also determined in isolated hepatocytes from normal rats incubated with INGAP-PP (5 μg/ml). INGAP-PP administration did not modify any of the serum parameters tested but significantly increased activity of liver glucokinase and the protein level of its cytosolic activator, PFK-2. Conversely, INGAP-PP treated rats decreased gene expression and enzyme activity of gluconeogenic enzymes, G-6-Pase and PEPCK. They also showed a higher glycogen deposit and P-GSK3/GSK3 and P-Akt/Akt ratio. In isolated hepatocytes, INGAP-PP increased GK activity and decreased G-6-Pase and PEPCK expression. These results demonstrate a direct effect of INGAP-PP on the liver acting through P-Akt signaling pathway. INGAP-PP enhances liver glucose metabolism and deposit and reduces its production/output, thereby contributing to maintain normal glucose homeostasis. These results reinforce the concept that INGAP-PP might become a useful tool to treat people with impaired islet/liver glucose metabolism as it occurs in T2D.
Collapse
Affiliation(s)
- Hernán Gonzalo Villagarcía
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET La Plata), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Carolina Lisi Román
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET La Plata), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - María Cecilia Castro
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET La Plata), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Luisa Arbeláez González
- CIC, Centro de Investigaciones Cardiovasculares (UNLP-CONICET La Plata), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - María Teresa Ronco
- IFISE, Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Daniel Eleazar Francés
- IFISE, Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - María Laura Massa
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET La Plata), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Bárbara Maiztegui
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET La Plata), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Luis Emilio Flores
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET La Plata), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Juan José Gagliardino
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET La Plata), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Flavio Francini
- CENEXA, Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET La Plata), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
9
|
Harada F, Uehara O, Morikawa T, Hiraki D, Onishi A, Toraya S, Adhikari BR, Takai R, Yoshida K, Sato J, Nishimura M, Chiba I, Wu CZ, Abiko Y. Effect of systemic administration of lipopolysaccharides derived from Porphyromonas gingivalis on gene expression in mice kidney. Med Mol Morphol 2018; 51:156-165. [DOI: 10.1007/s00795-018-0181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022]
|
10
|
Li Q, Li B, Miao X, Ramgattie C, Gao ZH, Liu JL. Reg2 Expression Is Required for Pancreatic Islet Compensation in Response to Aging and High-Fat Diet-Induced Obesity. Endocrinology 2017; 158:1634-1644. [PMID: 28009527 DOI: 10.1210/en.2016-1551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Maintaining pancreatic β-cell mass and function is essential for normal insulin production and glucose homeostasis. Regenerating islet-derived 2 (Reg2, Reg II, human ortholog Reg1B) gene is normally expressed in pancreatic acinar cells and is significantly induced in response to diabetes, pancreatitis, and high-fat diet (HFD) and during pancreatic regeneration. To evaluate the role of endogenous Reg2 production in normal β-cell function, we characterized Reg2 gene-deficient (Reg2-/-) mice under normal conditions and when subjected to several pathological challenges. At a young age, Reg2 gene deficiency caused no obvious change in normal islet morphology or glucose tolerance. There was no change in the severity of streptozotocin-induced diabetes or caerulein-induced acute pancreatitis in the Reg2-/- mice, indicating that the increased Reg2 expression under those conditions was not essential to protect the islet or acinar cells. However, 13- to 14-month-old Reg2-/- mice developed glucose intolerance associated with significantly decreased islet β-cell ratio and serum insulin level. Similarly, after young mice were fed an HFD for 19 weeks, diminished islet mass expansion and serum insulin level were observed in Reg2-/- vs wild-type mice. This was associated with a decline in the rate of individual β-cell proliferation measured by Ki67 labeling. In both conditions, the β-cells were smaller in gene-deficient vs wild-type mice. Our results indicate that normal expression of Reg2 gene is required for appropriate compensations in pancreatic islet proliferation and expansion in response to obesity and aging.
Collapse
Affiliation(s)
- Qing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Bing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Xiaoliang Miao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 21009, China
| | - Christopher Ramgattie
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Montreal Diabetes Research Centre, Montreal, Quebec H2X 0A9, Canada
| |
Collapse
|
11
|
Xiong X, Li Q, Cui W, Gao ZH, Liu JL. Deteriorated high-fat diet-induced diabetes caused by pancreatic β-cell-specific overexpression of Reg3β gene in mice. Endocrine 2016; 54:360-370. [PMID: 27259509 DOI: 10.1007/s12020-016-0998-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022]
Abstract
Reg family proteins have long been implicated in islet β-cell proliferation, survival, and regeneration. In our previous study, we reported that Reg3β overexpression did not increase islet growth but prevented streptozotocin-induced islet damage by inducing specific genes. In order to explore its role in type 2 diabetes (T2D), we established high-fat diet (HFD)-induced obesity and diabetes in RIP-I/Reg3β mice. Glucose and insulin tolerance tests, immunofluorescence for insulin, eIF2α, and GLUT2 in islets, Western blots on phosphorylated AMPKα and hepatic histology were performed. Both RIP-I/Reg3β and wild-type mice gained weight rapidly and became hyperglycemic after 10 weeks on the HFD. However, the transgenic mice exhibited more significant acceleration in blood glucose levels, further deterioration of glucose intolerance and insulin resistance, and a lower intensity of insulin staining. Immunofluorescence revealed similar magnitude of islet compensation to a wild-type HFD. The normal GLUT2 distribution in the transgenic β-cells was disrupted and the staining was obviously diminished on the cell membrane. HFD feeding also caused a further decrease in the level of AMPKα phosphorylation in the transgenic islets. Our results suggest that unlike its protective effect against T1D, overexpressed Reg3β was unable to protect the β-cells against HFD-induced damage.
Collapse
Affiliation(s)
- Xiaoquan Xiong
- Fraser Laboratories for Diabetes Research, Department of Medicine, RI-McGill University Health Centre, Room E02.7220, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Qing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, RI-McGill University Health Centre, Room E02.7220, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Wei Cui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zu-Hua Gao
- Department of Pathology, RI-McGill University Health Centre, Room E04.1820, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, RI-McGill University Health Centre, Room E02.7220, 1001 Décarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Montreal Diabetes Research Centre, Montreal, Canada.
| |
Collapse
|
12
|
Pound LD, Patrick C, Eberhard CE, Mottawea W, Wang GS, Abujamel T, Vandenbeek R, Stintzi A, Scott FW. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria. Diabetes 2015; 64:4135-47. [PMID: 26370175 DOI: 10.2337/db15-0788] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/22/2015] [Indexed: 11/13/2022]
Abstract
Cathelicidin antimicrobial peptide (CAMP) is a naturally occurring secreted peptide that is expressed in several organs with pleiotropic roles in immunomodulation, wound healing, and cell growth. We previously demonstrated that gut Camp expression is upregulated when type 1 diabetes-prone rats are protected from diabetes development. Unexpectedly, we have also identified novel CAMP expression in the pancreatic β-cells of rats, mice, and humans. CAMP was present even in sterile rat embryo islets, germ-free adult rat islets, and neogenic tubular complexes. Camp gene expression was downregulated in young BBdp rat islets before the onset of insulitis compared with control BBc rats. CAMP treatment of dispersed islets resulted in a significant increase in intracellular calcium mobilization, an effect that was both delayed and blunted in the absence of extracellular calcium. Additionally, CAMP treatment promoted insulin and glucagon secretion from isolated rat islets. Thus, CAMP is a promoter of islet paracrine signaling that enhances islet function and glucoregulation. Finally, daily treatment with the CAMP/LL-37 peptide in vivo in BBdp rats resulted in enhanced β-cell neogenesis and upregulation of potentially beneficial gut microbes. In particular, CAMP/LL-37 treatment shifted the abundance of specific bacterial populations, mitigating the gut dysbiosis observed in the BBdp rat. Taken together, these findings indicate a novel functional role for CAMP/LL-37 in islet biology and modification of gut microbiota.
Collapse
Affiliation(s)
- Lynley D Pound
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher Patrick
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Walid Mottawea
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Gen-Sheng Wang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Turki Abujamel
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Roxanne Vandenbeek
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fraser W Scott
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, Liu Y, Liang X, Zhang Z, Su D. Reg3α Overexpression Protects Pancreatic β Cells from Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med 2015; 20:548-558. [PMID: 25826674 DOI: 10.2119/molmed.2014.00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/16/2014] [Indexed: 01/12/2023] Open
Abstract
The process of islet transplantation for treating type 1 diabetes has been limited by the high level of graft failure. This may be overcome by locally delivering trophic factors to enhance engraftment. Regenerating islet-derived protein 3α (Reg3α) is a pancreatic secretory protein which functions as an antimicrobial peptide in control of inflammation and cell proliferation. In this study, to investigate whether Reg3α could improve islet engraftment, a marginal mass of syngeneic islets pretransduced with adenoviruses expressing Reg3α or control EGFP were transplanted under the renal capsule of streptozotocin-induced diabetic mice. Mice receiving islets with elevated Reg3α production exhibited significantly lower blood glucose levels (9.057 ± 0.59 mmol/L versus 13.48 ± 0.35 mmol/L, P < 0.05) and improved glucose-stimulated insulin secretion (1.80 ± 0.17 ng/mL versus 1.16 ± 0.16 ng/mL, P < 0.05) compared with the control group. The decline of apoptotic events (0.57% ± 0.15% versus 1.06% ± 0.07%, P < 0.05) and increased β-cell proliferation (0.70% ± 0.10% versus 0.36% ± 0.14%, P < 0.05) were confirmed in islet grafts overexpressing Reg3α by morphometric analysis. Further experiments showed that Reg3α production dramatically protected cultured islets and pancreatic β cells from cytokine-induced apoptosis and the impairment of glucose-stimulated insulin secretion. Moreover, exposure to cytokines led to the activation of MAPKs in pancreatic β cells, which was reversed by Reg3α overexpression in contrast to control group. These results strongly suggest that Reg3α could enhance islet engraftments through its cytoprotective effect and advance the therapeutic efficacy of islet transplantation.
Collapse
Affiliation(s)
- Ying Ding
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Yuemei Xu
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xuanyu Shuai
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xuhui Shi
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xiang Chen
- Center of Cellular Therapy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Huang
- Department of Pathology, Nanjing First Hospital, Nanjing, China
| | - Yun Liu
- Center of Metabolic Research, Nanjing Medical University, Nanjing, China
| | - Xiubin Liang
- Center of Metabolic Research, Nanjing Medical University, Nanjing, China
| | - Zhihong Zhang
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, China.,Center of Cellular Therapy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Center of Metabolic Research, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Cheng J, Fei M, Fei M, Sang X, Sang X, Cheng Z, Gui S, Zhao X, Sheng L, Sun Q, Hu R, Wang L, Hong F. Gene expression profile in chronic mouse liver injury caused by long-term exposure to CeCl3. ENVIRONMENTAL TOXICOLOGY 2014; 29:837-846. [PMID: 23139204 DOI: 10.1002/tox.21826] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/11/2012] [Accepted: 10/14/2012] [Indexed: 06/01/2023]
Abstract
Numerous studies have demonstrated lanthanide (Ln) accumulation in the liver, and the corresponding damage; however, very little work has been done to evaluate the relationship between Ln-induced liver injury and its gene expression profile in mice. In this study, liver injury and gene-expressed profiles in male mice induced by oral administration of CeCl3 (2 mg/kg) via gavage for 90 consecutive days were investigated. The results showed that cerium accumulation, liver inflammation, and hepatocyte necrosis were observed. CeCl3 exposure significantly decreased the counts of white blood cells, lymphocyte, and platelet, the reticulocyte count (Ret) and neutrophilic granulocyte percentages as well as A/G ratio, whereas markedly increased the activities of alkaline phosphatase, lactate dehydrogenase, and cholinesterase, and the concentrations of triglycerides and total cholesterol. Furthermore, microarray results of liver showed that the differential expression of 675 known function genes involved in immune/inflammation response, apoptosis, metabolic process, cell cycle, cell proliferation, cytoskeleton, oxidative stress, signal transduction, transcription, translation, and transportation in CeCl3 exposed livers, respectively. Specifically, the significant downregulation of Nt5e led to inflammation, overexpressed Cyp4a12a and great suppression of Cdkn1a resulted in hepatocyte apoptosis, marked elevation of Cel, and Cyp7b1 expression caused the metabolic disorders in mouse liver after long-term CeCl3 exposure. Therefore, these genes may be in great relation to liver damages induced by exposure to CeCl3 .
Collapse
Affiliation(s)
- Jie Cheng
- Medical College, Soochow University, Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Calderari S, Irminger JC, Giroix MH, Ehses JA, Gangnerau MN, Coulaud J, Rickenbach K, Gauguier D, Halban P, Serradas P, Homo-Delarche F. Regenerating 1 and 3b gene expression in the pancreas of type 2 diabetic Goto-Kakizaki (GK) rats. PLoS One 2014; 9:e90045. [PMID: 24587207 PMCID: PMC3936001 DOI: 10.1371/journal.pone.0090045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023] Open
Abstract
Regenerating (REG) proteins are associated with islet development, β-cell damage, diabetes and pancreatitis. Particularly, REG-1 and REG-3-beta are involved in cell growth/survival and/or inflammation and the Reg1 promoter contains interleukin-6 (IL-6)-responsive elements. We showed by transcriptome analysis that islets of Goto-Kakizaki (GK) rats, a model of spontaneous type 2 diabetes, overexpress Reg1, 3α, 3β and 3γ, vs Wistar islets. Goto-Kakizaki rat islets also exhibit increased cytokine/chemokine expression/release, particularly IL-6. Here we analyzed Reg1 and Reg3β expression and REG-1 immuno-localization in the GK rat pancreas in relationship with inflammation. Isolated pancreatic islets and acinar tissue from male adult Wistar and diabetic GK rats were used for quantitative RT-PCR analysis. REG-1 immunohistochemistry was performed on paraffin sections with a monoclonal anti-rat REG-1 antibody. Islet cytokine/chemokine release was measured after 48 h-culture. Islet macrophage-positive area was quantified on cryostat sections using anti-CD68 and major histocompatibility complex (MHC) class II antibodies. Pancreatic exocrine-to-endocrine Reg1 and Reg3β mRNA ratios were markedly increased in Wistar vs GK rats. Conversely, both genes were upregulated in isolated GK rat islets. These findings were unexpected, because Reg genes are expressed in the pancreatic acinar tissue. However, we observed REG-1 protein labeling in acinar peri-ductal tissue close to islets and around large, often disorganized, GK rat islets, which may retain acinar cells due to their irregular shape. These large islets also showed peri-islet macrophage infiltration and increased release of various cytokines/chemokines, particularly IL-6. Thus, IL-6 might potentially trigger acinar REG-1 expression and secretion in the vicinity of large diabetic GK rat islets. This increased acinar REG-1 expression might reflect an adaptive though unsuccessful response to deleterious microenvironment.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Chemokines/blood
- Chemokines/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Regulation
- Islets of Langerhans/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lithostathine/genetics
- Lithostathine/metabolism
- Macrophages/metabolism
- Male
- Pancreatitis-Associated Proteins
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Sophie Calderari
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 872, Team 6, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Jean-Claude Irminger
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marie-Hélène Giroix
- Equipe associée au Centre National de la Recherche Scientifique (CNRS) 4413-Unité de Biologie Fonctionnelle et Adaptative (BFA), Team 1 (Biologie et Pathologie du Pancréas Endocrine (B2PE)), Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| | - Jan A. Ehses
- Department of Surgery, Faculty of Medicine, University of British Columbia and Child and Family Research Institute, Vancouver, BC, Canada
| | - Marie-Noëlle Gangnerau
- Equipe associée au Centre National de la Recherche Scientifique (CNRS) 4413-Unité de Biologie Fonctionnelle et Adaptative (BFA), Team 1 (Biologie et Pathologie du Pancréas Endocrine (B2PE)), Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| | - Josiane Coulaud
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 872, Team 6, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Katharina Rickenbach
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Dominique Gauguier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 872, Team 6, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Philippe Halban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Patricia Serradas
- INSERM UMRS 872, Team 9, CRC, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Françoise Homo-Delarche
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 872, Team 6, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie, Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Zhang L, Zhang J, Shea K, Xu L, Tobin G, Knapton A, Sharron S, Rouse R. Autophagy in pancreatic acinar cells in caerulein-treated mice: immunolocalization of related proteins and their potential as markers of pancreatitis. Toxicol Pathol 2013; 42:435-57. [PMID: 23640381 DOI: 10.1177/0192623313486967] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-induced pancreatitis (DIP) is an underdiagnosed condition that lacks sensitive and specific biomarkers. To better understand the mechanisms of DIP and to identify potential tissue biomarkers, we studied experimental pancreatitis induced in male C57BL/6 mice by intraperitoneal injection of caerulein (10 or 50 μg/kg) at 1-hr intervals for a total of 7 injections. Pancreata from caerulein-treated mice exhibited consistent acinar cell autophagy and apoptosis with infrequent necrosis. Kinetic assays for serum amylase and lipase also showed a dose-dependent increase. Terminal deoxynucleotidyl transferase-mediated biotin-dNTP nick labeling (TUNEL) detected dose-dependent acinar cell apoptosis. By light microscopy, autophagy was characterized by the formation of autophagosomes and autolysosomes (ALs) within the cytoplasm of acinar cells. Immunohistochemical studies with specific antibodies for proteins related to autophagy and pancreatic stress were conducted to evaluate these proteins as potential biomarkers of pancreatitis. Western blots were used to confirm immunohistochemical results using pancreatic lysates from control and treated animals. Autophagy was identified as a contributing process in caerulein-induced pancreatitis and proteins previously associated with autophagy were upregulated following caerulein treatment. Autophagosomes and ALs were found to be a common pathway, in which cathepsins, lysosome-associated membrane protein 2, vacuole membrane protein 1, microtubule-associated protein 1 light chain 3 (LC3), autophagy-related protein 9, Beclin1, and pancreatitis-associated proteins were simultaneously involved in response to caerulein stimulus. Regenerating islet-derived 3 gamma (Reg3γ), a pancreatic acute response protein, was dose-dependently induced in caerulein-treated mice and colocalized with the autophagosomal marker, LC3. This finding supports Reg3γ as a candidate biomarker for pancreatic injury.
Collapse
Affiliation(s)
- Leshuai Zhang
- 1Division of Drug Safety Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li B, Lu Y, Srikant CB, Gao ZH, Liu JL. Intestinal adaptation and Reg gene expression induced by antidiabetic duodenal-jejunal bypass surgery in Zucker fatty rats. Am J Physiol Gastrointest Liver Physiol 2013; 304:G635-45. [PMID: 23370676 DOI: 10.1152/ajpgi.00275.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The antidiabetic mechanism of bariatric surgery includes specific changes in the secretion of incretins. To identify additional players originating from the gut, we evaluated the effects of duodenal-jejunal bypass (DJB) in morbidly obese Zucker fatty rats. A fast relief of hyperglycemia and hyperinsulinemia was achieved even before a significant weight loss occurred. Fourteen days after DJB, we characterized the changes in intestinal histochemistry in the bypassed duodenum and shortcut jejunum that was reanastomosed directly to the starting point of the duodenum and compared with the corresponding regions of sham-operated rats. The bypassed duodenum exhibited mucosal atrophy and apoptosis and decreased proliferative renewal. In shortcut jejunum, DJB resulted in 40% significantly enlarged intestinal circumference and increased epithelial proliferation, especially in putative transit-amplifying (TA) cells and the crypt. Because Reg family proteins promote cell growth and survival, we explored their expression in the intestine. With the use of immunohistochemistry, Reg1, -3α, and -3β were normally expressed in intestinal mucosa. After DJB, the level of Reg1 protein was reduced, whereas Reg3α and -3β were not changed in bypassed duodenum. Downstream in shortcut jejunum, the levels of Reg1 and -3β were greatly induced and especially concentrated in the putative TA cells. Our results revealed significant changes in the integrity and proliferation of the intestinal mucosa as a consequence of DJB, and in cell- and isoform-specific expression of Reg proteins within the replicating mucosal epithelium, and provide evidence indicating that the activation of Reg proteins may contribute to intestinal compensation against increased load and/or to improving insulin sensitivity.
Collapse
Affiliation(s)
- Bing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | | | | | | | | |
Collapse
|
18
|
Pardo FN, Altirriba J, Pradas-Juni M, García A, Ahlgren U, Barberà A, Slebe JC, Yáñez AJ, Gomis R, Gasa R. The role of Raf-1 kinase inhibitor protein in the regulation of pancreatic beta cell proliferation in mice. Diabetologia 2012; 55:3331-40. [PMID: 22926403 DOI: 10.1007/s00125-012-2696-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/27/2012] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Manoeuvres aimed at increasing beta cell mass have been proposed as regenerative medicine strategies for diabetes treatment. Raf-1 kinase inhibitor protein 1 (RKIP1) is a common regulatory node of the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways and therefore may be involved in regulation of beta cell homeostasis. The aim of this study was to investigate the involvement of RKIP1 in the control of beta cell mass and function. METHODS Rkip1 (also known as Pebp1) knockout (Rkip1 (-/-)) mice were characterised in terms of pancreatic and glucose homeostasis, including morphological and functional analysis. Glucose tolerance and insulin sensitivity were examined, followed by assessment of glucose-induced insulin secretion in isolated islets and beta cell mass quantification through morphometry. Further characterisation included determination of endocrine and exocrine proliferation, apoptosis, MAPK activation and whole genome gene expression assays. Capacity to reverse a diabetic phenotype was assessed in adult Rkip1 (-/-) mice after streptozotocin treatment. RESULTS Rkip1 (-/-) mice exhibit a moderately larger pancreas and increased beta cell mass and pancreatic insulin content, which correlate with an overall improvement in whole body glucose tolerance. This phenotype is established in young postnatal stages and involves enhanced cellular proliferation without significant alterations in cell death. Importantly, adult Rkip1 (-/-) mice exhibit rapid reversal of streptozotocin-induced diabetes compared with control mice. CONCLUSIONS/INTERPRETATION These data implicate RKIP1 in the regulation of pancreatic growth and beta cell expansion, thus revealing RKIP1 as a potential pharmacological target to promote beta cell regeneration.
Collapse
Affiliation(s)
- F N Pardo
- Laboratory of Diabetes and Obesity, IDIBAPS, Centre Esther Koplowitz, Rosselló 153, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|