1
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Ding W, Bao S, Zhao Q, Hao W, Fang K, Xiao Y, Lin X, Zhao Z, Xu X, Cui X, Yang X, Yao L, Jin H, Zhang K, Guo J. Blocking ACSL6 Compromises Autophagy via FLI1-Mediated Downregulation of COLs to Radiosensitize Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403202. [PMID: 39206814 PMCID: PMC11516120 DOI: 10.1002/advs.202403202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer (LC) is the leading cause of cancer-related mortality worldwide. Radiotherapy is the main component of LC treatment; however, its efficacy is often limited by radioresistance development, resulting in unsatisfactory clinical outcomes. Here, we found that LC radiosensitivity is up-regulated by decreased expression of long-chain acyl-CoA synthase 6 (ACSL6) after irradiation. Deletion of ACSL6 results in significant elevation of Friend leukemia integration 1 transcription factor (FLI1) and a marked decline of collagens (COLs). Blocking of ACSL6 impairs the tumor growth and upregulates FLI1, which reduces the levels of COLs and compromises irradiation-induced autophagy, leading to considerable therapeutic benefits during radiotherapy. Moreover, the direct interaction between ACSL6 and FLI1 and engagement between FLI1 and COLs indicates the involvement of the ACSL6-FLI1-COL axis. Finally, the potently adjusted autophagy flux reduces its otherwise contributive capability in surviving irradiation stress and leads to satisfactory radiosensitization for LC radiotherapy. These results demonstrate that enhanced ACSL6 expression promotes the aggressive performance of irradiated LC through increased FLI1-COL-mediated autophagy flux. Thus, the ACSL6-FLI1-Col-autophagy axis may be targeted to enhance the radiosensitivity of LC and improve the management of LC in radiotherapy.
Collapse
Affiliation(s)
- Wen Ding
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Shijun Bao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Qingwei Zhao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Wei Hao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Kai Fang
- Department of Medicine CollegeJiangnan UniversityWuxiJiangsu214000P. R. China
| | - Yanlan Xiao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xiaoting Lin
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Zhemeng Zhao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xinyi Xu
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
- College of Basic MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xinyue Cui
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Xiwen Yang
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Liuhuan Yao
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| | - Hai Jin
- Department of Cardiothoracic SurgeryChanghai HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Kun Zhang
- Department of Laboratory Medicine and Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072P. R. China
| | - Jiaming Guo
- Department of Radiation MedicineCollege of Naval MedicineNaval Medical UniversityShanghai200433P. R. China
| |
Collapse
|
3
|
Bischoff P, Bou-Gharios J, Noël G, Burckel H. Role of autophagy in modulating tumor cell radiosensitivity: Exploring pharmacological interventions for glioblastoma multiforme treatment. Cancer Radiother 2024; 28:416-423. [PMID: 39327199 DOI: 10.1016/j.canrad.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/28/2024]
Abstract
Autophagy is an innate cellular process characterized by self-digestion, wherein cells degrade or recycle aged proteins, misfolded proteins, and damaged organelles via lysosomal pathways. Its crucial role in maintaining cellular homeostasis, ensuring development and survival is well established. In the context of cancer therapy, autophagy's importance is firmly recognized, given its critical impact on treatment efficacy. Following radiotherapy, several factors can modulate autophagy including parameters related to radiation type and delivery methods. The concomitant use of chemotherapy with radiotherapy further influences autophagy, potentially either enhancing radiosensitivity or promoting radioresistance. This review article discusses some pharmacological agents and drugs capable of modulating autophagy levels in conjunction with radiation in tumor cells, with a focus on those identified as potential radiosensitizers in glioblastoma multiforme treatment.
Collapse
Affiliation(s)
- Pierre Bischoff
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| | - Georges Noël
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe (ICANS), Unicancer, 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - Hélène Burckel
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
4
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
5
|
Sun Y, Xu M, Duan Q, Bryant JL, Xu X. The role of autophagy in the progression of HIV infected cardiomyopathy. Front Cell Dev Biol 2024; 12:1372573. [PMID: 39086659 PMCID: PMC11289186 DOI: 10.3389/fcell.2024.1372573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024] Open
Abstract
Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 β light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.
Collapse
Affiliation(s)
- Yuting Sun
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Mengmeng Xu
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University, New York, NY, United States
| | - Qinchun Duan
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| | - Joseph L. Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, College of Life Sciences and University Hospital, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
6
|
Che PP, Gregori A, Bergonzini C, Ali M, Mantini G, Schmidt T, Finamore F, Rodrigues SMF, Frampton AE, McDonnell LA, Danen EH, Slotman BJ, Sminia P, Giovannetti E. Differential Sensitivity to Ionizing Radiation in Gemcitabine-Resistant and Paclitaxel-Resistant Pancreatic Cancer Cells. Int J Radiat Oncol Biol Phys 2024; 118:1328-1343. [PMID: 37914140 DOI: 10.1016/j.ijrobp.2023.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/15/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE Chemoresistance remains a major challenge in treating pancreatic ductal adenocarcinoma (PDAC). Although chemoradiation has proven effective in other tumor types, such as head and neck squamous cell carcinoma, its role in PDAC and effect on acquired chemoresistance have yet to be fully explored. In this study, we investigated the sensitivity of gemcitabine-resistant (GR) and paclitaxel-resistant (PR) PDAC cells to ionizing radiation (IR) and their underlying mechanisms. METHODS AND MATERIALS GR and PR clones were generated from PANC-1, PATU-T, and SUIT2-007 pancreatic cancer cell lines. Cell survival after radiation was assessed using clonogenic assay, sulforhodamine B assay, apoptosis, and spheroid growth by bioluminescence. Radiation-induced DNA damage was assessed using Western blot, extra-long polymerase chain reaction, reactive oxygen species production, and immunofluorescence. Autophagy and modulation of the Hippo signaling pathway were investigated using proteomics, Western blot, immunofluorescence, and reverse-transcription quantitative polymerase chain reaction. RESULTS In both 2- and 3-dimensional settings, PR cells were more sensitive to IR and showed decreased β-globin amplification, indicating more DNA damage accumulation compared with GR or wild-type cells after 24 hours. Proteomic analysis of PR PATU-T cells revealed that the protein MST4, a kinase involved in autophagy and the Hippo signaling pathway, was highly downregulated. A differential association was found between autophagy and radiation treatment depending on the cell model. Interestingly, increased yes-associated protein nuclear localization and downstream Hippo signaling pathway target gene expression were observed in response to IR. CONCLUSIONS This was the first study investigating the potential of IR in targeting PDAC cells with acquired chemoresistance. Our results demonstrate that PR cells exhibit enhanced sensitivity to IR due to greater accumulation of DNA damage. Additionally, depending on the specific cellular context, radiation-induced modulation of autophagy and the Hippo signaling pathway emerged as potential underlying mechanisms, findings with potential to inform personalized treatment strategies for patients with acquired chemoresistance.
Collapse
Affiliation(s)
- Pei Pei Che
- Department of Radiation Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mahsoem Ali
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Surgery, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Giulia Mantini
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, San Giuliano Terme, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | | | - Stephanie M Fraga Rodrigues
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adam E Frampton
- Department of Clinical and Experimental Medicine, University of Surrey, Surrey, United Kingdom
| | | | - Erik H Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter Sminia
- Department of Radiation Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, San Giuliano Terme, Italy.
| |
Collapse
|
7
|
Chami P, Diab Y, Khalil DN, Azhari H, Jarnagin WR, Abou-Alfa GK, Harding JJ, Hajj J, Ma J, El Homsi M, Reyngold M, Crane C, Hajj C. Radiation and Immune Checkpoint Inhibitors: Combination Therapy for Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16773. [PMID: 38069095 PMCID: PMC10706661 DOI: 10.3390/ijms242316773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The liver tumor immune microenvironment has been thought to possess a critical role in the development and progression of hepatocellular carcinoma (HCC). Despite the approval of immune checkpoint inhibitors (ICIs), such as programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) inhibitors, for several types of cancers, including HCC, liver metastases have shown evidence of resistance or poor response to immunotherapies. Radiation therapy (RT) has displayed evidence of immunosuppressive effects through the upregulation of immune checkpoint molecules post-treatment. However, it was revealed that the limitations of ICIs can be overcome through the use of RT, as it can reshape the liver immune microenvironment. Moreover, ICIs are able to overcome the RT-induced inhibitory signals, effectively restoring anti-tumor activity. Owing to the synergetic effect believed to arise from the combination of ICIs with RT, several clinical trials are currently ongoing to assess the efficacy and safety of this treatment for patients with HCC.
Collapse
Affiliation(s)
- Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Youssef Diab
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Danny N. Khalil
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Hassan Azhari
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - William R. Jarnagin
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Surgery, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Ghassan K. Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - James J. Harding
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- Department of Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon; (Y.D.)
| | - Jennifer Ma
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Maria El Homsi
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Marsha Reyngold
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | | | - Carla Hajj
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
- New York Proton Center, New York, NY 10035, USA
| |
Collapse
|
8
|
Liu B, Yao X, Zhang C, Liu Y, Wei L, Huang Q, Wang M, Zhang Y, Hu D, Wu W. PTK6 inhibits autophagy to promote uveal melanoma tumorigenesis by binding to SOCS3 and regulating mTOR phosphorylation. Cell Death Dis 2023; 14:55. [PMID: 36690663 PMCID: PMC9870980 DOI: 10.1038/s41419-023-05590-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Autophagy dysfunction is one of the common causes of tumor formation and plays an important role in uveal melanoma (UM). However, little is known about the regulatory mechanisms of autophagy in UM. Here, we show that PTK6 can promote the proliferation, migration, and invasion of UM cells by inhibiting autophagy. SOCS3 can inhibit the proliferation, migration, and invasion of UM cells. Overexpression of SOCS3 can partially rescue the PTK6-induced promotion of UM cell proliferation, migration, and invasion. Mechanistically, PTK6 can bind to SOCS3, and SOCS3 can downregulate the expression of PTK6. Furthermore, PTK6 can upregulate the phosphorylation of mTOR to inhibit autophagy. Taken together, our findings demonstrate the functions of PTK6 and SOCS3 in UM cells and targeting the SOCS3-PTK6 signaling axis might be a novel and promising therapeutic strategy for patients with UM.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufen Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Li Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Qinying Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Mengting Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yanchen Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Danning Hu
- Tissue Culture Center, The New York Eye and Ear Infirmary, New York Medical College, Valhalla, New York, USA
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
9
|
Zhou X, He YZ, Liu D, Lin CR, Liang D, Huang R, Wang L. An Autophagy-Related Gene Signature can Better Predict Prognosis and Resistance in Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:862179. [PMID: 35846146 PMCID: PMC9280409 DOI: 10.3389/fgene.2022.862179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease, and about 30%–40% of patients will develop relapsed/refractory DLBCL. In this study, we aimed to develop a gene signature to predict survival outcomes of DLBCL patients based on the autophagy-related genes (ARGs). Methods: We sequentially used the univariate, least absolute shrinkage and selector operation (LASSO), and multivariate Cox regression analyses to build a gene signature. The Kaplan–Meier curve and the area under the receiver operating characteristic curve (AUC) were performed to estimate the prognostic capability of the gene signature. GSEA analysis, ESTIMATE and ssGSEA algorithms, and one-class logistic regression were performed to analyze differences in pathways, immune response, and tumor stemness between the high- and low-risk groups. Results: Both in the training cohort and validation cohorts, high-risk patients had inferior overall survival compared with low-risk patients. The nomogram consisted of the autophagy-related gene signature, and clinical factors had better discrimination of survival outcomes, and it also had a favorable consistency between the predicted and actual survival. GSEA analysis found that patients in the high-risk group were associated with the activation of doxorubicin resistance, NF-κB, cell cycle, and DNA replication pathways. The results of ESTIMATE, ssGSEA, and mRNAsi showed that the high-risk group exhibited lower immune cell infiltration and immune activation responses and had higher similarity to cancer stem cells. Conclusion: We proposed a novel and reliable autophagy-related gene signature that was capable of predicting the survival and resistance of patients with DLBCL and could guide individualized treatment in future.
Collapse
Affiliation(s)
- Xuan Zhou
- Second Clinical Medical College of Southern Medical University, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying-Zhi He
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Dan Liu
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Chao-Ran Lin
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Dan Liang
- Second Clinical Medical College of Southern Medical University, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Rui Huang, ; Liang Wang,
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Rui Huang, ; Liang Wang,
| |
Collapse
|
10
|
Tran Q, Lee H, Jung JH, Chang SH, Shrestha R, Kong G, Park J, Kim SH, Park KS, Rhee HW, Yun J, Cho MH, Kim KP, Park J. Emerging role of LETM1/GRP78 axis in lung cancer. Cell Death Dis 2022; 13:543. [PMID: 35680871 PMCID: PMC9184611 DOI: 10.1038/s41419-022-04993-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/21/2023]
Abstract
The selective autophagy of damaged mitochondria is called mitophagy. Mitochondrial dysfunction, mitophagy, and apoptosis have been suggested to be interrelated in various human lung carcinomas. Leucine zipper EF-hand-containing transmembrane protein-1 (LETM1) was cloned in an attempt to identify candidate genes for Wolf-Hirschhorn syndrome. LETM1 plays a role in mitochondrial morphology, ion homeostasis, and cell viability. LETM1 has also been shown to be overexpressed in different human cancer tissues, including lung cancer. In the current study, we have provided clear evidence that LETM1 acts as an anchoring protein for the mitochondria-associated ER membrane (MAM). Fragmented mitochondria have been found in lung cancer cells with LETM1 overexpression. In addition, a reduction of mitochondrial membrane potential and significant accumulation of microtubule-associated protein 1 A/1B-light chain 3 punctate, which localizes with Red-Mito, was found in LETM1-overexpressed cells, suggesting that mitophagy is upregulated in these cells. Interestingly, glucose-regulated protein 78 kDa (GRP78; an ER chaperon protein) and glucose-regulated protein 75 kDa (GRP75) were posited to interact with LETM1 in the immunoprecipitated LETM1 of H460 cells. This interaction was enhanced in cells treated with carbonyl cyanide m-chlorophenylhydrazone, a chemical mitophagy inducer. Treatment of cells with honokiol (a GRP78 inhibitor) blocked LETM1-mediated mitophagy, and CRISPR/Cas9-mediated GRP75 knockout inhibited LETM1-induced autophagy. Thus, GRP78 interacts with LETM1. Taken together, these observations support the notion that the complex formation of LETM1/GRP75/GRP78 might be an important step in MAM formation and mitophagy, thus regulating mitochondrial quality control in lung cancer.
Collapse
Affiliation(s)
- Quangdon Tran
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea ,Molecular Biology Laboratory, Department of Medical Laboratories, Hai Phong International Hospital, Hai Phong City, #18000 Vietnam
| | - Hyunji Lee
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Jae Hun Jung
- grid.289247.20000 0001 2171 7818Department of Applied Chemistry, College of Applied Sciences, Kyunghee University, Yongin, 17104 South Korea
| | - Seung-Hee Chang
- grid.31501.360000 0004 0470 5905Laboratory of Toxicology, College of Veterinary Medicine Seoul National University, Seoul, 08826 South Korea
| | - Robin Shrestha
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Gyeyeong Kong
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Jisoo Park
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea ,grid.411948.10000 0001 0523 5122Department of Life Science, Hyehwa Liberal Arts College, Daejeon University, Daejeon, 34520 South Korea
| | - Seon-Hwan Kim
- grid.254230.20000 0001 0722 6377Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| | - Kyu-Sang Park
- grid.15444.300000 0004 0470 5454Department of Physiology and Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, 26427 Korea
| | - Hyun-Woo Rhee
- grid.42687.3f0000 0004 0381 814XDepartment of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, 44919 Korea
| | - Jeanho Yun
- grid.255166.30000 0001 2218 7142Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, 49201 South Korea
| | - Myung-Haing Cho
- grid.31501.360000 0004 0470 5905Laboratory of Toxicology, College of Veterinary Medicine Seoul National University, Seoul, 08826 South Korea ,RNABIO, Seongnam, Gyeonggi-do 13201 South Korea
| | - Kwang Pyo Kim
- grid.289247.20000 0001 2171 7818Department of Applied Chemistry, College of Applied Sciences, Kyunghee University, Yongin, 17104 South Korea
| | - Jongsun Park
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea ,grid.254230.20000 0001 0722 6377Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 South Korea
| |
Collapse
|
11
|
Hong P, Kudulaiti N, Wu S, Nie J, Zhuang D. Tumor treating fields: a comprehensive overview of the underlying molecular mechanism. Expert Rev Mol Diagn 2021; 22:19-28. [PMID: 34883030 DOI: 10.1080/14737159.2022.2017283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION As a novel treatment modality, tumor treating fields (TTFields) exert low-intensity, medium-frequency electric fields on tumor cells. TTFields' effectiveness and safety have been demonstrated clinically and in the real world for treating glioblastoma, the most common and aggressive primary central nervous system tumor. TTFields therapy has also been approved for the management of malignant mesothelioma, and clinical trials are ongoing for NSCLC, gastric cancer, pancreatic cancer, and other solid tumors. AREAS COVERED This article comprehensively reviews the currently described evidence of TTFields' mechanism of action. TTFields' most evident therapeutic effect is to induce cell death by disrupting mitosis. Moreover, evidence suggests at additional mechanistic complexity, such as delayed DNA repair and heightened DNA replication stress, reversible increase in cell membrane and blood-brain barrier permeability, induction of immune response, and so on. EXPERT OPINION TTFields therapy has been arising as the fourth anti-tumor treatment besides surgery, radiotherapy, and antineoplastic agents in recent years. However, the precise molecular mechanisms underlying the effects of TTFields are not fully understood and some concepts remain controversial. An in-depth understanding of TTFields' effects on tumor cell and tumor microenvironment would be crucial for informing research aimed at further optimizing TTFields' efficacy and developing new combination therapies for clinical applications.
Collapse
Affiliation(s)
- Pengjie Hong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Nijiati Kudulaiti
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Jingtao Nie
- Zai Lab Trading (Shanghai) Co., Ltd., Shanghai, China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
12
|
Qingjie Fuzheng Granule Inhibits EMT and Induces Autophagy in Colorectal Cancer via mTOR Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9950499. [PMID: 34887935 PMCID: PMC8651347 DOI: 10.1155/2021/9950499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/04/2021] [Accepted: 11/03/2021] [Indexed: 01/10/2023]
Abstract
Qingjie Fuzheng granule (QFG) is a traditional Chinese medicinal formula used extensively as an alternative medicine for cancer treatment, including colorectal cancer (CRC). But its pathological mechanism in CRC is unclear. To study antitumor treatment effects and mechanisms of QFG, we established a CRC HCT-116 xenograft mouse model and assessed QFG on EMT and autophagy progression in vivo. The mice were randomly divided into 2 groups (n = 10 each group) and treated with intragastric administration of 1 g/kg of QFG or saline 6 days a week for 28 days (4 weeks). Body weight was measured every other day with electronic balance. At the end of the treatment, the tumor weight was measured. Immunohistochemical (IHC) and western blot (WB) assay were used to detect the expression level of E-cadherin, N-cadherin, vimentin, and TWIST1 to evaluate the effect of QFG on tumor cell EMT progression. IHC and WB assay were also used to detect the expression level of beclin-1, LC3-II, and p62 to evaluate the effect of QFG on tumor cell autophagy progression. Furthermore, the expression level of relative proteins in mTOR pathway was detected by WB assay to investigate the mechanism of QFG effect on CRC. We discovered that QFG inhibited the rise of tumor weight while it had no effect on mice body weight, which proved that QFG could inhibit CRC growth progression without significant side effects in vivo. In addition, QFG treatment inhibited EMT and induced autophagy progression in CRC tumor cells, including that QFG upregulated the expression of E-cadherin, beclin-1, and LC3-II, but downregulated the expression of N-cadherin, vimentin, TWIST1, and p62. And, QFG decreased the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR, but increased the ratio of p-AMPK/AMPK. All findings from this research proved that QFG can induce autophagy and inhibit EMT progression in CRC via regulating the mTOR signaling pathway.
Collapse
|
13
|
Zhang H, Xia P, Liu J, Chen Z, Ma W, Yuan Y. ATIC inhibits autophagy in hepatocellular cancer through the AKT/FOXO3 pathway and serves as a prognostic signature for modeling patient survival. Int J Biol Sci 2021; 17:4442-4458. [PMID: 34803509 PMCID: PMC8579461 DOI: 10.7150/ijbs.65669] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Autophagy regulates many cell functions related to cancer, ranging from cell proliferation and angiogenesis to metabolism. Due to the close relationship between autophagy and tumors, we investigated the predictive value of autophagy-related genes. Methods: Data from patients with hepatocellular carcinoma were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. A regression analysis of differentially expressed genes was performed. Based on a prognostic model, patients were divided into a high-risk or low-risk group. Kaplan-Meier survival analyses of patients were conducted. The immune landscapes, as determined using single-sample gene set enrichment analysis (ssGSEA), exhibited different patterns in the two groups. The prognostic model was verified using the ICGC database and clinical data from patients collected at Zhongnan Hospital. Based on the results of multivariate Cox regression analysis, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate (IMP) cyclohydrolase (ATIC) had the largest hazard ratio, and thus we studied the effect of ATIC on autophagy and tumor progression by performing in vitro and in vivo experiments. Results: Fifty-eight autophagy-related genes were differentially expressed (false discovery rate (FDR)<0.05, log2 fold change (logFC)>1); 23 genes were related to the prognosis of patients. A prognostic model based on 12 genes (ATG10, ATIC, BIRC5, CAPN10, FKBP1A, GAPDH, HDAC1, PRKCD, RHEB, SPNS1, SQSTM1 and TMEM74) was constructed. A significant difference in survival rate was observed between the high-risk group and low-risk group distinguished by the model (P<0.001). The model had good predictive power (area under the curve (AUC)>0.7). Risk-related genes were related to the terms type II IFN response, MHC class I (P<0.001) and HLA (P<0.05). ATIC was confirmed to inhibit autophagy and promote the proliferation, invasion and metastasis of liver cancer cells through the AKT/Forkhead box subgroup O3 (FOXO3) signaling pathway in vitro and in vivo. Conclusions: The prediction model effectively predicts the survival time of patients with liver cancer. The risk score reflects the immune cell features and immune status of patients. ATIC inhibits autophagy and promotes the progression of liver cancer through the AKT/FOXO3 signaling pathway.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Jie Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Zhang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, China
| |
Collapse
|
14
|
Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme. Cells 2021; 10:cells10092342. [PMID: 34571991 PMCID: PMC8468137 DOI: 10.3390/cells10092342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignancy of the brain and spinal cord with a poor life expectancy. The low survivability of GBM patients can be attributed, in part, to its heterogeneity and the presence of multiple genetic alterations causing rapid tumor growth and resistance to conventional therapy. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated (Cas) nuclease 9 (CRISPR-Cas9) system is a cost-effective and reliable gene editing technology, which is widely used in cancer research. It leads to novel discoveries of various oncogenes that regulate autophagy, angiogenesis, and invasion and play important role in pathogenesis of various malignancies, including GBM. In this review article, we first describe the principle and methods of delivery of CRISPR-Cas9 genome editing. Second, we summarize the current knowledge and major applications of CRISPR-Cas9 to identifying and modifying the genetic regulators of the hallmark of GBM. Lastly, we elucidate the major limitations of current CRISPR-Cas9 technology in the GBM field and the future perspectives. CRISPR-Cas9 genome editing aids in identifying novel coding and non-coding transcriptional regulators of the hallmarks of GBM particularly in vitro, while work using in vivo systems requires further investigation.
Collapse
|
15
|
Abeywickrama CS, Baumann HJ, Pang Y. Simultaneous Visualization of Mitochondria and Lysosome by a Single Cyanine Dye: The Impact of the Donor Group (-NR 2) Towards Organelle Selectivity. J Fluoresc 2021; 31:1227-1234. [PMID: 34297321 DOI: 10.1007/s10895-021-02786-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
A benzothiazolium-based hemicyanine dye (probe 3) has been synthesized by attaching a morpholine group into a phenyl benzothiazolium skeleton. Probe 3 exhibited interesting photophysical characteristics including red emission (λem ≈600 nm), enhanced Stokes shift (Δλ ≈80 nm) and sensitivity to solvent polarity. Although the probe 3 exhibited almost no emission in aqueous environments (φfl ≈0.002), its fluorescence could be increased by ≈50 fold in organic solvents (φfl ≈0.10), making it possible for live cell imaging under wash-free conditions. Probe 3 exhibited excellent ability to visualize cellular mitochondria and lysosomes simultaneously, as observed from fluorescence confocal microscopy. In addition, probe 3 also exhibited good biocompatibility (calculated LC50 > 20 µM) and high photostability.
Collapse
Affiliation(s)
- Chathura S Abeywickrama
- Department of Chemistry and Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA
| | - Hannah J Baumann
- Department of Chemistry and Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA
| | - Yi Pang
- Department of Chemistry and Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH, 44325, USA.
| |
Collapse
|
16
|
Roles of the Immune/Methylation/Autophagy Landscape on Single-Cell Genotypes and Stroke Risk in Breast Cancer Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5633514. [PMID: 34457116 PMCID: PMC8397558 DOI: 10.1155/2021/5633514] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
This study sought to perform integrative analysis of the immune/methylation/autophagy landscape on breast cancer prognosis and single-cell genotypes. Breast Cancer Recurrence Risk Score (BCRRS) and Breast Cancer Prognostic Risk Score (BCPRS) were determined based on 6 prognostic IMAAGs obtained from the TCGA-BRCA cohort. BCRRS and BCPRS, respectively, were used to construct a risk prediction model of overall survival and progression-free survival. Predictive capacity of the model was evaluated using clinical data. Analysis showed that BCRRS is associated with a high risk of stroke. In addition, PPI and drug-ceRNA networks based on differences in BCPRS were constructed. Single cells were genotyped through integrated scRNA-seq of the TNBC samples based on clustering results of BCPRS-related genes. The findings of this study show the potential regulatory effects of IMAAGs on breast cancer tumor microenvironment. High AUCs of 0.856 and 0.842 were obtained for the OS and PFS prognostic models, respectively. scRNA-seq analysis showed high expression levels of adipocytes and adipose tissue macrophages (ATMs) in high BCPRS clusters. Moreover, analysis of ligand-receptor interactions and potential regulatory mechanisms were performed. The LINC00276&MALAT1/miR-206/FZD4-Wnt7b pathway was also identified which may be useful in future research on targets against breast cancer metastasis and recurrence. Neural network-based deep learning models using BCPRS-related genes showed that these genes can be used to map the tumor microenvironment. In summary, analysis of IMAAGs, BCPRS, and BCRRS provides information on the breast cancer microenvironment at both the macro- and microlevels and provides a basis for development of personalized treatment therapy.
Collapse
|
17
|
Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5595652. [PMID: 34306311 PMCID: PMC8279859 DOI: 10.1155/2021/5595652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/26/2021] [Accepted: 06/20/2021] [Indexed: 01/10/2023]
Abstract
Autophagy plays a double-edged sword for cancer; particularly, mitophagy plays important roles in the selective degradation of damaged mitochondria. However, whether mitophagy is involved in killing effects of tumor cells by ionizing radiation (IR) and its underlying mechanism remain elusive. The purpose is to evaluate the effects of mitochondrial ROS (mROS) on autophagy after IR; furthermore, we hypothesized that KillerRed (KR) targeting mitochondria could induce mROS generation, subsequent mitochondrial depolarization, accumulation of Pink1, and recruitment of PARK2 to promote the mitophagy. Thereby, we would achieve a new strategy to enhance mROS accumulation and clarify the roles and mechanisms of radiosensitization by KR and IR. Our data demonstrated that IR might cause autophagy of both MCF-7 and HeLa cells, which is related to mitochondria and mROS, and the ROS scavenger N-acetylcysteine (NAC) could reduce the effects. Based on the theory, mitochondrial targeting vector sterile α- and HEAT/armadillo motif-containing protein 1- (Sarm1-) mtKR has been successfully constructed, and we found that ROS levels have significantly increased after light exposure. Furthermore, mitochondrial depolarization of HeLa cells was triggered, such as the decrease of Na+K+ ATPase, Ca2+Mg2+ ATPase, and mitochondrial respiratory complex I and III activities, and mitochondrial membrane potential (MMP) has significantly decreased, and voltage-dependent anion channel 1 (VDAC1) protein has significantly increased in the mitochondria. Additionally, HeLa cell proliferation was obviously inhibited, and the cell autophagic rates dramatically increased, which referred to the regulation of the Pink1/PARK2 pathway. These results indicated that mitophagy induced by mROS can initiate the sensitization of cancer cells to IR and might be regulated by the Pink1/PARK2 pathway.
Collapse
|
18
|
Ghaznavi H, Shirvaliloo M, Zarebkohan A, Shams Z, Radnia F, Bahmanpour Z, Sargazi S, Saravani R, Shirvalilou S, Shahraki O, Shahraki S, Nazarlou Z, Sheervalilou R. An Updated Review on Implications of Autophagy and Apoptosis in Tumorigenesis: Possible Alterations in Autophagy through Engineered Nanomaterials and Their Importance in Cancer Therapy. Mol Pharmacol 2021; 100:119-143. [PMID: 33990406 DOI: 10.1124/molpharm.121.000234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Most commonly recognized as a catabolic pathway, autophagy is a perplexing mechanism through which a living cell can free itself of excess cytoplasmic components, i.e., organelles, by means of certain membranous vesicles or lysosomes filled with degrading enzymes. Upon exposure to external insult or internal stimuli, the cell might opt to activate such a pathway, through which it can gain control over the maintenance of intracellular components and thus sustain homeostasis by intercepting the formation of unnecessary structures or eliminating the already present dysfunctional or inutile organelles. Despite such appropriateness, autophagy might also be considered a frailty for the cell, as it has been said to have a rather complicated role in tumorigenesis. A merit in the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. In fact, several investigations on tumorigenesis have reported diminished levels of autophagic activity in tumor cells, which might result in transition to malignancy. On the contrary, autophagy has been suggested to be a seemingly favorable mechanism to progressed malignancies, as it contributes to survival of such cells. Based on the recent literature, this mechanism might also be activated upon the entry of engineered nanomaterials inside a cell, supposedly protecting the host from foreign materials. Accordingly, there is a good chance that therapeutic interventions for modulating autophagy in malignant cells using nanoparticles may sensitize cancerous cells to certain treatment modalities, e.g., radiotherapy. In this review, we will discuss the signaling pathways involved in autophagy and the significance of the mechanism itself in apoptosis and tumorigenesis while shedding light on possible alterations in autophagy through engineered nanomaterials and their potential therapeutic applications in cancer. SIGNIFICANCE STATEMENT: Autophagy has been said to have a complicated role in tumorigenesis. In the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. On the contrary, autophagy has been suggested to be a favorable mechanism to progressed malignancies. This mechanism might be affected upon the entry of nanomaterials inside a cell. Accordingly, therapeutic interventions for modulating autophagy using nanoparticles may sensitize cancerous cells to certain therapies.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Milad Shirvaliloo
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Amir Zarebkohan
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zinat Shams
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Fatemeh Radnia
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zahra Bahmanpour
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Saman Sargazi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ramin Saravani
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sakine Shirvalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sheida Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ziba Nazarlou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| |
Collapse
|
19
|
Kang X, Chen Y, Yi B, Yan X, Jiang C, Chen B, Lu L, Sun Y, Shi R. An integrative microenvironment approach for laryngeal carcinoma: the role of immune/methylation/autophagy signatures on disease clinical prognosis and single-cell genotypes. J Cancer 2021; 12:4148-4171. [PMID: 34093817 PMCID: PMC8176413 DOI: 10.7150/jca.58076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of methylation/autophagy-related genes (MARGs) and immune infiltration in the tumor microenvironment on the prognosis of laryngeal cancer were comprehensively explored in this study. Survival analysis screened out 126 MARGs and 10 immune cells potentially associated with the prognosis of laryngeal carcinoma. Cox and lasso regression analyses were then used to select 8 MARGs (CAPN10, DAPK2, MBTPS2, ST13, CFLAR, FADD, PEX14 and TSC2) and 2 immune cells (Eosinophil and Mast cell) to obtain the prognostic risk scoring system (pRS). The pRS was used to establish a risk prediction model for the prognosis of laryngeal cancer. The predictive ability of the prediction model was evaluated by GEO datasets and our clinical samples. Further analysis revealed that pRS is highly associated with single nucleotide polymorphism (SNP), copy number variation (CNV), immune checkpoint blockade (ICB) therapy and tumor microenvironment. Moreover, the screened pRS-related ceRNA network and circ_0002951/miR-548k/HAS2 pathway provide potential therapeutic targets and biomarkers of laryngocarcinoma. Based on the clustering results of pRS-related genes, single cells were then genotyped and revealed by integrated scRNA-seq in laryngeal cancer samples. Fibroblasts were found enriched in high risk cell clusters at the scRNA-seq level. Fibroblast-related ligand-receptor interactions were then exposed and a neural network-based deep learning model based on these pRS-related hub gene signatures was also established with a high accuracy in cell type prediction. In conclusion, the combination of single-cell and transcriptome laryngeal carcinoma landscape analyses can investigate the link between the tumor microenvironmental and prognostic characteristics.
Collapse
Affiliation(s)
- Xueran Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Yi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Xiaojun Yan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Chenyan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Bin Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Lixing Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yuxing Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Runjie Shi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| |
Collapse
|
20
|
Song J, Zhang Z, Hu Y, Li Z, Wan Y, Liu J, Chu X, Wei Q, Zhao M, Yang X. An aqueous extract of Prunella vulgaris L. inhibits the growth of papillary thyroid carcinoma by inducing autophagy in vivo and in vitro. Phytother Res 2021; 35:2691-2702. [PMID: 33440461 DOI: 10.1002/ptr.7015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
The continued global rise in papillary thyroid carcinoma (PTC) combined with potential adverse effects of regular treatments calls for an alternative therapy. Prunella vulgaris L. (PV) is commonly used as a herbal remedy for thyroid diseases in China, but its influence on PTC is unclear. This study investigated the effect of PV aqueous extract on PTC and its underlying mechanism using a mouse xenograft model and the human PTC cell line K1. PV suppressed tumor growth in PTC-bearing mice at 0.05 and 0.1 g/kg bw, accompanied by improvements in autophagy-related protein expressions in xenografts. In K1 cells, PV inhibited cell growth and induced autophagic flux, manifesting as changes in autophagy-related proteins, the presence of autophagosomes, and a further increase in LC3-II by co-incubation with bafilomycin A1. Autophagy inhibitor 3-methyladenine ameliorated the autophagic cell death caused by PV. The mammalian target of rapamycin (mTOR) activator MHY1485 blocked the antiproliferative activity of PV by regulating mTOR, unc-51-like autophagy activating kinase 1 (ULK1), autophagosomes formation, and autophagy-related proteins. The adenosine monophosphate-activated protein kinase (AMPK) inhibitor compound C attenuated PV-induced inhibition of mTOR. Our results suggest that PV inhibits the growth of PTC in vivo and in vitro via autophagy, which is associated with the AMPK/mTOR/ULK1 pathway. Thus, PV has the potential to function as a therapeutic agent against PTC.
Collapse
Affiliation(s)
- Jia Song
- Institute of Toxicology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhengbao Zhang
- Institute of Toxicology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Youkun Hu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ziyin Li
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiafei Liu
- Physical and Chemical Analysis Department, Guangdong Institute of Food Inspection, Guangzhou, China
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qinzhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Min Zhao
- Institute of Toxicology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Wang X, Fan L, Wang S, Zhang Y, Li F, Zan Q, Lu W, Shuang S, Dong C. Real-Time Monitoring Mitochondrial Viscosity during Mitophagy Using a Mitochondria-Immobilized Near-Infrared Aggregation-Induced Emission Probe. Anal Chem 2021; 93:3241-3249. [PMID: 33539094 DOI: 10.1021/acs.analchem.0c04826] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. However, most of the mitochondrial fluorescence viscosity probes only rely on electrostatic attraction and readily leak out from the mitochondria during mitophagy with a decreased membrane potential, thus easily leading to an inaccurate detection of viscosity changes. In this work, we report a mitochondria-immobilized NIR-emissive aggregation-induced emission (AIE) probe CS-Py-BC, which allows for an off-on fluorescence response to viscosity, thus enabling the real-time monitoring viscosity variation during mitophagy. This system consists of a cyanostilbene skeleton as the AIE active core and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl chloride subunit that induces mitochondrial immobilization. As the viscosity increased from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CS-Py-BC exhibited an about 92-fold increase in fluorescence intensity at 650 nm, which might be attributed to the restriction of rotation and inhibition of twisted intramolecular charge transfer in a high viscosity system. We also revealed that CS-Py-BC could be well immobilized onto mitochondria, regardless of the mitochondrial membrane potential fluctuation. Most importantly, using CS-Py-BC, we have successfully visualized the increased mitochondrial viscosity during starvation or rapamycin-induced mitophagy in real time. All these features render CS-Py-BC a promising candidate to investigate mitophagy-associated dynamic physiological and pathological processes.
Collapse
Affiliation(s)
- Xiaodong Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shuohang Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Feng Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qi Zan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Wenjing Lu
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
22
|
Wang S, Wang B, Zhu L, Hou JT, Yu KK. A ratiometric fluorescent probe for monitoring pH fluctuations during autophagy in living cells. Chem Commun (Camb) 2021; 57:1510-1513. [DOI: 10.1039/d0cc07788g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a ratiometric fluorescent probe for monitoring pH featuring superb photostability and chemostability.
Collapse
Affiliation(s)
- Shan Wang
- School of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Bingya Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang
- P. R. China
| | - Lei Zhu
- School of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan
- P. R. China
| | - Ji-Ting Hou
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang
- P. R. China
| | - Kang-Kang Yu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
23
|
Hou C, Cai H, Zhu Y, Huang S, Song F, Hou J. Development and Validation of Autophagy-Related Gene Signature and Nomogram for Predicting Survival in Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:558596. [PMID: 33178587 PMCID: PMC7596585 DOI: 10.3389/fonc.2020.558596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background Autophagy, a highly conserved self-digesting process, has been deeply involved in the development and progression of oral squamous cell carcinoma (OSCC). However, the prognostic value of autophagy-related genes (ARGs) for OSCC still remains unclear. Our study set out to develop a multigene expression signature based on ARGs for individualized prognosis assessment in OSCC patients. Methods Based on The Cancer Genome Atlas (TCGA) database, we identified prognosis-related ARGs through univariate COX regression analysis. Then we performed the least absolute shrinkage and selection operator (LASSO) regression analysis to identify an optimal autophagy-related multigene signature with the subsequent validation in testing set, GSE41613 and GSE42743 datasets. Results We identified 36 prognosis-related ARGs for OSCC. Subsequently, the multigene signature based on 13 prognostic ARGs was constructed and successfully divided OSCC patients into low and high-risk groups with significantly different overall survival in TCGA training set (p < 0.0001). The autophagy signature remained as an independent prognostic factor for OSCC in univariate and multivariate Cox regression analyses. The area under the curve (AUC) values of the receiver operating characteristic (ROC) curves for 1, 3, and 5-year survival were 0.758, 0.810, 0.798, respectively. Then the gene signature was validated in TCGA testing set, GSE41613 and GSE42743 datasets. Moreover, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and single-sample gene set enrichment analysis (ssGSEA) revealed the underlying biological characteristics and signaling pathways associated with this signature in OSCC. Finally, we constructed a nomogram by combining the gene signature with multiple clinical parameters (age, gender, TNM-stage, tobacco, and alcohol history). The concordance index (C-index) and calibration plots demonstrated favorable predictive performance of our nomogram. Conclusion In summary, we identified and verified a 13-ARGs prognostic signature and nomogram, which provide individualized prognosis evaluation and show insight for potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Chen Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yue Zhu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuojin Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fan Song
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Abeywickrama CS, Bertman KA, Pang Y. From nucleus to mitochondria to lysosome selectivity switching in a cyanine probe: The phenolic to methoxy substituent conversion affects probe’s selectivity. Bioorg Chem 2020; 99:103848. [DOI: 10.1016/j.bioorg.2020.103848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022]
|
25
|
Pan S, Wang J, Wu A, Guo Z, Wang Z, Zheng L, Dai Y, Zhu L, Nie J, Hei TK, Zhou G, Li Y, Li B, Hu W. Radiation Exposure-Induced Changes in the Immune Cells and Immune Factors of Mice With or Without Primary Lung Tumor. Dose Response 2020; 18:1559325820926744. [PMID: 32489339 PMCID: PMC7238454 DOI: 10.1177/1559325820926744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies have demonstrated that radiation activates in situ antitumor immunity and consequently induced a synergistic effect of radiotherapy and immunotherapy. However, studies related to radiation-induced changes in immune system of tumor-bearing mice are limited, which are of great significance to improve the efficacy of radioimmunotherapy. In this study, we first established a primary lung tumor mouse model using urethane. Then part of the right lung of the mouse was exposed to X-ray irradiation with a computed tomography-guided small animal irradiator and the changes of immune cells in both peripheral blood and spleen were determined by flow cytometry. Besides, the levels of both cytokines and immunoglobulins in mouse serum were detected by a protein chip. We found that B lymphocytes increased while CD8+ T lymphocytes reduced significantly. Interleukin-3 (IL-3), IL-6, regulated upon activation, normally T-expressed, and presumably secreted factor (RANTES), and vascular endothelial growth factor (VEGF) were found to be decreased after tumor formation, and the similar results have also been observed with kappa, IgG3, IgE, IgM, and IgG2a. After irradiation, lower concentrations of IgD, kappa, and IgM were found in the serum. Our findings indicate that localized tumor irradiation caused some obvious changes like inhibiting the ability of innate immunity, and these changes may be useful in predicting prognosis.
Collapse
Affiliation(s)
- Shuxian Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| | - Jingjie Wang
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China.,China Institute for Radiation Protection, Taiyuan, People's Republic of China
| | - Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| | - Ziyang Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| | - Ziyang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| | - Lijun Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| | - Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| | - Lin Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| | - Tom K Hei
- Center for Radiological Research, College of Physician and Surgeons, Columbia University, New York, NY, USA
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| | - Youchen Li
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China.,China Institute for Radiation Protection, Taiyuan, People's Republic of China
| | - Bingyan Li
- Medical College of Soochow University, Suzhou, People's Republic of China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, People's Republic of China
| |
Collapse
|
26
|
Daskalakis K, Alexandraki KI, Kloukina I, Kassi E, Felekouras E, Xingi E, Pagakis SN, Tsolakis AV, Andreakos E, Kaltsas G, Kambas K. Increased autophagy/mitophagy levels in primary tumours of patients with pancreatic neuroendocrine neoplasms. Endocrine 2020; 68:438-447. [PMID: 32114655 PMCID: PMC7266843 DOI: 10.1007/s12020-020-02228-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIMS We assessed the levels of autophagy and mitophagy, that are linked to cancer development and drug resistance, in well differentiated pancreatic neuroendocrine neoplasms (PanNENs) and correlated them with clinico-pathological parameters. METHODS Fluorescent immunostaining for the autophagy markers LC3Β and p62/or LAMP1 was performed on 22 PanNENs and 11 controls of normal pancreatic tissues and validated through Western blotting. Autophagy quantitative scoring was generated for LC3B-positive puncta and analysed in relation to clinico-pathological parameters. TOMM20/LC3B qualitative assessment of mitophagy levels was undertaken by fluorescent immunostaining. The presence of autophagy/mitophagy was validated by transmission electron microscopy. RESULTS Autophagy levels (LC3B-positive puncta/cell) were discriminative for normal vs. NEN pancreatic tissue (p = 0.007). A significant association was observed between autophagy levels and tumour grade (Ki67 < 3% vs. Ki67 ≥ 3%; p = 0.021), but not functionality (p = 0.266) size (cut-off of 20 mm; p = 0.808), local invasion (p = 0.481), lymph node- (p = 0.849) and distant metastases (p = 0.699). Qualitative assessment of TOMM20/LC3B demonstrated strong mitophagy levels in PanNENs by fluorescent immunostaining as compared with normal tissue. Transmission electron microscopy revealed enhanced autophagy and mitophagy in PanNEN tissue. Response to molecular targeted therapies in metastatic cases (n = 4) did not reveal any patterns of association to autophagy levels. CONCLUSIONS Increased autophagy levels are present in primary tumours of patients with PanNENs and are partially attributed to upregulated mitophagy. Grade was the only clinico-pathological parameter associated with autophagy scores.
Collapse
Affiliation(s)
- Kosmas Daskalakis
- 1st Department of Propaupedic Internal Medicine, Endocrine Oncology Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Krystallenia I Alexandraki
- 1st Department of Propaupedic Internal Medicine, Endocrine Oncology Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evanthia Kassi
- 1st Department of Propaupedic Internal Medicine, Endocrine Oncology Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Felekouras
- First Department of Surgery, Laikon General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelia Xingi
- Microscopy Unit, Hellenic Pasteur Institute, Vas. Sofias 127, Athens, 11521, Greece
| | - Stamatis N Pagakis
- Biological Imaging Unit, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Apostolos V Tsolakis
- Department of Oncology and Pathology, Karolinska Institute, Solna R8:04, Stockholm, 17177, Sweden
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Gregory Kaltsas
- 1st Department of Propaupedic Internal Medicine, Endocrine Oncology Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
27
|
Han L, Zhang M, Yang Z, Diao K, Jia X, Li M, Tian G. Huoxue-Tongluo-Lishui-Decoction is visual-protective against retinal ischemia-reperfusion injury. Pharmacotherapy 2020; 125:109998. [PMID: 32070875 DOI: 10.1016/j.biopha.2020.109998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
Retinal ischemia reperfusion injury (IRI) is a leading cause of visual impairment or blindness, and an effective way to prevent the visual loss needs to be developed. Although decades of clinical application of Huoxue-Tongluo-Lishui-Decoction (HTLD) has demonstrated its reliable clinical efficacy against retinal IRI, no convincing randomized controlled trials were conducted in humans or animals, and the associated mechanism still needs to be explored. To confirm the protective effect of HTLD against retinal IRI and to explore its underlying mechanisms, a standard retinal IRI animal model, randomized controlled trials, objective evaluation and examination methods were adopted in this study. Flash visual evoked potentials (F-VEP) was performed 8 weeks post-reperfusion. The results showed that the medium dose of HTLD had better treatment effects than low dose of HTLD. High dose of HTLD did not further improve visual function relative to medium dose of HTLD, but had poor performance in the latency of P2 wave. The angio-optical coherence tomography (angio-OCT) examination showed that retinal nerve fiber layer (RNFL) became edematous in the early stage, then the edema subsided, and RNFL became thinning in the late stage. HTLD reduced the swelling of RNFL in the early stage and prevented the thinning of RNFL in the late stage. Similar to F-VEP, medium dose of HTLD has the best neural-protective effects against retinal IRI. In mechanisms, HTLD treatment not only enhanced autophagy at 6 h after reperfusion, but extended the enhancing effect until at least 24 h. HTLD treatment significantly reduced the cleaved Caspase-3, cleaved PARP and Caspase-3 activity at 48 h after reperfusion. HTLD inhibited neuro-toxic cytokines expression in retinal IRI by modulating Akt/NF-kB signaling. HTLD treatment enhanced the expressions of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS), and lower the concentration of free glutamate in retina after reperfusion. The phosphorylation of iNOS increased significantly in retinal IRI at 6 h, and HTLD treatment suppressed the phosphorylation of Inducible nitric oxide synthetase (iNOS). In conclusion, HTLD is visual-protective against retinal IRI, and the regulation of autophagy, apoptosis and neuro-toxic mediators may be the underlying mechanisms. These findings may provide new ideas for the clinical treatment of retinal IRI related diseases.
Collapse
Affiliation(s)
- Longhui Han
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China; Tianjin Medical University Eye Hospital/Eye Institute, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China.
| | - Minglian Zhang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China.
| | - Zanzhang Yang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Ke Diao
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Xin Jia
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Mingran Li
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Genquan Tian
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Eye Institute, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| |
Collapse
|
28
|
Wang X, Fan L, Wang Y, Zhang C, Liang W, Shuang S, Dong C. Visual monitoring of the lysosomal pH changes during autophagy with a red-emission fluorescent probe. J Mater Chem B 2020; 8:1466-1471. [PMID: 31994589 DOI: 10.1039/c9tb02551k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy plays crucial roles in maintaining normal intracellular homeostasis. Molecular probes capable of monitoring lysosomal pH changes during autophagy are still highly required yet challenging to develop. Here, a lysosome-targeting fluorescent pH probe, RML, is presented by introducing a methylcarbitol unit as the lysosome-targeting group to rhodamine B, which is highly sensitive to pH changes. RML exhibits remarkable pH-dependent behavior at 583 nm with a fluorescent enhancement of more than 148-fold. The pKa value is determined as 4.96, and the linear response with pH changes from 4.50-5.70, which is favorable for lysosomal pH imaging. We also confirm that RML diffuses selectively into lysosomes using confocal fluorescence microscopy. Using RML, we have successfully visualized autophagy by monitoring the lysosomal pH changes.
Collapse
Affiliation(s)
- Xiaodong Wang
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Lin QG, Liu W, Mo YZ, Han J, Guo ZX, Zheng W, Wang JW, Zou XB, Li AH, Han F. Development of prognostic index based on autophagy-related genes analysis in breast cancer. Aging (Albany NY) 2020; 12:1366-1376. [PMID: 31967976 PMCID: PMC7053636 DOI: 10.18632/aging.102687] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/25/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Autophagy is a self-digesting process that can satisfy the metabolic needs of cells, and is closely related to development of cancer. However, the effect of autophagy-related genes (ARGs) on the prognosis of breast cancer remains unclear. RESULTS We first found that 27 ARGs were significantly associated with overall survival in breast cancer. The prognosis-related ARGs signature established using the Cox regression model consists of 12 ARGs that can be divided patients into high-risk and low-risk groups. The overall survival of patients with high-risk scores (HR 3.652, 2.410-5.533; P < 0.001) was shorter than patients with low-risk scores. The area under the receiver operating characteristic (ROC) curve for 1-year, 3-year, and 5-year survival rates were 0.739, 0.727, and 0.742, respectively. CONCLUSION The12-ARGs marker can predict the prognosis of breast cancer and thus help individualized treatment of patients at different risks. METHODS Based on the TCGA dataset, we integrated the expression profiles of ARGs in 1,039 breast cancer patients. Differentially expressed ARGs and survival-related ARGs were evaluated by computational difference algorithm and COX regression analysis. In addition, we also explored the mutations in these ARGs. A new prognostic indicator based on ARGs was developed using multivariate COX analysis.
Collapse
Affiliation(s)
- Qing-Guang Lin
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Wei Liu
- Department of Breast, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, Guangdong, China
| | - Yu-Zhen Mo
- Department of Radiotherapy, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, Guangdong, China
| | - Jing Han
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Zhi-Xing Guo
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Wei Zheng
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Jian-Wei Wang
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Xue-Bin Zou
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - An-Hua Li
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Feng Han
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong, China
| |
Collapse
|
30
|
A Combination of Rosa Canina Extracts and Gold Complex Favors Apoptosis of Caco-2 Cells by Increasing Oxidative Stress and Mitochondrial Dysfunction. Antioxidants (Basel) 2019; 9:antiox9010017. [PMID: 31878141 PMCID: PMC7023183 DOI: 10.3390/antiox9010017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023] Open
Abstract
Given the alarming increase in colorectal cancer (CRC) worldwide, novel therapies are urgently needed. Plant-derived extracts have gained considerable interest in the last years due to their strong anticancer effect mediated by their unique bioactive compounds. Specifically, rosehips from Rosa canina have been successfully tested against several cancer models, including colon cancer. Moreover, gold derivatives are a promising alternative to the current platinum-based drugs commonly used in CRC chemotherapy due to their lack of affinity for DNA. Herein we have investigated the antitumor potential of a drug combination made of acidic polyphenols extracted from R. canina and the gold complex (Au(C≡C-2-NC5H4) (PTA)) in Caco-2 cell line as a model of CRC. The combination triggered strong apoptosis mediated by a blockage of the autophagic flux, which might be a consequence of a reactive oxygen species (ROS) increase and mitochondrial dysfunctionality. Our results suggest that the clinical application of plant polyphenols might enhance the anticancer effect of metallodrugs and reduce drug exposure time and therefore its side effects.
Collapse
|
31
|
Borkowetz A, Froehner M, Rauner M, Conrad S, Erdmann K, Mayr T, Datta K, Hofbauer LC, Baretton GB, Wirth M, Fuessel S, Toma M, Muders MH. Neuropilin‐2 is an independent prognostic factor for shorter cancer‐specific survival in patients with acinar adenocarcinoma of the prostate. Int J Cancer 2019; 146:2619-2627. [DOI: 10.1002/ijc.32679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Martina Rauner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III Technische Universität Dresden Germany
| | - Stefanie Conrad
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III Technische Universität Dresden Germany
| | - Kati Erdmann
- Department of Urology Technische Universität Dresden Germany
| | - Thomas Mayr
- Institute of Pathology, Technische Universität Dresden Germany
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology University of Nebraska Medical Center Omaha NE
| | - Lorenz C. Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III Technische Universität Dresden Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Technische Universität Dresden Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden Dresden Germany
| | - Manfred Wirth
- Department of Urology Technische Universität Dresden Germany
| | - Susanne Fuessel
- Department of Urology Technische Universität Dresden Germany
| | - Marietta Toma
- Institute of Pathology, Technische Universität Dresden Germany
| | | |
Collapse
|
32
|
Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y. Lysosome imaging in cancer cells by pyrene-benzothiazolium dyes: An alternative imaging approach for LAMP-1 expression based visualization methods to avoid background interference. Bioorg Chem 2019; 91:103144. [PMID: 31377388 PMCID: PMC7065667 DOI: 10.1016/j.bioorg.2019.103144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
A series of pyrene-benzothiazolium dyes (1a-1d) were experimentally investigated to study their internalization mechanism into cellular lysosomes as well as their potential imaging applications for live cell imaging. The lysosome selectivity of the probes was further compared by using fluorescently tagged lysosome associated membrane protein-1 (LAMP-1) expression-dependent visualization in both normal (COS-7, HEK293) and cancer (A549, Huh 7.5) cell lines. These probes were successfully employed as reliable lysosome markers in tumor cell models, thus providing an attractive alternative to LAMP-1 expression-dependent visualization methods. One advantage of these probes is the elimination of significant background fluorescence arising from fluorescently tagged protein expression on the cell surface when cells were transfected with LAMP-1 expression plasmids. Probes exhibited remarkable ability to stain cellular lysosomes for long-term experiments (up to 24 h) and the highly lipophilic nature of the probe design allowed their accumulation in hydrophobic regions of the cellular lysosomes. Experimental evidences indicated that the probes are likely to be internalized into lysosomes via endocytosis and accumulated in the hydrophobic regions of the lysosomes rather than in the acidic lysosomal lumen. These probes also demonstrated significant stability and lysosome staining for fixed cell imaging applications as well. Lastly, the benzothiazolium moiety of the probes was identified as the key component for lysosome selectivity.
Collapse
Affiliation(s)
| | - Kaveesha J Wijesinghe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Yi Pang
- Department of Chemistry, University of Akron, Akron, OH 44325, USA; Maurice Morton Institute of Polymer Science, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
33
|
Cellular Stress Responses in Radiotherapy. Cells 2019; 8:cells8091105. [PMID: 31540530 PMCID: PMC6769573 DOI: 10.3390/cells8091105] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.
Collapse
|
34
|
Yang M, Feng C, Zhang Y, Liu C, Li B, Zhu Q, Huang B, Zhou Y. Autophagy protects nucleus pulposus cells from cyclic mechanical tension‑induced apoptosis. Int J Mol Med 2019; 44:750-758. [PMID: 31173175 DOI: 10.3892/ijmm.2019.4212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/24/2019] [Indexed: 11/06/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is considered to be a primary cause of lower back pain. Mechanical stress is one of the most important factors affecting IDD. It has been demonstrated that apoptosis is important in the decrease of functional IVD cells, and that mechanical stress influences disc cell apoptosis. Autophagy, an adaptive response of the cells to survival when faced with different conditions of stress, has been documented in IDD. Apoptosis and autophagy share the same stimuli and regulatory proteins, but have different threshold responses. Recently, cyclic mechanical tension (CMT) has been shown to influence IVD cell apoptosis and autophagy. However, the conversion and coordination between apoptosis and autophagy induced by CMT remains to be fully elucidated. In the present study, it was found that CMT with 20% elongation generated by the Flexercell Tension system induced the apoptosis of nucleus pulposus (NP) cells in a time‑dependent manner. When the cells were stretched for >6 h, autophagy was increased, and showed a tendency to decrease with the duration of CMT. The autophagic activity of NP cells was partially decreased by 3‑MA and was not significantly regulated by rapamycin. CMT‑induced apoptosis was partially enhanced by the decreased autophagic activity induced by 3‑MA. In addition, the level of reactive oxygen species (ROS) in NP cells induced by CMT was significantly upregulated by 3‑MA. These results suggested that abnormal mechanical stress enhanced disc cell apoptosis and consequently accelerated the process of IDD. Autophagy helps to protect against CMT‑induced apoptosis in disc cells and ROS may be important in this process. These findings are beneficial for further understanding the mechanism of disc cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Minghui Yang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bin Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qi Zhu
- Medical Research Center, Southwestern Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
35
|
Abeywickrama CS, Wijesinghe KJ, Stahelin RV, Pang Y. Red-emitting pyrene-benzothiazolium: unexpected selectivity to lysosomes for real-time cell imaging without alkalinizing effect. Chem Commun (Camb) 2019; 55:3469-3472. [PMID: 30839045 PMCID: PMC6446231 DOI: 10.1039/c9cc01068h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A series of pyrene-benzothiazolium probes were synthesized. By replacing the pyridinium with a benzothiazolium unit, the selectivity of pyrene-derivatives is found to switch from nuclear to cellular lysosomes. New probes do not require proton participation and exhibit high biocompatibility and long-term imaging ability.
Collapse
|
36
|
Jiang GM, Tan Y, Wang H, Peng L, Chen HT, Meng XJ, Li LL, Liu Y, Li WF, Shan H. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer 2019; 18:17. [PMID: 30678689 PMCID: PMC6345046 DOI: 10.1186/s12943-019-0944-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a genetically well-controlled cellular process that is tightly controlled by a set of core genes, including the family of autophagy-related genes (ATG). Autophagy is a “double-edged sword” in tumors. It can promote or suppress tumor development, which depends on the cell and tissue types and the stages of tumor. At present, tumor immunotherapy is a promising treatment strategy against tumors. Recent studies have shown that autophagy significantly controls immune responses by modulating the functions of immune cells and the production of cytokines. Conversely, some cytokines and immune cells have a great effect on the function of autophagy. Therapies aiming at autophagy to enhance the immune responses and anti-tumor effects of immunotherapy have become the prospective strategy, with enhanced antigen presentation and higher sensitivity to CTLs. However, the induction of autophagy may also benefit tumor cells escape from immune surveillance and result in intrinsic resistance against anti-tumor immunotherapy. Increasing studies have proven the optimal use of either ATG inducers or inhibitors can restrain tumor growth and progression by enhancing anti-tumor immune responses and overcoming the anti-tumor immune resistance in combination with several immunotherapeutic strategies, indicating that induction or inhibition of autophagy might show us a prospective therapeutic strategy when combined with immunotherapy. In this article, the possible mechanisms of autophagy regulating immune system, and the potential applications of autophagy in tumor immunotherapy will be discussed.
Collapse
Affiliation(s)
- Guan-Min Jiang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China. .,Central Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| | - Yuan Tan
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Liang Peng
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Tao Chen
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiao-Jun Meng
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ling-Ling Li
- Central Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yan Liu
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wen-Fang Li
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hong Shan
- Key Laboratory of Biomedical Imaging of Guangdong Province, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
37
|
Ricci M, Frantellizzi V, Bulzonetti N, De Vincentis G. Reversibility of castration resistance status after Radium-223 dichloride treatment: clinical evidence and review of the literature. Int J Radiat Biol 2019; 95:554-561. [PMID: 30557063 DOI: 10.1080/09553002.2019.1558301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the history of prostate cancer, some of the patients progressed to castration-resistant prostate cancer (CRPC) stage and, although new drugs and treatment protocols have been introduced, CRPC presents poor prognosis. This review is focused on biological mechanisms, underlying CRPC described in scientific literature in order to explain the reversion of resistance to castration. We present the case of a 73-year-old man, affected by bone metastatic CRPC, early treated with Radium-223 with a complete response. After 15 months from Radium-223 treatment, prostate-specific antigen increased with radiological progression. Androgen deprivation therapy was again performed and was effective, despite previous CRPC condition and no known mechanisms that may explain the reversion of this condition. Therefore, to our knowledge, he is the unique described case of the reversion of resistance to castration. Nevertheless, promising aspects may be lack of intrametastatic production of androgen or the suppression of bypass androgen receptor signaling pathways. Furthermore, the cytotoxic action of Radium-223 on cancer stem cell (CSC), due to surrounding clones with high-bone turnover, or the immune response that underlying the abscopal effect, may also modulate the reversion of CRPC after Radium-223. If confirmed by multicenter trials, the reversion of CRPC may impact on the management of prostate cancer.
Collapse
Affiliation(s)
- Maria Ricci
- a Department of Radiological Sciences, Oncology and Anatomical Pathology , Sapienza University of Rome , Rome , Italy
| | - Viviana Frantellizzi
- a Department of Radiological Sciences, Oncology and Anatomical Pathology , Sapienza University of Rome , Rome , Italy.,b PhD Program: Angio-Cardio-Thoracic Pathophisiology and Imaging , "Sapienza" University of Rome , Rome , Italy
| | - Nadia Bulzonetti
- c Department of Radiotherapy , Policlinico Umberto I, Sapienza University of Rome , Rome , Italy
| | - Giuseppe De Vincentis
- a Department of Radiological Sciences, Oncology and Anatomical Pathology , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
38
|
Chen X, Mims J, Huang X, Singh N, Motea E, Planchon SM, Beg M, Tsang AW, Porosnicu M, Kemp ML, Boothman DA, Furdui CM. Modulators of Redox Metabolism in Head and Neck Cancer. Antioxid Redox Signal 2018; 29:1660-1690. [PMID: 29113454 PMCID: PMC6207163 DOI: 10.1089/ars.2017.7423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Head and neck squamous cell cancer (HNSCC) is a complex disease characterized by high genetic and metabolic heterogeneity. Radiation therapy (RT) alone or combined with systemic chemotherapy is widely used for treatment of HNSCC as definitive treatment or as adjuvant treatment after surgery. Antibodies against epidermal growth factor receptor are used in definitive or palliative treatment. Recent Advances: Emerging targeted therapies against other proteins of interest as well as programmed cell death protein 1 and programmed death-ligand 1 immunotherapies are being explored in clinical trials. CRITICAL ISSUES The disease heterogeneity, invasiveness, and resistance to standard of care RT or chemoradiation therapy continue to constitute significant roadblocks for treatment and patients' quality of life (QOL) despite improvements in treatment modality and the emergence of new therapies over the past two decades. FUTURE DIRECTIONS As reviewed here, alterations in redox metabolism occur at all stages of HNSCC management, providing opportunities for improved prevention, early detection, response to therapies, and QOL. Bioinformatics and computational systems biology approaches are key to integrate redox effects with multiomics data from cells and clinical specimens and to identify redox modifiers or modifiable target proteins to achieve improved clinical outcomes. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jade Mims
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xiumei Huang
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Naveen Singh
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Edward Motea
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | | | - Muhammad Beg
- Department of Internal Medicine, Division of Hematology-Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Allen W. Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mercedes Porosnicu
- Department of Internal Medicine, Section of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David A. Boothman
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
39
|
Liang ZG, Lin GX, Yu BB, Su F, Li L, Qu S, Zhu XD. The role of autophagy in the radiosensitivity of the radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Cancer Manag Res 2018; 10:4125-4134. [PMID: 30323668 PMCID: PMC6174314 DOI: 10.2147/cmar.s176536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The present study aimed to study the role of autophagy in the radiosensitivity of the radioresistant human nasopharyngeal carcinoma cell line CNE-2R. Methods Before being irradiated, CNE-2R cells were treated with the autophagy inhibitor chloroquine diphosphate (CDP) or the autophagy inducer rapamycin (RAPA). Microtubule-associated protein light chain 3 (LC3-II) and p62 were assessed using Western blotting analysis 48 hours after CNE-2R cells were irradiated. The percentage of apoptotic cells was assessed via flow cytometry. CNE-2R cell viability was evaluated using the Cell Counting Kit-8 (CCK8). The radiosensitivity of cells was assessed via clone formation analysis. Results The level of autophagy in CNE-2R cells improved as the radiation dose increased, reaching the maximum at a dose of 10 Gy. Autophagy was most significantly inhibited by 60 µmol/L CDP in CNE-2R cells, but was obviously enhanced by 100 nmol/L RAPA. Compared with the irradiation (IR) alone group, in the IR + CDP group, autophagy was significantly inhibited, viability was low, the rate of radiation-induced apoptosis was increased, and radiosensitivity was upregulated. In contrast, cells of the IR + RAPA group exhibited greater autophagy, higher viability, a lower rate of radiation-induced apoptosis, and downregulated radiosensitivity. Conclusion The autophagy level is negatively correlated with radiosensitivity for the radio-resistant human nasopharyngeal carcinoma cell line CNE-2R.
Collapse
Affiliation(s)
- Zhong-Guo Liang
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Guo-Xiang Lin
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Bin-Bin Yu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Fang Su
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Ling Li
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Song Qu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China,
| |
Collapse
|
40
|
方 姝, 崔 洁, 龚 梦, 何 昀, 张 敬, 毕 杨. [Changes in autophagy during maturation and differentiation of Hepa1-6 cells induced by all-trans retinoic acid]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:527-533. [PMID: 29891447 PMCID: PMC6743904 DOI: 10.3969/j.issn.1673-4254.2018.05.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effects of different concentrations of all-trans retinoic acid (ATRA) on the maturation, differentiation and autophagy of Hepa1-6 cells. MONTHOD Hepa1-6 cells were treated with 0.1, 1, and 10 µmol/L ATRA, and the changes in the expressions of hepatic specific markers were detected using real-time PCR and Western blotting. Indocyanine green (ICG) and periodic acid-schiff (PAS) staining was used to assess the functional maturation of Hepa1-6 cells, and the cell-cell junction and autophagy were observed under transmission electron microscopy to determine the optimal concentration of ATRA for treatment. The expressions of autophagy-related markers in the cells were detected using Western blotting, and confocal microscopy was used to observe the autophagic flow in the cells transfected with ptfLC3 plasmid. RESULTS Compared with the control cells, the hepatocytes treated with ATRA showed a concentration-dependent decrease in AFP expression and increase in the expressions of ALB, CK18, TAT and ApoB. ICG and PAS staining revealed significantly increased number of positive cells after ATRA treatment. Following ATRA treatment, the cells exhibited obviously increased tight junctions, cytoskeleton and number of autophagosomes under transmission electron microscopy. ATRA treatment resulted in significantly increased the expressions of autophagy-related markers LC3-II, Beclin-1, RAB7 and P62 and also an increased ratio of LC3-II/LC3-I(P<0.05). Confocal microscopy revealed obviously increased green and red spots in the cells after ATRA treatment. CONCLUSION ATRA can induce the maturation and differentiation and enhance the level of autophagy in Hepa1-6 cells.
Collapse
Affiliation(s)
- 姝煜 方
- 重庆医科大学附属儿童医院 儿研所干细胞实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014Laboratory of Stem Cell Biology and Therapy, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/International and National Science and Technology Cooperation Base of Child Development and Disorder/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
| | - 洁洁 崔
- 重庆医科大学附属儿童医院 儿研所干细胞实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014Laboratory of Stem Cell Biology and Therapy, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/International and National Science and Technology Cooperation Base of Child Development and Disorder/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
- 濮阳市人民医院儿科,河南 濮阳 457000Department of Pediatrics, Puyang People's Hospital, Puyang 457000, China
| | - 梦嘉 龚
- 重庆医科大学附属儿童医院 儿研所干细胞实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014Laboratory of Stem Cell Biology and Therapy, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/International and National Science and Technology Cooperation Base of Child Development and Disorder/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
| | - 昀 何
- 重庆医科大学附属儿童医院 儿研所干细胞实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014Laboratory of Stem Cell Biology and Therapy, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/International and National Science and Technology Cooperation Base of Child Development and Disorder/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
- 重庆医科大学附属儿童医院 胃肠新生儿外科,重庆 400014Department of Pediatric Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - 敬芳 张
- 濮阳市人民医院儿科,河南 濮阳 457000Department of Pediatrics, Puyang People's Hospital, Puyang 457000, China
| | - 杨 毕
- 重庆医科大学附属儿童医院 儿研所干细胞实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014Laboratory of Stem Cell Biology and Therapy, Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders/International and National Science and Technology Cooperation Base of Child Development and Disorder/Key Laboratory of Pediatrics of Chongqing, Chongqing 400014, China
| |
Collapse
|
41
|
Yu YF, Hu PC, Wang Y, Xu XL, Rushworth GM, Zhang Z, Wei L, Zhang JW. Paclitaxel induces autophagy in gastric cancer BGC823 cells. Ultrastruct Pathol 2018; 41:284-290. [PMID: 28691892 DOI: 10.1080/01913123.2017.1334019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper explores the connection between paclitaxel, a chemotherapeutic agent, and gastric cancer cells. In this experiment, it is demonstrated that paclitaxel triggers autophagy and inhibits proliferation of gastric cancer cells. An 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to detect cell viability and the IC50 of paclitaxel. Western blot was used to detect the expression levels of P62, and to measure the protein expression of autophagy. Immunofluorescence was used to reveal the appearance of punctate structures in the cytoplasm-this ultrastructure associated with autophagy was observed by microscopy. Electron microscopy revealed the formation of double-membrane autophagosomes, a typical structure of autophagy. In conclusion, our research indicates that paclitaxel may influence gastric cancer BGC823 cells by way of inducing autophagy.
Collapse
Affiliation(s)
- Yi-Feng Yu
- a Department of Oncology, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors , Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| | - Peng-Chao Hu
- b Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease , School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Ying Wang
- b Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease , School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Xiao-Long Xu
- b Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease , School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Gerard Martin Rushworth
- b Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease , School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Zun Zhang
- b Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease , School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Lei Wei
- b Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease , School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Jing-Wei Zhang
- a Department of Oncology, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors , Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| |
Collapse
|
42
|
Wang W, Ning P, Wang Q, Zhang W, Jiang J, Feng Y, Meng X. pH-Independent two-photon fluorescent lysotrackers for real-time monitoring autophagy. J Mater Chem B 2018; 6:1764-1770. [PMID: 32254248 DOI: 10.1039/c8tb00229k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two carbazole-based two-photon fluorescent lysotrackers with different electron-donating groups (a methoxyl group for Lyso-MCO and a dimethylamino group for Lyso-NCO, respectively) have been developed from simple starting materials via an only 2-step procedure. Both of them exhibit pH-independent and specific lysosome location with a rapid staining rate, high photostability and deep issue penetration along with large two-photon absorption action cross-sections. By virtue of the better two-photon absorption properties of Lyso-NCO, it was chosen to visually monitor lysosomal tracking and autophagy. Compared with the approach of GFP-LC3 for autophagy detection, lysotracker Lyso-NCO achieved efficient and real-time visualization of the membrane fusion period in the autophagy process through detecting the level of the co-localization coefficients between Lyso-NCO and Mitotracker Red FM (MTR) in live cells.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Chemistry and Chemical Engineering & Center for Atomic Engineering of Advanced Materials & AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Huang Y, Jiang X, Liang X, Jiang G. Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett 2018; 15:6063-6076. [PMID: 29616091 PMCID: PMC5876469 DOI: 10.3892/ol.2018.8123] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
With increases in the mortality rate and number of patients with prostate cancer (PCa), PCa, particularly the advanced and metastatic disease, has been the focus of a number of studies globally. Over the past seven decades, androgen deprivation therapy has been the primary therapeutic option for patients with advanced PCa; however, the majority of patients developed a poor prognosis stage of castration resistant prostate cancer (CRPC), which eventually led to mortality. Due to CRPC being incurable, laboratory investigations and clinical studies focusing on CRPC have been conducted worldwide. Clarification of the molecular pathways that may lead to CRPC is important for discovering novel therapeutic strategies to delay or reverse the progression of disease. A sustained androgen receptor (AR) signal is still regarded as the main cause of CRPC. Increasing number of studies have proposed different potential mechanisms that cause CRPC, and this has led to the development of novel agents targeting the AR-dependent pathway or AR-independent signaling. In the present review, the major underlying mechanisms causing CRPC, including several major categories of AR-dependent mechanisms, AR bypass signaling, AR-independent mechanisms and other important hypotheses (including the functions of autophagy, PCa stem cell and microRNAs in CRPC progression), are summarized with retrospective pre-clinical or clinical trials to guide future research and therapy.
Collapse
Affiliation(s)
- Yiqiao Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xue Liang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ganggang Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
44
|
Sohn EJ. MicroRNA 200c-3p regulates autophagy via upregulation of endoplasmic reticulum stress in PC-3 cells. Cancer Cell Int 2018; 18:2. [PMID: 29308051 PMCID: PMC5751423 DOI: 10.1186/s12935-017-0500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/25/2017] [Indexed: 02/08/2023] Open
Abstract
Background Autophagy is a response to cellular and environmental conditions and facilitates cell survival. Here, we investigated the role of ectopic expression of microRNA (miRNA) 200c-3p in autophagy. Methods miRNA mimics were used to overexpress miRNAs. Quantitative real-time polymerase chain reaction (RT-qPCR) was performed to analyze miRNA expression. RT-qPCR and western blotting were performed to determine the expression levels of inositol requiring protein-1 (IRE1α), activating transcription factor-6 (ATF6), C/EBP homologous protein (CHOP), and light chain-3 (LC3). Results Western blotting and RT-qPCR analysis revealed that ectopic expression of miR-200c-3p increased the expression of IRE1α, ATF6, and CHOP in PC-3 prostate cancer cells. Furthermore, the level of miR-200c-3p was enhanced by treatment with the endoplasmic reticulum (ER) stress inducer thapsigargin. In addition, ectopic expression of miR-200c-3p led to an increase in LC3-II expression, and formed puncta of green fluorescent protein-fused LC3-II in PC-3 cells. Interestingly, starvation stress induced by Hank’s balanced salt solution buffer increased the level of miR-200c-3p and conversely miR-200c-3p inhibitor blocked the increased expression of LC3-II induced by starvation in PC-3 cells. In addition, silencing of IRE1α by transfection of short interfering RNA attenuated the expression of LC3-II induced by upregulation of miR-200c-3p in PC-3 cells. Conclusions Overall, our findings suggest that miR-200c-3p regulates autophagy via upregulation of ER stress signaling.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714 South Korea
| |
Collapse
|
45
|
Tesselaar MH, Crezee T, Schuurmans I, Gerrits D, Nagarajah J, Boerman OC, van Engen-van Grunsven I, Smit JWA, Netea-Maier RT, Plantinga TS. Digitalislike Compounds Restore hNIS Expression and Iodide Uptake Capacity in Anaplastic Thyroid Cancer. J Nucl Med 2017; 59:780-786. [PMID: 29242405 DOI: 10.2967/jnumed.117.200675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare malignancy that accounts for 1%-2% of all thyroid cancers. ATC is one of the most aggressive human cancers, with rapid growth, tumor invasion, and development of distant metastases. The median survival is only 5 mo, and the 1-y survival is less than 20%. Moreover, as a result of severe dedifferentiation, including the loss of human sodium iodide symporter (hNIS) expression, radioactive iodide (RAI) therapy is ineffective. Recently, we have demonstrated beneficial effects of autophagy-activating digitalislike compounds (DLCs) on redifferentiation and concomitant restoration of iodide uptake in RAI-refractory papillary and follicular thyroid cancer cell lines. In the current study, the effects of DLCs on differentiation and proliferation of ATC cell lines were investigated. Methods: Autophagy activity was assessed in ATC patient tissues by immunofluorescent staining for the autophagy marker microtubule-associated protein 1A/1B-light chain 3 (LC3). In addition, the effect of autophagy-activating DLCs on the proliferation, gene expression profile, and iodide uptake capacity of ATC cell lines was studied. Results: Diminished autophagy activity was observed in ATC tissues, and in vitro treatment of ATC cell lines with DLCs robustly restored hNIS and thyroglobulin expression and iodide uptake capacity. In addition, proliferation was strongly reduced by induction of cell cycle arrest and, to some extent, cell death. Mechanistically, reactivation of functional hNIS expression could be attributed to activation of the transcription factors activating transcription factor 3 and protooncogene c-fosConclusion: DLCs could represent a promising adjunctive therapy for restoring iodide avidity within the full spectrum from RAI-refractory dedifferentiated to ATC.
Collapse
Affiliation(s)
- Marika H Tesselaar
- Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Thomas Crezee
- Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Imke Schuurmans
- Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Danny Gerrits
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands; and
| | - James Nagarajah
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands; and
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands; and
| | - Ilse van Engen-van Grunsven
- Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Johannes W A Smit
- Department of Internal Medicine, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Baird JR, Monjazeb AM, Shah O, McGee H, Murphy WJ, Crittenden MR, Gough MJ. Stimulating Innate Immunity to Enhance Radiation Therapy-Induced Tumor Control. Int J Radiat Oncol Biol Phys 2017; 99:362-373. [PMID: 28871985 PMCID: PMC5604475 DOI: 10.1016/j.ijrobp.2017.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/02/2017] [Indexed: 12/29/2022]
Abstract
Novel ligands that target Toll-like receptors and other innate recognition pathways represent a potent strategy for modulating innate immunity to generate antitumor immunity. Although many of the current clinically successful immunotherapies target adaptive T-cell responses, both preclinical and clinical studies suggest that adjuvants have the potential to enhance the scope and efficacy of cancer immunotherapy. Radiation may be a particularly good partner to combine with innate immune therapies, because it is a highly efficient means to kill cancer cells but may fail to send the appropriate inflammatory signals needed to act as an efficient endogenous vaccine. This may explain why although radiation therapy is a highly used cancer treatment, true abscopal effects-regression of disease outside the field without additional systemic therapy-are extremely rare. This review focuses on efforts to combine innate immune stimuli as adjuvants with radiation, creating a distinct and complementary approach from T cell-targeted therapies to enhance antitumor immunity.
Collapse
Affiliation(s)
- Jason R Baird
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon
| | - Arta M Monjazeb
- Department of Radiation Oncology, UC Davis Comprehensive Cancer Center, Sacramento, California; Laboratory of Cancer Immunology, UC Davis Comprehensive Cancer Center, Sacramento, California
| | - Omid Shah
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Heather McGee
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William J Murphy
- Laboratory of Cancer Immunology, UC Davis Comprehensive Cancer Center, Sacramento, California
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon; The Oregon Clinic, Portland, Oregon
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon.
| |
Collapse
|
47
|
Yang PW, Hsieh MS, Chang YH, Huang PM, Lee JM. Genetic polymorphisms of ATG5 predict survival and recurrence in patients with early-stage esophageal squamous cell carcinoma. Oncotarget 2017; 8:91494-91504. [PMID: 29207660 PMCID: PMC5710940 DOI: 10.18632/oncotarget.20793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 01/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease with high risk of tumor recurrence even among patients with an early pathologic stage of tumor. In the current study, we investigate the association between 20 SNPs of the ATG5 gene and prognosis of patients with early-stage ESCC. A total of 305 patients diagnosed with early-stage ESCC were enrolled in the study and randomly assigned to a training set (n=93) or replication set (n=212). The genotypes of candidate SNPs (single nucleotide polymorphisms) within ATG5 were analyzed and correlated with the prognosis of ESCC patients. We repeatedly demonstrated that 3 SNPs in ATG5, rs1322178, rs3804329, and rs671116, were significantly correlated with the prognosis of patients with early-stage ESCC (HR[95 % CI]=2.01[1.19-3.40], p=0.009 for ATG5: rs1322178; HR[95 % CI]=1.88 [1.08-3.26], p=0.025 for ATG5:rs3804329; HR[95 % CI]=1.73[1.24-2.42], p=0.001 for ATG5:rs671116, in combined group). Both rs1322178 and rs3804329 can predict early distant metastasis of patients. Furthermore, increased expression of ATG5 was observed in ESCC tumor tissue as compared to adjacent normal tissue. Moreover, higher levels of ATG5 expression in both normal and tumor tissues exhibited a trend to correlate with poor prognosis of patients. However, the expression of ATG5 did not correlate with these 3 relevant prognostic SNPs. We concluded that hereditary genetic polymorphisms and gene expression of ATG5 can serve as prognostic predictors of patients with early-stage ESCC.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Han Chang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Ming Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
48
|
An oasis in the desert of cancer chemotherapeutic resistance: The enlightenment from reciprocal crosstalk between signaling pathways of UPR and autophagy in cancers. Biomed Pharmacother 2017; 92:972-981. [DOI: 10.1016/j.biopha.2017.05.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/28/2017] [Accepted: 05/28/2017] [Indexed: 12/21/2022] Open
|
49
|
Liang Y, Chen X, Liang Z. MicroRNA-320 regulates autophagy in retinoblastoma by targeting hypoxia inducible factor-1α. Exp Ther Med 2017; 14:2367-2372. [PMID: 28962169 DOI: 10.3892/etm.2017.4779] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/11/2017] [Indexed: 12/28/2022] Open
Abstract
Retinoblastoma (RB) is the most common malignancy in children. Due to refractory mechanisms of chemoresistance and the toxicity of chemotherapies, novel therapies for RB treatment are urgently required. MicroRNA-320 (miR-320) is believed to be associated with the tumorigenesis of RB, although the mechanism remains unclear. Considering the hypoxic intratumoral region, the roles of miR-320 and hypoxia inducible factor-1α (HIF-1α) in the regulation of autophagy were investigated in 30 human RB samples and WERI-RB1 cells. The results demonstrated that HIF-1α was the downstream target of miR-320, and decreased miRNA-320 or HIF-1α lead to the inhibition of autophagy in WERI-RB1 cells. Compared with WERI-RB1 cells that were not transfected, silenced HIF-1α caused a 1.41-fold increase (P<0.01) in p62, a 2.71-fold decrease of Beclin1, and inhibited miRNA-320. Silenced HIF-1α also resulted in 7.29- and 7.43-fold increases in phosphorylated-mechanistic target of rapamycin (mTOR) and mTOR, respectively. In conclusion, the present results suggest that miRNA-320 may regulate the development of autophagy by targeting HIF-1α and autophagy-related proteins in RB under hypoxic conditions.
Collapse
Affiliation(s)
- Yong Liang
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| | - Xi Chen
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| | - Zhu Liang
- Department of Ophthalmology, The Ninth People's Hospital of Chongqing, Chongqing 400700, P.R. China
| |
Collapse
|
50
|
Schroeder RD, Choi W, Hong DS, McConkey DJ. Autophagy is required for crizotinib-induced apoptosis in MET-amplified gastric cancer cells. Oncotarget 2017; 8:51675-51687. [PMID: 28881678 PMCID: PMC5584279 DOI: 10.18632/oncotarget.18386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/01/2017] [Indexed: 01/26/2023] Open
Abstract
MET amplification has been clinically credentialed as a therapeutic target in gastric cancer, but the molecular mechanisms underlying sensitivity and resistance to MET inhibitors are still not well understood. Using whole-genome mRNA expression profiling, we identified autophagy as a top molecular pathway that was activated by the MET inhibitor crizotinib in drug-sensitive human gastric cancer cells, and functional studies confirmed that crizotinib increased autophagy levels in the drug-sensitive cells in a concentration-dependent manner. We then used chemical and molecular approaches to inhibit autophagy in order to define its role in cell death. The clinically available inhibitor of autophagy, chloroquine, or RNAi-mediated knockdown of two obligate components of the autophagy pathway (ATG5 and ATG7) blocked cell death induced by crizotinib or RNAi-mediated knockdown of MET, and mechanistic studies localized the effects of autophagy to cytochrome c release from the mitochondria. Overall, the data reveal a novel relationship between autophagy and apoptosis in gastric cancer cells exposed to MET inhibitors. The observations suggest that autophagy inhibitors should not be used to enhance the effects of MET inhibitors in gastric cancer patients.
Collapse
Affiliation(s)
- Rebecca D Schroeder
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA.,Experimental Therapeutics Academic Program, Houston, Texas, USA
| | - Woonyoung Choi
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - David J McConkey
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA.,Experimental Therapeutics Academic Program, Houston, Texas, USA
| |
Collapse
|