1
|
Zaborowska-Mazurkiewicz M, Bizoń T, Matyszewska D, Fontaine P, Bilewicz R. Oxidation of lipid membrane cholesterol by cholesterol oxidase and its effects on raft model membrane structure. Colloids Surf B Biointerfaces 2024; 245:114191. [PMID: 39232481 DOI: 10.1016/j.colsurfb.2024.114191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/22/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
The effects of a peripheral protein - cholesterol oxidase (3β-hydroxysteroid oxidase, ChOx) on the characteristics of model lipid membranes composed of cholesterol, cholesterol:sphingomyelin (1:1), and the raft model composed of DOPC:Chol:SM (1:1:1) were investigated using two membrane model systems: the flat monolayer prepared by the Langmuir technique and the curved model consisting of liposome of the same lipids. The planar monolayers and liposomes were employed to follow membrane cholesterol oxidation to cholestenone catalyzed by ChOx and changes in the lipid membrane structure accompanying this reaction. Changes in the structure of liposomes in the presence of the enzyme were reflected in the changes of hydrodynamic diameter and fluorescence microscopy images, while changes of surface properties of planar membranes were evaluated by grazing incidence X-ray diffraction (GIXD) and Brewster angle microscopy. UV-Vis absorbance measurements confirmed the activity of the enzyme in the tested systems. A better understanding of the interactions between the enzyme and the cell membrane may help in finding alternative ways to decrease excessive cholesterol levels than the common approach of treating hypercholesterolemia with statins, which are not free from undesirable side effects, repeatedly reported in the literature and observed by the patients.
Collapse
Affiliation(s)
| | - Teresa Bizoń
- Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02093, Poland
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw 02089, Poland
| | - Philippe Fontaine
- Synchrotron Soleil, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02093, Poland.
| |
Collapse
|
2
|
Alkafaas SS, Abdallah AM, Hassan MH, Hussien AM, Elkafas SS, Loutfy SA, Mikhail A, Murad OG, Elsalahaty MI, Hessien M, Elshazli RM, Alsaeed FA, Ahmed AE, Kamal HK, Hafez W, El-Saadony MT, El-Tarabily KA, Ghosh S. Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity. BMC Public Health 2024; 24:395. [PMID: 38321448 PMCID: PMC10848368 DOI: 10.1186/s12889-024-17747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Mai H Hassan
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Abanoub Mikhail
- Department of Physics, Faculty of Science, Minia University, Minia, Egypt
- Faculty of Physics, ITMO University, Saint Petersburg, Russia
| | - Omnia G Murad
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34517, Egypt
| | - Fatimah A Alsaeed
- Department of Biology, College of Science, King Khalid University, Muhayl, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16Th Street, 35233, Khalifa City, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, 12622, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
3
|
Dynarowicz-Latka P, Wnętrzak A, Chachaj-Brekiesz A. Advantages of the classical thermodynamic analysis of single-and multi-component Langmuir monolayers from molecules of biomedical importance-theory and applications. J R Soc Interface 2024; 21:20230559. [PMID: 38196377 PMCID: PMC10777166 DOI: 10.1098/rsif.2023.0559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
The Langmuir monolayer technique has been successfully used for decades to model biological membranes and processes occurring at their interfaces. Classically, this method involves surface pressure measurements to study interactions within membrane components as well as between external bioactive molecules (e.g. drugs) and the membrane. In recent years, surface-sensitive techniques were developed to investigate monolayers in situ; however, the obtained results are in many cases insufficient for a full characterization of biomolecule-membrane interactions. As result, description of systems using parameters such as mixing or excess thermodynamic functions is still relevant, valuable and irreplaceable in biophysical research. This review article summarizes the theory of thermodynamics of single- and multi-component Langmuir monolayers. In addition, recent applications of this approach to characterize surface behaviour and interactions (e.g. orientation of bipolar molecules, drug-membrane affinity, lateral membrane heterogeneity) are presented.
Collapse
Affiliation(s)
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Zaborowska M, Broniatowski M, Fontaine P, Bilewicz R, Matyszewska D. Statin Action Targets Lipid Rafts of Cell Membranes: GIXD/PM-IRRAS Investigation of Langmuir Monolayers. J Phys Chem B 2023; 127:7135-7147. [PMID: 37551973 PMCID: PMC10440791 DOI: 10.1021/acs.jpcb.3c02574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Indexed: 08/09/2023]
Abstract
Lipid rafts are condensed regions of cell membranes rich in cholesterol and sphingomyelin, which constitute the target for anticholesterolemic drugs - statins. In this work, we use for the first time a combined grazing-incidence X-ray diffraction (GIXD)/polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS)/Brewster angle microscopy (BAM) approach to show the statin effect on model lipid rafts and its components assembled in Langmuir monolayers at the air-water interface. Two representatives of these drugs, fluvastatin (FLU) and cerivastatin (CER), of different hydrophobicity were chosen, while cholesterol (Chol) and sphingomyelin (SM), and their 1:1 mixture were selected to form condensed monolayers of lipid rafts. The effect of statins on the single components of lipid rafts indicated that both the hydrophobicity of the drugs and the organization of the layer determined the drug-lipid interaction. For cholesterol monolayers, only the most hydrophobic CER was effectively changing the film structure, while for the less organized sphingomyelin, the biggest effect was observed for FLU. This drug affected both the polar headgroup region as shown by PM-IRRAS results and the 2D crystalline structure of the SM monolayer as evidenced by GIXD. Measurements performed for Chol/SM 1:1 models proved also that the statin effect depends on the presence of Chol-SM complexes. In this case, the less hydrophobic FLU was not able to penetrate the binary layer at all, while exposure to the hydrophobic CER resulted in the phase separation and formation of ordered assemblies. The changes in the membrane properties were visualized by BAM images and GIXD patterns and confirmed by thermodynamic parameters of hysteresis in the Langmuir monolayer compression-decompression experiments.
Collapse
Affiliation(s)
| | - Marcin Broniatowski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30387 Kraków, Poland
| | - Philippe Fontaine
- Synchrotron
SOLEIL, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Renata Bilewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland
| | - Dorota Matyszewska
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| |
Collapse
|
5
|
Kobierski J, Wnętrzak A, Chachaj-Brekiesz A, Dynarowicz-Latka P. Predicting the packing parameter for lipids in monolayers with the use of molecular dynamics. Colloids Surf B Biointerfaces 2021; 211:112298. [PMID: 34954518 DOI: 10.1016/j.colsurfb.2021.112298] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023]
Abstract
Lipid molecules form the backbone of biological membranes. Due to their amphiphilic structure, they can self-organize in a plethora of different structures when in contact with water. The type of self-assembled structure and its curvature depend on so-called shape factor or critical packing parameter, CPP, that can be derived knowing the molecular volume of a lipid (V), optimal surface area (a0) and critical chain length (lc) (see Intermolecular and Surface Forces by Jacob N. Israelachvili, Third Edition, 2011). The value of CPP allows not only to predict the type of self-assembled structure but also is a key factor for molecular interactions, which play a great role both in physiological and pathological conditions. The greatest difficulties arise when calculating the a0 parameter, and although for some typical membrane lipids these values have been determined, there are a number of derivatives for which this parameter, and thus CPP, are unknown. The value of CPP allows not only to predict the type of self-assembled structure but also is a key factor for molecular interactions, which play a great role both in physiological and pathological conditions. So far, the determination of the packing parameter required the use of theoretical models with assumptions deviating from the physical conditions. Here we report a method based on molecular dynamics, which was applied to simulate lipid membranes consisting of cholesterol, oxysterols, sphingolipids, phosphatidylcholines, and phosphatidylethanolamines. For lipid molecules for which CPPs have already been determined, high compliance has been demonstrated. This proves that the method presented herein can be successfully used to determine packing parameters for other membrane lipids and amphiphilic molecules.
Collapse
Affiliation(s)
- Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | |
Collapse
|
6
|
Zaborowska M, Dziubak D, Matyszewska D, Sek S, Bilewicz R. Designing a Useful Lipid Raft Model Membrane for Electrochemical and Surface Analytical Studies. Molecules 2021; 26:5483. [PMID: 34576954 PMCID: PMC8467995 DOI: 10.3390/molecules26185483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
A model biomimetic system for the study of protein reconstitution or drug interactions should include lipid rafts in the mixed lipid monolayer, since they are usually the domains embedding membrane proteins and peptides. Four model lipid films composed of three components: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol (Chol) and sphingomyelin (SM) mixed in different molar ratios were proposed and investigated using surface pressure measurements and thermodynamic analysis of the monolayers at the air-water interface and imaged by Brewster angle microscopy. The ternary monolayers were transferred from the air-water onto the gold electrodes to form bilayer films and were studied for the first time by electrochemical methods: alternative current voltammetry and electrochemical impedance spectroscopy and imaged by atomic force microscopy. In excess of DOPC, the ternary systems remained too liquid for the raft region to be stable, while in the excess of cholesterol the layers were too solid. The layers with SM in excess lead to the formation of Chol:SM complexes but the amount of the fluid matrix was very low. The equimolar content of the three components lead to the formation of a stable and well-organized assembly with well-developed raft microdomains of larger thickness, surrounded by the more fluid part of the bilayer. The latter is proposed as a convenient raft model membrane for further physicochemical studies of interactions with drugs or pollutants or incorporation of membrane proteins.
Collapse
Affiliation(s)
| | - Damian Dziubak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland; (D.D.); (S.S.)
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland;
| |
Collapse
|
7
|
Laszuk P, Petelska AD. Interactions between Phosphatidylcholine and Kaempferol or Myristicin: Langmuir Monolayers and Microelectrophoretic Studies. Int J Mol Sci 2021; 22:ijms22094729. [PMID: 33946951 PMCID: PMC8125135 DOI: 10.3390/ijms22094729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
Flavonoid compounds are known for their antibacterial, anti-inflammatory, and anticancer properties. Therefore, they can influence membrane properties that interest us, modifying both their structure and functions. We used kaempferol (K) and myricetin (M) as representatives of this group. We investigated the influence of the abovementioned compounds on model cell membranes' properties (i.e., Langmuir monolayers and liposomes). The basic research methods used in these studies were the Langmuir method with Brewster angle microscopy and microelectrophoresis. The π-A isotherms were registered for the pure components and mixtures of these compounds with phosphatidylcholine (PC) in appropriate volume ratios. Using mathematical equations, we established that kaempferol, myricetin, and the lipids formed complexes at 1:1 ratios. We derived the parameters characterizing the formed complexes, i.e., the surfaces occupied by the complexes and the stability constants of the formed complexes. Using the microelectrophoretic method, we determined the dependence of the lipid membranes' surface charge density as a function of the pH (in the range of 2 to 10) of the electrolyte solution. The presented results indicate that the PC membrane's modification with kaempferol or myricetin affected changes in the surface charge density and isoelectric point values.
Collapse
|
8
|
Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2021; 14:34-47. [PMID: 33510571 PMCID: PMC7832984 DOI: 10.33393/dti.2020.2185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.
Collapse
|
9
|
Szlasa W, Zendran I, Zalesińska A, Tarek M, Kulbacka J. Lipid composition of the cancer cell membrane. J Bioenerg Biomembr 2020; 52:321-342. [PMID: 32715369 PMCID: PMC7520422 DOI: 10.1007/s10863-020-09846-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Cancer cell possesses numerous adaptations to resist the immune system response and chemotherapy. One of the most significant properties of the neoplastic cells is the altered lipid metabolism, and consequently, the abnormal cell membrane composition. Like in the case of phosphatidylcholine, these changes result in the modulation of certain enzymes and accumulation of energetic material, which could be used for a higher proliferation rate. The changes are so prominent, that some lipids, such as phosphatidylserines, could even be considered as the cancer biomarkers. Additionally, some changes of biophysical properties of cell membranes lead to the higher resistance to chemotherapy, and finally to the disturbances in signalling pathways. Namely, the increased levels of certain lipids, like for instance phosphatidylserine, lead to the attenuation of the immune system response. Also, changes in lipid saturation prevent the cells from demanding conditions of the microenvironment. Particularly interesting is the significance of cell membrane cholesterol content in the modulation of metastasis. This review paper discusses the roles of each lipid type in cancer physiology. The review combined theoretical data with clinical studies to show novel therapeutic options concerning the modulation of cell membranes in oncology.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Iga Zendran
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland.
| |
Collapse
|
10
|
The Equilibria in Lipid-Lipoic Acid Systems: Monolayers, Microelectrophoretic and Interfacial Tension Studies. Molecules 2020; 25:molecules25163678. [PMID: 32806764 PMCID: PMC7465766 DOI: 10.3390/molecules25163678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 01/25/2023] Open
Abstract
In this examination, we investigated the effect of lipoic acid (LA) on the properties of biological membrane models (monolayers, bilayers, and liposomes) formed from phosphatidylcholine (PC) or phosphatidylserine (PS) using the Langmuir, microelectrophoresis, and interfacial tension methods. The Langmuir technique allowed us to calculate the π–A isotherms and determine the molecular surface areas of pure and mixed monolayers. Using mathematical equations, we established that LA and the lipids formed complexes at a 1:1 ratio. The interfacial tension method was based on Young and Laplace’s equation. We assumed the formation of a 1:1 complex in the PC–LA system. Using the mathematical relationships, we derived the parameters characterizing the resulting complex, i.e., the surface occupied by the complex and the interfacial tension and stability constant of the formed complex. The microelectrophoretic method was used to determine the dependence of the zeta potential of the lipid membranes as a function of the pH (pH 2 to 10) of the electrolyte solution. The results indicate that modification of PC or PS membranes with LA affects changes in the zeta potential and the isoelectric point values.
Collapse
|
11
|
Tzoneva R, Stoyanova T, Petrich A, Popova D, Uzunova V, Momchilova A, Chiantia S. Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models. Biomolecules 2020; 10:E802. [PMID: 32455962 PMCID: PMC7277205 DOI: 10.3390/biom10050802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid-lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Rumiana Tzoneva
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Tihomira Stoyanova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Annett Petrich
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany;
| | - Desislava Popova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Veselina Uzunova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Albena Momchilova
- Bulgarian Academy of Sciences, Institute of Biophysics and Biomedical Engineering, 1113 Sofia, Bulgaria; (R.T.); (T.S.); (D.P.); (V.U.); (A.M.)
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Potsdam, Germany;
| |
Collapse
|