1
|
Tutuianu A, Anene CA, Shelton M, Speirs V, Whitelaw DC, Thorpe J, Roberts W, Boyne JR. Platelet-derived microvesicles isolated from type-2 diabetes mellitus patients harbour an altered miRNA signature and drive MDA-MB-231 triple-negative breast cancer cell invasion. PLoS One 2024; 19:e0304870. [PMID: 38900754 PMCID: PMC11189239 DOI: 10.1371/journal.pone.0304870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer.
Collapse
Affiliation(s)
- Anca Tutuianu
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Chinedu A. Anene
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Mikayla Shelton
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Valerie Speirs
- Institute of Medical Science, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Donald C. Whitelaw
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Joanne Thorpe
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Wayne Roberts
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - James R. Boyne
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
2
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|
3
|
Menéndez V, Solórzano JL, García-Cosío M, Alonso-Alonso R, Rodríguez M, Cereceda L, Fernández S, Díaz E, Montalbán C, Estévez M, Piris MA, García JF. Immune and stromal transcriptional patterns that influence the outcome of classic Hodgkin lymphoma. Sci Rep 2024; 14:710. [PMID: 38184757 PMCID: PMC10771441 DOI: 10.1038/s41598-024-51376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
Classic Hodgkin lymphoma (cHL) is characterized by a rich immune microenvironment as the main tumor component. It involves a broad range of cell populations, which are largely unexplored, even though they are known to be essential for growth and survival of Hodgkin and Reed-Sternberg cells. We profiled the gene expression of 25 FFPE cHL samples using NanoString technology and resolved their microenvironment compositions using cell-deconvolution tools, thereby generating patient-specific signatures. The results confirm individual immune fingerprints and recognize multiple clusters enriched in refractory patients, highlighting the relevance of: (1) the composition of immune cells and their functional status, including myeloid cell populations (M1-like, M2-like, plasmacytoid dendritic cells, myeloid-derived suppressor cells, etc.), CD4-positive T cells (exhausted, regulatory, Th17, etc.), cytotoxic CD8 T and natural killer cells; (2) the balance between inflammatory signatures (such as IL6, TNF, IFN-γ/TGF-β) and MHC-I/MHC-II molecules; and (3) several cells, pathways and genes related to the stroma and extracellular matrix remodeling. A validation model combining relevant immune and stromal signatures identifies patients with unfavorable outcomes, producing the same results in an independent cHL series. Our results reveal the heterogeneity of immune responses among patients, confirm previous findings, and identify new functional phenotypes of prognostic and predictive utility.
Collapse
Affiliation(s)
- Victoria Menéndez
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
| | - José L Solórzano
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain
| | - Mónica García-Cosío
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
| | - Ruth Alonso-Alonso
- Pathology Department, IIS Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Marta Rodríguez
- Pathology Department, IIS Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laura Cereceda
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain
| | - Sara Fernández
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain
| | - Eva Díaz
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain
| | - Carlos Montalbán
- Hematology Department, MD Anderson Cancer Center Madrid, 28033, Madrid, Spain
| | - Mónica Estévez
- Hematology Department, MD Anderson Cancer Center Madrid, 28033, Madrid, Spain
| | - Miguel A Piris
- Pathology Department, IIS Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Juan F García
- Translational Research, Fundación MD Anderson International España. Madrid, 28033, Madrid, Spain.
- Pathology Department, MD Anderson Cancer Center Madrid, C/Arturo Soria, 270, 28033, Madrid, Spain.
- Center for Biomedical Network Research on Cancer (CIBERONC), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Liu W, Zhang Y, Wang M, Wang M, Yang Q. High systemic immune-inflammation index predicts poor prognosis and response to intravesical BCG treatment in patients with urothelial carcinoma: a systematic review and meta-analysis. Front Oncol 2023; 13:1229349. [PMID: 38023187 PMCID: PMC10646434 DOI: 10.3389/fonc.2023.1229349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background The systemic immune-inflammation index (SII) has emerged as a promising marker predicting the prognosis of some cancers, while its role in urothelial carcinoma (UC) remains uncertain, especially in upper urinary tract urothelial carcinoma (UTUC). This meta-analysis aimed to investigate the association of SII with the prognosis of UC and the response to intravesical Bacillus Calmette-Guerin (BCG) therapy of non-muscle invasive bladder cancer (NMIBC). Methods A systematic search in PubMed, Embase, Web of Science, and the Cochrane Library was performed to identify relevant studies. The extracted hazard ratios (HRs) and 95% confidence intervals (CIs) were used to evaluate the association between SII and overall survival (OS), cancer-specific survival (CSS), and recurrence-free survival (RFS) of patients with UC. Additionally, we pooled odds ratios (ORs) and 95% CIs to assess the relationship between SII and BCG response in patients with NMIBC. Subgroup and sensitivity analyses were performed to explore potential sources of heterogeneity. Results Twenty studies comprising a total of 12,645 patients were eligible. This meta-analysis revealed that high SII levels independently increased the risk of OS (HR 1.55, 95%CI 1.25-1.92), CSS (HR 1.82, 95%CI 1.36-2.45), and RFS (HR 1.26, 95% CI 1.18-1.35) in patients with UC, including those with upper tract urothelial carcinoma. Additionally, elevated SII levels could predict a lower response to intravesical BCG treatment (OR 0.18, 95%CI 0.07-0.45) and higher disease recurrence (HR 1.61, 95%CI 1.31-1.98) in patients with NMIBC. Furthermore, elevated SII levels were positively associated with advanced age, lymphovascular invasion, hydronephrosis, and high tumor grade and stage (pT ≥ 3). Conclusions Elevated preoperative SII levels are associated with poor survival outcomes in patients with UC, as well as worse response to BCG treatment in patients with NMIBC. Therefore, SII can serve not only as an independent prognostic predictor of patients with UC but also as a guide for BCG therapy in NMIBC. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023409077, identifier CRD42023409077.
Collapse
Affiliation(s)
- Wen Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yixuan Zhang
- School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Miaomiao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingya Yang
- Department of Urology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Abstract
In addition to the key role in hemostasis and thrombosis, platelets have also been wildly acknowledged as immune regulatory cells and involving in the pathogenesis of inflammation-related diseases. Since purine receptor P2Y12 plays a crucial role in platelet activation, P2Y12 antagonists such as clopidogrel, prasugrel, and ticagrelor have been widely used in cardiovascular diseases worldwide in recent decades due to their potent antiplatelet and antithrombotic effects. Meanwhile, the role of P2Y12 in inflammatory diseases has also been extensively studied. Relatively, there are few studies on the regulation of P2Y12. This review first summarizes the various roles of P2Y12 in the process of platelet activation, as well as downstream effects and signaling pathways; then introduces the effects of P2Y12 in inflammatory diseases such as sepsis, atherosclerosis, cancer, autoimmune diseases, and asthma; and finally reviews the current researches on P2Y12 regulation.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China
| | | | - Xia Cao
- Department of Pharmacology, School of Pharmacy, Jilin University, Fujin Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
6
|
Hu JL, Zhang WJ. The role and pharmacological properties of P2Y12 receptor in cancer and cancer pain. Biomed Pharmacother 2023; 157:113927. [PMID: 36462316 DOI: 10.1016/j.biopha.2022.113927] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The G protein-coupled P2Y12 receptor (P2Y12R) was cloned in platelets and found to play a key role in maintaining platelet function in hemostasis and thrombosis, and these effects could be mediated by the P2Y12R. However, it has recently been found that P2Y12R-mediated the progression of tumor through interactions between platelets and tumor and stromal cells, as well as through products secreted by platelets. During tumor progression, tumor cells or other cells in the tumor microenvironment (such as immune cells) can secrete large amounts of ATP into the extracellular matrix, and extracellular ATP can be hydrolyzed into ADP. ADP is a P2Y12R activator and plays an important regulatory role in the proliferation and metastasis of tumor cells. P2Y12R is involved in platelet-cancer cell crosstalk and become a potential target for anticancer therapy. Moreover, tumor progression can induce pain, which seriously affects the quality of life of patients. P2Y12R is expressed in microglia and mediates the activities of microglial and participates in the occurrence of cancer pain. Conversely, inhibiting P2Y12R activation and down-regulating its expression has the effect of inhibiting tumor progression and pain. Therefore, P2Y12R can be a common therapeutic target for both. In this article, we explored the potential link between P2Y12R and cancer, discussed the intrinsic link of P2Y12R in cancer pain and the pharmacological properties of P2Y12R antagonists in the treatment of both.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
7
|
Zhang Q, Song X, Song X. Contents in tumor-educated platelets as the novel biosource for cancer diagnostics. Front Oncol 2023; 13:1165600. [PMID: 37139159 PMCID: PMC10151018 DOI: 10.3389/fonc.2023.1165600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Liquid biopsy, a powerful non-invasive test, has been widely used in cancer diagnosis and treatment. Platelets, the second most abundant cells in peripheral blood, are becoming one of the richest sources of liquid biopsy with the capacity to systematically and locally respond to the presence of cancer and absorb and store circulating proteins and different types of nucleic acids, thus called "tumor-educated platelets (TEPs)". The contents of TEPs are significantly and specifically altered, empowering them with the potential as cancer biomarkers. The current review focuses on the alternation of TEP content, including coding and non-coding RNA and proteins, and their role in cancer diagnostics.
Collapse
Affiliation(s)
- Qianru Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Xingguo Song,
| |
Collapse
|
8
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
9
|
Zhang G. Platelet-Related Molecular Subtype to Predict Prognosis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:423-436. [PMID: 35615530 PMCID: PMC9126232 DOI: 10.2147/jhc.s363200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
Purpose Complex crosstalk between tumor cells and platelets is closely related to the development, relapse, and drug resistance of hepatocellular carcinoma (HCC). Therefore, an intensive analysis of the relationship between platelet-related genes and the effectiveness of immunotherapy is necessary for improving the poor prognosis of HCC patients. Methods Genes associated with platelets in the GeneCards database were collected and were used to identify molecular subtypes using a non-negative matrix decomposition algorithm (NMF) and constructed a platelet-related genes-based prognostic stratification model by the LASSO-Cox regression and stepwise Cox regression analysis. The effect of this feature on the immune microenvironment of HCC and the response to immune checkpoint inhibitors was also explored. Results After identifying two molecular subtypes, we constructed a platelet-related genes-based prognostic stratification model that can be effectively used for immune checkpoint inhibitor (PD1, PD-L1, PD-L2, and CTLA4) efficacy and prognosis prediction in HCC patients, which was subsequently validated using patient samples from ICGC, GSE14520 and a small sample size clinical cohort. We also found downregulation of PAFAH1B3 remarkably inhibited the proliferation and migration ability of Hep3B cells by cytological experiments. Conclusion We constructed a prognostic classifier based on platelet-related genes that could effectively classify HCC patients for prognostic prediction and provide new light on the selection of optimal individualized antiplatelet therapy for HCC patients in future clinical practice.
Collapse
Affiliation(s)
- Genhao Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Correspondence: Genhao Zhang, Email
| |
Collapse
|
10
|
Gomes MN, Fru P, Augustine TN, Moyo D, Chivandi E, Daniels WMU. Differential Expression of Platelet Activation Markers, CD62P and CD63, after Exposure to Breast Cancer Cells Treated with Kigelia Africana, Ximenia Caffra and Mimusops Zeyheri Seed Oils In Vitro. Nutr Cancer 2022; 74:3035-3050. [DOI: 10.1080/01635581.2022.2032215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Monica N. Gomes
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Pascaline Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Tanya N. Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Davison Moyo
- Department of Research and Innovation, University of Pretoria, Hatfield, Pretoria, Republic of South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - William M. U. Daniels
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| |
Collapse
|
11
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
12
|
Langiu M, Palacios-Acedo AL, Crescence L, Mege D, Dubois C, Panicot-Dubois L. Neutrophils, Cancer and Thrombosis: The New Bermuda Triangle in Cancer Research. Int J Mol Sci 2022; 23:ijms23031257. [PMID: 35163180 PMCID: PMC8836160 DOI: 10.3390/ijms23031257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Spontaneous venous thrombosis is often the first clinical sign of cancer, and it is linked to a worsened survival rate. Traditionally, tumor-cell induced platelet activation has been the main actor studied in cancer-associated-thrombosis. However, platelet involvement alone does not seem to be sufficient to explain this heightened pro-thrombotic state. Neutrophils are emerging as key players in both thrombus generation and cancer progression. Neutrophils can impact thrombosis through the release of pro-inflammatory cytokines and expression of molecules like P-selectin and Tissue Factor (TF) on their membrane and on neutrophil-derived microvesicles. Their role in cancer progression is evidenced by the fact that patients with high blood-neutrophil counts have a worsened prognosis. Tumors can attract neutrophils to the cancer site via pro-inflammatory cytokine secretions and induce a switch to pro-tumoral (or N2) neutrophils, which support metastatic spread and have an immunosuppressive role. They can also expel their nuclear contents to entrap pathogens forming Neutrophil Extracellular Traps (NETs) and can also capture coagulation factors, enhancing the thrombus formation. These NETs are also known to have pro-tumoral effects by supporting the metastatic process. Here, we strived to do a comprehensive literature review of the role of neutrophils as drivers of both cancer-associated thrombosis (CAT) and cancer progression.
Collapse
Affiliation(s)
- Mélanie Langiu
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
| | - Ana-Luisa Palacios-Acedo
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
| | - Lydie Crescence
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
| | - Diane Mege
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
- Department of Digestive Surgery, La Timone University Hospital, 13005 Marseille, France
| | - Christophe Dubois
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
- Correspondence:
| | - Laurence Panicot-Dubois
- Aix Marseille Univ INSERM, INRAE, C2VN, 13005 Marseille, France; (M.L.); (A.-L.P.-A.); (L.C.); (D.M.); (L.P.-D.)
| |
Collapse
|
13
|
Gdula AM, Swiatkowska M. A2 A receptor agonists and P2Y 12 receptor antagonists modulate expression of thrombospondin-1 (TSP-1) and its secretion from Human Microvascular Endothelial Cells (HMEC-1). Microvasc Res 2021; 138:104218. [PMID: 34182003 DOI: 10.1016/j.mvr.2021.104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUNDS AND AIMS To address the problem of resistance to standard antiplatelet therapy in some patients, our team proposed a purinoceptor-dependent dual therapy. Its efficacy is also determined by the condition of the vascular endothelium which, by secreting numerous factors, is involved in hemostasis. Among them, thrombospondin-1 is important in the context of thrombotic events. Therefore we sought to determine if the novel dual purinoceptor-dependent concept is associated with TSP-1 changes in vascular endothelial cells. METHODS AND RESULTS TSP-1 expression in human microvascular endothelial cells was determined at transcriptional and protein level. We performed real-time PCR, the Western blot analysis and ELISA test. We found that TSP-1 mRNA and protein expression levels significantly changed in response to P1R agonists treatment. Furthermore, we have observed that co-administration of selective A2AR agonists (UK-432,097 or MRE0094) with P2Y12R antagonists altered TSP-1 expression levels, and the direction of these changes was not synergistic. MRE0094 applied with ARC69931MX or R-138727 increased mRNA expression from 39 to 56 or 57%, respectively (*P < 0.05 vs. MRE0094; ***P < 0.001 vs. control). Also, in the case of the P2Y12R antagonists used together with UK-432,097, there was an increase from 53 to 71 and 70% (*P < 0.05 vs. UK-432,097; ***P < 0.001 vs. control). The observed trends in gene expression were reflected in the protein expression and the level of its secretion from HMEC-1. CONCLUSION The article presents evidence which proves that the purinoceptor-dependent concept is associated with TSP-1 changes in endothelial cells (EC). Moreover, Human Microvascular Endothelial Cells treatment applied together with agonists (MRE0094 or UK-432,097) and P2Y12R antagonist did not result in any synergistic effect, implicating a possible crosstalk between G proteins in GPCRs dependent signaling. Therefore, we suggest that understanding of the specific mechanism underlying TSP-1 alterations in EC in the context of the dual purinoceptor-dependent approach is essential for antiplatelet therapies and should be the subject of future research.
Collapse
Affiliation(s)
- Anna M Gdula
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| | - Maria Swiatkowska
- Department of Cytobiology and Proteomics, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
14
|
Dymicka-Piekarska V, Koper-Lenkiewicz OM, Zińczuk J, Kratz E, Kamińska J. Inflammatory cell-associated tumors. Not only macrophages (TAMs), fibroblasts (TAFs) and neutrophils (TANs) can infiltrate the tumor microenvironment. The unique role of tumor associated platelets (TAPs). Cancer Immunol Immunother 2021; 70:1497-1510. [PMID: 33146401 PMCID: PMC8139882 DOI: 10.1007/s00262-020-02758-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
It is well known that various inflammatory cells infiltrate cancer cells. Next to TAMs (tumor-associated macrophages), TAFs (tumor-associated fibroblasts) and TANs (tumor-associated neutrophils) also platelets form the tumor microenvironment. Taking into account the role of platelets in the development of cancer, we have decided to introduce a new term: tumor associated platelets-TAPs. To the best of our knowledge, thus far this terminology has not been employed by anyone. Platelets are the first to appear at the site of the inflammatory process that accompanies cancer development. Within the first few hours from the start of the colonization of cancer cells platelet-tumor aggregates are responsible for neutrophils recruitment, and further release a number of factors associated with tumor growth, metastasis and neoangiogenesis. On the other hand, it also has been indicated that factors delivered from platelets can induce a cytotoxic effect on the proliferating neoplastic cells, and even enhance apoptosis. Undoubtedly, TAPs' role seems to be more complex when compared to tumor associated neutrophils and macrophages, which do not allow for their division into TAP P1 and TAP P2, as in the case of TANs and TAMs. In this review we discuss the role of TAPs as an important element of tumor invasiveness and as a potentially new therapeutic target to prevent cancer development. Nevertheless, better exploring the interactions between platelets and tumor cells could help in the formulation of new therapeutic goals that support or improve the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Olga M. Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Ewa Kratz
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wrocław, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
15
|
Sabrkhany S, Kuijpers MJE, Oude Egbrink MGA, Griffioen AW. Platelets as messengers of early-stage cancer. Cancer Metastasis Rev 2021; 40:563-573. [PMID: 33634328 PMCID: PMC8213673 DOI: 10.1007/s10555-021-09956-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Platelets have an important role in tumor angiogenesis, growth, and metastasis. The reciprocal interaction between cancer and platelets results in changes of several platelet characteristics. It is becoming clear that analysis of these platelet features could offer a new strategy in the search for biomarkers of cancer. Here, we review the human studies in which platelet characteristics (e.g., count, volume, protein, and mRNA content) are investigated in early-stage cancer. The main focus of this paper is to evaluate which platelet features are suitable for the development of a blood test that could detect cancer in its early stages.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mirjam G A Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Mendoza-Almanza G, Burciaga-Hernández L, Maldonado V, Melendez-Zajgla J, Olmos J. Role of platelets and breast cancer stem cells in metastasis. World J Stem Cells 2020; 12:1237-1254. [PMID: 33312396 PMCID: PMC7705471 DOI: 10.4252/wjsc.v12.i11.1237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/23/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The high mortality rate of breast cancer is mainly caused by the metastatic ability of cancer cells, resistance to chemotherapy and radiotherapy, and tumor regression capacity. In recent years, it has been shown that the presence of breast cancer stem cells is closely associated with the migration and metastatic ability of cancer cells, as well as with their resistance to chemotherapy and radiotherapy. The tumor microenvironment is one of the main molecular factors involved in cancer and metastatic processes development, in this sense it is interesting to study the role of platelets, one of the main communicator cells in the human body which are activated by the signals they receive from the microenvironment and can generate more than one response. Platelets can ingest and release RNA, proteins, cytokines and growth factors. After the platelets interact with the tumor microenvironment, they are called "tumor-educated platelets." Tumor-educated platelets transport material from the tumor microenvironment to sites adjacent to the tumor, thus helping to create microenvironments conducive for the development of primary and metastatic tumors. It has been observed that the clone capable of carrying out the metastatic process is a cancer cell with stem cell characteristics. Cancer stem cells go through a series of processes, including epithelial-mesenchymal transition, intravasation into blood vessels, movement through blood vessels, extravasation at the site of the establishment of a metastatic focus, and site colonization. Tumor-educated platelets support all these processes.
Collapse
Affiliation(s)
| | | | - Vilma Maldonado
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Melendez-Zajgla
- Génómica funcional del cáncer, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Jorge Olmos
- Biotecnología Marina, Centro de Investigación Científica y de Estudios Superiores de Ensenada, Ensenada 22860, Mexico
| |
Collapse
|
17
|
Deng Y, Li W, Liu X, Ma G, Wu Q, Chen F, Wang Z, Zhou Q. The combination of platelet count and lymphocyte to monocyte ratio is a prognostic factor in patients with resected breast cancer. Medicine (Baltimore) 2020; 99:e18755. [PMID: 32358341 PMCID: PMC7440296 DOI: 10.1097/md.0000000000018755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many inflammation indicators have been reported to be related with patient outcomes in various cancers. Previous studies have evaluated the combination of platelet (PLT) and lymphocyte to monocyte ratio (COP-LMR) as a systemic inflammatory marker for prognostication in lung cancer, yet its prognostic role among breast cancer patients remains unclear.In the present study, a total of 409 breast cancer patients with surgical resection were retrospectively investigated. The receiver operating characteristic (ROC) curve was used to choose the optimal cut-off value of PLT and lymphocyte to monocyte ratio (LMR). Patients were classified into 3 groups according to the score of COP-LMR, and its relationship with various clinicopathological factors and breast cancer prognosis were further evaluated.The ROC curve analysis showed that COP-LMR had a higher area under the ROC curve for the prediction of 5-year disease-free survival and overall survival than PLT or LMR alone. Multivariable analysis showed that an elevated COP-LMR was an independent predictor of poor disease-free survival (P = .032) and overall survival (P = .005). Subgroup analysis revealed that COP-LMR was still significantly associated with prognosis in both luminal A and luminal B subtypes.Preoperative COP-LMR is a potential prognostic factor in breast cancer patients who underwent surgery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhu Wang
- Laboratory of Molecular Diagnosis of Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | | |
Collapse
|
18
|
Catani MV, Savini I, Tullio V, Gasperi V. The "Janus Face" of Platelets in Cancer. Int J Mol Sci 2020; 21:ijms21030788. [PMID: 31991775 PMCID: PMC7037171 DOI: 10.3390/ijms21030788] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Besides their vital role in hemostasis and thrombosis, platelets are also recognized to be involved in cancer, where they play an unexpected central role: They actively influence cancer cell behavior, but, on the other hand, platelet physiology and phenotype are impacted by tumor cells. The existence of this platelet-cancer loop is supported by a large number of experimental and human studies reporting an association between alterations in platelet number and functions and cancer, often in a way dependent on patient, cancer type and treatment. Herein, we shall report on an update on platelet-cancer relationships, with a particular emphasis on how platelets might exert either a protective or a deleterious action in all steps of cancer progression. To this end, we will describe the impact of (i) platelet count, (ii) bioactive molecules secreted upon platelet activation, and (iii) microvesicle-derived miRNAs on cancer behavior. Potential explanations of conflicting results are also reported: Both intrinsic (heterogeneity in platelet-derived bioactive molecules with either inhibitory or stimulatory properties; features of cancer cell types, such as aggressiveness and/or tumour stage) and extrinsic (heterogeneous characteristics of cancer patients, study design and sample preparation) factors, together with other confounding elements, contribute to “the Janus face” of platelets in cancer. Given the difficulty to establish the univocal role of platelets in a tumor, a better understanding of their exact contribution is warranted, in order to identify an efficient therapeutic strategy for cancer management, as well as for better prevention, screening and risk assessment protocols.
Collapse
Affiliation(s)
- Maria Valeria Catani
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| | | | | | - Valeria Gasperi
- Correspondence: (M.V.C.); (V.G.); Tel.: +39-06-72596465 (M.V.C.); +39-06-72596465 (V.G.)
| |
Collapse
|
19
|
Impacts of Cancer on Platelet Production, Activation and Education and Mechanisms of Cancer-Associated Thrombosis. Cancers (Basel) 2018; 10:cancers10110441. [PMID: 30441823 PMCID: PMC6266827 DOI: 10.3390/cancers10110441] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Platelets are small anucleate cells that are traditionally described as the major effectors of hemostasis and thrombosis. However, increasing evidence indicates that platelets play several roles in the progression of malignancies and in cancer-associated thrombosis. A notable cross-communication exists between platelets and cancer cells. On one hand, cancer can “educate” platelets, influencing their RNA profiles, the numbers of circulating platelets and their activation states. On the other hand, tumor-educated platelets contain a plethora of active biomolecules, including platelet-specific and circulating ingested biomolecules, that are released upon platelet activation and participate in the progression of malignancy. The numerous mechanisms by which the primary tumor induces the production, activation and aggregation of platelets (also known as tumor cell induced platelet aggregation, or TCIPA) are directly related to the pro-thrombotic state of cancer patients. Moreover, the activation of platelets is critical for tumor growth and successful metastatic outbreak. The development or use of existing drugs targeting the activation of platelets, adhesive proteins responsible for cancer cell-platelet interactions and platelet agonists should be used to reduce cancer-associated thrombosis and tumor progression.
Collapse
|
20
|
Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19061568. [PMID: 29795022 PMCID: PMC6032192 DOI: 10.3390/ijms19061568] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Both signaling by transforming growth factor-β (TGF-β) and agonists of the G Protein-coupled receptors proteinase-activated receptor-1 (PAR1) and -2 (PAR2) have been linked to tissue fibrosis and cancer. Intriguingly, TGF-β and PAR signaling either converge on the regulation of certain matrix genes overexpressed in these pathologies or display mutual regulation of their signaling components, which is mediated in part through sphingosine kinases and sphingosine-1-phosphate and indicative of an intimate signaling crosstalk between the two pathways. In the first part of this review, we summarize the various regulatory interactions that have been discovered so far according to the organ/tissue in which they were described. In the second part, we highlight the types of signaling crosstalk between TGF-β on the one hand and PAR2/PAR1 on the other hand. Both ligand–receptor systems interact at various levels and by several mechanisms including mutual regulation of ligand–ligand, ligand–receptor, and receptor–receptor at the transcriptional, post-transcriptional, and receptor transactivation levels. These mutual interactions between PAR2/PAR1 and TGF-β signaling components eventually result in feed-forward loops/vicious cycles of matrix deposition and malignant traits that exacerbate fibrosis and oncogenesis, respectively. Given the crucial role of PAR2 and PAR1 in controlling TGF-β receptor activation, signaling, TGF-β synthesis and bioactivation, combining PAR inhibitors with TGF-β blocking agents may turn out to be more efficient than targeting TGF-β alone in alleviating unwanted TGF-β-dependent responses but retaining the beneficial ones.
Collapse
|
21
|
Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood 2018. [PMID: 29519806 DOI: 10.1182/blood-2017-05-743187] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Platelets have long been recognized as key players in hemostasis and thrombosis; however, growing evidence suggests that they are also significantly involved in cancer, the second leading cause of mortality worldwide. Preclinical and clinical studies showed that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between platelets and cancer cells. For example, cancer changes platelet behavior by directly inducing tumor-platelet aggregates, triggering platelet granule and extracellular vesicle release, altering platelet phenotype and platelet RNA profiles, and enhancing thrombopoiesis. Reciprocally, platelets reinforce tumor growth with proliferation signals, antiapoptotic effect, and angiogenic factors. Platelets also activate tumor invasion and sustain metastasis via inducing an invasive epithelial-mesenchymal transition phenotype of tumor cells, promoting tumor survival in circulation, tumor arrest at the endothelium, and extravasation. Furthermore, platelets assist tumors in evading immune destruction. Hence, cancer cells and platelets maintain a complex, bidirectional communication. Recently, aspirin (acetylsalicylic acid) has been recognized as a promising cancer-preventive agent. It is recommended at daily low dose by the US Preventive Services Task Force for primary prevention of colorectal cancer. The exact mechanisms of action of aspirin in chemoprevention are not very clear, but evidence has emerged that suggests a platelet-mediated effect. In this article, we will introduce how cancer changes platelets to be more cancer-friendly and highlight advances in the modes of action for aspirin in cancer prevention. We also discuss the opportunities, challenges, and opposing viewpoints on applying aspirin and other antiplatelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - George M Yousef
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada; and
- Department of Medicine and
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Zhou Y, Cheng S, Fathy AH, Qian H, Zhao Y. Prognostic value of platelet-to-lymphocyte ratio in pancreatic cancer: a comprehensive meta-analysis of 17 cohort studies. Onco Targets Ther 2018; 11:1899-1908. [PMID: 29670365 PMCID: PMC5896656 DOI: 10.2147/ott.s154162] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and aims Several studies were conducted to explore the prognostic value of platelet-to-lymphocyte ratio (PLR) in pancreatic cancer and have reported contradictory results. This study aims to summarize the prognostic role of PLR in pancreatic cancer. Materials and methods Embase, PubMed and Cochrane Library were completely searched. The cohort studies focusing on the prognostic role of PLR in pancreatic cancer were eligible. The overall survival (OS) and progression-free survival (PFS) were analyzed. Results Fifteen papers containing 17 cohort studies with pancreatic cancer were identified. The results showed patients that with low PLR might have longer OS when compared to the patients with high PLR (hazard ratio=1.28, 95% CI=1.17–1.40, P<0.00001; I2=42%). Similar results were observed in the subgroup analyses of OS, which was based on the analysis model, ethnicity, sample size and cut-off value. Further analyses based on the adjusted potential confounders were conducted, including CA199, neutrophil-to-lymphocyte ratio, modified Glasgow Prognostic Score, albumin, C-reactive protein, Eastern Cooperative Oncology Group, stage, tumor size, nodal involvement, tumor differentiation, margin status, age and gender, which confirmed that low PLR was a protective factor in pancreatic cancer. In addition, low PLR was significantly associated with longer PFS when compared to high PLR in pancreatic cancer (hazard ratio=1.27, 95% CI=1.03–1.57, P=0.03; I2=33%). Conclusion In conclusion, it was found that high PLR is an unfavorable predictor of OS and PFS in patients with pancreatic cancer, and PLR is a promising prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Yongping Zhou
- Department of Hepatobiliary, Wuxi Second Hospital, Nanjing Medical University, Wuxi, China
| | - Sijin Cheng
- Tongji University School of Medicine, Shanghai, China
| | | | - Haixin Qian
- Department of Hepatobiliary, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongzhao Zhao
- Department of Hepatobiliary, Wuxi Second Hospital, Nanjing Medical University, Wuxi, China.,Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev 2018; 36:305-329. [PMID: 28752248 PMCID: PMC5557869 DOI: 10.1007/s10555-017-9683-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between coagulation and cancer development has been observed for centuries. However, the connection between inflammation and malignancy is also well-recognized. The plethora of evidence indicates that among multiple hemostasis components, platelets play major roles in cancer progression by providing surface and granular contents for several interactions as well as behaving like immune cells. Therefore, the anticancer potential of anti-platelet therapy has been intensively investigated for many years. Anti-platelet agents may prevent cancer, decrease tumor growth, and metastatic potential, as well as improve survival of cancer patients. On the other hand, there are suggestions that antiplatelet treatment may promote solid tumor development in a phenomenon described as "cancers follow bleeding." The controversies around antiplatelet agents justify insight into the subject to establish what, if any, role platelet-directed therapy has in the continuum of anticancer management.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.
| | - Dominika Hempel
- Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Clinical Oncology, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA.,Departments of Chemistry, Wayne State University, Detroit, MI, 48202, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, MI, 48202, USA
| |
Collapse
|
24
|
Valenzuela CA, Quintanilla R, Moore-Carrasco R, Brown NE. The Potential Role of Senescence As a Modulator of Platelets and Tumorigenesis. Front Oncol 2017; 7:188. [PMID: 28894697 PMCID: PMC5581331 DOI: 10.3389/fonc.2017.00188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022] Open
Abstract
In addition to thrombus formation, alterations in platelet function are frequently observed in cancer patients. Importantly, both thrombus and tumor formation are influenced by age, although the mechanisms through which physiological aging modulates these processes remain poorly understood. In this context, the potential effects of senescent cells on platelet function represent pathophysiological mechanisms that deserve further exploration. Cellular senescence has traditionally been viewed as a barrier to tumorigenesis. However, far from being passive bystanders, senescent cells are metabolically active and able to secrete a variety of soluble and insoluble factors. This feature, known as the senescence-associated secretory phenotype (SASP), may provide senescent cells with the capacity to modify the tissue environment and, paradoxically, promote proliferation and neoplastic transformation of neighboring cells. In fact, the SASP-dependent ability of senescent cells to enhance tumorigenesis has been confirmed in cellular systems involving epithelial cells and fibroblasts, leaving open the question as to whether similar interactions can be extended to other cellular contexts. In this review, we discuss the diverse functions of platelets in tumorigenesis and suggest the possibility that senescent cells might also influence tumorigenesis through their ability to modulate the functional status of platelets through the SASP.
Collapse
Affiliation(s)
| | - Ricardo Quintanilla
- Center for Medical Research, University of Talca Medical School, Talca, Chile
| | | | - Nelson E Brown
- Center for Medical Research, University of Talca Medical School, Talca, Chile
| |
Collapse
|
25
|
Kanikarla-Marie P, Lam M, Menter DG, Kopetz S. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev 2017; 36:235-248. [DOI: 10.1007/s10555-017-9681-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Hyslop SR, Josefsson EC. Undercover Agents: Targeting Tumours with Modified Platelets. Trends Cancer 2017; 3:235-246. [PMID: 28718434 DOI: 10.1016/j.trecan.2017.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 02/03/2023]
Abstract
Platelets have long been recognised to colocalise with tumour cells throughout haematogenous metastasis. Interactions between these cells contribute to tumour cell survival and motility through the vasculature into other tissues. Now, the research focus is shifting towards developing means to exploit this relationship to provide accurate diagnostics and therapies. Alterations to platelet count, RNA profile, and platelet ultrastructure are associated with the presence of certain malignancies, and may be used for cancer detection. Additionally, nanoparticle-based drug delivery systems are enhanced through the use of platelet membranes to specifically target cancer cells and camouflage the foreign particles from the immune system. This review discusses the development of platelets into highly powerful tools for cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Stephanie R Hyslop
- Cancer & Haematology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia; Department of Medical Biology, University of Melbourne 1G Royal Parade VIC 3052, Australia
| | - Emma C Josefsson
- Cancer & Haematology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia; Department of Medical Biology, University of Melbourne 1G Royal Parade VIC 3052, Australia.
| |
Collapse
|