1
|
Grzesiuk M, Grabska M, Malinowska A, Świderska B, Grzesiuk E, Garbicz D, Gorecki A. Daphnia stress response to environmental concentrations of chloramphenicol-multi-omics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58876-58888. [PMID: 39317899 PMCID: PMC11513740 DOI: 10.1007/s11356-024-35045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Commonly used medicines, when discarded or improperly disposed of, are known to contaminate freshwater ecosystems. Pharmaceuticals can be toxic and mutagenic, and can modify freshwater organisms, even at environmentally relevant concentrations. Chloramphenicol (CAP) is an antibiotic banned in Europe. However, it is still found in surface waters around the world. The aim of this study was to evaluate the impact of chloramphenicol contamination in freshwater on the model organism Daphnia magna. Specific life history parameters, proteome, and host-associated microbiome of four D. magna clones were analyzed during a three-generation exposure to CAP at environmental concentrations (32 ng L-1). In the first generation, no statistically significant CAP effect at the individual level was detected. After three generations, exposed animals were smaller at first reproduction and on average produced fewer offspring. The differences in D. magna's life history after CAP treatment were in accordance with proteome changes. D. magna's response to CAP presence indicates the high stress that the tested organisms are under, e.g., male production, upregulation of ubiquitin-conjugating enzyme E2 and calcium-binding protein, and downregulation of glutathione transferase. The CAP-exposed D. magna proteome profile confirms that CAP, being reactive oxygen species (ROS)-inducing compounds, contributes to structural changes in mitochondria. Microbiome analysis showed a significant difference in the Shannon index between control and CAP-exposed animals, the latter having a more diverse microbiome. Multilevel analyses, together with long exposure in the laboratory imitating conditions in a polluted environment, allow us to obtain a more complete picture of the impact of CAP on D. magna.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland
| | - Agata Malinowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Elzbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Adrian Gorecki
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland
| |
Collapse
|
2
|
Zhang B, Hua L, Fan Z, Wen Y, Zhang L, Xie Y, Gao Y, Jiang J, Li H. A new photoionization-induced substitution reaction chemical ionization time-of-flight mass spectrometry for highly sensitive detection of trace exhaled ethylene. Anal Chim Acta 2024; 1317:342910. [PMID: 39030010 DOI: 10.1016/j.aca.2024.342910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
Highly sensitive and rapid detection of ethylene, the smallest alkene of great significance in human physiological metabolism remains a great challenge. In this study, we developed a new photoionization-induced substitution reaction chemical ionization time-of-flight mass spectrometry (PSCI-TOFMS) for trace exhaled ethylene detection. An intriguing ionization phenomenon involving a substitution reaction between the CH2Br2+ reactant ion and ethylene molecule was discovered and studied for the first time. The formation of readily identifiable [CH2Br·C2H4]+ product ion greatly enhanced the ionization efficiency of ethylene, which led to approximately 800-fold improvement of signal intensity over that in single photon ionization mode. The CH2Br2+ reactant ion intensity and ion-molecule reaction time were optimized, and a Nafion tube was employed to eliminate the influence of humidity on the ionization of ethylene. Consequently, a limit of detection (LOD) as low as 0.1 ppbv for ethylene was attained within 30 s at 100 % relative humidity. The application of PSCI-TOFMS on the rapid detection of trace amounts of exhaled ethylene from healthy smoker and non-smoker volunteers demonstrated the satisfactory performance and potential of this system for trace ethylene measurement in clinical diagnosis, atmospheric measurement, and process monitoring.
Collapse
Affiliation(s)
- Baimao Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lei Hua
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Zhigang Fan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yuxuan Wen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Lichuan Zhang
- Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Road, Dalian, 116001, People's Republic of China
| | - Yuanyuan Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Yunnan Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China
| | - Jichun Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| | - Haiyang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, People's Republic of China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China; Dalian Key Laboratory for Online Analytical Instrumentation, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
3
|
Salem AA, Taha DA, Nasr AA, El-Sagheer M, Daghash W, Taghian RA. Effect of vitamin E, D-limonene, and their combination on nulliparous rabbit reproductive performance. Anim Reprod Sci 2023; 259:107378. [PMID: 37989002 DOI: 10.1016/j.anireprosci.2023.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Oxidative status is important in reproductive performance and using two natural antioxidants is more beneficial than one in nulliparous rabbits. The goal, effect of vitamin E (VitE), D-limonene (DL), and VitE+DL on maternal LBW (MLBW), conception (CR), pregnancy (PR), and kindling rates (KR), gestation length (GL), total litter size at birth (TLSB) and weaning (TLSW), live kits at birth (LKB) and weaning (LKW), dead kits at birth (DKB) and weaning (DKW), kits mortality rate at weaning (KMRW), Kit weight at birth (KWB) and weaning (KWW), total kit weight at birth (TKWB) and weaning (TKWW), and concentrations of progesterone (P4) and Malondialdehyde (MDA), during first two pregnancies. A total of 24 healthy female WNZ rabbits were randomly selected and assigned into four groups (6/each). Control (animals injected with 1.0 mL propylene glycol), VitE (60 mg IM injection/animal, 2X/week pre-mating and 3X post-mating until mid-pregnancy, DL (20 mg IM injection/animal, 2X/week pre-mating and 1X at mating, and VitE+DL (IM injection/animal with the same doses and times applied in VitE and DL groups. All animals were treated during 1st pregnancy only. The results confirmed that animals treated with VitE+DL gained significant maternal LBW in 1st pregnancy, reduced dead kit number at birth and kit mortality rate at weaning, increased live kits and total kit weight at birth and weaning in the two pregnancies, and also increased significantly kit weight at birth and weaning in the treatments than controls in the two pregnancies, and DL was greater in 1st pregnancy. Progesterone concentrations in mid-pregnancy rose significantly in VitE+DL during 1st pregnancy and DL in 2nd pregnancy. Malondialdehyde concentrations dropped significantly in VitE and VitE+DL in mid-pregnancy in the two pregnancies. Eventually, the integration of VitE and DL displayed their unique properties for improving productive and reproductive performance in nulliparous rabbits.
Collapse
Affiliation(s)
- Anas A Salem
- Animal Production Department, Fac. of Agriculture, Assiut University, Assiut, Egypt.
| | - Doaa A Taha
- Animal Production Department, Fac. of Agriculture, Assiut University, Assiut, Egypt.
| | - Asmaa Ae Nasr
- Pathology Department, Institute of Veterinary Health, Assiut, Egypt.
| | - Mohamed El-Sagheer
- Poultry Production Department, Fac. of Agriculture, Assiut University, Egypt
| | - Wael Daghash
- Animal Production Department, Fac. of Agriculture, Assiut University, Assiut, Egypt
| | - Raghda A Taghian
- Animal Production Department, Fac. of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Thomaz MS, Sertorio MN, Gazarini ML, Ribeiro DA, Pisani LP, Nagaoka MR. Effect of Kinins on the Hepatic Oxidative Stress in Mice Treated with a Methionine-Choline Deficient Diet. Biomedicines 2023; 11:2199. [PMID: 37626696 PMCID: PMC10452290 DOI: 10.3390/biomedicines11082199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver is the leading cause of hepatic disease worldwide and ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) due to cell injury, oxidative stress, and apoptosis. The kinins' role in the liver has been studied in experimental fibrosis, partial hepatectomy, and ischemia-reperfusion and is related to cell death and regeneration. We investigated its role in experimental NASH induced by a methionine-choline deficient diet for 4 weeks. After that, liver perfusion was performed, and bradykinin (BK) or des-Arg9-BK was infused. Cell death was evaluated by cathepsin-B and caspase-3 activity and oxidative stress by catalase (CAT), glutathione S-transferase, and superoxide dismutase (SOD) activities, as well as malondialdehyde and carbonylated proteins. In control livers, DABK increased CAT activity, which was reversed by antagonist DALBK. In the NASH group, kinins tend to decrease antioxidant activity, with SOD activity being significantly reduced by BK and DABK. Malondialdehyde levels increased in all NASH groups, but carbonylated protein did not. DABK significantly decreased cathepsin-B in the NASH group, while caspase-3 was increased by BK in control animals. Our results suggest that B1R and/or B2R activation did not induce oxidative stress but affected the antioxidant system, reducing SOD in the NASH group.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcia Regina Nagaoka
- Department of Biosciences, Instituto Saúde Sociedade, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil; (M.S.T.)
| |
Collapse
|
5
|
Fallah F, Colagar AH, Saleh HA, Ranjbar M. Variation of the genes encoding antioxidant enzymes SOD2 (rs4880), GPX1 (rs1050450), and CAT (rs1001179) and susceptibility to male infertility: a genetic association study and in silico analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86412-86424. [PMID: 37405601 DOI: 10.1007/s11356-023-28474-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Enzymatic factors including superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) are among the most important protective antioxidant systems in human semen. This study was conducted to investigate the association between the activities of the mentioned enzymes in semen and also the association between SOD2 rs4880, GPX1 rs1050450, and CAT rs1001179 polymorphisms with male infertility, which was followed by a bioinformatics approach. In a case-control study, 223 infertile men and 154 healthy fertile men were included in the study. After extracting genomic DNA from semen samples, the genotype of rs1001179, rs1050450, and rs4880 polymorphisms was determined using the PCR-RFLP. Next, the activities of SOD, CAT, and GPX enzymes were also measured in semen. Bioinformatics software was used to investigate the effect of polymorphisms on the function of genes. Data analysis indicated that rs1001179 polymorphisms were not associated with male infertility. But our data revealed that the rs1050450 polymorphism is associated with a reduced risk of male infertility as well as asthenozoospermia and teratozoospermia. In addition, rs4880 polymorphism was associated with an increased risk of male infertility as well as teratozoospermia. Further analysis showed that the activity of the CAT enzyme in the infertile group is significantly higher than in the fertile group, but the activity of GPX and SOD enzymes in the infertile group is significantly lower than in the fertile group. Bioinformatic analysis showed that rs1001179 polymorphism affects the transcription factors binding site upstream of the gene, while rs1050450 and rs4880 polymorphisms had an essential role in protein structure and function. On the other hand, rs1050450 (T allele) was exposed to a reduced risk of male infertility and may be a protective factor. And SOD2 rs4880 (C allele) is associated with an increased risk of male infertility, and it is considered a risk factor for male infertility. To reach accurate results, we recommend that the study of SOD2 rs4880 and GPX1 rs1050450 polymorphism effects in the different populations with a larger sample size and meta-analysis are needed.
Collapse
Affiliation(s)
- Fatemeh Fallah
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, CP:47416-95447, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, CP:47416-95447, Mazandaran, Iran.
| | - Hayder Abdulhadi Saleh
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, CP:47416-95447, Mazandaran, Iran
| | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Mazandaran, Iran
| |
Collapse
|
6
|
Balantič K, Weiss VU, Pittenauer E, Miklavčič D, Kramar P. The role of lipid oxidation on electrical properties of planar lipid bilayers and its importance for understanding electroporation. Bioelectrochemistry 2023; 153:108498. [PMID: 37399652 DOI: 10.1016/j.bioelechem.2023.108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Electroporation is a useful tool for the manipulation with the cell membrane permeability. Underlying physicochemical processes taking place at the molecular level during electroporation are relatively well studied. However, various processes remain unknown, one of them is lipid oxidation, a chain reaction that causes degradation of lipids, and might explain the long-lasting membrane permeability after the electric field has ceased. The aim of our study was to observe the differences in the electrical properties of planar lipid bilayers, as in vitro cell membrane models, due to lipid oxidation. Phospholipids were chemically oxidized and oxidation products were analysed using mass spectrometry. Electrical properties, resistance R (Ω) and capacitance C (F) were measured using an LCR meter. Using a previously developed measuring device, a linear increasing signal was applied to a stable bilayer in order to measure its breakdown voltage Ubr (V) and lifetime tbr (µs). We observed an increase in conductance and capacitance of the oxidized planar lipid bilayers when compared to their non-oxidized counterparts. With increasing lipid oxidation, the core of the bilayer becomes more polar, and consequently more permeable. Our findings can explain the long-lasting permeability of the cell membrane after electroporation.
Collapse
Affiliation(s)
- Katja Balantič
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia
| | - Peter Kramar
- University of Ljubljana, Faculty of Electrical Engineering, Slovenia.
| |
Collapse
|
7
|
Abedini Bajgiran F, Khazaei Koohpar Z, Salehzadeh A. Effects of N-Acetylcysteine Supplementation on Oxidative Stress and Expression of Apoptosis-Related Genes in Testicular Tissue of Rats Exposed to Lead. Biol Trace Elem Res 2023; 201:2407-2415. [PMID: 35761113 DOI: 10.1007/s12011-022-03325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Lead occupational exposure is now a main concern in the modern world. Lead is a non-biodegradable element with multi-devastating effects on different organs. Acute or chronic exposure to lead is reported to be one of the most important causes of infertility both in males and females basically by inducing oxidative stress and apoptosis. OBJECTIVES The current study scrutinized the mitigating effects of N-acetylcysteine (NAC) on lead toxicity, oxidative stress, and apoptotic/anti-apoptotic genes in the testis tissues of male rats. METHODS Rats were randomly divided into a control group (G1) and four study groups treated with single and continuous doses of lead with and without NAC administration. Malondialdehyde (MDA), total antioxidant capacity (TAC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were analyzed as oxidative stress biomarkers and the expression of apoptosis-related genes was studied using RT-PCR. RESULTS Continuous exposure to lead caused a significant decrease in sperm count, motility, viability, and morphology (P < 0.001). Number of germinal cells, Leydig cells, spermatocytes, and the diameter of seminiferous tubule were significantly decreased (P < 0.001) in G3 group. Continuous exposure to lead significantly decreased TAC content, but increased the levels of MDA and 8-OHdG (P < 0.001). Administration of continuous dose of lead dramatically increased expression of Bax, Caspase-3, Caspase-8, Cytochrome-C, MMP2, and MMP9 genes in testicular tissue. NAC treatments not only improved morphological changes and sperm quality, but also enhanced antioxidant balance and modulated apoptosis process in testicular tissue of rats. CONCLUSION Lead exposure strongly motivated testicular cells towards apoptosis, caused an oxidant/antioxidant imbalance, and decreased sperm quality along with morphological changes in testis cells. NAC treatments was associated with protective effects on testicular tissue mainly by rebalancing of the antioxidants capacity, as well as downregulation of apoptosis-related genes.
Collapse
Affiliation(s)
| | - Zeinab Khazaei Koohpar
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
8
|
El Hajj S, Canabady-Rochelle L, Gaucher C. Nature-Inspired Bioactive Compounds: A Promising Approach for Ferroptosis-Linked Human Diseases? Molecules 2023; 28:molecules28062636. [PMID: 36985608 PMCID: PMC10059971 DOI: 10.3390/molecules28062636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis is a type of cell death driven by iron overload and lipid peroxidation. It is considered a key mechanism in the development of various diseases such as atherosclerosis, Alzheimer, diabetes, cancer, and renal failure. The redox status of cells, such as the balance between intracellular oxidants (lipid peroxides, reactive oxygen species, free iron ions) and antioxidants (glutathione, glutathione Peroxidase 4), plays a major role in ferroptosis regulation and constitutes its principal biomarkers. Therefore, the induction and inhibition of ferroptosis are promising strategies for disease treatments such as cancer or neurodegenerative and cardiovascular diseases, respectively. Many drugs have been developed to exert ferroptosis-inducing and/or inhibiting reactions, such as erastin and iron-chelating compounds, respectively. In addition, many natural bioactive compounds have significantly contributed to regulating ferroptosis and ferroptosis-induced oxidative stress. Natural bioactive compounds are largely abundant in food and plants and have been for a long time, inspiring the development of various low-toxic therapeutic drugs. Currently, functional bioactive peptides are widely reported for their antioxidant properties and application in human disease treatment. The scientific evidence from biochemical and in vitro tests of these peptides strongly supports the existence of a relationship between their antioxidant properties (such as iron chelation) and ferroptosis regulation. In this review, we answer questions concerning ferroptosis milestones, its importance in physiopathology mechanisms, and its downstream regulatory mechanisms. We also address ferroptosis regulatory natural compounds as well as provide promising thoughts about bioactive peptides.
Collapse
Affiliation(s)
- Sarah El Hajj
- Université de Lorraine, CITHEFOR, F-54505 Vandoeuvre Les Nancy, France
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | | | - Caroline Gaucher
- Université de Lorraine, CITHEFOR, F-54505 Vandoeuvre Les Nancy, France
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Correspondence:
| |
Collapse
|
9
|
Dadgar Z, Shariatzadeh SMA, Mehranjani MS, Kheirolahi A. The therapeutic effect of co-administration of pentoxifylline and zinc in men with idiopathic infertility. Ir J Med Sci 2023; 192:431-439. [PMID: 35182288 DOI: 10.1007/s11845-022-02931-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Pentoxifylline is a derivative of methylxanthine that affects sperm motility. Also, zinc is an antioxidant that is involved in the activation of antioxidant enzymes. This study aimed to evaluate the effect of co-administration of pentoxifylline, and zinc in men with idiopathic infertility. In the present study, men with idiopathic infertility were identified and randomly divided into four groups: pentoxifylline, zinc, pentoxifylline + zinc, and placebo. According to the grouping, the patients received pentoxifylline and zinc for 3 months. Then, sperm parameters, biochemical factors, reproductive hormones, inflammatory factors, and DNA damage were evaluated before and after intervention. Data analysis was performed using SPSS software. Pentoxifylline and zinc were significantly effective in improving biochemical parameters, inflammatory factors, concentration, and motility of sperm. Pentoxifylline did not affect sperm morphology and reproductive hormones. However, in the zinc and zinc + pentoxifylline groups, a significant increase in normal morphology and reproductive hormones was observed. In the pentoxifylline group, sperm DNA fragmentation increased significantly, while in the zinc and zinc + pentoxifylline group, DNA fragmentation reduced significantly. Because of the role of zinc in protecting sperm chromatin, it is recommended that zinc and pentoxifyllinebe prescribed simultaneously. Clinical trial code: NCT05156684.
Collapse
Affiliation(s)
- Zeynab Dadgar
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | | | | - Abdolreza Kheirolahi
- Department of Urology, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
10
|
Mousa HH, Sharawy MH, Nader MA. Empagliflozin enhances neuroplasticity in rotenone-induced parkinsonism: Role of BDNF, CREB and Npas4. Life Sci 2022; 312:121258. [PMID: 36462721 DOI: 10.1016/j.lfs.2022.121258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
AIMS Parkinsonism is characterized by degeneration of dopaminergic neurons and impairment in neuroplasticity. Empagliflozin (EMPA) is an anti-diabetic drug that has been shown to improve cognitive dysfunctions and exerted antioxidant and anti-inflammatory effects in different models. This study aimed to determine the neuroprotective effects of EMPA against rotenone (ROT)-induced parkinsonism. MAIN METHODS ROT (1.5 mg/kg) was injected subcutaneously three times per week for two successive weeks. Mice were treated with EMPA (3 and 10 mg/kg, orally) for one week prior ROT administration and for another two weeks along with ROT. After that, motor functions and histopathological changes were assessed, and brains were isolated for biochemical analyses and immunohistochemical investigation. KEY FINDINGS Results indicated that, in a dose dependent manner, EMPA improved motor functions and histopathological changes induced by ROT, increased brain content of reduced glutathione (GSH), dopamine (DA), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear factor erythroid 2-related factor 2 (Nrf2), inositol trisphosphate (IP3), calcium (Ca2+), calcium/calmodulin-dependent protein kinase type IV (CaMKIV) and phospho-Protein kinase B (p-Akt) levels compared to ROT group. Additionally, EMPA decreased the levels of malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α), and inactivated glycogen synthase kinase-3 beta (GSK-3β). Improvement in neuroplasticity was also observed indicated by elevation in brain derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and neuronal PAS domain Protein 4 (Npas4). SIGNIFICANCE EMPA improved motor functions possibly through improving neuroplasticity markers and antioxidant, anti-inflammatory, and neuroprotective effects in a dose dependent manner.
Collapse
Affiliation(s)
- Hager H Mousa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
11
|
Role of Oxidative Stress and Lipid Peroxidation in the Pathophysiology of NAFLD. Antioxidants (Basel) 2022; 11:antiox11112217. [PMID: 36358589 PMCID: PMC9686676 DOI: 10.3390/antiox11112217] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterised by an excess of hepatic fat that can progress to steatohepatitis, fibrosis, cirrhosis and hepatocarcinoma. The imbalance between lipid uptake/lipogenesis and lipid oxidation/secretion in the liver is a major feature of NAFLD. Given the lack of a non-invasive and reliable methods for the diagnosis of non-alcoholic steatohepatitis (NASH), it is important to find serum markers that are capable of discriminating or defining patients with this stage of NASH. Blood samples were obtained from 152 Caucasian subjects with biopsy-proven NAFLD due to persistently elevated liver enzyme levels. Metabolites representative of oxidative stress were assessed. The findings derived from this work revealed that NAFLD patients with a NASH score of ≥ 4 showed significantly higher levels of lipid peroxidation (LPO). Indeed, LPO levels above the optimal operating point (OOP) of 315.39 μM are an independent risk factor for presenting a NASH score of ≥ 4 (OR: 4.71; 95% CI: 1.68−13.19; p = 0.003). The area under the curve (AUC = 0.81, 95% CI = 0.73−0.89, p < 0.001) shows a good discrimination ability of the model. Therefore, understanding the molecular mechanisms underlying the basal inflammation present in these patients is postulated as a possible source of biomarkers and therapeutic targets in NASH.
Collapse
|
12
|
Jaafarzadeh M, Mahjoob Khaligh R, Mohsenifar Z, Shabani A, Rezvani Gilkalaei M, Rajabi Keleshteri S, Beigi Harchegani A. Protecting Effects of N-acetyl Cysteine Supplementation Against Lead and Cadmium-Induced Brain Toxicity in Rat Models. Biol Trace Elem Res 2022; 200:4395-4403. [PMID: 34816377 DOI: 10.1007/s12011-021-03034-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/13/2021] [Indexed: 01/13/2023]
Abstract
We aimed to investigate mitigating effects of N-acetylcysteine (NAC) on the oxidative stress, apoptosis and Parkinson's disease (PD)-related genes in the brain tissue of male rats exposed to continuous doses of cadmium and lead. Rats were randomly divided into five groups, including G1 (control), G2 (continuous dose of Cd), G3 (continuous dose of Pb), G4 (continuous dose of Cd + NAC), and G5 (continuous dose of Pb + NAC). Biomarkers of oxidative stress, malondialdehyde (MDA), and total antioxidant capacity (TAC) were measured. Expression of PD- and apoptosis-related genes was considered using RT-PCR. Chronic exposure to these heavy metals was associated with accumulation of Pb and Cd in the brain and blood and caused severe morphological changes in the brain, as well as decreased body and brain weights. Continuous exposure to Cd and Pb significantly decreased TAC content and SOD expression but increased MDA level in the brain tissues (P < 0.001). A significant increase was observed in expression of PD-related genes, Parkin, Pink1, LRRK2, SNCA, and Caspase-3 in the brain tissues following exposure to Cd and Pb. Pb exhibited stronger toxicity on the brain tissue compared to Cd. NAC supplementation not only improved morphological changes, but also compensated antioxidant capacity and expression of apoptosis- and PD-related genes in the brain tissues when compared to rats exposed to Pb and Cd alone. Chronic exposure to Pb and Cd is strongly associated with accumulation of these heavy metals in the brain, morphological changes, antioxidants depletion, oxidative stress, and brain cells apoptosis. Changes in expression of PD-related genes indicate the higher risk of PD among individuals who are chronically exposed to these heavy metals. NAC can protect brain tissue against Pb and Cd toxicity by elevating antioxidants capacity, mitigating oxidative stress, apoptosis, and down-regulating of PD-related genes.
Collapse
Affiliation(s)
- MohammadMahdi Jaafarzadeh
- Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Roham Mahjoob Khaligh
- Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Zhaleh Mohsenifar
- Ayatollah Taleghani Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Shabani
- Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Sara Rajabi Keleshteri
- Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Asghar Beigi Harchegani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
The Effect of Dietary Inclusion of Microalgae Schizochytrium spp. on Ewes’ Milk Quality and Oxidative Status. Foods 2022; 11:foods11192950. [PMID: 36230027 PMCID: PMC9563034 DOI: 10.3390/foods11192950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
An unprecedented challenge for nutritionists arises during the 21st century in order to produce highly nutritious and functional food which promotes human health. Polyunsaturated fatty acids (PUFA) that are highly contained in microalgae have broadly been confirmed for preventing cardiovascular diseases and regulating immune-oxidative status. However, their optimum dietary inclusion level needs to be defined since PUFA are prone to oxidation. For this purpose, 24 cross-bred dairy ewes, were separated into four groups (n = 6) and were fed with different levels of microalgae Schizochytrium spp. [0 (CON, no microalgae), 20 (SC20), 30 (SC30) and 40 (SC40) g/ewe/day] for 60 days. The results showed that although the production parameters were not impaired, milk fat content was decreased in medium and high-level supplemented groups while protein content was suppressed only for the medium one. Concerning the fatty acids (FA) profile, the proportions of C14:0, trans C18:1, trans-11 C18:1, cis-9, trans-11 C18:2, trans-10, cis-12 C18:2, C20:5 (EPA), C22:5n-6 (DPA), C22:6n-3 (DHA), the total ω3 FA and PUFA were significantly increased, while those of C18:0, cis-9 C18:1 and C18:2n-6c were decreased in the milk of treated ewes. Additionally, in the S40 group an oxidative response was induced, observed by the increased malondialdehyde (MDA) levels in milk and blood plasma. In conclusion, the dietary inclusion of 20 g Schizochytrium spp./ewe/day, improves milks’ fatty acid profile and seems to be a promising way for producing ω3 fatty acid-enriched dairy products.
Collapse
|
14
|
Polysaccharides from tropical green seaweed Chaetomorpha antennina induces non-specific immune responses and improves antioxidative activities in common carp (Cyprinus carpio) leukocyte culture cell line. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Silonov SB, Kryvenko EO, Silonova NB, Shevchenko TM. The effect of vitamin E on the lipid environment of rat hepatocyte membranes. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tocopherol is one of the known beneficial natural antioxidants ensuring the optimal level of functioning of mammalian organisms. Numerous in vitro and in vivo experiments have shown that the biological role of vitamin E is to prevent the development of pathologies caused by oxidative stress. In particular, the role of enzymatic factors of lipid peroxidation and related inflammation as a result of eicosanoid synthesis was clearly shown. We studied changes in the structural and functional state of hepatocyte membranes in the classical model of E-hypovitaminosis caused by long-term (70 days) insufficient intake of vitamin E in the diet of rats. The test components were determined spectrophotometrically after appropriate chromatographic procedures. The amount of total and individual leukotrienes was determined by ELISA. Prolonged tocopherol deficiency in rats caused a 49.4% decrease in tocopherol, more than 27.0% – in cholesterol. Of the 8 individual phospholipids studied, 6 showed significant changes: a decrease in cardiolipin and phosphatidylserine, and an increase in phosphatidylethanolamine by 3.24 times, an increse in lysophosphatidylcholine by 86.9%, in phosphatidylcholine by 52.8%, and in sphingomyelin by 30.6%, relative to control. There were changes in the levels of unsaturated fatty acids playing a significant role in the development of functional disorders in cells and affecting the metabolism of ecosanoids derived from arachidonic acid by the 5-lipoxygenase oxidation pathway. Changes in the levels of total and individual cysteinyl leukotrienes in the state of E-hypovitaminosis were revealed. Restoration of vitamin E intake returns most of the studied indicators such as tocopherol, cholesterol, polyunsaturated fatty acids to the control levels and activates the processes of sequential conversion of leukotrienes in the body of rats. The obtained results indicate the potentiating effect of vitamin E on metabolic processes in the body as a whole and in hepatocytes and eicosanoid metabolism. The degree of tocopherol intake allows one to influence the course of inflammatory processes associated with eicosanoids, not only through the impact on precursors, but also on the utilization of metabolites, including leukotrienes.
Collapse
|
16
|
Sarsour A, Persia M. Effects of Sulfur amino acid supplementation on Broiler Chickens Exposed to Acute and Chronic Cyclic Heat Stress. Poult Sci 2022; 101:101952. [PMID: 35688032 PMCID: PMC9189208 DOI: 10.1016/j.psj.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic heat stress can result in oxidative damage from increased reactive oxygen species. One proposed method to alleviate the chronic effects of HS is the supplementation of sulfur amino acids (SAA) which can be metabolized to glutathione, an important antioxidant. Therefore, the objective of this experiment was to determine the effects of dietary SAA content on broiler chickens exposed to HS from 28 to 35 d on broiler performance, body temperature, intestinal permeability, and oxidative status. Four experimental treatments were arranged as a 2 × 2 factorial consisting of HS (6 h at 33.3°C followed by 18 h at 27.8°C from 28 to 35 d of age) and Thermoneutral (TN- 22.2°C continuously from 28 to 35 d) and 2 dietary concentrations of SAA formulated at 100% (0.95, 0.87, and 0.80% for starter, grower, and finisher diets) or 130% SAA (1.24, 1.13, and 1.04% for starter, grower, and finisher diets). A total of 648-day-old, male Ross 708 chicks were placed in 36 pens with 18 chicks/pen and 9 replicates per treatment. Data were analyzed as a 2 × 2 factorial in JMP 14 (P ≤ 0.05). No interaction effects were observed on broiler live performance (P > 0.05). As expected, HS reduced BWG by 92 g and increased FCR by 11 points from 28 to 35 d of age compared to TN, respectively (P ≤ 0.05). The supplementation of SAA had no effect on live performance (P > 0.05). Cloacal temperatures were increased by 1.7, 1.4, and 1.2°C with HS at 28, 31, and 35 d compared to TN, respectively (P ≤ 0.05) and dietary SAA did not alter cloacal temperatures. At 28 d of age, supplementation of SAA to birds exposed to HS interacted as serum FITC-dextran (an indicator of intestinal permeability) was reduced to that of the TN group (P ≤ 0.05). The interaction was lost at 31 d, but HS still increased intestinal permeability (P ≤ 0.05). By 35 d, broilers were able to adapt to the HS conditions and intestinal permeability was unaffected (P > 0.05). Potential oxidative damage was reduced by increased SAA supplementation as indicated by an improvement in the reduced glutathione to oxidized glutathione ratio of 5 and 45 % at 28 (P = 0.08) and 35 d (P ≤ 0.05). These data suggest that intestinal permeability is compromised initially and to at least three d of heat exposure before the bird can adjust. However, oxidative damage in the liver of broilers exposed to HS is more chronic, building over the entire 7 d HS period and increased dietary SAA might have some protective effects on both broiler intestinal permeability and oxidative stress responses to HS.
Collapse
|
17
|
Marinsek GP, Choueri PKG, Choueri RB, de Souza Abessa DM, Gonçalves ARN, Bortolotto LB, de Britto Mari R. Integrated analysis of fish intestine biomarkers: Complementary tools for pollution assessment. MARINE POLLUTION BULLETIN 2022; 178:113590. [PMID: 35367694 DOI: 10.1016/j.marpolbul.2022.113590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The gastrointestinal tract and its enteric nervous system are the first routes of food and xenobiotics uptake. Considering the importance of this organ, this study evaluated intestinal biomarkers of Sphoeroides testudineus integrating the data to generate tools for pollution assessment. The fish were collected in three sites of São Paulo Coast and their intestines were analyzed for biochemical, histology, and neuronal density and morphometry biomarkers. To evaluate the differences among the data, a PERMANOVA was applied, followed by a FA/PCA. The PERMANOVA indicated differences (P < 0.001) between the regions (RA, A1, and A2). Four factors were extracted from the FA/PCA (62% cumulative), showing that the animals from A2 presented severe alterations, mainly in intestinal morphometry and neuronal density. A1 alterations refer mainly to the increase of neuronal metabolism. Our results also evidence a gradient of environmental quality related to the protection level (AR > A1 > A2).
Collapse
Affiliation(s)
- Gabriela Pustiglione Marinsek
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil; São Paulo State University (Unesp), Institute for Advanced Studies of Ocean, São Vicente, Brazil.
| | - Paloma Kachel Gusso Choueri
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Research Group on Pollution and Aquatic Ecotoxicology, São Vicente, Brazil; Ecotoxicology Laboratory - Unisanta, Universidade Santa Cecília, R. Oswaldo Cruz, 277 - CP 11045-907 - Boqueirão, Santos - SP, Brazil
| | - Rodrigo Brasil Choueri
- Federal University of São Paulo, Baixada Santista Campus, Department of Marine Sciences, Institute of the Sea, Brazil
| | - Denis Moledo de Souza Abessa
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Research Group on Pollution and Aquatic Ecotoxicology, São Vicente, Brazil
| | - Alexandre Rodrigo Nascimento Gonçalves
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil
| | - Lorihany Bogo Bortolotto
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil
| | - Renata de Britto Mari
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil; São Paulo State University (Unesp), Institute for Advanced Studies of Ocean, São Vicente, Brazil
| |
Collapse
|
18
|
Hemmings SMJ, Swart P, Womersely JS, Ovenden ES, van den Heuvel LL, McGregor NW, Meier S, Bardien S, Abrahams S, Tromp G, Emsley R, Carr J, Seedat S. RNA-seq analysis of gene expression profiles in posttraumatic stress disorder, Parkinson's disease and schizophrenia identifies roles for common and distinct biological pathways. DISCOVER MENTAL HEALTH 2022; 2:6. [PMID: 37861850 PMCID: PMC10501040 DOI: 10.1007/s44192-022-00009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 10/21/2023]
Abstract
Evidence suggests that shared pathophysiological mechanisms in neuropsychiatric disorders (NPDs) may contribute to risk and resilience. We used single-gene and network-level transcriptomic approaches to investigate shared and disorder-specific processes underlying posttraumatic stress disorder (PTSD), Parkinson's disease (PD) and schizophrenia in a South African sample. RNA-seq was performed on blood obtained from cases and controls from each cohort. Gene expression and weighted gene correlation network analyses (WGCNA) were performed using DESeq2 and CEMiTool, respectively. Significant differences in gene expression were limited to the PTSD cohort. However, WGCNA implicated, amongst others, ribosomal expression, inflammation and ubiquitination as key players in the NPDs under investigation. Differential expression in ribosomal-related pathways was observed in the PTSD and PD cohorts, and focal adhesion and extracellular matrix pathways were implicated in PD and schizophrenia. We propose that, despite different phenotypic presentations, core transdiagnostic mechanisms may play important roles in the molecular aetiology of NPDs.
Collapse
Affiliation(s)
- Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| | - Patricia Swart
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Jacqueline S Womersely
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Ellen S Ovenden
- Systems Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Nathaniel W McGregor
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- Systems Genetics Working Group, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Stuart Meier
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
| | - Soraya Bardien
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Shameemah Abrahams
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Alizadeh B, Salehzadeh A, Ranji N, Arasteh A. Effects of N-Acetyl Cysteine on Genes Expression of c-myc, and Ask-1, Histopathological, Oxidative Stress, Inflammation, and Apoptosis in the Liver of Male Rats Exposed to Cadmium. Biol Trace Elem Res 2022; 200:661-668. [PMID: 33740178 DOI: 10.1007/s12011-021-02670-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
This study aimed to consider the oxidative damage induced by cadmium (Cd) and apoptosis and the role of N-acetylcysteine (NAC) in preserving hepatic cells against Cd toxicity. Male rats were randomly divided into seven groups including G1 (control), G2 (single dose of Cd), G3 (continuous dose of Cd), G4 (single dose of Cd + continuous dose of NAC), and G5 (continuous dose of Cd + continuous dose of NAC). Hepatic cells apoptosis was measured using TUNEL assay method. Levels of malondialdehyde (MDA), TNF-α, IL-10, and total antioxidant capacity (TAC) were measured by specific kits. Expression of c-myc and Ask-1 genes was considered using RT-PCR. NAC treatments significantly improved TAC and IL-10, but decreased MDA and TNF-α values in rats that were exposed to a single and continuous dose of Cd (p < 0.05). Exposure to a single and continuous dose of Cd caused a significant increase in c-myc expression by 3.76-fold (p < 0.001) and 8.17-fold (p < 0.0001), respectively. Single and continuous dose treatment of Cd led to a significant increase in Ask1 expression by 4.38-fold (p < 0.001) and 13.52-fold (p < 0.001), respectively. NAC treatments significantly decreased the expression of c-myc, and Ask-1 in rats exposed to single or continuous Cd. Cd exposure is strongly associated with oxidative stress, inflammation, antioxidant depletion, and liver cells apoptosis. NAC can protect liver tissue against Cd by elevating antioxidants capacity, mitigating oxidative stress and inflammation, as well as down-regulating of apoptotic genes.
Collapse
Affiliation(s)
- Bentolhoda Alizadeh
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Amir Arasteh
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
20
|
Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, Apak R. Biomarkers of Oxidative Stress and Antioxidant Defense. J Pharm Biomed Anal 2021; 209:114477. [PMID: 34920302 DOI: 10.1016/j.jpba.2021.114477] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
A number of reactive oxygen and nitrogen species are produced during normal metabolism in human body. These species can be both radical and non-radical and have varying degrees of reactivity. Although they have some important functions in the human body, such as contributing to signal transmission and the immune system, their presence must be balanced by the antioxidant defense system. The human body has an excellent intrinsic enzymatic antioxidant system in addition to different non-enzymatic antioxidants having small molecular masses. An extrinsic source of antioxidants are foodstuffs such as fruits, vegetables, herbs and spices, mostly rich in polyphenols. When the delicate biochemical balance between oxidants and antioxidants is disturbed in favor of oxidants, "oxidative stress" conditions emerge, under which reactive species can cause oxidative damage to biomacromolecules such as proteins, carbohydrates, lipids and DNA. This oxidative damage is often associated with cancer, aging, and neurodegenerative disorders. Because reactive species are extremely short-lived, it is almost impossible to measure their concentrations directly. Although there are certain methods such as ESR / EPR that serve this purpose, they have some disadvantages and are quite costly systems. Therefore, products generated from oxidative damage of proteins, lipids and DNA are often used to quantify the extent of oxidative damage rather than direct measurement of reactive species. These oxidative damage products are usually known as biomarkers. Determination of the concentrations of these biomarkers and changes in the concentration of protective antioxidants can provide useful information for avoiding certain diseases and keep healthy conditions.
Collapse
Affiliation(s)
- Sema Demirci-Çekiç
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Gülay Özkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical Uviversity, Istanbul, Turkey
| | - Aslı Neslihan Avan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Seda Uzunboy
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Esra Çapanoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical Uviversity, Istanbul, Turkey.
| | - Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Vedat Dalokay St. No. 112, Cankaya, 06670 Ankara, Turkey.
| |
Collapse
|
21
|
Aala J, Harchegani AB, Monsef HA, Mohsenifar Z, Ebrahimi P, Parvizi MR. N-Acetyl cysteine mitigates histopathological changes and inflammatory genes expressions in the liver of cadmium exposed rats. Environ Anal Health Toxicol 2021; 36:e2021024-0. [PMID: 34711021 PMCID: PMC8850162 DOI: 10.5620/eaht.2021024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/23/2021] [Indexed: 11/11/2022] Open
Abstract
This study aimed to consider the expression of Nrf2, NLRP3 and caspase 1 genes, as well as oxidative stress, and the protective role of N-acetyl cysteine (NAC) in the liver of rats treated with cadmium (Cd). Male rats were randomly divided into five groups including G1 (control), G2 (single dose of Cd), G3 (continuous dose of Cd), G4 (single dose of Cd + NAC), and G5 (continuous dose of Cd + NAC). Levels of malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. Expression of Nrf2, NLRP3 and caspase 1 genes was considered using RT-PCR. NAC treatments significantly improved TAC, but decreased MDA values in rats that exposed to continuous dose of Cd (p<0.05). Exposure to continuous dose of Cd caused a significant decrease in Nrf2 expression by 2.46-fold (p<0.001), but enhanced expression of NLRP3 and Caspase 1 genes by 3.13-fold and 3.16-fold), respectively (p<0.001). Compared to rats that treated to continuous dose of Cd, NAC supplementation enhanced the expression of Nrf2 by 1.67-fold (p<0.001) and reduced the expression of NLRP3 and Caspase 1 genes by 1.39-fold (p<0.001) and 1.58-fold (p<0.001), respectively. Down-regulation of Nrf2 and overexpression of NLRP3 and caspase 1 seems to be one of the main mechanisms of Cd toxicity on liver tissue. NAC protects liver tissue against Cd-induced oxidative injuries via enhancement of Nrf2 expression and reduction of NLRP3 and caspase 1 genes.
Collapse
Affiliation(s)
- Jalal Aala
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Asghar Beigi Harchegani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Akhlaghi Monsef
- Department of Genetics, Faculty of New Sciences, Medical Science Branch, Islamic Azad University, Tehran, Iran
| | - Zhaleh Mohsenifar
- Ayatollah Taleghani Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- University Scientific Education and Research Network, Tehran, Iran
| | - Mohammad Reza Parvizi
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Biochemical Evaluation of the Effects of Hydroxyurea in Vitro on Red Blood Cells. Antioxidants (Basel) 2021; 10:antiox10101599. [PMID: 34679734 PMCID: PMC8533185 DOI: 10.3390/antiox10101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxyurea (HU) is a low-cost, low-toxicity drug that is often used in diseases, such as sickle cell anemia and different types of cancer. Its effects on the red blood cells (RBC) are still not fully understood. The in vitro effects of HU were evaluated on the biochemical parameters of the RBC from healthy individuals that were treated with 0.6 mM or 0.8 mM HU for 30 min and 1 h. After 30 min, there was a significant increase in almost all of the parameters analyzed in the two concentrations of HU, except for the pyruvate kinase (PK) activity. A treatment with 0.8 mM HU for 1 h resulted in a reduction of the levels of lipid peroxidation, Fe3+, and in the activities of some of the enzymes, such as glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), and PK. After the incubation for 1 h, the levels of H2O2, lipid peroxidation, reduced glutathione (GSH), enzymatic activity (hexokinase, G6PD, and superoxide dismutase (SOD) were reduced with the treatment of 0.8 mM HU when compared with 0.6 mM. The results have suggested that a treatment with HU at a concentration of 0.8 mM seemed to be more efficient in protecting against the free radicals, as well as in treating diseases, such as sickle cell anemia. HU appears to preferentially stimulate the pentose pathway over the glycolytic pathway. Although this study was carried out with the RBC from healthy individuals, the changes described in this study may help to elucidate the mechanisms of action of HU when administered for therapeutic purposes.
Collapse
|
23
|
Ma J, Liu Y, Guo Y, Ma Q, Ji C, Zhao L. Transcriptional Profiling of Aflatoxin B1-Induced Oxidative Stress and Inflammatory Response in Macrophages. Toxins (Basel) 2021; 13:401. [PMID: 34199697 PMCID: PMC8228812 DOI: 10.3390/toxins13060401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a highly toxic mycotoxin that causes severe suppression of the immune system of humans and animals, as well as enhances reactive oxygen species (ROS) formation, causing oxidative damage. However, the mechanisms underlying the ROS formation and immunotoxicity of AFB1 are poorly understood. This study used the mouse macrophage RAW264.7 cell line and whole-transcriptome sequencing (RNA-Seq) technology to address this knowledge-gap. The results show that AFB1 induced the decrease of cell viability in a dose- and time-dependent manner. AFB1 also significantly increased intracellular productions of ROS and malondialdehyde and decreased glutathione levels. These changes correlated with increased mRNA expression of NOS2, TNF-α and CXCL2 and decreased expression of CD86. In total, 783 differentially expressed genes (DEGs) were identified via RNA-Seq technology. KEGG analysis of the oxidative phosphorylation pathway revealed that mRNA levels of ND1, ND2, ND3, ND4, ND4L, ND5, ND6, Cyt b, COX2, ATPeF0A and ATPeF08 were higher in AFB1-treated cells than control cells, whereas 14 DEGs were downregulated in the AFB1 group. Furthermore, seven immune regulatory pathways mediated by oxidative stress were identified by KEGG analysis. Altogether, these data suggest that AFB1 induces oxidative stress in macrophages via affecting the respiratory chain, which leads to the activation of several signaling pathways related to the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.M.); (Y.L.); (Y.G.); (Q.M.); (C.J.)
| |
Collapse
|
24
|
Satokar VV, Cutfield WS, Cameron-Smith D, Albert BB. Omega-3 fats in pregnancy: could a targeted approach lead to better metabolic health for children? Nutr Rev 2021; 79:574-584. [PMID: 32974665 DOI: 10.1093/nutrit/nuaa071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prevalence of childhood obesity is increasing worldwide, and the children of women who are obese during pregnancy are at greatest risk. This risk may be mediated by exaggeration of the normal insulin resistance of pregnancy. Omega-3 (n-3) fats are insulin sensitizing. Supplementation during pregnancy may reduce metabolic risk and adiposity in the children. Though results from animal studies are encouraging, completed clinical trials have not demonstrated this benefit. However, to our knowledge, previous studies have not targeted women who are overweight or obese while pregnant-the group at greatest risk for insulin resistance and most likely to benefit from n-3. In this narrative review, the importance of performing clinical trials restricted to women who are overweight or obese is discussed, as is the potential importance of n-3 dose, oil source and quality, and the timing of the intervention.
Collapse
Affiliation(s)
- Vidit V Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand.,A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Benjamin B Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand.,A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Zhao J, Hu Y, Peng J. Targeting programmed cell death in metabolic dysfunction-associated fatty liver disease (MAFLD): a promising new therapy. Cell Mol Biol Lett 2021; 26:17. [PMID: 33962586 PMCID: PMC8103580 DOI: 10.1186/s11658-021-00254-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Most currently recommended therapies for metabolic dysfunction-associated fatty liver disease (MAFLD) involve diet control and exercise therapy. We searched PubMed and compiled the most recent research into possible forms of programmed cell death in MAFLD, including apoptosis, necroptosis, autophagy, pyroptosis and ferroptosis. Here, we summarize the state of knowledge on the signaling mechanisms for each type and, based on their characteristics, discuss how they might be relevant in MAFLD-related pathological mechanisms. Although significant challenges exist in the translation of fundamental science into clinical therapy, this review should provide a theoretical basis for innovative MAFLD clinical treatment plans that target programmed cell death.
Collapse
Affiliation(s)
- Jianan Zhao
- grid.412585.f0000 0004 0604 8558Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- grid.412585.f0000 0004 0604 8558Institute of Clinical Pharmacology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
- grid.412540.60000 0001 2372 7462Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203 China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Jinghua Peng
- grid.412585.f0000 0004 0604 8558Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
- grid.412540.60000 0001 2372 7462Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203 China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| |
Collapse
|
26
|
Pereira DFDC, Matias Ribeiro MS, de Sousa Simamoto BB, Dias EHV, Costa JDO, Santos-Filho NA, Bordon KDCF, Arantes EC, Dantas NO, Silva ACA, de Oliveira F, Mamede CCN. Baltetin: a new C-type lectin-like isolated from Bothrops alternatus snake venom which act as a platelet aggregation inhibiting. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122695. [PMID: 33915386 DOI: 10.1016/j.jchromb.2021.122695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022]
Abstract
C-type lectin-like proteins found in snake venom, known as snaclecs, have important effects on hemostasis through targeting membrane receptors, coagulation factors and other hemostatic proteins. Here, we present the isolation and functional characterization of a snaclec isolated from Bothrops alternatus venom, designated as Baltetin. We purified the protein in three chromatographic steps (anion-exchange, affinity and reversed-phase chromatography). Baltetin is a dimeric snaclec that is approximately 15 and 25 kDa under reducing and non-reducing conditions, respectively, as estimated by SDS-PAGE. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry and Edman degradation sequencing revealed that Baltetin is a heterodimer. The first 40 amino acid residues of the N-terminal region of Baltetin subunits share a high degree of sequence identity with other snaclecs. Baltetin had a specific, dose-dependent inhibitory effect on epinephrine-induced platelet aggregation in human platelet-rich plasma, inhibiting up to 69% of platelet aggregation. Analysis of the infrared spectra suggested that the interaction between Baltetin and platelets can be attributed to the formation of hydrogen bonds between the PO32- groups in the protein and PO2- groups in the platelet membrane. This interaction may lead to membrane lipid peroxidation, which prevents epinephrine from binding to its receptor. The present work suggests that Baltetin, a new C-type lectin-like protein isolated from B. alternatus venom, is the first snaclec to inhibit epinephrine-induced platelet aggregation. This could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.
Collapse
Affiliation(s)
| | | | | | | | - Júnia de Oliveira Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Campus Ituiutaba, Ituiutaba, MG, Brazil
| | | | | | - Eliane Candiani Arantes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Anielle Christine Almeida Silva
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Campus Uberlândia, Uberlândia, MG, Brazil; Instituto de Física, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Campus Uberlândia, Uberlândia, MG, Brazil
| | - Carla Cristine Neves Mamede
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Campus Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
27
|
Haque MA, Morozova K, Ferrentino G, Scampicchio M. Electrochemical Methods to Evaluate the Antioxidant Activity and Capacity of Foods: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202060600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Md Azizul Haque
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
- Department of Food Technology and Nutritional Science (FTNS) Mawlana Bhashani Science and Technology University (MBSTU) Tangail 1902 Bangladesh
| | - Ksenia Morozova
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Giovanna Ferrentino
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| | - Matteo Scampicchio
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 5, 39100 Bozen-Bolzano Italy
| |
Collapse
|
28
|
Azarmehr Z, Ranji N, Khazaei Koohpar Z, Habibollahi H. The effect of N-Acetyl cysteine on the expression of Fxr (Nr1h4), LXRα (Nr1h3) and Sirt1 genes, oxidative stress, and apoptosis in the liver of rats exposed to different doses of cadmium. Mol Biol Rep 2021; 48:2533-2542. [PMID: 33772418 DOI: 10.1007/s11033-021-06300-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to consider the expression of farnesoid X receptor (Fxr), liver X receptor (LXRα) and sirtuin 1 (Sirt1), oxidative stress, inflammation, apoptosis, and the protective role of N-acetylcysteine (NAC) in the liver of rats treated with cadmium (Cd). 30 Wistar rats were divided into 5 groups: G1 (control), G2 (single dose of Cd), G3 (continuous dose of Cd), G4 (single dose of Cd + continuous dose of NAC), and G5 (continuous dose of Cd + continuous dose of NAC). The apoptosis of hepatic cells was measured using the TUNEL assay. Levels of malondialdehyde (MDA), IL-10, TNF-α, and total antioxidant capacity (TAC) were measured by specific kits. The expression of Fxr, LXRα, and Sirt1 genes and ratio of Bax/Bcl2 was considered using RT-PCR. While NAC treatment improved TAC and IL-10 values, it decreased MDA and TNF-α levels in the liver of rats exposed to Cd (P < 0.001). NAC decreased Bax/Bcl2 in the liver of G4 and G5 groups (P < 0.001). Exposure to a continuous dose of Cd decreased Fxr, LXRα, and Sirt1 expression by 36.65- (P < 0.001), 12.52- (P < 0.001) and 11.34-fold (P < 0.001) compared to control, respectively. NAC increased Fxr, LXRα, and Sirt1 expression (P < 0.01) and decreased Cd concentrations in both serum and tissue samples in G4 and G5 groups. Our results suggested that NAC protects liver tissue against Cd toxicity by elevating antioxidant capacity, mitigating oxidative stress, inflammation, apoptosis and up-regulation of FXR, LXR, and SIRT1 genes.
Collapse
Affiliation(s)
- Zahra Azarmehr
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box, 3516-41335, Rasht, Iran
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box, 3516-41335, Rasht, Iran.
| | - Zeinab Khazaei Koohpar
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Hadi Habibollahi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box, 3516-41335, Rasht, Iran
| |
Collapse
|
29
|
Rahmani Talatappeh N, Ranji N, Beigi Harchegani A. The effect of N-acetyl cysteine on oxidative stress and apoptosis in the liver tissue of rats exposed to cadmium. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2021; 76:518-525. [PMID: 33625322 DOI: 10.1080/19338244.2021.1887796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We considered the oxidative damage induced by cadmium (Cd) and apoptosis, and the role of N-acetylcysteine (NAC) in preserving cells against Cd toxicity in the liver of male rats. NAC significantly improved total antioxidant capacity (TAC) and decreased malondialdehyde (MDA) in rats exposed to single and continuous dose of Cd. Single and continuous exposure to Cd caused a significant increase in Bax expression (by 1.5-fold and 3.61-fold, respectively) and significant decrease in expression of Bcl2 compared to control (by 9.14-fold and 2.36-fold, respectively). The expression of Caspase 3 and 8 in rats exposed to Cd was significantly higher than control group (P < 0.05). NAC protects liver tissue against Cd by elevating antioxidants capacity, mitigating oxidative stress, as well as down-regulating of apoptotic factors.
Collapse
Affiliation(s)
- Nima Rahmani Talatappeh
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | |
Collapse
|
30
|
Effect of N-acetyl cysteine on oxidative stress and Bax and Bcl2 expression in the kidney tissue of rats exposed to lead. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.01.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
31
|
Wang J, Zhang X. Free-Radical-Initiated Phospholipid Oxidations at the Air-Water Interface: The Oxidation of Unsaturated and Saturated Fatty Acid Chains. J Phys Chem A 2021; 125:973-979. [PMID: 33470825 DOI: 10.1021/acs.jpca.0c10170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipid oxidations initiated by free radicals are usually considered to undergo peroxidation, a chain process starting with hydrogen abstraction by an initiator, followed by O2 uptake. While this peroxidation mechanism is widely accepted and sometimes taken for granted, here we provide evidence of the oxidation of both of the unsaturated and saturated fatty acid chains in phospholipids initiated by photoinitiator 2,4,6-trimethylbenzoyl diphenylphosphine oxide (TMDPO) at the air-water interface, and no peroxidation products are observed in these reactions. A unique field-induced droplet ionization mass spectrometry (FIDI-MS) methodology which is capable of the selective online sampling of monolayers of molecules that reside at the air-water interface is employed to detect the products. We have shown that the double bonds on the oleyl chains of the lipids are first oxidized into epoxides, after which other saturated carbon atoms are oxidized into carbonyl groups. We anticipate that this work will draw more attention to the complexity of the lipid oxidation chemistry initiated by free radicals.
Collapse
Affiliation(s)
- Jie Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Kazemi MS, Firouzeh S. Evaluation of the extraction process of Arenaria hispanica L. using response surface methodology on amounts of total phenolic content, total flavonoid content and the antioxidant activity. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Jairoun AA, Shahwan M, Zyoud SH. Fish oil supplements, oxidative status, and compliance behaviour: Regulatory challenges and opportunities. PLoS One 2020; 15:e0244688. [PMID: 33382790 PMCID: PMC7774961 DOI: 10.1371/journal.pone.0244688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fish oil supplements that are rich in omega-3 long-chain polyunsaturated fatty acids (n-3 PUFAs). PUFAs are among the most widely-used dietary supplements globally, and millions of people consume them regularly. There have always been public concerns that these products should be guaranteed to be safe and of good quality, especially as these types of fish oil supplements are extremely susceptible to oxidative degradation. OBJECTIVES The aim of the current study is to investigate and examine the oxidation status of dietary supplements containing fish oils and to identify important factors related to the oxidation status of such supplements available in the United Arab Emirates (UAE). METHODS A total of 44 fish oil supplements were analysed in this study. For each product, the oxidative parameters peroxide value (PV), anisidine value (AV), and total oxidation (TOTOX) were calculated, and comparisons were made with the guidelines supplied by the Global Organization for EPA and DHA Omega-3s (GOED). Median values for each of the above oxidative parameters were tested using the Kruskal-Wallis and Mann-Whitney U tests. P values < 0.05 were chosen as the statistically significant boundary. RESULTS The estimate for the average PV value was 6.4 with a 95% confidence interval (CI) [4.2-8.7] compared to the maximum allowable limit of 5 meq/kg. The estimate for the average P-AV was 11 with a 95% CI [7.8-14.2] compared to the maximum allowable limit of 20. The estimate for the average TOTOX value was 23.8 meq/kg with a 95% CI [17.4-30.3] compared to the maximum allowable limit of 26 according to the GOED standards. CONCLUSION This research shows that most, although not all, of the fish oil supplements tested are compliant with the GOED oxidative quality standards. Nevertheless, it is clear that there should be a high level of inspection and control regarding authenticity, purity, quality, and safety in the processes of production and supply of dietary supplements containing fish oils.
Collapse
Affiliation(s)
- Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai Municipality, Dubai, UAE
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Sa’ed H. Zyoud
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
- Clinical Research Centre, An-Najah National University Hospital, Nablus, Palestine
| |
Collapse
|
34
|
Marzouni ET, Dorcheh SP, Nejad-Moghaddam A, Ghanei M, Goodarzi H, Hosseini SE, Madani H. Adipose-derived mesenchymal stem cells ameliorate lung epithelial injury through mitigating of oxidative stress in mustard lung. Regen Med 2020; 15:1861-1876. [PMID: 32935623 DOI: 10.2217/rme-2020-0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: We investigated potential efficacy of autologous adipose-derived mesenchymal stem cell (MSC) on oxidative stress (OS) and airway remodeling in patients with chronic mustard lung. Patients & methods: Ten patients received 100 × 106 cells every 20 days for 4 injections over a 2-month period. Results: A gradual improvement was observed for 6 min walk test scores, pulmonary function tests and respiratory quality after MSCs therapy. A significant decrease was found for the mean levels of Mucin-1 protein (KL-6; p = 0.022) and Clara cell protein 16 (CC16; p = 0.005). Antioxidants had a tendency to be higher after each injection. Conclusion: Our findings revealed that MSCs therapy can be safely used for improvement of lung injury and regeneration in these patients without adverse effects. Trial registration number: NCT02749448 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Setareh Panahi Dorcheh
- Department of Cellular & Molecular Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Nejad-Moghaddam
- Marine Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Basic Sciences, Faculty of Science, Imam Khamenei University, Zibakenar, Rasht, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hassan Goodarzi
- Chemical Injuries Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Student Research Committee, School of Nursing & Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Hoda Madani
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| |
Collapse
|
35
|
Phytochemical Analysis, Antioxidant Activity, Antimicrobial Activity, and Cytotoxicity of Chaptalia nutans Leaves. Adv Pharmacol Pharm Sci 2020; 2020:3260745. [PMID: 32420545 PMCID: PMC7211239 DOI: 10.1155/2020/3260745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Objective This work was to evaluate the chemical constitution of the hydromethanolic (30/70 methanol-water) macerating extract obtained from the leaves of C. nutans, as well as to study the antioxidant, antimicrobial, cytotoxic, and genotoxic activity of the species. Materials and methods. Phytochemical screening, antioxidant activity (total phenolic, total flavonoid, condensed tannins content, DPPH radical, and FRAP), antibacterial activity (P. aeruginosa, B. cereus, E. epidermidis, E. coli, S. aureus, E. faecalis, P. mirabilis, Candida glabrata (clinical isolate), Candida tropicalis (clinical isolate), C. krusei (clinical isolate), and C. albicans (clinical isolate)), and oxidative stress parameters (TBARS, carbonyl protein, and DCFH) were analyzed according to the literature. Toxicity of C. nutans was evaluated using an alternative method, D. melanogaster, as well as a locomotor assay. Results The phytochemical screening test of methanolic leaves extract revealed the presence of alkaloids, coumarins, quaternary bases, phenolics, flavonoids, tannins, and free steroids. A quantitative phytochemical study indicated the total phenol (30.17 ± 1.44 mg/g), flavonoid (21.64 ± 0.66 mg/g), and condensed tannins (9.58 ± 0.99 mg/g). DPPH (345.41 ± 5.35 μg/mL) and FRAP (379.98 ± 39.25 μM FeSO4/mg sample) show to extract of C. nutans leaves an intermediate value, indicating moderate antioxidant activity of the extract. Antibacterial results revealed only a positive result (antimicrobial activity) for the hexane fraction which significantly inhibited the microorganisms E. epidermidis, C. tropicalis, C. glabrata, and C. krusei at a concentration of 1000 μg/mL. TBARS, carbonyl protein, and DCFH demonstrate that the extract has the ability to protect the cell from protein and lipid damage, as well as the inhibition of oxygen-derived radicals at the three concentrations tested: 0.1, 1, and 10 mg/mL. Regarding the toxicity of C. nutans extract against D. melanogaster, it was found that until the concentration of 15 mg/mL, the extract showed no toxicity and that the LC50 obtained was 24 mg/mL. Results show that the C. nutans extract leaves used to prevent PQ damage were effective in reducing flies' mortality and improving locomotor capacity. Conclusion Our studies demonstrated for the first time that C. nutans crude leaf extract has high antioxidant capacity both in vitro and in vivo through different analysis techniques. These results make it possible to infer future applications in the pharmacological area, evidenced by the low toxicity observed in D. melanogatser, as well as the ability to neutralize different sources of RONS.
Collapse
|
36
|
Song Y, Xie L, Lee Y, Brede DA, Lyne F, Kassaye Y, Thaulow J, Caldwell G, Salbu B, Tollefsen KE. Integrative assessment of low-dose gamma radiation effects on Daphnia magna reproduction: Toxicity pathway assembly and AOP development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135912. [PMID: 31846819 DOI: 10.1016/j.scitotenv.2019.135912] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
High energy gamma radiation is potentially hazardous to organisms, including aquatic invertebrates. Although extensively studied in a number of invertebrate species, knowledge on effects induced by gamma radiation is to a large extent limited to the induction of oxidative stress and DNA damage at the molecular/cellular level, or survival, growth and reproduction at the organismal level. As the knowledge of causal relationships between effects occurring at different levels of biological organization is scarce, the ability to provide mechanistic explanation for observed adverse effects is limited, and thus development of Adverse Outcome Pathways (AOPs) and larger scale implementation into next generation hazard and risk predictions is restricted. The present study was therefore conducted to assess the effects of high-energy gamma radiation from cobalt-60 across multiple levels of biological organization (i.e., molecular, cellular, tissue, organ and individual) and characterize the major toxicity pathways leading to impaired reproduction in the model freshwater crustacean Daphnia magna (water flea). Following gamma exposure, a number of bioassays were integrated to measure relevant toxicological endpoints such as gene expression, reactive oxygen species (ROS), lipid peroxidation (LPO), neutral lipid storage, adenosine triphosphate (ATP) content, apoptosis, ovary histology and reproduction. A non-monotonic pattern was consistently observed across the levels of biological organization, albeit with some variation at the lower end of the dose-rate scale, indicating a complex response to radiation doses. By integrating results from different bioassays, a novel pathway network describing the key toxicity pathways involved in the reproductive effects of gamma radiation were proposed, such as DNA damage-oocyte apoptosis pathway, LPO-ATP depletion pathway, calcium influx-endocrine disruption pathway and DNA hypermethylation pathway. Three novel AOPs were proposed for oxidative stressor-mediated excessive ROS formation leading to reproductive effect, and thus introducing the world's first AOPs for non-chemical stressors in aquatic invertebrates.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Biosciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Fern Lyne
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Newcastle University, Newcastle upon Tyne, UK
| | - Yetneberk Kassaye
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Jens Thaulow
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | | | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 OSLO, Norway; Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
37
|
Song Q, Zhao Y, Li Q, Han X, Duan J. Puerarin protects against iron overload-induced retinal injury through regulation of iron-handling proteins. Biomed Pharmacother 2019; 122:109690. [PMID: 31786468 DOI: 10.1016/j.biopha.2019.109690] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Excess iron content can build up in the retina and lead to iron-mediated retinal injury. An important isoflavone C-glucoside, puerarin, has been reported to be involved in retinal protection. In this experiment, we studied the effects and potential mechanisms of puerarin on retinal injury in vivo and in vitro. We found that puerarin reduced serum and retinal iron content, attenuated the pathophysiological changes and retinal iron deposition, and partially prevented the decrease of rhodopsin and retinal pigment epithelium-specific 65 kDa protein expression in retinas of iron-overload mice. Puerarin rescued the abnormal expression of iron-handling proteins in the mouse retina and suppressed the oxidative stress induced by iron overload, as evident from the enhanced activity of superoxide dismutase, catalase, and glutathione peroxidase and decreased content of malondialdehyde. Moreover, puerarin inhibited the phosphorylation of p38 and ERK mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription 3 (STAT3), thereby protecting the retinal cells from apoptosis by suppressing cytochrome c release, caspase activation, and poly (ADP-ribose) polymerase cleavage in vivo. Also, the ability of puerarin to regulate iron-handling proteins, decrease intracellular Fe2+, and inhibit cell apoptosis was further confirmed in ARPE-19 cells. The experimental data verify the protective role of puerarin in the treatment of retinal injury caused by iron overload; its possible mechanisms might be associated with regulation of iron-handling proteins, enhancement of the antioxidant capacity, and the inhibition of MAPK and STAT3 activation and the apoptotic pathways under iron overload conditions.
Collapse
Affiliation(s)
- Qiongtao Song
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China
| | - Ying Zhao
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China
| | - Qiang Li
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China
| | - Xue Han
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei, China
| | - Junguo Duan
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu 610075, Sichuan, China.
| |
Collapse
|
38
|
Martinez N, McDonald B, Martínez-Taboada F. Exploring the use of essential fatty acids in veterinary dermatology. Vet Rec 2019; 187:190. [PMID: 31690643 DOI: 10.1136/vr.105360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND The aim of the study was to discover the extent of use of essential fatty acids (EFAs) in veterinary practice, conditions used in, preparation of EFA supplement used and rationale for their use and to investigate the awareness of the oxidation of some commercial fish oil supplement preparations. METHODS A web-based questionnaire was distributed via email to a dermatology list server and posted to veterinary Facebook groups with questions relating to the use of EFAs, supplement choice, conditions used in, the level of importance of various factors regarding their use and awareness of their oxidation. RESULTS There were 309 responses from 32 countries. EFA supplements were used by 92.2 per cent of respondents. The most commonly used preparation of EFA supplementation was veterinary oral supplements (75.1 per cent), followed by veterinary diets (14.4 per cent), shop bought fish oil supplements (7.7 per cent), enhancing the diet with oily fish (2.5 per cent) and finally using a commercial pet food (0.3 per cent). Only 46.3 per cent of respondents who used them were aware of the oxidation of EFAs. Veterinary oral supplements were perceived to be the best preserved, followed by veterinary diets and lastly commercial fish oil supplements. CONCLUSION A large number of respondents advised the use of EFAs for veterinary dermatological conditions but less than 50 per cent were aware of the potential for EFAs to oxidise.
Collapse
Affiliation(s)
- Nicola Martinez
- The Veterinary Teaching Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Beth McDonald
- The Veterinary Teaching Hospital, University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
39
|
Howes BD, Milazzo L, Droghetti E, Nocentini M, Smulevich G. Addition of sodium ascorbate to extend the shelf-life of tuna meat fish: A risk or a benefit for consumers? J Inorg Biochem 2019; 200:110813. [DOI: 10.1016/j.jinorgbio.2019.110813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 11/26/2022]
|
40
|
Gao Y, Zhuang H, Yeh HY, Bowker B, Zhang J. Effect of rosemary extract on microbial growth, pH, color, and lipid oxidation in cold plasma-processed ground chicken patties. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Sampson C, Keens RH, Kattnig DR. On the magnetosensitivity of lipid peroxidation: two- versus three-radical dynamics. Phys Chem Chem Phys 2019; 21:13526-13538. [PMID: 31210238 DOI: 10.1039/c9cp01746a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a theoretical analysis of the putative magnetosensitivity of lipid peroxidation. We focus on the widely accepted radical pair mechanism (RPM) and a recently suggested idea based on spin dynamics induced in three-radical systems by the mutual electron-electron dipolar coupling (D3M). We show that, contrary to claims in the literature, lipid peroxides, the dominant chain carriers of the autoxidation process, have associated non-zero hyperfine coupling interactions. This suggests that their recombination could, in principle, be magnetosensitive due to the RPM. While the RPM indeed goes a long way to explaining magnetosensitivity in these systems, we show that the simultaneous interaction of three peroxyl radicals via the D3M can achieve larger magnetic field effects (MFE), even if the third radical is remote from the recombining radical pair. For randomly oriented three-radical systems, the D3M induces a low-field effect comparable to that of the RPM. The mechanism furthermore immunizes the spin dynamics to the presence of large exchange coupling interactions in the recombining radical pair, thereby permitting much larger MFE at magnetic field intensities comparable to the geomagnetic field than would be expected for the RPM. Based on these characteristics, we suggest that the D3M could be particularly relevant for MFE at low fields, provided that the local radical concentration is sufficient to allow for three-spin radical correlations. Eventually, our observations suggest that MFEs could intricately depend on radical concentration and larger effects could ensue under conditions of oxidative stress.
Collapse
Affiliation(s)
- Chris Sampson
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.
| | | | | |
Collapse
|
42
|
Pinitol consumption improves liver health status by reducing oxidative stress and fatty acid accumulation in subjects with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial. J Nutr Biochem 2019; 68:33-41. [DOI: 10.1016/j.jnutbio.2019.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
|
43
|
Koo B, Nyachoti CM. Effects of thermally oxidized canola oil and tannic acid supplementation on nutrient digestibility and microbial metabolites in finishing pigs1. J Anim Sci 2019; 97:2468-2478. [PMID: 31073613 PMCID: PMC6541833 DOI: 10.1093/jas/skz104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 11/14/2022] Open
Abstract
The present study investigated the effects of oxidized canola oil and tannic acid (TA) supplementation on nutrient digestibility and microbial metabolites in finishing pigs. Four experimental diets were formulated to include 5% of either fresh canola oil (0 mEq/kg of peroxide value) or oxidized canola oil (180 mEq/kg of peroxide value). An equal portion of each diet was supplemented with 0.1% TA. Eight pigs (initial body weight of 82.89 ± 2.26 kg) were surgically fitted with a T-cannula at the distal ileum. At the beginning of the experiments, all pigs were fed a nitrogen-free diet for 7 d. Then, they were assigned to 4 dietary treatments according to an incomplete replicated 4 × 3 Latin square design with 3 periods to give 6 replicates per treatment. Each experimental period lasted for 9 d, starting with a 5-d adaptation period followed by 2 consecutive 2-d periods for fecal (day 6 and day 7) and ileal digesta (day 8 and day 9) collection. The inclusion of oxidized oil reduced (P < 0.05) the standardized ileal digestibility (SID) of Pro and the apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of NDF. Also, pigs fed the oxidized oil tended to have lower (P ≤ 0.10) lactate and ammonia-nitrogen concentrations in the ileum and lower (P ≤ 0.10) acetate and propionate concentrations in the feces than those fed the fresh oil. The supplementation of 0.1% TA reduced (P < 0.05) the AID of NDF and the ATTD of gross energy, crude protein, and NDF. Additionally, the TA-supplemented diet tended to have a lower (P ≤ 0.10) digestible energy content than the nonsupplemented diet. Pigs fed the TA-supplemented diet showed reduced (P < 0.05) AID and SID of His, Cys, and Pro compared with those fed the nonsupplemented diet. There were interactive effects (P < 0.05) of oxidized oil and TA supplementation on acetate, isovalerate, total short chain fatty acids, and pH level in the ileum. In conclusion, the results indicated that the effects of oxidized oil are greater on microbial activities rather than nutrient digestibility. Although negative effects of dietary TA supplementation were observed in relation to nutrient digestibility, TA supplementation was found to ameliorate these negative effects of oxidized oil on microbial metabolites. Therefore, further studies are required to investigate the interaction between dietary oxidized oil and TA in relation with the gut microbiota in pigs.
Collapse
Affiliation(s)
- Bonjin Koo
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
44
|
Tatay-Manteiga A, Balanzá-Martínez V, Bristot G, Tabarés-Seisdedos R, Kapczinski F, Cauli O. Peripheral Oxidative Stress Markers in Patients with Bipolar Disorder during Euthymia and in Siblings. Endocr Metab Immune Disord Drug Targets 2019; 20:77-86. [PMID: 30848220 DOI: 10.2174/1871530319666190307165355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
AIMS Oxidative stress is increased during the acute phases of bipolar disorder (BD). Our aim here was to analyze oxidative stress biomarkers in patients with BD during euthymia and their siblings. METHOD A cross-sectional study was performed in euthymic patients with BD-I (n=48), unaffected siblings (n=23) and genetically unrelated healthy controls (n=21). Protein carbonyl content (PCC), total antioxidant capacity (TRAP), lipid peroxidation (TBARS) and uric acid were measured as biomarkers of oxidative stress in blood. RESULTS The antioxidant capacity (TRAP) was lower (p<0.001) in patients with BD compared to their siblings and controls, whereas no differences were observed in PCC, TBARS or uric acid. In patients, the concentrations of TRAP and TBARS were positively associated with the dose of valproic acid (p<0.05 and p<0.001, respectively). The concentrations of these biomarkers were not significantly associated with any of socio-demographic and clinical variables. CONCLUSION A selective reduction in antioxidant capacity is present in BD during euthymia state, whereas other markers of oxidative stress are unaltered during euthymia. Siblings did not show any alterations in oxidative stress biomarkers. Oxidative stress might represent a state-dependent marker in BD. The association between treatment with valproic acid and oxidative stress markers in euthymia deserves further studies.
Collapse
Affiliation(s)
| | - Vicent Balanzá-Martínez
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, CIBERSAM, Valencia, Spain
| | - Giovana Bristot
- Laboratório de Psiquiatria Molecular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, CIBERSAM, Valencia, Spain
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioral Sciences, McMaster University, Hamilton, Canada
| | - Omar Cauli
- Department of Nursing, University of Valencia, Valencia, Spain
| |
Collapse
|
45
|
Kantale RA, Kumar P, Mehta N, Chatli MK, Malav OP, Kaur A, Wagh RV. Comparative Efficacy of Synthetic and Natural Tenderizers on Quality Characteristics of Restructured Spent Hen Meat Slices (RSHS). Food Sci Anim Resour 2019; 39:121-138. [PMID: 30882081 PMCID: PMC6411243 DOI: 10.5851/kosfa.2019.e10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 11/06/2022] Open
Abstract
In the present study, comparative efficacy of natural as well as synthetic tenderizers on the quality characteristics of restructured spent hen meat slices (RSHS) was studied. Four different batches of RSHS viz. Control (without any tenderizer), T1 (1.25% calcium chloride replacing salt in formulation), T2 and T3 (1.5% each of pineapple rind and fig powder, replacing binder in the formulation) were developed in pre-standardized formulation. Vacuum tumbling was performed for 2.5 h and cooked product (RSHS) was assayed for quality attributes. Samples were packaged in aerobic conditions, stored for 21 days under refrigeration (4±1°C) and were evaluated for pH, oxidative and microbial quality parameters at regular interval of 7 days. Water holding capacity of T2 was recorded the highest and significantly higher (p<0.05) than all other samples. The textural attributes of T2 were comparable to T1 but significantly higher (p<0.05) than C and T3. The colour attributes (L*, a*, and b* value) of T2 and T3 were improved due to use of natural tenderizers. During sensory evaluation, tenderness scores for T2 samples were recorded the highest. Throughout storage period, thiobarbituric acid reactive substances (TBARS), free fatty acids (FFA) and peroxide value (PV) followed an increasing trend for control as well as treated products; however, T2 showed a significantly (p<0.05) lower value than control and other treated samples. It can be concluded that good quality RSHS with better storage stability could be prepared by utilizing 1.5% pineapple rind powder as natural tenderizer.
Collapse
Affiliation(s)
- Rushikesh Ambadasrao Kantale
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev University of Veterinary and Animal Sciences, Ludhiana, India
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev University of Veterinary and Animal Sciences, Ludhiana, India
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev University of Veterinary and Animal Sciences, Ludhiana, India
| | - Manish Kumar Chatli
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev University of Veterinary and Animal Sciences, Ludhiana, India
| | - Om Prakash Malav
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev University of Veterinary and Animal Sciences, Ludhiana, India
| | - Amanpreet Kaur
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev University of Veterinary and Animal Sciences, Ludhiana, India
| | - Rajesh Vishwanath Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev University of Veterinary and Animal Sciences, Ludhiana, India
| |
Collapse
|
46
|
Heme oxygenase-1 induction by hemin prevents oxidative stress-induced acute cholestasis in the rat. Clin Sci (Lond) 2019; 133:117-134. [PMID: 30538149 DOI: 10.1042/cs20180675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
We previously demonstrated in in vitro and ex vivo models that physiological concentrations of unconjugated bilirubin (BR) prevent oxidative stress (OS)-induced hepatocanalicular dysfunction and cholestasis. Here, we aimed to ascertain, in the whole rat, whether a similar cholestatic OS injury can be counteracted by heme oxygenase-1 (HO-1) induction that consequently elevates endogenous BR levels. This was achieved through the administration of hemin, an inducer of HO-1, the rate-limiting step in BR generation. We found that BR peaked between 6 and 8 h after hemin administration. During this time period, HO-1 induction fully prevented the pro-oxidant tert-butylhydroperoxide (tBuOOH)-induced drop in bile flow, and in the biliary excretion of bile salts and glutathione, the two main driving forces of bile flow; this was associated with preservation of the membrane localization of their respective canalicular transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), which are otherwise endocytosed by OS. HO-1 induction counteracted the oxidation of intracellular proteins and membrane lipids induced by tBuOOH, and fully prevented the increase in the oxidized-to-total glutathione (GSHt) ratio, a sensitive parameter of hepatocellular OS. Compensatory elevations of the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) were also prevented. We conclude that in vivo HO-1 induction protects the liver from acute oxidative injury, thus preventing consequent cholestasis. This reveals an important role for the induction of HO-1 and the consequently elevated levels of BR in preserving biliary secretory function under OS conditions, thus representing a novel therapeutic tool to limit the cholestatic injury that bears an oxidative background.
Collapse
|
47
|
The effects of Trolox on the quality of sperm from captive squirrel monkey during liquefaction in the extender ACP-118™. ZYGOTE 2018; 26:333-335. [DOI: 10.1017/s096719941800028x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryThe aim of this study was to evaluate the effect of incubating semen for different periods (90, 270 or 450 min) with or without Trolox® (100 or 150 µM) on the quality of sperm from Saimiri collinsi. Sperm motility, vigour, and plasma membrane integrity (PMI) were evaluated in both fresh semen and semen incubated for different time periods, i.e. 90, 270 or 450 min of incubation. Supplementation of semen extender with Trolox® 100 µM improved sperm motility, vigour and PMI for up to 270 min of incubation.
Collapse
|
48
|
Antioxidant Enzyme Activities in Rabbits Under Oxidative Stress Induced By High Fat Diet. J Vet Res 2018; 62:199-205. [PMID: 30364903 PMCID: PMC6200285 DOI: 10.2478/jvetres-2018-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/10/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION The aim of this study was to investigate whether the type and form of oil (raw/non-oxidised (N) or post-frying/oxidised (O)) consumed in high-fat diets affect the oxidative status of an organism, as observed by malondialdehyde (MDA) concentration as an oxidative factor and antioxidant enzyme activity. MATERIAL AND METHODS Fats in the diet came from rapeseed oil (R) and olive oil (O). RESULTS The applied diet caused a decrease in MDA concentration (μmol/L) in serum in group RN from 2.94 ± 0.87 to 1.76 ± 0.13, in group ON from 2.45 ± 0.62 to 1.50 ± 0.10, and in group OO from 2.70 ± 1.16 to 1.84 ± 0.36. Meanwhile, MDA concentration (mmol/L) increased in blood haemolysate in group RO from 0.15 ± 0.07 to 0.22 ± 0.03 and in group OO from 0.17 ± 0.02 to 0.22 ± 0.02. The observed changes caused a response of the enzymatic antioxidant system in both models, especially followed by an increase in activities of total superoxide dismutase and its mitochondrial isoenzyme in all experimental groups, while its cytosolic isoenzyme activity increased only in ON and OO groups. Increased activity of glutathione peroxidase (GPX) in groups RN and RO and of catalase (CAT) in groups ON and OO was observed. Significant differences in responses to the different types and forms of oils were probably caused by the different oxidative stability of the studied oils. CONCLUSION This diet disturbed the body's oxidative status; however, during the six-month study the enzymatic antioxidant system remained effective.
Collapse
|
49
|
Lim D, Kim KS, Jeong JH, Marques O, Kim HJ, Song M, Lee TH, Kim JI, Choi HS, Min JJ, Bumann D, Muckenthaler MU, Choy HE. The hepcidin-ferroportin axis controls the iron content of Salmonella-containing vacuoles in macrophages. Nat Commun 2018; 9:2091. [PMID: 29844422 PMCID: PMC5974375 DOI: 10.1038/s41467-018-04446-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Macrophages release iron into the bloodstream via a membrane-bound iron export protein, ferroportin (FPN). The hepatic iron-regulatory hormone hepcidin controls FPN internalization and degradation in response to bacterial infection. Salmonella typhimurium can invade macrophages and proliferate in the Salmonella-containing vacuole (SCV). Hepcidin is reported to increase the mortality of Salmonella-infected animals by increasing the bacterial load in macrophages. Here we assess the iron levels and find that hepcidin increases iron content in the cytosol but decreases it in the SCV through FPN on the SCV membrane. Loss-of-FPN from the SCV via the action of hepcidin impairs the generation of bactericidal reactive oxygen species (ROS) as the iron content decreases. We conclude that FPN is required to provide sufficient iron to the SCV, where iron serves as a cofactor for the generation of antimicrobial ROS rather than as a nutrient for Salmonella. The effects of iron on vacuole-resident Salmonella in macrophages are unclear. Here the authors show that the bacteria are not subject to nutritional inhibition by iron deprivation, but that iron depletion in the vacuole, via the hepcidin-ferroportin axis, inhibits the bactericidal effect of oxidative burst.
Collapse
Affiliation(s)
- Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Republic of Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, 61468, Republic of Korea
| | - Kwang Soo Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Republic of Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, 61468, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Republic of Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, 61468, Republic of Korea
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Im Neuenheimer Feld 350, Heidelberg, D-69120, Germany.,Molecular Medicine Partnership Unit, Heidelberg, D-69120, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, D-69120, Germany
| | - Hyun-Ju Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Republic of Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, 61468, Republic of Korea
| | - Miryoung Song
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Republic of Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, 61468, Republic of Korea
| | - Tae-Hoon Lee
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, 61468, Republic of Korea.,Department of Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University and Korea mouse phenotype center (KMPC), Gwangju, 61186, Republic of Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,AnyGen, Gwangju Technopark, Gwangju, 61008, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jung-Joon Min
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, 61468, Republic of Korea.,Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Dirk Bumann
- Focal Area Infection Biology, University of Basel, Basel, CH-4056, Switzerland
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Im Neuenheimer Feld 350, Heidelberg, D-69120, Germany.,Molecular Medicine Partnership Unit, Heidelberg, D-69120, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, D-69120, Germany
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Republic of Korea. .,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, 61468, Republic of Korea.
| |
Collapse
|
50
|
Layali I, Shahriary A, Rahmani Talatappe N, Tahmasbpour E, Rostami H, Beigi Harchegani A. Sulfur mustard triggers oxidative stress through glutathione depletion and altered expression of glutathione-related enzymes in human airways. Immunopharmacol Immunotoxicol 2018; 40:290-296. [PMID: 29676192 DOI: 10.1080/08923973.2018.1460754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT Sulfur mustard (SM) is a lipophilic and reactive chemical compound that targets human airway system. OBJECTIVE Glutathione (GSH) depletion, oxidative stress (OS) status, and changes in expression of GSH-dependent antioxidant enzymes were considered in human mustard lungs. MATERIALS AND METHODS Lung biopsies and bronchoalveolar lavage (BAL) were collected from non-exposed (n = 10) individuals and SM-exposed patients (n = 12). Alterations in expression of GSH-dependent enzymes were studied using RT2 Profiler™ PCR array. OS was evaluated by determining BAL fluid levels of total antioxidant capacity (TAC), malondialdehyde (MDA), and GSH. RESULTS Mean TAC (0.142 ± 0.027 µmol/l) and GSH (4.98 ± 1.02 nmol/l) in BAL fluids of control group was significantly higher (p < .05) than those in SM-exposed patients (TAC = 0.095 ± 0.018 µmol/l and GSH= 3.09 ± 1.02 nmol/l), while MDA level in BAL fluids of these patients (0.71 ± 0.06 nmol/l) was significantly (p = .001) higher than that in controls (0.49 ± 0.048 nmol/l). Glutathione peroxidases (GPXs), glutathione-s-transferases (GSTs), and glutathione synthetase (GSS) enzymes were overexpressed in mustard lung biopsies, while glutathione reductase (GSR) was significantly downregulated (14.95-fold). CONCLUSIONS GSH depletion induced by GSR downregulation may be a major mechanism of SM toxicity on human lung. Despite overexpression of GSTs and GPXs genes, GSH depletion may decline the productivity of these enzymes and total antioxidants capacity, which is associated with OS.
Collapse
Affiliation(s)
- Issa Layali
- a Department of Biochemistry , Sari Branch, Islamic Azad University , Sari , Iran
| | - Alireza Shahriary
- b Chemical Injuries Research Center, System Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Nima Rahmani Talatappe
- b Chemical Injuries Research Center, System Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Eisa Tahmasbpour
- c Laboratory of Regenerative Medicine & Biomedical Innovations , Pasteur Institute of Iran , Tehran , Iran
| | - Hossein Rostami
- d Heltch Research Center, Life Style Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Asghar Beigi Harchegani
- b Chemical Injuries Research Center, System Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|