1
|
Kakumba JM, Kindenge JM, Kapepula PM, Iyamba JML, Mashi ML, Mulwahali JW, Kialengila DM. Evaluation of Antibiotic Prescribing Pattern Using WHO Access, Watch and Reserve Classification in Kinshasa, Democratic Republic of Congo. Antibiotics (Basel) 2023; 12:1239. [PMID: 37627659 PMCID: PMC10451486 DOI: 10.3390/antibiotics12081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The AWaRe tool was set up by the World Health Organization (WHO) to promote the rational use of antimicrobials. Indeed, this tool classifies antibiotics into four groups: access, watch, reserve and not-recommended antibiotics. In The Democratic Republic of Congo, data on antibiotic dispensing (prescribing) by health professionals according to the AWaRe classification are scarce. In this research work, we aimed to explore antibiotic dispensing pattern from health professionals according to the WHO AWaRe classification to strengthen the national antimicrobial resistance plan. METHODS For this purpose, a survey was conducted from July to December 2022 in the district of Tshangu in Kinshasa. From randomly selected drugstores, drug-sellers were interviewed and randomly selected customers attending those drugstores were included in the study for medical prescriptions collection. The prescribed antibiotics were classified into the access, watch, reserve and not-recommended antibiotics group and by antibiotics number by prescription among pharmacies surveyed. RESULTS 400 medical prescriptions were collected from 80 drugstores and among which, 301 (75.25%) contained antibiotics. Out of 301 prescriptions, we noticed 164 (54.5%) containing one antibiotic, 117 (38.9%) containing two antibiotics, 15 (5%) containing three antibiotics and 5 (1.6%) containing four antibiotics. A total of 463 antibiotics were prescribed and distributed as 169 (36.5%) were from the access group, 200 (43.2%) from the watch group and 94 (20.3%) from not-recommended antibiotics group, respectively. This can explain the fact of emerging bacterial strains, as, according to the WHO recommendations, the access group should be prioritized because of its activity against a wide range of commonly encountered pathogens and its showing low resistance susceptibility compared to antibiotics from other groups. Based on the anatomical, therapeutic and chemical (ATC) classifications, we observed that third generation cephalosporins represented 34.33% of the prescribed antibiotics, followed by penicillins (17.17%), macrolides (7.63%), aminoglycosides (7.36%) and Imidazole (7.36%), thus accounting approximately for 74% of the classes of antibiotics prescribed. Additionally, among them, the most frequently prescribed antibiotics were Ceftriaxone (21.38%), Amoxicillin (11.01%), Gentamycin (5.61%), Amoxicillin-clavulanic acid (5.61%), Azithromycin (4.97%) and Metronidazole (4.75%), thus accounting for approximately 54% of all the prescribed antibiotics. CONCLUSION These results highlight the importance of strict implementation of the national plan to combat antimicrobial resistance and the need to train health workers in the correct application of the WHO AWaRe classification.
Collapse
Affiliation(s)
- Jocelyn Mankulu Kakumba
- Laboratory of Drug Analysis, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI 212, Democratic Republic of Congo; (J.M.K.); (D.M.K.)
| | - Jérémie Mbinze Kindenge
- Laboratory of Drug Analysis, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI 212, Democratic Republic of Congo; (J.M.K.); (D.M.K.)
| | - Paulin Mutwale Kapepula
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI 212, Democratic Republic of Congo;
| | - Jean-Marie Liesse Iyamba
- Laboratory of Experimental and Pharmaceutical Microbiology, University of Kinshasa, Kinshasa XI 212, Democratic Republic of Congo; (J.-M.L.I.); (J.W.M.)
| | - Murielle Longokolo Mashi
- Département de Médecine Interne, Service de Maladies Infectieuses et Tropicales, Kinshasa XI 212, Democratic Republic of Congo;
| | - Jose Wambale Mulwahali
- Laboratory of Experimental and Pharmaceutical Microbiology, University of Kinshasa, Kinshasa XI 212, Democratic Republic of Congo; (J.-M.L.I.); (J.W.M.)
| | - Didi Mana Kialengila
- Laboratory of Drug Analysis, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI 212, Democratic Republic of Congo; (J.M.K.); (D.M.K.)
| |
Collapse
|
2
|
Ben Haj Yahia A, Tayh G, Landolsi S, Maamar E, Galai N, Landoulsi Z, Messadi L. First Report of OXA-48 and IMP Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Diarrheic Calves in Tunisia. Microb Drug Resist 2023; 29:150-162. [PMID: 36695709 DOI: 10.1089/mdr.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antimicrobial resistance is one of the most serious threats to human and animal health. Evidence suggests that the overuse of antimicrobial agents in animal production has led to the emergence and dissemination of multidrug-resistant isolates. The objective of this study was to assess the rate of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in calf feces and to characterize their resistance genes for antibiotics like beta-lactams and colistin, but also to determine their virulence genes. Fecal samples were collected from 100 diarrheic calves in the region of Bizerte, Tunisia. After isolation, E. coli isolates were screened for antimicrobial resistance against 21 antibiotics by the disc diffusion method. Characterization of β-lactamase genes and determination of associated resistance genes were performed by polymerase chain reaction. Among 71 E. coli isolates, 26 (36.6%) strains were ESBL-producing. Most of these isolates were multidrug-resistant (92.3%) and the most prevalent beta-lactamase genes detected were blaCTX-M (n = 26), blaSHV (n = 11), and blaTEM (n = 8), whereas only 1 isolate carried the blaCMY gene. In addition, resistance to carbapenems was detected in two isolates; one of them harbored both blaOXA-48 and blaIMP genes and the other isolate carried only the blaIMP gene. Several resistance genes were identified for the first time in Tunisia from cases of diarrheic calves. Furthermore, to the best of our knowledge, this is the first report of detection and identification of carbapenem resistance genes and virulence genes from calves in North Africa. A high occurrence of antimicrobial resistance of E. coli recovered from fecal samples of calves with diarrhea was observed, highlighting the need for prudent use of antimicrobial agents in veterinary medicine to decrease the incidence of multidrug-resistant bacteria for both animals and humans.
Collapse
Affiliation(s)
- Asma Ben Haj Yahia
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie.,Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, University of Tunis El Manar, Tunis, Tunisie
| | - Ghassan Tayh
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie.,Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, University of Tunis El Manar, Tunis, Tunisie
| | - Sarrah Landolsi
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie
| | - Elaa Maamar
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie
| | - Nejia Galai
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie
| | - Zbaida Landoulsi
- Office des Terres Domaniales, Agrocombinat Ghezala, Mateur, Tunisie
| | - Lilia Messadi
- Service de Microbiologie et d'Immunologie, Ecole Nationale de Médecine Vétérinaire, University of Manouba, Sidi Thabet, Tunisie
| |
Collapse
|
3
|
Harbaoui S, Ferjani S, Abbassi M, Saidani M, Gargueh T, Ferjani M, Hammi Y, Boutiba‐Ben Boubaker I. Genetic heterogeneity and predominance of
bla
CTX‐M
‐15
in cefotaxime‐resistant
Enterobacteriaceae
isolates colonizing hospitalized children in Tunisia. Lett Appl Microbiol 2022; 75:1460-1474. [DOI: 10.1111/lam.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- S. Harbaoui
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
| | - S. Ferjani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
| | - M.S. Abbassi
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie Tunis Tunisie
| | - M. Saidani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
- CHU Charles Nicolle Service de Microbiologie 1006 Tunis Tunisie
| | - T. Gargueh
- CHU Charles Nicolle Service de Pédiatrie 1006 Tunis Tunisie
| | - M. Ferjani
- CHU Charles Nicolle Service de Pédiatrie 1006 Tunis Tunisie
| | - Y. Hammi
- CHU Charles Nicolle Service de Pédiatrie 1006 Tunis Tunisie
| | - I. Boutiba‐Ben Boubaker
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
- CHU Charles Nicolle Service de Microbiologie 1006 Tunis Tunisie
| |
Collapse
|
4
|
Cai L, Sun J, Yao F, Yuan Y, Zeng M, Zhang Q, Xie Q, Wang S, Wang Z, Jiao X. Antimicrobial resistance bacteria and genes detected in hospital sewage provide valuable information in predicting clinical antimicrobial resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148815. [PMID: 34247085 DOI: 10.1016/j.scitotenv.2021.148815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
Extensive use of antibiotics is significantly associated with development of antibiotic-resistant (AR) bacteria. However, their causal relationships have not been adequately investigated, especially in human population and hospitals. Our aims were to understand clinical AR through revealing co-occurrence patterns between antibiotic-resistant bacteria and genes (ARB and ARGs), and their association with antibiotic use, and to consider impact of ARB and ARGs on environmental and human health. Antibiotic usage was calculated based on the actual consumption in our target hospital. ARB was identified by culture. In isolates collected from hospital sewage, bacterial-specific DNA sequences and ARGs were determined using metagenomics. Our data revealed that the use of culture-based single-indicator-strain approaches only captured ARB in 16.17% of the infectious samples. On the other hand, 1573 bacterial species and 885 types of ARGs were detected in the sewage. Furthermore, hospital use of antibiotics influenced the resistance profiles, but the strength varied among bacteria. From our metagenomics analyses, ARGs for aminoglycosides were the most common, followed by sulfonamide, tetracycline, phenicol, macrolides, and quinolones, comprising 82.6% of all ARGs. Association analyses indicated that 519 pairs of ARGs were significantly correlated with ARB species (r > 0.8). The co-occurrence patterns of bacteria-ARGs mirrored the AR in the clinic. In conclusion, our systematic investigation further emphasized that antibiotic usage in hospital significantly influenced the abundance and types of ARB and ARGs in dose- and time-dependent manners which, in turn, mirrored clinical AR. In addition, our data provide novel information on development of certain ARB with multiple antibiotic resistance. These ARB and ARGs from sewage can also be disseminated into the environment and communities to create health problems. Therefore, it would be helpful to use such data to develop improved predictive risk model of AR, to enhance effective use of antibiotics, and to reduce environmental pollution.
Collapse
Affiliation(s)
- Leshan Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qiaoxin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shiwei Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Zhen Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
5
|
Occurrence of NDM-1 and VIM-2 Co-Producing Escherichia coli and OprD Alteration in Pseudomonas aeruginosa Isolated from Hospital Environment Samples in Northwestern Tunisia. Diagnostics (Basel) 2021; 11:diagnostics11091617. [PMID: 34573959 PMCID: PMC8467603 DOI: 10.3390/diagnostics11091617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (blaNDM-1 (n = 8); blaNDM-1 + blaVIM-2 (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored blaOXA-494. Other genes were also detected, notably blaTEM (n = 23), blaCTX-M-1 (n = 10) and blaCTX-M-9 (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.
Collapse
|
6
|
Ahmed El-Domany R, El-Banna T, Sonbol F, Abu-Sayedahmed SH. Co-existence of NDM-1 and OXA-48 genes in Carbapenem Resistant Klebsiella pneumoniae clinical isolates in Kafrelsheikh, Egypt. Afr Health Sci 2021; 21:489-496. [PMID: 34795700 PMCID: PMC8568246 DOI: 10.4314/ahs.v21i2.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background The noteworthy spread of carbapenem-resistant K. pneumoniae (CR-KP) isolates represents a significant safety threat. Objective Determination of the carbapenemase genes incidence among CR-KP clinical isolates in Kafrelsheikh, Egypt. Methods A total of 230 K. pneumoniae isolates were recovered from four hospitals in Kafrelsheikh, Egypt. Susceptibility testing was conducted using Kirby-Bauer method and automated-Vitek2 system. CR-KP isolates were tested using modified Hodge test (MHT) and combined disk synergy test. PCR and DNA sequencing were conducted for CR-KP isolates to recognize the included carbapenemase-genes. Results Out of 230 K. pneumoniae isolates, 50 isolates presented resistance to carbapenem (meropenem). All 50 CR-KP isolates were multidrug-resistant (MDR). Genes like blaNDM-1 and blaOXA-48 were the only detected genes among CR-KP with an incidence of 70.0% and 52.0%, respectively. Up to 74.0% of the tested isolates carried at least one of the two recorded genes, among them 48.0% co-harbored both blaNDM-1 and blaOXA-48 genes. The accession-numbers of sequenced blaNDM-1 and blaOXA-48 genes were MG594615 and MG594616, respectively. Conclusion This study reported a high incidence of MDR profile with the emergence of blaNDM-1 and blaOXA-48 genes co-existence in CR-KP isolates in Kafrelsheikh, Egypt. Hence, more restrictions should be applied against the spread of such serious pathogens.
Collapse
Affiliation(s)
- Ramadan Ahmed El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Tarek El-Banna
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Fatma Sonbol
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Samar Hamed Abu-Sayedahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
7
|
Choi J, Baek J, Kweon D, Ko KS, Yoon H. Rapid determination of carbapenem resistance by low-cost colorimetric methods: Propidium Iodide and alamar blue staining. J Microbiol 2020; 58:415-421. [PMID: 32221821 DOI: 10.1007/s12275-020-9549-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 01/03/2023]
Abstract
Carbapenems are a class of β-lactam antibiotics with a broad antimicrobial activity spectrum. Owing to their sturdy structures resistant to most β-lactamases, they have been regarded as one of the last-resort antibiotics for combating multidrugresistant bacterial infections. However, the emergence of carbapenem resistance increases predominantly in nosocomial pathogens. To prevent spread of carbapenem resistance in early stages, it is imperative to develop rapid diagnostic tests that will substantially reduce the time and cost in determining carbapenem resistance. Thus, we devised a staining-based diagnostic method applicable to three different Gram-negative pathogens of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae, all with the high potential to develop carbapenem resistance. Regardless of the resistance mechanisms presented by bacterial species and strains, double staining with propidium iodide (PI) and alamar blue (AB) identified resistant bacteria with an average sensitivity of 95.35%, 7 h after imipenem treatments in 343 clinical isolates. Among the three species tested, A. baumannii showed the highest diagnostic sensitivity of 98.46%. The PI and ABmediated staining method could be a promising diagnostic method with high-throughput efficacy and low cost.
Collapse
Affiliation(s)
- Jiyoon Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jiwon Baek
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Daehyuk Kweon
- Department of Genetic Engineering and Center for Human Interface Nano Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University, School of Medicine, Suwon, 16419, Republic of Korea.,Asia-Pacific Research Foundation for Infectious Diseases, Seoul, 06367, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea. .,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
8
|
Maryam L, Khalid S, Ali A, Khan AU. Synergistic effect of doripenem in combination with cefoxitin and tetracycline in inhibiting NDM-1 producing bacteria. Future Microbiol 2019; 14:671-689. [PMID: 31161792 DOI: 10.2217/fmb-2019-0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: To propose newer combinations of antibiotics effective against NDM-1-producing bacterial strains. Materials & methods: Antibiotics combinations were tested by checkerboard assay. NDM-1 protein/enzyme was expressed and purified to perform enzyme kinetics, circular dichroism and fluorescence spectroscopic studies. Results: Doripenem-cefoxitin combination and doripenem-tetracycline combination showed synergistic effect toward NDM-1-producing strains. The catalytic efficiency of NDM-1 enzyme was decreased drastically by 96.6% upon doripenem-cefoxitin treatment and by 35.54% after doripenem-tetracycline treatment. Conformational changes were observed in NDM-1 upon combination treatment. Conclusion: NDM-1-producing bacterial strains show resistance to multiple antibiotics but the combination of doripenem-cefoxitin and doripenem-tetracycline are effective against them. The combination of a carbapenem and cephamycin antibiotic is proposed for future treatment options against bacteria-producing NDM-1.
Collapse
Affiliation(s)
- Lubna Maryam
- Medical Microbiology & Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Shamsi Khalid
- Medical Microbiology & Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Abid Ali
- Medical Microbiology & Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Asad U Khan
- Medical Microbiology & Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
9
|
Pahlavanzadeh F, Kalantar-Neyestanaki D, Motamedifar M, Savari M, Mansouri S. First detection of insertion sequences ISpa1635 and IS1411 among non-carbapenemase producing strains of Pseudomonas aeruginosa in Kerman, Iran. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Sghaier S, Abbassi MS, Pascual A, Serrano L, Díaz-De-Alba P, Said MB, Hassen B, Ibrahim C, Hassen A, López-Cerero L. Extended-spectrum β-lactamase-producing Enterobacteriaceae from animal origin and wastewater in Tunisia: first detection of O25b-B23-CTX-M-27-ST131 Escherichia coli and CTX-M-15/OXA-204-producing Citrobacter freundii from wastewater. J Glob Antimicrob Resist 2019; 17:189-194. [DOI: 10.1016/j.jgar.2019.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022] Open
|
11
|
Kollenda H, Frickmann H, Ben Helal R, Wiemer DF, Naija H, El Asli MS, Egold M, Bugert JJ, Handrick S, Wölfel R, Barguellil F, Ben Moussa M. Screening for Carbapenemases in Ertapenem-Resistant Enterobacteriaceae Collected at a Tunisian Hospital Between 2014 and 2018. Eur J Microbiol Immunol (Bp) 2019; 9:9-13. [PMID: 30967970 PMCID: PMC6444801 DOI: 10.1556/1886.2018.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Background Carbapenem-resistance is frequently detected in Enterobacteriaceae isolated from patients in Tunisia. The study was performed to identify frequent carbapenemases in Tunisian isolates. Methods Between May 2014 and January 2018, 197 ertapenem-resistant Enterobacteriaceae were isolated at the microbiological department of the Military Hospital of Tunis. The strains were phenotypically characterized and then subjected to in-house polymerase chain reaction (PCR) targeting the carbapenemase genes blaIMP, blaVIM, blaNDM, blaSPM, blaAIM, blaDIM,blaGIM, blaSIM, blaKPC, blaBIC, and blaOXA-48. Results The assessed 197 ertapenem-resistant Enterobacteriaceae from Tunis comprised 170 Klebsiella pneumoniae, 19 Enterobacter cloacae, 6 Escherichia coli, 1 Citrobacter sedlakii, and 1 Enterobacter asburiae. Thereby, 55 out of 197 isolates (27.9%) were from blood cultures, suggesting a systemic disease. The carbapenemase gene blaOXA-48 quantitatively dominated by far with 153 detections, followed by blaNDM with 14 detections, which were distributed about the whole study interval. In contrast, blaBIC and blaVIM were only infrequently identified in 5 and 3 cases, respectively, while the other carbapenamases were not observed. Conclusions The carbapenemase gene blaOXA-48 was identified in the vast majority of ertapenem-resistant Tunisian Enterobacteriaceae while all other assessed carbapenemases were much less abundant. In a quantitatively relevant minority of isolates, the applied PCR-based screening approach did not identify any carbapenemases.
Collapse
Affiliation(s)
- Hans Kollenda
- Department of Microbiology and Hospital Hygiene, Tropical Microbiology and Entomology Unit, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Tropical Microbiology and Entomology Unit, Bundeswehr Hospital Hamburg, Hamburg, Germany.,Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Rania Ben Helal
- Department of Medical Microbiology, Military Hospital of Tunis, Tunis, Tunisia
| | - Dorothea Franziska Wiemer
- Department of Infectious Diseases and Tropical Medicine, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Habiba Naija
- Department of Medical Microbiology, Military Hospital of Tunis, Tunis, Tunisia
| | | | - Melanie Egold
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | | | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Farouk Barguellil
- Department of Medical Microbiology, Military Hospital of Tunis, Tunis, Tunisia
| | - Mohamed Ben Moussa
- Department of Medical Microbiology, Military Hospital of Tunis, Tunis, Tunisia
| |
Collapse
|
12
|
de Oliveira DV, Nunes LS, Barth AL, Van Der Sand ST. Genetic Background of β-Lactamases in Enterobacteriaceae Isolates from Environmental Samples. MICROBIAL ECOLOGY 2017; 74:599-607. [PMID: 28378066 DOI: 10.1007/s00248-017-0970-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
The prevalence of β-lactamase-producing Enterobacteriaceae has increased worldwide. Although antibiotic-resistant bacteria are usually associated with hospitals, there are a growing number of reports of resistant bacteria in other environments. Concern about resistant microorganisms outside the hospital setting highlights the need to investigate mechanisms of antibiotic resistance in isolates collected from the environment. The present study evaluated the resistance mechanism to β-lactam antibiotics in 40 isolates from hospital sewage and surface water from the Dilúvio Stream, Porto Alegre City, Southern Brazil. The multiplex PCR technique was used to detect several resistance genes of β-lactamases: extended-spectrum β-lactamases (ESBLs), carbapenemases, and β-lactamase AmpC. After genes, detection amplicons were sequenced to confirm their identification. The clonal relationship was established by DNA macrorestriction using the XbaI enzyme, followed by pulsed-field gel electrophoresis (PFGE). The results indicated that resistance genes were present in 85% of the isolates. The most prevalent genes encoded narrow-spectrum β-lactamase, such as TEM-1 and SHV-1 with 70% of the strains, followed by carbapenemase KPC and GES (45%), ESBL types SHV-5 and CTX-M-8 (27.5%), and AmpC (ACT-1/MIR-1) (2.5%). Twelve isolates contained only one resistance gene, 14 contained two, and eight isolates had three resistance genes. PFGE indicated a clonal relationship among K. pneumoniae isolates. It was not possible to establish a clonal relationship between Enterobacter sp. isolates. The results highlight the potential of these resistance genes to spread in the polluted environment and to present a health risk to communities. This report is the first description of these resistance genes present in environmental samples other than a hospital in the city of Porto Alegre/RS.
Collapse
Affiliation(s)
- Daniele V de Oliveira
- Laboratório de Microbiologia Ambiental, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciana S Nunes
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Afonso Luís Barth
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Sueli T Van Der Sand
- Laboratório de Microbiologia Ambiental, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Rafraf ID, Lekunberri I, Sànchez-Melsió A, Aouni M, Borrego CM, Balcázar JL. Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:353-358. [PMID: 27814552 DOI: 10.1016/j.envpol.2016.10.062] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 05/23/2023]
Abstract
Antimicrobial resistance is a growing and significant threat to global public health, requiring better understanding of the sources and mechanisms involved in its emergence and spread. We investigated the abundance of antibiotic resistance genes (ARGs) before and after treatment in five wastewater treatment plants (WWTPs) located in different areas of the Monastir Governorate (Tunisia). Three of these WWTPs (Frina, Sahline and Zaouiet) use a conventional activated sludge process as secondary treatment, whereas the WWTP located in Beni Hassen applies an ultraviolet disinfection step after the activated sludge process and the WWTP located in Moknine treats wastewater using naturally aerated lagoons as a secondary treatment process. The abundance of six ARGs (blaCTX-M, blaTEM, qnrA, qnrS, sul I and ermB) and the class 1 integron-integrase gene (intI1) were determined by quantitative PCR. All ARGs and the intI1 gene were detected in the wastewater samples, except the blaCTX-M gene, which was not detected in both influent and effluent samples from Sahline and Beni Hassen WWTPs, and the qnrS gene, which was not detected neither in the WWTP influent in Moknine nor in the WWTP effluent in Beni Hassen. Although the relative concentration of ARGs was generally found to be similar between samples collected before and after the wastewater treatment, the abundance of blaCTX-M, blaTEM, and qnrS genes was higher in the effluent of the Frina WWTP which, unlike other WWTPs, not only receives domestic or industrial sewage but also untreated hospital waste. To the best of our knowledge, this study quantified for the first time the abundance of ARGs in different Tunisian WWTPs, and the results agree with previous studies suggesting that conventional wastewater treatment does not efficiently reduce ARGs. Therefore, these findings could be useful to improve the design or operation of WWTPs.
Collapse
Affiliation(s)
- Ikbel Denden Rafraf
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Itziar Lekunberri
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Alexandre Sànchez-Melsió
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Mahjoub Aouni
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain.
| |
Collapse
|
14
|
Maamar E, Ferjani S, Jendoubi A, Hammami S, Hamzaoui Z, Mayonnove-Coulange L, Saidani M, Kammoun A, Rehaiem A, Ghedira S, Houissa M, Boutiba-Ben Boubaker I, Slim A, Dubois V. High Prevalence of Gut Microbiota Colonization with Broad-Spectrum Cephalosporin Resistant Enterobacteriaceae in a Tunisian Intensive Care Unit. Front Microbiol 2016; 7:1859. [PMID: 27965626 PMCID: PMC5126703 DOI: 10.3389/fmicb.2016.01859] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/04/2016] [Indexed: 11/15/2022] Open
Abstract
Healthcare-associated infections due to cefotaxime-resistant (CTX-R) Enterobacteriaceae have become a major public health threat, especially in intensive care units (ICUs). Often acquired nosocomially, CTX-R Enterobacteriaceae can be introduced initially by patients at admission. This study aimed to determine the prevalence and genetic characteristics of CTX-R Enterobacteriaceae-intestinal carriage in ICU patients, to evaluate the rate of acquisition of these organisms during hospitalization, and to explore some of the associated risk factors for both carriage and acquisition. Between December 2014 and February 2015, the 63 patients admitted in the ICU of Charles Nicolle hospital were screened for rectal CTX-R Enterobacteriaceae colonization at admission and once weekly thereafter to identify acquisition. CTX-R Enterobacteriaceae fecal carriage rate was 20.63% (13/63) at admission. Among the 50 non-carriers, 35 were resampled during their hospitalization and the acquisition rate was 42.85% (15/35). Overall, 35 CTX-R Enterobacteriaceae isolates were collected from 28 patients (25 Klebsiella pneumoniae, seven Escherichia coli, and three Enterobacter cloacae strains). Seven patients were simultaneously colonized with two CTX-R Enterobacteriaceae isolates. CTX-M-15 was detected in most of the CTX-R Enterobacteriaceae isolates (30/35, 88.23%). Three strains co-produced CMY-4 and 22 strains were carbapenem-resistant and co-produced a carbapenemase [OXA-48 (n = 13) or NDM-1 (n = 6)]. Molecular typing of K. pneumoniae strains, revealed eight Pulsed field gel electrophoresis (PFGE) patterns and four sequence types (ST) [ST101, ST147, ST429, and ST336]. However, E. coli isolates were genetically unrelated and belonged to A (n = 2), B1 (n = 2) and B2 (n = 3) phylogenetic groups and to ST131 (two strains), ST572 (two strains), ST615 (one strain) and ST617 (one strain). Five colonized patients were infected by CTX-R Enterobacteriaceae (four with the same strain identified from their rectal swab and one with a different strain). Whether imported or acquired during the stay in the ICU, colonization by CTX-R Enterobacteriaceae is a major risk factor for the occurrence of serious nosocomial infections. Their systematic screening in fecal carriage is mandatory to prevent the spread of these multidrug resistant bacteria.
Collapse
Affiliation(s)
- Elaa Maamar
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory of Antimicrobial Resistance, University of Tunis El ManarTunis, Tunisia; Faculty of Sciences of Tunis, University of Tunis El ManarTunis, Tunisia
| | - Sana Ferjani
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory of Antimicrobial Resistance, University of Tunis El Manar Tunis, Tunisia
| | - Ali Jendoubi
- Intensive Care Unit, Charles Nicolle Hospital Tunis, Tunisia
| | - Samia Hammami
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory of Antimicrobial Resistance, University of Tunis El ManarTunis, Tunisia; Faculty of Sciences of Gafsa, University of GafsaGafsa, Tunisia
| | - Zaineb Hamzaoui
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory of Antimicrobial Resistance, University of Tunis El Manar Tunis, Tunisia
| | | | - Mabrouka Saidani
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory of Antimicrobial Resistance, University of Tunis El ManarTunis, Tunisia; Laboratory of Microbiology, Charles Nicolle HospitalTunis, Tunisia
| | - Aouatef Kammoun
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory of Antimicrobial Resistance, University of Tunis El ManarTunis, Tunisia; Laboratory of Microbiology, Charles Nicolle HospitalTunis, Tunisia
| | - Amel Rehaiem
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory of Antimicrobial Resistance, University of Tunis El ManarTunis, Tunisia; Laboratory of Microbiology, Charles Nicolle HospitalTunis, Tunisia
| | - Salma Ghedira
- Intensive Care Unit, Charles Nicolle Hospital Tunis, Tunisia
| | - Mohamed Houissa
- Intensive Care Unit, Charles Nicolle Hospital Tunis, Tunisia
| | - Ilhem Boutiba-Ben Boubaker
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory of Antimicrobial Resistance, University of Tunis El ManarTunis, Tunisia; Laboratory of Microbiology, Charles Nicolle HospitalTunis, Tunisia
| | - Amine Slim
- Faculty of Medicine of Tunis - LR99ES09 Research Laboratory of Antimicrobial Resistance, University of Tunis El ManarTunis, Tunisia; Laboratory of Microbiology, Charles Nicolle HospitalTunis, Tunisia
| | - Veronique Dubois
- University Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR5234 Bordeaux, France
| |
Collapse
|
15
|
Mathlouthi N, Al-Bayssari C, Bakour S, Rolain JM, Chouchani C. RETRACTED ARTICLE: Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit Rev Microbiol 2016; 43:43-61. [DOI: 10.3109/1040841x.2016.1160867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Najla Mathlouthi
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| | - Charbel Al-Bayssari
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Jean Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Chedly Chouchani
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire des Microorganismes et Biomolécules Actives, Campus Universitaire, El-Manar II, Tunisia
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, Technopôle de Borj-Cedria, BP-1003, Hammam-Lif, Tunisia
| |
Collapse
|
16
|
Najwa D, Salah AM, Yolanda S, Monia K, Dorsaf M, Chiheb BR, Rakia BS, Hajer K, Assia BH, Salah H. Low antibiotic resistance rates and high genetic heterogeneity ofEscherichia coliisolates from urinary tract infections of diabetic patients in Tunisia. J Chemother 2016; 28:89-94. [DOI: 10.1179/1973947814y.0000000229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Tekiner İH, Özpınar H. Occurrence and characteristics of extended spectrum beta-lactamases-producing Enterobacteriaceae from foods of animal origin. Braz J Microbiol 2016; 47:444-51. [PMID: 26991276 PMCID: PMC4874675 DOI: 10.1016/j.bjm.2015.11.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Presence of extended spectrum beta-lactamases (ESBL) in bacteria is a growing health concern of global significance. The local, regional, national, and international epidemiological studies for extended spectrum beta-lactamases-producing Enterobacteriaceae and their encoding genes in foods are still incomplete. The objective of this study was to determine the occurrence of extended spectrum beta-lactamases-producing Enterobacteriaceae and the characteristics of their encoding genes from a total of 250 samples of various foods of animal-origin (100 raw chicken meat, 100 raw cow milk, and 50 raw cow milk cheese) sold in Turkey. Overall, 55 isolates were positive as extended spectrum beta-lactamases-producing Enterobacteriaceae. The most prevalent extended spectrum beta-lactamases-producing strain were identified as Escherichia coli (80%), followed by Enterobacter cloacae (9.1%), Citrobacter braakii (5.5%), Klebsiella pneumoniae (3.6%), and Citrobacter werkmanii (1.8%) by Vitek® MS. The simultaneous production of extended spectrum beta-lactamases and AmpC was detected in five isolates (9.1%) in E. coli (80%) and E. cloacae (20%). The frequency rates of blaTEM, blaCTX-M, and blaSHV were 96.4%, 53.7%, and 34.5%, respectively. The co-existence of bla-genes was observed in 82% of extended spectrum beta-lactamases producers with a distribution of blaTEM & blaCTX-M (52.7%), blaTEM & blaSHV (20%), blaTEM & blaCTX-M & blaSHV (12.7%), and blaSHV & blaCTX-M (1.8%). The most prevalent variant of blaCTX-M clusters was defined as blaCTX-M-1 (97.2%), followed by blaCTX-M-8 (2.8%). In summary, the analysed foods were found to be posing a health risk for Turkish consumers due to contamination by Enterobacteriaceae with a diversity of extended spectrum beta-lactamases encoding genes.
Collapse
Affiliation(s)
- İsmail Hakkı Tekiner
- Department of Food Engineering, Istanbul Aydın University, Florya Campus, Sefaköy, Küçükçekmece, Istanbul, Turkey.
| | - Haydar Özpınar
- Department of Food Engineering, Istanbul Aydın University, Florya Campus, Sefaköy, Küçükçekmece, Istanbul, Turkey
| |
Collapse
|
18
|
Ma G, Zhu W, Su H, Cheng N, Liu Y. Uncoupled Epimerization and Desaturation by Carbapenem Synthase: Mechanistic Insights from QM/MM Studies. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guangcai Ma
- Key Laboratory
of Colloid
and Interface Chemistry, Ministry of Education, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Wenyou Zhu
- Key Laboratory
of Colloid
and Interface Chemistry, Ministry of Education, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Hao Su
- Key Laboratory
of Colloid
and Interface Chemistry, Ministry of Education, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Na Cheng
- Key Laboratory
of Colloid
and Interface Chemistry, Ministry of Education, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- Key Laboratory
of Colloid
and Interface Chemistry, Ministry of Education, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
19
|
Mathlouthi N, Areig Z, Al Bayssari C, Bakour S, Ali El Salabi A, Ben Gwierif S, Zorgani AA, Ben Slama K, Chouchani C, Rolain JM. Emergence of Carbapenem-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Clinical Isolates Collected from Some Libyan Hospitals. Microb Drug Resist 2015; 21:335-41. [DOI: 10.1089/mdr.2014.0235] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Najla Mathlouthi
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, Université de Tunis El-Manar, El-Manar, Tunisie
| | - Zaynab Areig
- Infection Control Office, Benghazi Medical Centre, Benghazi, Libya
- Department of Microbiology, The Libyan Academy, Benghazi, Libya
| | - Charbel Al Bayssari
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| | - Allaaeddin Ali El Salabi
- Infection Control Office, Benghazi Medical Centre, Benghazi, Libya
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Salha Ben Gwierif
- Department of Microbiology, The Libyan Academy, Benghazi, Libya
- Department of Botany, University of Benghazi, Benghazi, Libya
| | - Abdulaziz A. Zorgani
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Tripoli, Libya
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, Université de Tunis El-Manar, El-Manar, Tunisie
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, Université de Tunis El-Manar, El-Manar, Tunisie
- Université de Carthage, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Hammam-Lif, Tunisie
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63, CNRS 7278, IRD 198, INSERM 1095, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France
| |
Collapse
|
20
|
Colomer-Lluch M, Calero-Cáceres W, Jebri S, Hmaied F, Muniesa M, Jofre J. Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population. ENVIRONMENT INTERNATIONAL 2014; 73:167-75. [PMID: 25127043 DOI: 10.1016/j.envint.2014.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 05/10/2023]
Abstract
The emergence and increased prevalence of antibiotic resistance genes (ARGs) in the environment may pose a serious global health concern. This study evaluates the abundance of several ARGs in bacterial and bacteriophage DNA via real-time qPCR in samples from five different sampling points in Tunisia; three wastewater treatment plants (WWTP 1, 2 and 3) and wastewater from two abattoirs slaughtering different animals. Results are compared with those obtained in the Barcelona area, in northeast Spain. Eight ARGs were quantified by qPCR from total and phage DNA fraction from the samples. Three β-lactamases (bla(TEM), bla(CTX-M) cluster 1 and bla(CTX-M) cluster 9), two quinolone resistance genes (qnrA and qnrS), the mecA gene that confers resistance to methicillin in Staphylococcus aureus, the emerging armA gene, conferring resistance to aminoglycosides and sul1, the most extended gene conferring resistance to sulfonamides, were evaluated. Sul1 and bla(TEM) were the most prevalent ARGs detected at all five Tunisian sampling points, similarly with the observations in Barcelona. bla(CTX-M-9) was more prevalent than bla(CTX-M-1) both in bacterial and DNA within phage particles in all samples analysed. mecA and armA were almost absent in Tunisian waters from human or animal origin in contrast with Barcelona that showed a medium prevalence. qnrA was more prevalent than qnrS in bacterial and phage DNA from all sampling points. In conclusion, our study shows that ARGs are found in the bacterial and is reflected in the phage DNA fraction of human and animal wastewaters. The densities of each ARGs vary depending on the ARGs shed by each population and is determined by the characteristics of each area. Thus, the evaluation of ARGs in wastewaters seems to be suitable as marker reflecting the antibiotic resistance patterns of a population.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - William Calero-Cáceres
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Sihem Jebri
- Unité de Microbiologie et de Biologie Moléculaire, CNSTN, Technopôle de Sidi Thabet, Sidi Thabet 2020, Tunisia
| | - Fatma Hmaied
- Unité de Microbiologie et de Biologie Moléculaire, CNSTN, Technopôle de Sidi Thabet, Sidi Thabet 2020, Tunisia
| | - Maite Muniesa
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain
| | - Juan Jofre
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
21
|
Baba Ahmed-Kazi Tani Z, Arlet G. [News of antibiotic resistance among Gram-negative bacilli in Algeria]. ACTA ACUST UNITED AC 2014; 62:169-78. [PMID: 24819127 DOI: 10.1016/j.patbio.2014.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
Antibiotic resistance has become a major public health problem in Algeria. Indeed the past decade, we have seen a significant increase in resistance to antibiotics especially in Gram-negative bacilli. Resistance to β-lactams in enterobacteria is dominated by the production of ESBL CTX-M-3 and CTX-M-15. The strains producing these enzymes are often the cause of potentially serious infections in both hospital and community settings. Identified plasmid cephalosporinases are CMY-2, CMY-12 and DHA-1. The isolation of strains of Enterobacteriaceae and Pseudomonas aeruginosa producing carbapenemases is rare in Algeria. Some Enterobacteriaceae producing OXA-48 or VIM-19 have been reported; so far, only VIM-2 has been identified in P. aeruginosa. However, the situation regarding the strains of Acinetobacter baumannii resistant to carbapenemases seems to be more disturbing. The carbapenemase OXA-23 is the most common and seems to be endemic in the north. The carbapenemase NDM-1 has also been identified. Resistance to aminoglycosides is marked by the identification armA gene associated with blaCTX-M genes in strains of Salmonella sp. Several other resistance genes have been identified sporadically in strains of Enterobacteriaceae, P. aeruginosa and A. baumannii. Resistance genes to fluoroquinolones are more recent identification in Algeria. The most common are the Qnr determinants followed by the bifunctional enzyme AAC[6']-Ib-cr. Resistance to sulfonamides and trimethoprim was also reported in Enterobacteriaceae strains in the west of the country.
Collapse
Affiliation(s)
- Z Baba Ahmed-Kazi Tani
- Laboratoire « antibiotiques antifongiques : physico-chimie, synthèse et activité biologique », faculté des sciences de la nature et de la vie et sciences de la terre et de l'univers, université Abou Bekr Belkaïd, rocade 2, BP 119, Tlemcen, Algérie
| | - G Arlet
- Département de bactériologie, faculté de médecine, université Pierre-et-Marie-Curie, 27, rue de Chaligny, 75012 Paris, France; Département de bactériologie, hôpital Tenon, hôpitaux universitaires Est parisiens, Assistance publique-Hôpitaux de Paris, 4, rue de la Chine, 75970 Paris cedex 20, France.
| |
Collapse
|
22
|
Alvarez-Uria G, Priyadarshini U, Naik PK, Midde M, Reddy R. Mortality associated with community-acquired cephalosporin-resistant Escherichia coli in patients admitted to a district hospital in a resource-limited setting. Clin Pract 2012; 2:e76. [PMID: 24765475 PMCID: PMC3981317 DOI: 10.4081/cp.2012.e76] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/12/2012] [Accepted: 07/29/2012] [Indexed: 11/23/2022] Open
Abstract
Studies performed in developed countries have shown that infections by third generation cephalosporin resistant Escherichia coli (G3CREC) are associated with increased mortality, but data from developing countries are scarce. In this observational study, we collected clinical and microbiological information of 194 patients admitted to a district hospital in India who had community-acquired isolation of Escherichia coli. The proportion of patients with G3CREC was 79.4%. In a multivariable logistic regression analysis, factors associated with 21-day mortality were isolation from a normally sterile site, HIV infection and isolation of G3CREC. Strains of Escherichia coli isolated from normally sterile sites had lower levels of resistance to quinolones and beta-lactam antibiotics. The proportion of meropenem and ciprofloxacin resistance was 11.1% and 80.9% respectively. The high proportion of G3CREC in the community and the association of G3CREC with 21-day mortality indicate that G3CREC is a major public health problem in developing countries.
Collapse
Affiliation(s)
| | - Uvummala Priyadarshini
- Department of Microbiology, Rural Development Trust Hospital, Bathalapalli, Anantapur district, AP, India
| | | | | | - Raghuprakash Reddy
- Department of Microbiology, Rural Development Trust Hospital, Bathalapalli, Anantapur district, AP, India
| |
Collapse
|
23
|
Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55:4943-60. [PMID: 21859938 PMCID: PMC3195018 DOI: 10.1128/aac.00296-11] [Citation(s) in RCA: 893] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this review, we summarize the current "state of the art" of carbapenem antibiotics and their role in our antimicrobial armamentarium. Among the β-lactams currently available, carbapenems are unique because they are relatively resistant to hydrolysis by most β-lactamases, in some cases act as "slow substrates" or inhibitors of β-lactamases, and still target penicillin binding proteins. This "value-added feature" of inhibiting β-lactamases serves as a major rationale for expansion of this class of β-lactams. We describe the initial discovery and development of the carbapenem family of β-lactams. Of the early carbapenems evaluated, thienamycin demonstrated the greatest antimicrobial activity and became the parent compound for all subsequent carbapenems. To date, more than 80 compounds with mostly improved antimicrobial properties, compared to those of thienamycin, are described in the literature. We also highlight important features of the carbapenems that are presently in clinical use: imipenem-cilastatin, meropenem, ertapenem, doripenem, panipenem-betamipron, and biapenem. In closing, we emphasize some major challenges and urge the medicinal chemist to continue development of these versatile and potent compounds, as they have served us well for more than 3 decades.
Collapse
Affiliation(s)
- Krisztina M. Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
| | - Andrea Endimiani
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Institute for Infectious Diseases, University of Bern 3010, Bern, Switzerland
- Departments of Medicine
| | | | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
- Pharmacology
- Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|