1
|
Rahimizadeh K, Zahra QUA, Chen S, Le BT, Ullah I, Veedu RN. Nanoparticles-assisted aptamer biosensing for the detection of environmental pathogens. ENVIRONMENTAL RESEARCH 2023; 238:117123. [PMID: 37717803 DOI: 10.1016/j.envres.2023.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Given the importance of public health, it is crucial to develop quick, targeted, highly sensitive, and accurate technologies to monitor pathogenic microbes in response to the growing concerns of food and environmental safety. Although conventional approaches for microbiological detection are available, they are laborious, and often skill demanding. Therefore, such approaches are incompetent in the on-site or high-throughput assessment of pathogenic microbes. Numerous efforts have been made to develop biosensors that use nucleic acid aptamer as the biorecognition element, which would avoid the abovementioned limitations. Incorporating nanomaterials (NMs) into aptamer-based biosensors (aptasensors) improves their sensitivity and specificity, opening exciting possibilities for various applications, such as bioanalysis of food and environmental samples. Over the last decade, nanomaterial-conjugated aptasensors have seen a steadily rising demand. To this end, the main goal of this study is to demonstrate the novelty in the design of nanomaterial-conjugated aptasensors and how they can be used to detect different pathogenic microbes in water and food. The intent of this paper is to evaluate the cutting-edge techniques that have appeared in nano-aptasensors throughout the past few years, such as manufacturing procedures, analytical credibility, and sensing mechanisms. Additionally, the fundamental performance parameters of aptasensing techniques (such as detection limits, and sensing ranges response) were also used to evaluate their practical applicability. Finally, it is anticipated that this study will inspire innovative ideas and techniques for the construction and use of aptasensors for monitoring pathogenic microorganisms in food, drinks, recreational water, and wastewater.
Collapse
Affiliation(s)
- Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| | - Ismat Ullah
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430074, PR China.
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia.
| |
Collapse
|
2
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
3
|
Gunjan, Himanshu, Mukherjee R, Vidic J, Manzano M, Leal E, Raj VS, Pandey RP, Chang CM. Comparative meta-analysis of antimicrobial resistance from different food sources along with one health approach in the Egypt and UK. BMC Microbiol 2023; 23:291. [PMID: 37845637 PMCID: PMC10578024 DOI: 10.1186/s12866-023-03030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/24/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a critical global issue that poses significant threats to human health, animal welfare, and the environment. With the increasing emergence of resistant microorganisms, the effectiveness of current antimicrobial medicines against common infections is diminishing. This study aims to conduct a competitive meta-analysis of surveillance data on resistant microorganisms and their antimicrobial resistance patterns in two countries, Egypt and the United Kingdom (UK). METHODS Data for this study were obtained from published reports spanning the period from 2013 to 2022. In Egypt and the UK, a total of 9,751 and 10,602 food samples were analyzed, respectively. Among these samples, 3,205 (32.87%) in Egypt and 4,447 (41.94%) in the UK were found to contain AMR bacteria. RESULTS In Egypt, the predominant resistance was observed against β-lactam and aminoglycosides, while in the United Kingdom, most isolates exhibited resistance to tetracycline and β-lactam. The findings from the analysis underscore the increasing prevalence of AMR in certain microorganisms, raising concerns about the development of multidrug resistance. CONCLUSION This meta-analysis sheds light on the escalating AMR problem associated with certain microorganisms that pose a higher risk of multidrug resistance development. The significance of implementing One Health AMR surveillance is emphasized to bridge knowledge gaps and facilitate accurate AMR risk assessments, ensuring consumer safety. Urgent actions are needed on a global scale to combat AMR and preserve the effectiveness of antimicrobial treatments for the well-being of all living beings.
Collapse
Affiliation(s)
- Gunjan
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Marisa Manzano
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belem, Pará, 66075-000, Brazil
| | - V Samuel Raj
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun, 248007, Uttarakhand, India
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun, 248007, Uttarakhand, India.
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan.
- Laboratory Animal Center, Chang Gung University, No. 259, Wenhua 1St Road, Guishan Dist, Taoyuan City, 33302, Taiwan.
| |
Collapse
|
4
|
Pang X, Hu X, Du X, Lv C, Yuk HG. Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: the case of Salmonella spp. Food Sci Biotechnol 2023; 32:1703-1718. [PMID: 37780596 PMCID: PMC10533767 DOI: 10.1007/s10068-023-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella is one of the pathogens that cause many foodborne outbreaks throughout the world, representing an important global public health problem. Salmonella strains with biofilm-forming abilities have been frequently isolated from different food processing plants, especially in poultry industry. Biofilm formation of Salmonella on various surfaces can increase their viability, contributing to their persistence in food processing environments and cross-contamination of food products. In recent years, increasing concerns arise about the antimicrobial resistant and disinfectant tolerant Salmonella, while adaptation of Salmonella in biofilms to disinfectants exacerbate this problem. Facing difficulties to inhibit or remove Salmonella biofilms in food industry, eco-friendly and effective strategies based on chemical, biotechnological and physical methods are in urgent need. This review discusses biofilm formation of Salmonella in food industries, with emphasis on the current available knowledge related to antimicrobial resistance, together with an overview of promising antibiofilm strategies for controlling Salmonella in food production environments.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xin Hu
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xueying Du
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Chenglong Lv
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, National University of Transportation, 61 Daehak-ro Jeungpyeong-gun, Chungbuk, 27909 Republic of Korea
| |
Collapse
|
5
|
Ramkisson T, Rip D. Carbapenem resistance in Enterobacterales from agricultural, environmental and clinical origins: South Africa in a global context. AIMS Microbiol 2023; 9:668-691. [PMID: 38173973 PMCID: PMC10758576 DOI: 10.3934/microbiol.2023034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 01/05/2024] Open
Abstract
Carbapenem agents are regarded as last-resort antibiotics, however, bacterial resistance towards carbapenems has been reported in both clinical and agricultural settings worldwide. Carbapenem resistance, defined as the resistance of a bacteria towards one or more carbapenem drugs, can be mediated in either of, or a combination of, three mechanisms-although, the mechanism mediated through the production of carbapenemases (β-lactamases that are able to enzymatically degrade carbapenems) is of most significance. Of particular concern is the occurrence of carbapenemase producing Enterobacterales (CPE), with literature describing a dramatic increase in resistance globally. In South Africa, increases of carbapenemase activity occurring in Enterobacter species, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa have recently been reported. CPE can also be found in agricultural environments, as global studies have documented numerous instances of CPE presence in various animals such as pigs, cattle, seafood, horses and dogs. However, most reports of CPE occurrence in agricultural settings come from Northern America, Europe and some parts of Asia, where more extensive research has been conducted to understand the CPE phenomenon. In comparison to clinical data, there are limited studies investigating the spread of CPE in agricultural settings in Africa, highlighting the importance of monitoring CPE in livestock environments and the food chain. Further research is necessary to uncover the true extent of CPE dissemination in South Africa. This review will discuss the phenomenon of bacterial antibiotic resistance (ABR), the applications of the carbapenem drug and the occurrence of carbapenem resistance globally.
Collapse
Affiliation(s)
- Taish Ramkisson
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
6
|
Akegbe H, Onyeaka H, Michael Mazi I, Alex Olowolafe O, Dolapo Omotosho A, Olatunji Oladunjoye I, Amuda Tajudeen Y, Seun Ofeh A. The need for Africa to develop capacity for vaccinology as a means of curbing antimicrobial resistance. Vaccine X 2023; 14:100320. [PMID: 37293248 PMCID: PMC10244683 DOI: 10.1016/j.jvacx.2023.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/08/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
The high prevalence of infectious diseases in Africa, combined with weak healthcare systems, poor antimicrobial stewardship, and an unchecked drug supply chain, is steadily reversing the trend in the fight against infectious diseases in this part of the world, posing severe threats to antimicrobial resistance (AMR). AMR continuously evolves and threatens to undermine antimicrobial efficacy and undo advances against infectious diseases. This brewing pandemic is now recognized as a significant worldwide health danger, implicated in several cases of morbidity, mortality, and increasing healthcare costs. Vaccine technology has been proven to be the principal remedy to this imminent danger since it prevents microbial infections. However, since Africa cannot produce its vaccines, it relies on external sources and, as a result, it is significantly affected by vaccine nationalism, hoarding, and instabilities in global supply chains. This has further adversely impacted the ability of African governments to regulate rollouts, protect their citizens, and ultimately rejoin the global economy. This dependency is a severe challenge to Africa's health resilience, as it is unsustainable. Given the inevitability of potential global pandemics and the alarming incidences of multi-drug resistance infections reported daily, Africa must develop the capability to produce its vaccines. The review utilized a systematic search of academic databases and grey literature, as well as a manual search of relevant reports and articles. In this review, we outline the public health threats and concerns that AMR poses to Africans, and the hurdles and advances achieved in vaccine development over the years. We also highlight possible strategies, particularly collaborative efforts, that will accelerate vaccine production and ease the strain of infectious diseases and antimicrobial resistance in Africa. Key findings indicate that Africa has significant gaps in its vaccine manufacturing and distribution capacity, with only a few countries having the ability to produce vaccines. Additionally, existing vaccine production facilities are often outdated and require significant investment to meet international standards. The review also highlights successful initiatives in Africa, such as the mRNA vaccine hub and the African Vaccine Manufacturing Initiative, which have demonstrated the potential for building local vaccine manufacturing capacity. The study concludes that Africa needs to prioritize investment in vaccine research and development, regulatory capacity, and infrastructure to build a sustainable vaccine manufacturing ecosystem. Overall, this review emphasizes the urgent need for Africa to develop its vaccine manufacturing capacity to improve vaccine access and strengthen its ability to respond to future pandemics. The findings underscore the importance of collaboration between African governments, international organizations, and the private sector to build a resilient vaccine ecosystem in Africa.
Collapse
Affiliation(s)
- Hope Akegbe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ifeanyi Michael Mazi
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Opeyemi Alex Olowolafe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | | | | | - Yusuf Amuda Tajudeen
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Augustine Seun Ofeh
- Department of Microbiology, Faculty of Science, Delta State University, Abraka, Nigeria
| |
Collapse
|
7
|
Johnson T, Matlock W. Justifying the More Restrictive Alternative: Ethical Justifications for One Health AMR Policies Rely on Empirical Evidence. Public Health Ethics 2023; 16:22-34. [PMID: 37151784 PMCID: PMC10161525 DOI: 10.1093/phe/phac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Global consumption of antibiotics has accelerated the evolution of bacterial antimicrobial resistance. Yet, the risks from increasing bacterial antimicrobial resistance are not restricted to human populations: transmission of antimicrobial resistant bacteria occurs between humans, farms, the environment and other reservoirs. Policies that take a 'One Health' approach deal with this cross-reservoir spread, but are often more restrictive concerning human actions than policies that focus on a single reservoir. As such, the burden of justification lies with these more restrictive policies. We argue that an ethical justification for preferring One Health policies over less restrictive alternatives relies on empirical evidence as well as theory. The ethical justification for these policies is based on two arguments: (i) comparatively greater effectiveness, and (ii) comparatively better tracking of moral responsibility. Yet the empirical assumptions on which these claims rest are limited by existing empirical knowledge. Using livestock farming as an example, we suggest that scientific research into characterising antimicrobial resistance and linking practices to outcomes ought to be guided (at least in part) by the imperative to supply the context-specific data needed to ethically justify preferring a One Health policy over less restrictive alternatives.
Collapse
Affiliation(s)
- Tess Johnson
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK
- Ethox Centre, University of Oxford, Oxford, UK
| | - William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Hu M, Hu X, Wang G, Cheng Y, Yu X, Huang X, Li Y. A fluorescent lateral flow immunoassay based on CdSe/CdS/ZnS quantum dots for sensitive detection of olaquindox in feedstuff. Food Chem 2023; 419:136025. [PMID: 37030205 DOI: 10.1016/j.foodchem.2023.136025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
A portable fluorescence immunosensor based on the CdSe/CdS/ZnS quantum dots (QDs) with multiple-shell structure was fabricated for the precise quantification of olaquindox (OLA). The QDs labeled anti-OLA antibody used as bioprobe played an important role in the design and preparation of a lateral flow test strip. Due to the strong fluorescent intensity of QDs, the sensitivity is greatly improved. The quantitative results were obtained using a fluorescent strip scan reader within 8 min, and the calculated limit of detection for OLA at 0.12 µg/kg, which was 2.7 times more sensitive than that of the conventional colloidal gold-based strips method. Acceptable recovery of 85.0%-95.5% was obtained by the spiked samples. This newly established QDs-based strip immunoassay method is suitable for the on-site detection and rapid initial screening of OLA in swine feedstuff, and is potentially applied for the detection of other veterinary drugs to ensure food safety.
Collapse
|
9
|
Zhang H, Luo X, Aspridou Z, Misiou O, Dong P, Zhang Y. The Prevalence and Antibiotic-Resistant of Listeria monocytogenes in Livestock and Poultry Meat in China and the EU from 2001 to 2022: A Systematic Review and Meta-Analysis. Foods 2023; 12:foods12040769. [PMID: 36832844 PMCID: PMC9957035 DOI: 10.3390/foods12040769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
To compare the prevalence and antibiotic resistance rate of Listeria monocytogenes in livestock and poultry (beef, pork and chicken) meat between China and the European Union (EU), a meta-analysis was conducted. Ninety-one out of 2156 articles in Chinese and English published between January 2001 and February 2022 were selected from four databases. The prevalence of L. monocytogenes in livestock and poultry (beef, pork and chicken) meat in China and Europe was 7.1% (3152/56,511, 95% CI: 5.8-8.6%) and 8.3% (2264/889,309, 95% CI: 5.9-11.0%), respectively. Moreover, a decreasing trend was observed in both regions over time. Regarding antibiotic resistance, for the resistance to 15 antibiotics, the pooled prevalence was 5.8% (95% CI: 3.1-9.1%). In both regions, the highest prevalence was found in oxacillin, ceftriaxone and tetracycline, and a large difference was reported between China and the EU in ceftriaxone (52.6% vs. 17.3%) and cefotaxime (7.0% vs. 0.0%). Based on the above, it remains a significant challenge to enforce good control measures against the meat-sourced L. monocytogenes both in China and in the EU.
Collapse
Affiliation(s)
- Haoqi Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- National R&D Center for Beef Processing Technology, Tai’an 271018, China
| | - Xin Luo
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- National R&D Center for Beef Processing Technology, Tai’an 271018, China
| | - Zafeiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ourania Misiou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Pengcheng Dong
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- National R&D Center for Beef Processing Technology, Tai’an 271018, China
| | - Yimin Zhang
- Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- National R&D Center for Beef Processing Technology, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
10
|
Liu M, Pan Y, Feng M, Guo W, Fan X, Feng L, Huang J, Cao Y. Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork. ULTRASONICS SONOCHEMISTRY 2022; 90:106201. [PMID: 36244094 PMCID: PMC9579707 DOI: 10.1016/j.ultsonch.2022.106201] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/12/2023]
Abstract
Food-borne methicillin-resistance Staphylococcus aureus (MRSA) has caused significant health threats and economic loss in livestock and poultry products. Garlic essential oil (GEO) is an effective antibacterial agent but presents strong instability and hydrophobicity. In this study, GEO in water nanoemulsion (GEON) with good stability was produced by emulsification technique of high-power ultrasound. Its antibacterial activity and underlying mechanism against MRSA isolated from retailed pork were investigated. Results showed that ultrasonic treatment significantly reduced the particle size of GENO from 820.3 to 215.0 nm as time increased from 0 to 10 min. Comparatively, GEON of 10 min ultrasound was more stable than other GEONs (0, 1, 5 min) during 30 d storage. It also displayed good thermal stability and relatively good ion stability (NaCl, MgCl2, and glucose). Antibacterial analysis showed that GEON (10 min) exhibited the best anti-MRSA activity among all GEONs, and the minimum inhibitory concentration of GEO in this nanoemulsion was 0.125 % (1.25 mg/mL). Treatment of GEON (10 min) significantly suppressed the cell proliferation of MRSA, which was mainly achieved by damaging the cell membrane as evidenced by membrane depolarization and considerable leakage of intracellular nucleic acids and protein. Laser scanning confocal microscope and scanning electron microscopy showed that treatment of GEON (10 min) significantly altered the membrane integrity and severely damaged the cellular membrane and structure. The present work illustrated that GEON produced by ultrasonic emulsification is a promising alternative to inhibit the contamination and spread of MRSA in livestock and poultry products.
Collapse
Affiliation(s)
- Miaomiao Liu
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yue Pan
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Mingxing Feng
- Department of Life Science, Yuncheng University, Yuncheng 044000, China
| | - Wei Guo
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xin Fan
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Feng
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Junrong Huang
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yungang Cao
- School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
11
|
Cornejo J, Asenjo G, Zavala S, Venegas L, Galarce N, Hormazábal JC, Vergara-E C, Lapierre L. Advances in Integrated Antimicrobial Resistance Surveillance and Control Strategies in Asia-Pacific Economic Cooperation Economies: Assessment of a Multiyear Building Capacity Project. Antibiotics (Basel) 2022; 11:antibiotics11081022. [PMID: 36009891 PMCID: PMC9405055 DOI: 10.3390/antibiotics11081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Antimicrobial resistance (AMR) is a growing global health concern for both animal and public health, and collaborative strategies are needed to combat the threat. The level of awareness and funding for policies focused on reducing AMR varies between countries. The aim of this study was to compare the integrated surveillance systems for AMR in high and low–middle economies of the Asia-Pacific Economic Cooperation and determine whether there was any improvement from 2015 to 2018. We conducted a survey with a group of 21 countries at different development levels. Associations between the economic development level and the questions of AMR awareness and funding were established using Fisher’s exact test. Improvements were identified where countries established public policies for integrated surveillance of AMR. High economies showed greater advancement in several topics related to AMR than low–middle economies. The survey revealed that there is a better understanding surrounding the implications of the emergence of AMR in human medicine than in veterinary medicine, agriculture, and food production. Our results show that countries enhanced overall AMR surveillance over the 4-year-period; however, more research is needed concerning these advances, especially in low–middle economies and the food production sector.
Collapse
Affiliation(s)
- Javiera Cornejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (J.C.); (G.A.); (S.Z.); (L.V.); (N.G.)
- Grupo Colaborativo Una Salud-Chile, Santiago 8820808, Chile; (J.C.H.); (C.V.-E.)
| | - Gabriela Asenjo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (J.C.); (G.A.); (S.Z.); (L.V.); (N.G.)
| | - Sebastian Zavala
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (J.C.); (G.A.); (S.Z.); (L.V.); (N.G.)
| | - Lucas Venegas
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (J.C.); (G.A.); (S.Z.); (L.V.); (N.G.)
| | - Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (J.C.); (G.A.); (S.Z.); (L.V.); (N.G.)
- Grupo Colaborativo Una Salud-Chile, Santiago 8820808, Chile; (J.C.H.); (C.V.-E.)
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Juan Carlos Hormazábal
- Grupo Colaborativo Una Salud-Chile, Santiago 8820808, Chile; (J.C.H.); (C.V.-E.)
- Subdepartamento de Enfermedades Infecciosas, Instituto de Salud Pública de Chile, Santiago 7780050, Chile
| | - Constanza Vergara-E
- Grupo Colaborativo Una Salud-Chile, Santiago 8820808, Chile; (J.C.H.); (C.V.-E.)
- Agencia Chilena para la Inocuidad Alimentaria, Santiago 8320320, Chile
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (J.C.); (G.A.); (S.Z.); (L.V.); (N.G.)
- Grupo Colaborativo Una Salud-Chile, Santiago 8820808, Chile; (J.C.H.); (C.V.-E.)
- Correspondence:
| |
Collapse
|
12
|
Huang Y, Yan Q, Jiang M, Guo S, Li H, Lin M, Zhan K, Zhao G, Duan J. Astragalus membranaceus Additive Improves Serum Biochemical Parameters and Reproductive Performance in Postpartum Dairy Cows. Front Vet Sci 2022; 9:952137. [PMID: 35898551 PMCID: PMC9310658 DOI: 10.3389/fvets.2022.952137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of the study was to assess the recovery, immune function, and breeding efficiency of postpartum dairy cows fed Astragalus membranaceus (AM) as a feed additive. The experiment used a completely randomized design. Cows were randomly assigned to two groups: (1) Control group fed total mixed ration (TMR; CON group, n = 15); (2) AM group fed TMR and AM (AM group, n = 15). The AM group was fed 675 g/day. The experimental results showed that compared with the CON group. The breeding interval of the AM group of dairy cows had a tendency to shorten (0.05 < p < 0.1). Plasma viscosity (PV), Plasma fibrinogen (FIB), the red cell aggregation index (TRCAI), Calcitonin (CT), Immunoglobulin M (IgM), and Luteinizing hormone (LH) results of AM group showed a time-treatment interaction (p < 0.05). Furthermore, the result of the study revealed that feeding AM as feed additives to dairy cows during the postpartum period had positive effects on wound recovery, immune function, endocrine regulation, and breeding efficiency.
Collapse
Affiliation(s)
- Yinghao Huang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Yan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiwei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqi Zhao
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jinao Duan
| |
Collapse
|
13
|
Nigusu Y, Abdissa A, Tesfaw G. Campylobacter Gastroenteritis Among Under-Five Children in Southwest Ethiopia. Infect Drug Resist 2022; 15:2969-2979. [PMID: 35706923 PMCID: PMC9191834 DOI: 10.2147/idr.s354843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Under-five children are at an increased risk for foodborne illnesses because of the ingenuousness of their immune system. Although Campylobacter species are one of the bacterial etiologies of gastroenteritis, Campylobacter gastroenteritis among under-five children is not well considered in Ethiopia. Therefore, this study aimed at exploring the prevalence, associated risk factors, and antibiotic susceptibility patterns of Campylobacter species among under-five children with diarrhea. Methods The institution-based cross-sectional study was conducted among under-five children with diarrhea at Jimma Medical Center, southwestern Ethiopia from January 5 to April 21, 2020. Stool samples were collected and inoculated into Campylobacter agar medium. Isolation and identification were done using standard bacteriological techniques. Antibiotic susceptibility testing was conducted on Mueller-Hinton agar supplemented with 10% sheep blood using disk diffusion techniques. Bivariate and multivariate logistic regressions were used to assess the associated risk factors. Results A total of 214 under-five children were enrolled. The prevalence of Campylobacter infection was 8.9%. Absence of caretakers' handwashing before preparation of food [AOR = 3.7, 95% CI: (1.2-10.8)], direct contact with domestic animals [AOR = 3.6, 95% CI: (1.0-12.7)], and consumption of raw dairy products [AOR = 4.5, 95% CI: (1.4-13.9)] are the factors associated with Campylobacter infection. Some Campylobacter species were found to be resistant to most available antibiotics. Conclusion The magnitude of Campylobacter gastroenteritis indicates the need for routine isolation and identification of Campylobacter species from all under-five children clinically diagnosed with diarrhea. Species that are resistant to the drug of choice for Campylobacteriosis are also emerging. Health education on the importance of pasteurization of milk and caretakers' handwashing can mitigate the transmission. Mechanism of handling of domestic animals should be considered to reduce transmission of zoonotic diseases like Campylobacteriosis.
Collapse
Affiliation(s)
- Yared Nigusu
- Department of Medical Laboratory Science, College of Health Sciences, Mettu University, Mettu, Ethiopia
| | - Alemseged Abdissa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Getnet Tesfaw
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
14
|
Yasir M, Nawaz A, Ghazanfar S, Okla MK, Chaudhary A, Al WH, Ajmal MN, AbdElgawad H, Ahmad Z, Abbas F, Wadood A, Manzoor Z, Akhtar N, Din M, Hameed Y, Imran M. Anti-bacterial activity of essential oils against multidrug-resistant foodborne pathogens isolated from raw milk. BRAZ J BIOL 2022; 84:e259449. [PMID: 35544793 DOI: 10.1590/1519-6984.259449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The presence of pathogenic bacteria in food is considered as a primary cause of food-borne illness and food quality deterioration worldwide. The present study aimed to determine the effectiveness of five essential oils (EOs) against multidrug-resistant foodborne pathogens. In the current study Gram-negative bacteria (Escherichia, Enterobacter, Citrobacter, Proteus, Pseudomonas, and Klebsiella) and the Gram-positive bacteria Staphylococcus were isolated from raw milk and biochemically characterized. The anti-bacterial effect of different antibiotics and EOs (thyme, oregano, lemongrass, mint, and rosemary) was determined using the standard disc diffusion method. The antibiogram study revealed that Gram-negative bacteria were highly resistant to penicillin while Staphylococcus was resistant to streptomycin, amoxicillin, and lincomycin. Moderate resistance was observed to doxycycline, amikacin, enrofloxacin, kanamycin and cefixime. Isolates were found less resistant to gentamycin, chloramphenicol, and ciprofloxacin. EOs showed a broad range of antimicrobial activity against all bacteria except P. aeruginosa. Of these, thyme was more effective against most of the multi-drug resistant bacterial strains and formed the largest zone of inhibition (26 mm) against Escherichia followed by oregano oil (18 mm) against Staphylococcus (p<0.05). Klebsiella spp and Citrobacter spp showed resistance to mint and lemongrass oil respectively. The EOs such as lemongrass, mint and rosemary were less active against all the bacteria. The findings of the recent study suggest the use of EOs as natural antibacterial agents for food preservation.
Collapse
Affiliation(s)
- M Yasir
- University of Baluchistan, Department of Microbiology, Quetta, Pakistan
| | - A Nawaz
- Government College University Faisalabad, Department of Zoology, Faisalabad, Pakistan
| | - S Ghazanfar
- National Agricultural Research Centre, Functional Genomics and Bioinformatics, Islamabad, Pakistan
| | - M K Okla
- King Saud University, College of Science, Botany and Microbiology Department, Riyadh, Saudi Arabia
| | - A Chaudhary
- University of Central Punjab, Department of Biochemistry, Lahore, Pakistan
| | - Wahidah H Al
- King Saud University, College of Food & Agriculture Sciences, Department of Food Sciences & Nutrition, Riyadh, Saudi Arabia
| | - M N Ajmal
- University of Jhang, Department of Microbiology, Jhang, Pakistan
| | - H AbdElgawad
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research, Antwerpen, Belgium
| | - Z Ahmad
- University of Balochistan, Center for Advanced Studies in Vaccinology and Biotechnology, Quetta, Pakistan
| | - F Abbas
- University of Balochistan, Center for Advanced Studies in Vaccinology and Biotechnology, Quetta, Pakistan
| | - A Wadood
- University of Baluchistan, Department of Microbiology, Quetta, Pakistan
| | - Z Manzoor
- Pir Mehr Ali Shah Arid Agriculture University, Department of Parasitology and Microbiology, Rawalpindi, Pakistan
| | - N Akhtar
- Department of Biological Sciences, National University of Medical Science, Rawalpindi, Pakistan
| | - M Din
- Bolan Medical College, Department of Pathology, Quetta, Pakistan
| | - Y Hameed
- The Islamia University of Bahawalpur, Department of Biochemistry and Biotechnology, Bahawalpur, Pakistan
| | - M Imran
- Quaid-i-Azam University, Faculty of Biological Sciences, Department of Microbiology, Islamabad, Pakistan
| |
Collapse
|
15
|
Agga GE, Couch M, Parekh RR, Mahmoudi F, Appala K, Kasumba J, Loughrin JH, Conte ED. Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes. Antibiotics (Basel) 2022; 11:391. [PMID: 35326854 PMCID: PMC8944653 DOI: 10.3390/antibiotics11030391] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Increased demand for animal protein is met by increased food animal production resulting in large quantities of manure. Animal producers, therefore, need sustainable agricultural practices to protect environmental health. Large quantities of antimicrobials are used in commercial food animal production. Consequently, antimicrobial-resistant bacteria and the resistance genes emerge and are excreted through feces. Manure management is essential for the safe disposal of animal waste. Lagoons, with or without covers, and anaerobic digesters, with the primary purpose of methane production, and composting, with the primary purpose of producing organic fertilizer, are widely used methods of manure treatment. We reviewed manure management practices and their impact on tetracycline resistance genes. Lagoons are maintained at ambient temperatures; especially uncovered lagoons are the least effective in removing tetracycline resistance genes. However, some modifications can improve the performance of lagoons: sequential use of uncovered lagoons and the use of covered lagoons resulted in a one-log reduction, while post-treatments such as biofiltration following covered lagoon treatment resulted in 3.4 log reduction. Mesophilic digestion of animal manure did not have any significant effect; only a 0.7 log reduction in tet(A) was observed in one study. While thermophilic anaerobic digesters are effective, if properly operated, they are expensive for animal producers. Aerobic thermophilic composting is a promising technology if optimized with its economic benefits. Composting of raw animal manure can result in up to a 2.5 log reduction, and postdigestion composting can reduce tetracycline resistance gene concentration by >80%. In general, manure management was not designed to mitigate antimicrobial resistance; future research is needed to optimize the economic benefits of biogas or organic fertilizer on the one hand and for the mitigation of foodborne pathogens and antimicrobial resistance on the other.
Collapse
Affiliation(s)
- Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, USDA, Bowling Green, KY 42101, USA; (R.R.P.); (J.H.L.)
| | - Melanie Couch
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| | - Rohan R. Parekh
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, USDA, Bowling Green, KY 42101, USA; (R.R.P.); (J.H.L.)
| | - Faranak Mahmoudi
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| | - Keerthi Appala
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| | - John Kasumba
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| | - John H. Loughrin
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, USDA, Bowling Green, KY 42101, USA; (R.R.P.); (J.H.L.)
| | - Eric D. Conte
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101, USA; (M.C.); (F.M.); (K.A.); (J.K.); (E.D.C.)
| |
Collapse
|
16
|
Dynamics of the fecal microbiome and antimicrobial resistome in commercial piglets during the weaning period. Sci Rep 2021; 11:18091. [PMID: 34508122 PMCID: PMC8433359 DOI: 10.1038/s41598-021-97586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023] Open
Abstract
This study aimed to characterize the alteration of the fecal microbiome and antimicrobial resistance (AMR) determinants in 24 piglets at day 3 pre-weaning (D. − 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8), using whole-genome shotgun sequencing. Distinct clusters of microbiomes and AMR determinants were observed at D.8 when Prevotella (20.9%) was the major genus, whereas at D. − 3–D.3, Alistipes (6.9–12.7%) and Bacteroides (5.2–8.5%) were the major genera. Lactobacillus and Escherichia were notably observed at D. − 3 (1.2%) and D. − 3–D.3 (0.2–0.4%), respectively. For AMR, a distinct cluster of AMR determinants was observed at D.8, mainly conferring resistance to macrolide–lincosamide–streptogramin (mefA), β-lactam (cfxA6 and aci1) and phenicol (rlmN). In contrast, at D. − 3–D.3, a high abundance of determinants with aminoglycoside (AMG) (sat, aac(6')-aph(2''), aadA and acrF), β-lactam (fus-1, cepA and mrdA), multidrug resistance (MDR) (gadW, mdtE, emrA, evgS, tolC and mdtB), phenicol (catB4 and cmlA4), and sulfonamide patterns (sul3) was observed. Canonical correlation analysis (CCA) plot associated Escherichia coli with aac(6')-aph(2''), emrA, mdtB, catB4 and cmlA4 at D. − 3, D.0 and/or D.3 whereas at D.8 associations between Prevotella and mefA, cfxA6 and aci1 were identified. The weaning age and diet factor played an important role in the microbial community composition.
Collapse
|
17
|
Mpundu P, Mbewe AR, Muma JB, Mwasinga W, Mukumbuta N, Munyeme M. A global perspective of antibiotic-resistant Listeria monocytogenes prevalence in assorted ready to eat foods: A systematic review. Vet World 2021; 14:2219-2229. [PMID: 34566342 PMCID: PMC8448623 DOI: 10.14202/vetworld.2021.2219-2229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND AIM Listeria monocytogenes in ready-to-eat (RTE) foods remains consistently under-reported globally. Nevertheless, several independent studies conducted to investigate have elucidated the prevalence and antibiotic resistance profiles of L. monocytogenes in RTE-associated foods and their antibiotic resistance profiles. Given the rapid increase in consumption of RTE foods of both animal and plant origin, it is imperative to know the prevalence deductive data focusing on how much of L. monocytogenes is present in RTE foods, which is critical for food safety managers and retailers to assess the possible risk posed to end-users. In addition, valuable insight and another angle to the depth of the problem, we conducted a systematic review and meta-analysis to synthesize available data regarding the prevalence of L. monocytogenes in RTE foods and antibiotic resistance profiles. MATERIALS AND METHODS We conducted a meta-analysis study of L. monocytogenes and antibiotic resistance to clinically relevant antibiotics to determine the extent of L. monocytogenes contamination in RTE foods and antibiotic resistance profiles. The primary search terms, also known as keywords used, were restricted to peer-reviewed and review articles, and databases, including Google Scholars, Science-Direct, and Scopus, were searched. The inclusion of articles meeting eligibility criteria published between 2010 and 2020 after title, abstract, and full article screening. Data analysis was performed at multiple stages using quantitative meta-analysis reviews. RESULTS L. monocytogenes pooled proportion/prevalence was highest in chicken products determined at (22%) followed by various but uncategorized RTE foods at 21%. Regarding antibiotic resistance, profiling's highest pooled prevalence resistance was observed in penicillin at 80% resistance, followed by cephalosporin at 47%. CONCLUSION Within its limitations, this study has attempted to provide insight into the pooled proportion/prevalence of L. monocytogenes in RTE foods and the antibiotic resistance profile at the global level. Determining the proportion/prevalence of L. monocytogenes in RTE foods across the globe and antibiotic resistance profile is essential for providing quality food and reducing public health problems due to unsuccessful treatment of foodborne illness. This study provides insight into the pooled prevalence of L. monocytogenes in RTE foods and the antibiotic resistance profile. The results of this study partly endeavored to help appropriate authorities strengthen their preventive measures on specific RTE foods that are most likely to be contaminated with L. monocytogenes and antibiotic resistance profiles.
Collapse
Affiliation(s)
- Prudence Mpundu
- Ministry of Health, Levy Mwanawasa Medical University, Lusaka 10101, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Allan Rabson Mbewe
- Department of Environmental Health, School of Public Health, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Wizaso Mwasinga
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Nawa Mukumbuta
- Ministry of Health, Levy Mwanawasa Medical University, Lusaka 10101, Zambia
- Department of Epidemiology and Biostatics, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
18
|
Criscuolo NG, Pires J, Zhao C, Van Boeckel TP. resistancebank.org, an open-access repository for surveys of antimicrobial resistance in animals. Sci Data 2021; 8:189. [PMID: 34294731 PMCID: PMC8298417 DOI: 10.1038/s41597-021-00978-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing threat to the health of humans and animals that requires global actions. In high-income countries, surveillance systems helped inform policies to curb AMR in animals. In low- and middle-income countries (LMICs), demand for meat is rising, and developing policies against AMR is urgent. However, surveillance of AMR is at best nascent, and the current evidence base to inform policymakers is geographically heterogeneous. We present resistancebank.org, an online platform that centralizes information on AMR in animals from 1,285 surveys from LMICs. Surveys were conducted between 2000 and 2019 and include 22,403 resistance rates for pathogens isolated from chickens, cattle, sheep, and pigs. The platform is built as a shiny application that provides access to individual surveys, country-level reports, and maps of AMR at 10 × 10 kilometers resolution. The platform is accessed via any internet browser and enables users to upload surveys to strengthen a global database. resistancebank.org aims to be a focal point for sharing AMR data in LMICs and to help international funders prioritize their actions.
Collapse
Affiliation(s)
| | - João Pires
- Institute for Environmental Decisions, ETH Zürich, Zurich, Switzerland
| | - Cheng Zhao
- Institute for Environmental Decisions, ETH Zürich, Zurich, Switzerland
| | - Thomas P Van Boeckel
- Institute for Environmental Decisions, ETH Zürich, Zurich, Switzerland
- Center for Disease Dynamics, Economics and Policy, New Delhi, India
| |
Collapse
|
19
|
Fan L, Idris Muhammad A, Bilyaminu Ismail B, Liu D. Sonodynamic antimicrobial chemotherapy: An emerging alternative strategy for microbial inactivation. ULTRASONICS SONOCHEMISTRY 2021; 75:105591. [PMID: 34082219 PMCID: PMC8182071 DOI: 10.1016/j.ultsonch.2021.105591] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
Sonodynamic antimicrobial chemotherapy (SACT), which relies on a combination of low-intensity ultrasound and chemotherapeutic agents termed sonosensitizers, has been explored as a promising alternative for microbial inactivation. Such treatment has superior penetration ability, high target specificity, and can overcome resistance conferred by the local microenvironment. Taken of these advantages, SACT has been endowed with an extensive application prospect in the past decade and attracted more and more attention. This review focusses on the current understanding of the mechanism of SACT, the interaction of sonodynamic action on different microbes, the factors affecting the efficacy of SACT, discusses the findings of recent works on SACT, and explores further prospects for SACT. Thus, a better understanding of sonodynamic killing facilitates the scientific community and industry personnel to establish a novel strategy to combat microbial burden.
Collapse
Affiliation(s)
- Lihua Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China; Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Balarabe Bilyaminu Ismail
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Yostawonkul J, Nittayasut N, Phasuk A, Junchay R, Boonrungsiman S, Temisak S, Kongsema M, Phoolcharoen W, Yata T. Nano/microstructured hybrid composite particles containing cinnamon oil as an antibiotic alternative against food-borne pathogens. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Adler A, Katz DE, Marchaim D. The Continuing Plague of Extended-Spectrum β-Lactamase Producing Enterbacterales Infections: An Update. Infect Dis Clin North Am 2020; 34:677-708. [PMID: 33011052 DOI: 10.1016/j.idc.2020.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is a common iatrogenic complication of modern life and medical care. One of the most demonstrative examples is the exponential increase in the incidence of extended-spectrum β-lactamases (ESBLs) production among Enterobacteriaceae, that is, the most common human pathogens outside of the hospital setting. Infections resulting from ESBL-producing bacteria are associated with devastating outcomes, now affecting even previously healthy individuals. This poses an enormous burden and threat to public health. This article aims to narrate the evolving epidemiology of ESBL infections and highlights current challenges in terms of management and prevention of these common infections.
Collapse
Affiliation(s)
- Amos Adler
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, Tel-Aviv 6423906 Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David E Katz
- Division of Internal Medicine, Shaare Zedek Medical Center, 12 Shmuel Bait Street, Jerusalem 9103102, Israel
| | - Dror Marchaim
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel.
| |
Collapse
|
22
|
Galarce N, Sánchez F, Fuenzalida V, Ramos R, Escobar B, Lapierre L, Paredes-Osses E, Arriagada G, Alegría-Morán R, Lincopán N, Fuentes-Castillo D, Vera-Leiva A, González-Rocha G, Bello-Toledo H, Borie C. Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated From Cattle and Swine in Chile. Front Vet Sci 2020; 7:367. [PMID: 32754621 PMCID: PMC7365902 DOI: 10.3389/fvets.2020.00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 01/09/2023] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes bloody diarrhea and hemolytic-uremic syndrome in humans, and a major cause of foodborne disease. Despite antibiotic treatment of STEC infections in humans is not recommended, the presence of antimicrobial-resistant bacteria in animals and food constitutes a risk to public health, as the pool of genes from which pathogenic bacteria can acquire antibiotic resistance has increased. Additionally, in Chile there is no information on the antimicrobial resistance of this pathogen in livestock. Thus, the aim of this study was to characterize the phenotypic and genotypic antimicrobial resistance of STEC strains isolated from cattle and swine in the Metropolitan region, Chile, to contribute relevant data to antimicrobial resistance surveillance programs at national and international level. We assessed the minimal inhibitory concentration of 18 antimicrobials, and the distribution of 12 antimicrobial resistance genes and class 1 and 2 integrons in 54 STEC strains. All strains were phenotypically resistant to at least one antimicrobial drug, with a 100% of resistance to cefalexin, followed by colistin (81.5%), chloramphenicol (14.8%), ampicillin and enrofloxacin (5.6% each), doxycycline (3.7%), and cefovecin (1.9%). Most detected antibiotic resistance genes were dfrA1 and tetA (100%), followed by tetB (94.4%), blaTEM−1 (90.7%), aac(6)-Ib (88.9%), blaAmpC (81.5%), cat1 (61.1%), and aac(3)-IIa (11.1%). Integrons were detected only in strains of swine origin. Therefore, this study provides further evidence that non-O157 STEC strains present in livestock in the Metropolitan region of Chile exhibit phenotypic and genotypic resistance against antimicrobials that are critical for human and veterinary medicine, representing a major threat for public health. Additionally, these strains could have a competitive advantage in the presence of antimicrobial selective pressure, leading to an increase in food contamination. This study highlights the need for coordinated local and global actions regarding the use of antimicrobials in animal food production.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Verónica Fuenzalida
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Romina Ramos
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Esteban Paredes-Osses
- Departamento de Salud Ambiental, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Gabriel Arriagada
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, San Fernando, Chile
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Facultad de Ciencias Agropecuarias, Universidad Pedro de Valdivia, Santiago, Chile
| | - Nilton Lincopán
- Departamento de Microbiología, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Alejandra Vera-Leiva
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millenium Nucleus on Interdisciplinary Approach to Antimicrobial Resistance, Santiago, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Millenium Nucleus on Interdisciplinary Approach to Antimicrobial Resistance, Santiago, Chile
| | - Consuelo Borie
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Palma E, Tilocca B, Roncada P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int J Mol Sci 2020; 21:E1914. [PMID: 32168903 PMCID: PMC7139321 DOI: 10.3390/ijms21061914] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) represents one of the most important human- and animal health-threatening issues worldwide. Bacterial capability to face antimicrobial compounds is an ancient feature, enabling bacterial survival over time and the dynamic surrounding. Moreover, bacteria make use of their evolutionary machinery to adapt to the selective pressure exerted by antibiotic treatments, resulting in reduced efficacy of the therapeutic intervention against human and animal infections. The mechanisms responsible for both innate and acquired AMR are thoroughly investigated. Commonly, AMR traits are included in mobilizable genetic elements enabling the homogeneous diffusion of the AMR traits pool between the ecosystems of diverse sectors, such as human medicine, veterinary medicine, and the environment. Thus, a coordinated multisectoral approach, such as One-Health, provides a detailed comprehensive picture of the AMR onset and diffusion. Following a general revision of the molecular mechanisms responsible for both innate and acquired AMR, the present manuscript focuses on reviewing the contribution of veterinary medicine to the overall issue of AMR. The main sources of AMR amenable to veterinary medicine are described, driving the attention towards the indissoluble cross-talk existing between the diverse ecosystems and sectors and their cumulative cooperation to this warning phenomenon.
Collapse
Affiliation(s)
| | | | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (E.P.); (B.T.)
| |
Collapse
|
24
|
Dakheel MM, Alkandari FAH, Mueller-Harvey I, Woodward MJ, Rymer C. Antimicrobial in vitro activities of condensed tannin extracts on avian pathogenic Escherichia coli. Lett Appl Microbiol 2020; 70:165-172. [PMID: 31782190 DOI: 10.1111/lam.13253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
Condensed tannins (CTs), which extracted from yew leaves, tilia flower and black locust leaves, were examined for their antimicrobial in vitro activity against avian pathogenic Escherichia coli (APEC). Past research demonstrated that CTs which contain procyanidins and prodelphinidins that could inhibit the growth of a wide range of bacteria. However, there is no information on how these affect pathogenic bacteria from chickens such as APEC. The high concentration of extracts, 10, 5, 2·5 mg ml-1 , affected the growth curves of APEC, which gave different inhibition values for the three CT extracts. Furthermore, these CTs had significant effects (P ≤ 0·05) on APEC biofilm and motility depending on each CT concentration and composition. However, at low concentration (0·6 mg ml-1 ), the tilia flowers, a high molar percentage of procyanidins, enhanced bacterial cell attachment and improved the swimming motility of APEC. In contrast, yew, an equal molar percentage of procyanidins/prodelphinidins, and black locust, a high molar percentage of prodelphinidins, interrupted and blocked swarming and swimming motility. The data suggested that the antimicrobial activity of the CT extracts was elicited by a positive relationship between anti-biofilm formation and anti-motility capacities. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that condensed tannins (CTs), which were a group of secondary metabolites of many plants and rich in prodelphinidins (PD), had greater antibacterial activity against avian pathogenic Escherichia coli (APEC) than CTs that were rich in procyanidins (PC). The mode of action of the CTs was to inhibit the swimming and swarming motility of APEC, and its ability to form biofilms. The significance of this finding is that the use of PD-rich CTs to control APEC should not encourage the development of antibiotic resistance by APEC because a different mechanism is used. If confirmed in vivo, this could provide the poultry industry with a valuable and novel means of controlling the antibiotic resistance.
Collapse
Affiliation(s)
- M M Dakheel
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | | | - I Mueller-Harvey
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - M J Woodward
- Department of Food and Nutritional Sciences, The University of Reading, Reading, UK
| | - C Rymer
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
25
|
Gautam M, Park DH, Park SJ, Nam KS, Park GY, Hwang J, Yong CS, Kim JO, Byeon JH. Plug-In Safe-by-Design Nanoinorganic Antibacterials. ACS NANO 2019; 13:12798-12809. [PMID: 31689083 DOI: 10.1021/acsnano.9b04939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to antimicrobial resistance and the adverse health effects that follow broad and inappropriate use of antibacterial agents, new classes of antibacterials with broad and strong bactericidal activity and safety for human use are urgently required globally, increasingly so with the onset of climate change. However, R&D in this field is known to be rarely profitable, unless a cost-effective, flexible, and convenient platform that ensures the production of workable candidate antibacterials can be developed. To address this issue, inorganic nanomaterials have been considered for their bactericidal activities, yet further investigations of composition crystalline modifications and/or surface biomaterial coatings are still required to provide effective and safe antibacterial nanoparticles. In this study, we developed a plug-in system comprising a spark plasma reactor and a flow heater under nitrogen gas flow to supply precursor inorganic nanoparticles (Cu-Te configuration) that can be modulated in-flight at different temperatures. From antibacterial and toxicological assays in both in vitro and in vivo models, bactericidal and toxicological profiles showed that the plug-in system-based platform can be used to identify key parameters for producing safe-by-design agents with antibacterial activity [>88% (in vitro) and >80% (in vivo) in antibacterial efficiency] and safety (>65% in in vitro viability and >60% in in vivo survival rate).
Collapse
Affiliation(s)
- Milan Gautam
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Dae Hoon Park
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Sung Jae Park
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Kang Sik Nam
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Geun Young Park
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| | - Jeong Hoon Byeon
- School of Mechanical Engineering , Yeungnam University , Gyeongsan 38541 , Republic of Korea
| |
Collapse
|
26
|
Sakarikou C, Kostoglou D, Simões M, Giaouris E. Exploitation of plant extracts and phytochemicals against resistant Salmonella spp. in biofilms. Food Res Int 2019; 128:108806. [PMID: 31955766 DOI: 10.1016/j.foodres.2019.108806] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
Abstract
Salmonella is one of the most frequent causes of foodborne outbreaks throughout the world. In the last years, the resistance of this and other pathogenic bacteria to antimicrobials has become a prime concern towards their successful control. In addition, the tolerance and virulence of pathogenic bacteria, such as Salmonella, are commonly related to their ability to form biofilms, which are sessile structures encountered on various surfaces and whose development is considered as a universal stress response mechanism. Indeed, the ability of Salmonella to form a biofilm seems to significantly contribute to its persistence in food production areas and clinical settings. Plant extracts and phytochemicals appear as promising sources of novel antimicrobials due to their cost-effectiveness, eco-friendliness, great structural diversity, and lower possibility of antimicrobial resistance development in comparison to synthetic chemicals. Research on these agents mainly attributes their antimicrobial activity to a diverse array of secondary metabolites. Bacterial cells are usually killed by the rupture of their cell envelope and in parallel the disruption of their energy metabolism when treated with such molecules, while their use at sub-inhibitory concentrations may also disrupt intracellular communication. The purpose of this article is to review the current available knowledge related to antimicrobial resistance of Salmonella in biofilms, together with the antibiofilm properties of plant extracts and phytochemicals against these detrimental bacteria towards their future application to control these in food production and clinical environments.
Collapse
Affiliation(s)
- Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 and Makrygianni, GR-81 400 Myrina, Lemnos, Greece.
| | - Dimitra Kostoglou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 and Makrygianni, GR-81 400 Myrina, Lemnos, Greece
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto,Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 and Makrygianni, GR-81 400 Myrina, Lemnos, Greece
| |
Collapse
|
27
|
Park S, Won G, Lee JH. An attenuated Salmonella vaccine secreting Lawsonia intracellularis immunogenic antigens confers dual protection against porcine proliferative enteropathy and salmonellosis in a murine model. J Vet Sci 2019; 20:e24. [PMID: 31161742 PMCID: PMC6538521 DOI: 10.4142/jvs.2019.20.e24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Porcine proliferative enteropathy (PPE) caused by Lawsonia intracellularis (LI) is a global cause for substantial economic losses in the swine industry. Here, we constructed live attenuated Salmonella typhimurium (ST) mutant strains expressing and secreting 4 selected immunogenic LI antigens, namely, optA, optB, Lawsonia flagellin (LfliC), and Lawsonia hemolysin (Lhly); the resultant recombinant strains were designated Sal-optA, Sal-optB, Sal-LfliC, or Sal-Lhly, respectively. Using the BALB/c mouse model, we demonstrate that mice vaccinated once orally, either with a mixture of all 4 recombinant strains or with an individual recombinant strain, show significant (p < 0.05) production of LI-specific systemic immunoglobulin (Ig) G and mucosal IgA responses compared to the Salmonella alone group. Upon restimulation of vaccinated splenocytes with the LI-specific antigens, significant (p < 0.05) and comparable production of interferon-γ responses are found in all vaccinated groups, except the Sal-Lhly group, which shows non-significant levels. Challenge studies were performed in C57BL/6 vaccinated mice. On challenge with the LI (106.9 50% tissue culture infectious dose) 14 days post-vaccination, 20% (1/5) of mice in all vaccinated groups, except Sal-Lhly group, show the presence of the LI-specific genomic DNA (gDNA) in stool samples. In contrast, 40% (2/5) and 60% (3/5) of mice vaccinated with the Sal-Lhly strain and the attenuated Salmonella alone, respectively, were found positive for the LI-specific gDNA. Furthermore, 0% mortality was observed in mice vaccinated against the ST challenge compared to the 30% mortality observed in the unvaccinated control group. In conclusion, we demonstrate that the Salmonella-based LI-vaccines induce LI-specific humoral and cell-mediated immunities, and encompass the potential to offer dual protection against PPE and salmonellosis.
Collapse
Affiliation(s)
- Suyeon Park
- Department of Veterinary Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Gayeon Won
- Department of Veterinary Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - John Hwa Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea.
| |
Collapse
|
28
|
Kasumba J, Appala K, Agga GE, Loughrin JH, Conte ED. Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:135-147. [PMID: 31554464 DOI: 10.1080/03601234.2019.1667190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated the anaerobic degradation of tetracycline antibiotics (tetracycline [TC], oxytetracycline [OTC] and chlortetracycline [CTC]) in swine, cattle, and poultry manures. The manures were anaerobically digested inside polyvinyl chloride batch reactors for 64 days at room temperature. The degradation rate constants and half-lives of the parent tetracyclines were determined following first-order kinetics. For CTC the fastest degradation rate was observed in swine manure (k = 0.016 ± 0.001 d-1; half-life = 42.8 days), while the slowest degradation rate was observed in poultry litter (k = 0.0043 ± 0.001 d-1; half-life = 161 days). The half-lives of OTC ranged between 88.9 (cattle manure) and 99.0 days (poultry litter), while TC persisted the longest of the tetracycline antibiotics studied with half-lives ranging from 92.4 days (cattle manure) to 330 days (swine manure). In general, the tetracyclines were found to degrade faster in cattle manure, which had the lowest concentrations of organic matter and metals as compared to swine and poultry manures. Our results demonstrate that tetracycline antibiotics persist in the animal manure after anaerobic digestion, which can potentially lead to emergence and persistence of antibiotic resistant bacteria in the environment when anaerobic digestion byproducts are land applied for crop production.
Collapse
Affiliation(s)
- John Kasumba
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Keerthi Appala
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research, USDA-ARS, Bowling Green, KY, USA
| | - John H Loughrin
- Food Animal Environmental Systems Research, USDA-ARS, Bowling Green, KY, USA
| | - Eric D Conte
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
29
|
Hashempour-Baltork F, Hosseini H, Shojaee-Aliabadi S, Torbati M, Alizadeh AM, Alizadeh M. Drug Resistance and the Prevention Strategies in Food Borne Bacteria: An Update Review. Adv Pharm Bull 2019; 9:335-347. [PMID: 31592430 PMCID: PMC6773942 DOI: 10.15171/apb.2019.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Antibiotic therapy is among the most important treatments against infectious diseases and has tremendously improved effects on public health. Nowadays, development in using this treatment has led us to the emergence and enhancement of drug-resistant pathogens which can result in some problems including treatment failure, increased mortality as well as treatment costs, reduced infection control efficiency, and spread of resistant pathogens from hospital to community. Therefore, many researches have tried to find new alternative approaches to control and prevent this problem. This study, has been revealed some possible and effective approaches such as using farming practice, natural antibiotics, nano-antibiotics, lactic acid bacteria, bacteriocin, cyclopeptid, bacteriophage, synthetic biology and predatory bacteria as alternatives for traditional antibiotics to prevent or reduce the emergence of drug resistant bacteria.
Collapse
Affiliation(s)
- Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Matin Alizadeh
- Department of Clinical Sciences (Surgery), Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Sarker MS, Mannan MS, Ali MY, Bayzid M, Ahad A, Bupasha ZB. Antibiotic resistance of Escherichia coli isolated from broilers sold at live bird markets in Chattogram, Bangladesh. J Adv Vet Anim Res 2019; 6:272-277. [PMID: 31583222 PMCID: PMC6760497 DOI: 10.5455/javar.2019.f344] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/03/2022] Open
Abstract
Objective The present study was carried out to appraise the antibiotic resistance and to detect some of the target resistant genes in Escherichia coli (E. coli) isolated from apparently healthy broilers. Materials and Methods Cloacal swab samples (n = 60) were collected from apparently healthy broilers (n = 60) sold at two different live bird markets (LBMs) of Chattogram, Bangladesh. Isolation and identification of the Escherichia coli was done by the following standard bacteriological techniques followed by biochemical tests. The antibiotic susceptibility of E. coli isolates was determined by the disk diffusion method. The antibiotic resistant genes were detected by polymerase chain reaction (PCR) using specific primers. Results The overall prevalence of E. coli in broilers was 61.67% (n = 37/60) (95% CI = 49-72.93). The antibiogram study showed that the isolates were 100% resistant to ampicillin and tetracycline followed by sulfomethoxazole-trimethoprim (94.59%, n = 35/37) and nalidixic acid (91.89%, n = 34/37). To the contrary, 56.76% (n = 21/37) isolates were sensitive to both ceftriaxone and gentamicin followed by colistin (48.65%, n = 18/37). All of E. coli isolates were multidrug resistant (MDR) and carried bla TEM, tetA, and Sul2 genes. Conclusion The presence of MDR genes in E. coli isolates in broilers could pose a serious public health threat.
Collapse
Affiliation(s)
- Md Samun Sarker
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Shahriar Mannan
- Veterinary Surgeon, Upazila Livestock Office, Thakurgaon Sadar, Thakurgaon, Bangladesh
| | - Md Younus Ali
- Veterinary Surgeon, Upazila Livestock Office, Birganj, Dinajpur, Bangladesh
| | - Md Bayzid
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Abdul Ahad
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Zamila Bueaza Bupasha
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
31
|
Borges KA, Furian TQ, Souza SN, Salle CTP, Moraes HLS, Nascimento VP. Antimicrobial Resistance and Molecular Characterization of Salmonella Enterica Serotypes Isolated from Poultry Sources in Brazil. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- KA Borges
- Universidade Federal do Rio Grande do Sul, Brazil
| | - TQ Furian
- Universidade Federal do Rio Grande do Sul, Brazil
| | - SN Souza
- Universidade Federal do Rio Grande do Sul, Brazil
| | - CTP Salle
- Universidade Federal do Rio Grande do Sul, Brazil
| | - HLS Moraes
- Universidade Federal do Rio Grande do Sul, Brazil
| | | |
Collapse
|
32
|
Couch M, Agga GE, Kasumba J, Parekh RR, Loughrin JH, Conte ED. Abundances of Tetracycline Resistance Genes and Tetracycline Antibiotics during Anaerobic Digestion of Swine Waste. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:171-178. [PMID: 30640349 DOI: 10.2134/jeq2018.09.0331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The impact of anaerobic digestion of animal waste on the persistence of antibiotic resistance genes (ARGs) and antibiotics is not widely studied. Two identical, 800-L digesters seeded with swine slurry were followed up to 100 d in three separate trials. The trials received varying amounts of antibiotic-free corn ( L.) mixed with water to maintain the digestion process. Biogas production, seven tetracycline resistance () genes, and three tetracyclines and their transformation products were measured. Biogas production proportionally increased as the feeding loads increased between trials. In Trial 1, log gene copies showed small but statistically significant ( < 0.01) increases during digestion. In Trial 2, anaerobic digestion did not have a significant ( > 0.05) effect except for significant reductions in B ( < 0.0001) and G ( = 0.0335) log gene copies. In Trial 3, which received the highest amount of corn mix, log copies of the 16S ribosomal RNA and the genes significantly ( < 0.0001) reduced over time during digestion. Up to 36 μg L tetracycline, 112 μg L chlortetracycline, 11.9 mg L isochlortetracycline, and 30 μg L 4-epitetracycline were detected both in the liquid and solid digestates. Results of this study revealed that although anaerobic digestion of swine waste can produce useful biogas, it does not result in complete removal of bacteria, ARGs, and antibiotics regardless of differences in the feeding loads between trials. Further effluent and sludge treatments are required prior to their downstream use in crop production to minimize emergence and environmental dissemination of antimicrobial-resistant bacteria through animal manure.
Collapse
|
33
|
Silva AF, Borges A, Giaouris E, Graton Mikcha JM, Simões M. Photodynamic inactivation as an emergent strategy against foodborne pathogenic bacteria in planktonic and sessile states. Crit Rev Microbiol 2018; 44:667-684. [PMID: 30318945 DOI: 10.1080/1040841x.2018.1491528] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne microbial diseases are still considered a growing public health problem worldwide despite the global continuous efforts to ensure food safety. The traditional chemical and thermal-based procedures applied for microbial growth control in the food industry can change the food matrix and lead to antimicrobial resistance. Moreover, currently applied disinfectants have limited efficiency against biofilms. Therefore, antimicrobial photodynamic therapy (aPDT) has become a novel alternative for controlling foodborne pathogenic bacteria in both planktonic and sessile states. The use of aPDT in the food sector is attractive as it is less likely to cause antimicrobial resistance and it does not promote undesirable nutritional and sensory changes in the food matrix. In this review, aspects on the antimicrobial photodynamic technology applied against foodborne pathogenic bacteria and studied in recent years are presented. The application of photodynamic inactivation as an antibiofilm strategy is also reviewed.
Collapse
Affiliation(s)
- Alex Fiori Silva
- a Postgraduate Program of Health Sciences , State University of Maringá , Maringá , Paraná , Brazil.,b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Anabela Borges
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| | - Efstathios Giaouris
- c Department of Food Science and Nutrition, Faculty of the Environment , University of the Aegean , Lemnos , Greece
| | | | - Manuel Simões
- b LEPABE, Department of Chemical Engineering, Faculty of Engineering , University of Porto , Porto , Portugal
| |
Collapse
|
34
|
Vanegas DC, Gomes CL, Cavallaro ND, Giraldo‐Escobar D, McLamore ES. Emerging Biorecognition and Transduction Schemes for Rapid Detection of Pathogenic Bacteria in Food. Compr Rev Food Sci Food Saf 2017; 16:1188-1205. [DOI: 10.1111/1541-4337.12294] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Diana C. Vanegas
- Food Engineering Univ. del Valle 338 Ciudad Universitaria Meléndez Cali Colombia
| | - Carmen L. Gomes
- Biological & Agricultural Engineering Texas A&M Univ. 2117 TAMU, Scoates Hall 201 College Station TX 77843 U.S.A
| | - Nicholas D. Cavallaro
- Agricultural & Biological Engineering Univ. of Florida 1741 Museum Rd Gainesville FL 32606 U.S.A
| | | | - Eric S. McLamore
- Agricultural & Biological Engineering Univ. of Florida 1741 Museum Rd Gainesville FL 32606 U.S.A
| |
Collapse
|
35
|
Kennedy CA, Fanning S, Karczmarczyk M, Byrne B, Monaghan Á, Bolton D, Sweeney T. Characterizing the Multidrug Resistance of non-O157 Shiga Toxin-ProducingEscherichia coliIsolates from Cattle Farms and Abattoirs. Microb Drug Resist 2017; 23:781-790. [DOI: 10.1089/mdr.2016.0082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Carrie-Ann Kennedy
- Cell Molecular Biology Laboratory, School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Maria Karczmarczyk
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Brian Byrne
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
| | - Áine Monaghan
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
| | - Declan Bolton
- Teagasc, Ashtown Food Research Centre, Dublin, Ireland
| | - Torres Sweeney
- Cell Molecular Biology Laboratory, School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
O'Sullivan A, Henrick B, Dixon B, Barile D, Zivkovic A, Smilowitz J, Lemay D, Martin W, German JB, Schaefer SE. 21st century toolkit for optimizing population health through precision nutrition. Crit Rev Food Sci Nutr 2017; 58:3004-3015. [PMID: 28678528 DOI: 10.1080/10408398.2017.1348335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Scientific, technological, and economic progress over the last 100 years all but eradicated problems of widespread food shortage and nutrient deficiency in developed nations. But now society is faced with a new set of nutrition problems related to energy imbalance and metabolic disease, which require new kinds of solutions. Recent developments in the area of new analytical tools enable us to systematically study large quantities of detailed and multidimensional metabolic and health data, providing the opportunity to address current nutrition problems through an approach called Precision Nutrition. This approach integrates different kinds of "big data" to expand our understanding of the complexity and diversity of human metabolism in response to diet. With these tools, we can more fully elucidate each individual's unique phenotype, or the current state of health, as determined by the interactions among biology, environment, and behavior. The tools of precision nutrition include genomics, metabolomics, microbiomics, phenotyping, high-throughput analytical chemistry techniques, longitudinal tracking with body sensors, informatics, data science, and sophisticated educational and behavioral interventions. These tools are enabling the development of more personalized and predictive dietary guidance and interventions that have the potential to transform how the public makes food choices and greatly improve population health.
Collapse
Affiliation(s)
| | - Bethany Henrick
- b Foods for Health Institute , University of California , Davis , USA
| | - Bonnie Dixon
- b Foods for Health Institute , University of California , Davis , USA
| | - Daniela Barile
- c Food Science and Technology , University of California , Davis , USA
| | - Angela Zivkovic
- d Department of Nutrition , University of California , Davis , USA
| | - Jennifer Smilowitz
- b Foods for Health Institute , University of California , Davis , USA.,e USDA-ARS Western Human Nutrition Research Center , Davis , USA
| | - Danielle Lemay
- f Nutritional Biology , University of California , Davis , USA
| | | | - J Bruce German
- h Department of Food Science and Technology , University of California , Davis , USA
| | | |
Collapse
|
37
|
Peng Z, Li M, Wang W, Liu H, Fanning S, Hu Y, Zhang J, Li F. Genomic insights into the pathogenicity and environmental adaptability of Enterococcus hirae R17 isolated from pork offered for retail sale. Microbiologyopen 2017; 6. [PMID: 28799224 PMCID: PMC5727370 DOI: 10.1002/mbo3.514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Genetic information about Enterococcus hirae is limited, a feature that has compromised our understanding of these clinically challenging bacteria. In this study, comparative analysis was performed of E. hirae R17, a daptomycin‐resistant strain isolated from pork purchased from a retail market in Beijing, China, and three other enterococcal genomes (Enterococcus faecium DO, Enterococcus faecalis V583, and E. hirae ATCC™9790). Some 1,412 genes were identified that represented the core genome together with an additional 139 genes that were specific to E. hirae R17. The functions of these R17 strain‐specific coding sequences relate to the COGs categories of carbohydrate transport and metabolism and transcription, a finding that suggests the carbohydrate utilization capacity of E. hirae R17 may be more extensive when compared with the other three bacterial species (spp.). Analysis of genomic islands and virulence genes highlighted the potential that horizontal gene transfer played as a contributor of variations in pathogenicity in this isolate. Drug‐resistance gene prediction and antibiotic susceptibility testing indicated E. hirae R17 was resistant to several antimicrobial compounds, including bacitracin, ciprofloxacin, daptomycin, erythromycin, and tetracycline, thereby limiting chemotherapeutic treatment options. Further, tolerance to biocides and metals may confer a phenotype that facilitates the survival and adaptation of this isolate against food preservatives, disinfectants, and antibacterial coatings. The genomic plasticity, mediated by IS elements, transposases, and tandem repeats, identified in the E. hirae R17 genome may support adaptation to new environmental niches, such as those that are found in hospitalized patients. A predicted transmissible plasmid, pRZ1, was found to carry several antimicrobial determinants, along with some predicted pathogenic genes. These data supported the previously determined phenotype confirming that the foodborne E. hirae R17 is a multidrug‐resistant pathogenic bacterium with evident genome plasticity and environmental adaptability.
Collapse
Affiliation(s)
- Zixin Peng
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease and Prevention, Beijing, China
| | - Menghan Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Yujie Hu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease and Prevention, Beijing, China
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
38
|
Adler A, Katz DE, Marchaim D. The Continuing Plague of Extended-spectrum β-lactamase-producing Enterobacteriaceae Infections. Infect Dis Clin North Am 2017; 30:347-375. [PMID: 27208763 DOI: 10.1016/j.idc.2016.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antimicrobial resistance is a common iatrogenic complication of modern life and medical care. One of the most demonstrative examples is the exponential increase in the incidence of extended-spectrum β-lactamases (ESBLs) production among Enterobacteriaceae, which is the most common human pathogens outside of the hospital settings. Infections resulting from ESBL-producing bacteria are associated with devastating outcomes, now affecting even previously healthy individuals. This development poses an enormous burden and threat to public health. This paper aims to narrate the evolving epidemiology of ESBL infections, and highlight current challenges in terms of management and prevention of these common infections.
Collapse
Affiliation(s)
- Amos Adler
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David E Katz
- Department of Internal Medicine D, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Dror Marchaim
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Division of Infectious Diseases, Assaf Harofeh Medical Center, Zerifin 70300, Israel.
| |
Collapse
|
39
|
Jin N, Zhang D, Martin FL. Fingerprinting microbiomes towards screening for microbial antibiotic resistance. Integr Biol (Camb) 2017; 9:406-417. [DOI: 10.1039/c7ib00009j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
40
|
Das Q, Islam MR, Marcone MF, Warriner K, Diarra MS. Potential of berry extracts to control foodborne pathogens. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Li B, Ma L, Li Y, Jia H, Wei J, Shao D, Liu K, Shi Y, Qiu Y, Ma Z. Antimicrobial Resistance of Campylobacter Species Isolated from Broilers in Live Bird Markets in Shanghai, China. Foodborne Pathog Dis 2016; 14:96-102. [PMID: 27854542 DOI: 10.1089/fpd.2016.2186] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This study was conducted to determine the prevalence of antimicrobial resistance in Campylobacter spp. isolates from broilers in live bird markets (LBMs). A total of 209 Campylobacter spp. isolates (84 Campylobacter jejuni; 125 Campylobacter coli) were recovered from 364 broiler cecum samples collected from five LBMs in Shanghai, China. Minimum inhibitory concentrations of 13 antimicrobials were determined using agar dilution method. More than 96% of the Campylobacter spp. isolates were resistant to quinolones and tetracyclines. A high prevalence of macrolide resistance (erythromycin, 84.0%; azithromycin, 80.8%) was observed in C. coli, but not in C. jejuni (erythromycin, 6.0%; azithromycin, 2.4%). C. coli also showed significantly higher resistance than C. jejuni to clindamycin, gentamicin, and kanamycin. In contrast, C. coli isolates had lower resistance to florfenicol than the C. jejuni isolates. The majority of the C. jejuni (88.1%) and C. coli (97.6%) isolates exhibited multidrug resistance (MDR) to three or more classes of antimicrobials. All of the 208 ciprofloxacin-resistant Campylobacter spp. isolates were positive for the C257T mutation of the gyrA gene. In addition, the tet(O) gene was identified in all of the 202 doxycycline-resistant Campylobacter spp. isolates. Furthermore, 75.7% and 20.4% of the 103 azithromycin-resistant Campylobacter spp. isolates were positive for the A2075G mutation of the 23S rRNA gene and the presence of the erm(B) gene, respectively. Moreover, the cat gene was found in 14.3% (8/56) and 76.8% (73/95) of the chloramphenicol-resistant C. jejuni and C. coli isolates, respectively. To the best of our knowledge, this is the first report of the prevalence of antimicrobial resistance among Campylobacter spp. isolates originating from LBMs. The high prevalence of MDR Campylobacter spp. isolates in LBMs highlights the need to implement efficient intervention measures to control not only Campylobacter contamination in LBMs but also dissemination of antimicrobial resistance among Campylobacter spp. in poultry production.
Collapse
Affiliation(s)
- Beibei Li
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Science, Shanghai, China
| | - Licai Ma
- 2 East China Sea Fisheries Research Institute , Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yingli Li
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Science, Shanghai, China
| | - Haiyan Jia
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Science, Shanghai, China
| | - Jianchao Wei
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Science, Shanghai, China
| | - Donghua Shao
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Science, Shanghai, China
| | - Ke Liu
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Science, Shanghai, China
| | - Yuanyuan Shi
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Science, Shanghai, China
| | - Yafeng Qiu
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Science, Shanghai, China
| | - Zhiyong Ma
- 1 Shanghai Veterinary Research Institute , Chinese Academy of Agricultural Science, Shanghai, China
| |
Collapse
|
42
|
Hao H, Sander P, Iqbal Z, Wang Y, Cheng G, Yuan Z. The Risk of Some Veterinary Antimicrobial Agents on Public Health Associated with Antimicrobial Resistance and their Molecular Basis. Front Microbiol 2016; 7:1626. [PMID: 27803693 PMCID: PMC5067539 DOI: 10.3389/fmicb.2016.01626] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 09/29/2016] [Indexed: 01/11/2023] Open
Abstract
The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data, and risk assessment results of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in humans. From the selected examples, it was apparent from reviewing the published scientific literature that the ban on use of some antimicrobial agents (e.g., avoparcin, fluoroquinolone, tetracyclines) did not change drug resistance patterns and did not mitigate the intended goal of minimizing antimicrobial resistance. The use of some antimicrobial agents (e.g., virginiamycin, macrolides, and cephalosporins) in food animals may have an impact on the antimicrobial resistance in humans, but it was largely depended on the pattern of drug usage in different geographical regions. The epidemiological characteristics of resistant bacteria were closely related to molecular mechanisms involved in the development, fitness, and transmission of antimicrobial resistance.
Collapse
Affiliation(s)
- Haihong Hao
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| | - Pascal Sander
- Laboratory of Fougères, French Agency for Food, Environmental and Occupational Safety Fougères Cedex, France
| | - Zahid Iqbal
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University Wuhan, China
| | - Guyue Cheng
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Zonghui Yuan
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
43
|
Antibiotic resistance and burden of foodborne diseases in developing countries. Future Sci OA 2016; 2:FSO139. [PMID: 28116122 PMCID: PMC5242143 DOI: 10.4155/fsoa-2016-0023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
|
44
|
Mund MD, Khan UH, Tahir U, Mustafa BE, Fayyaz A. Antimicrobial drug residues in poultry products and implications on public health: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1212874] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Shi C, Song K, Zhang X, Sun Y, Sui Y, Chen Y, Jia Z, Sun H, Sun Z, Xia X. Antimicrobial Activity and Possible Mechanism of Action of Citral against Cronobacter sakazakii. PLoS One 2016; 11:e0159006. [PMID: 27415761 PMCID: PMC4945043 DOI: 10.1371/journal.pone.0159006] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/24/2016] [Indexed: 11/19/2022] Open
Abstract
Citral is a flavor component that is commonly used in food, beverage and fragrance industries. Cronobacter sakazakii is a food-borne pathogen associated with severe illness and high mortality in neonates and infants. The objective of the present study was to evaluate antimicrobial effect of citral against C. sakazakii strains. The minimum inhibitory concentration (MIC) of citral against C. sakazakii was determined via agar dilution method, then Gompertz models were used to quantitate the effect of citral on microbial growth kinetics. Changes in intracellular pH (pHin), membrane potential, intracellular ATP concentration, and membrane integrity were measured to elucidate the possible antimicrobial mechanism. Cell morphology changes were also examined using a field emission scanning electron microscope. The MICs of citral against C. sakazakii strains ranged from 0.27 to 0.54 mg/mL, and citral resulted in a longer lag phase and lower growth rate of C. sakazakii compared to the control. Citral affected the cell membrane of C. sakazakii, as evidenced by decreased intracellular ATP concentration, reduced pHin, and cell membrane hyperpolarization. Scanning electron microscopy analysis further confirmed that C. sakazakii cell membranes were damaged by citral. These findings suggest that citral exhibits antimicrobial effect against C. sakazakii strains and could be potentially used to control C. sakazakii in foods. However, how it works in food systems where many other components may interfere with its efficacy should be tested in future research before its real application.
Collapse
Affiliation(s)
- Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaikuo Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Sui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yifei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenyu Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Huihui Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zheng Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Sino-US Joint Research Center for Food Safety, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
46
|
Alakomi HL, Höhl A, Horvatek Tomic D, Thomas M, Bruggeman G, Tassis P, Prukner-Radovcic E, Tzika E, Axelsson L, Kneifel W, Saarela M. Antimicrobial resistance and residues in the EU: current situation and possible countermeasures, emphasis on Campylobacterand Salmonella. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2014.0576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- H.-L. Alakomi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 VTT, Finland
| | - A. Höhl
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - D. Horvatek Tomic
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - M. Thomas
- Fera Science Ltd., Sand Hutton, YO41 1LZ York, United Kingdom
| | - G. Bruggeman
- Nutrition Sciences N.V., Booiebos 5, 9031 Drongen, Belgium
| | - P. Tassis
- Farm Animals Clinic, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, St. Voutyra 11, 54627 Thessaloniki, Greece
| | - E. Prukner-Radovcic
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - E. Tzika
- Farm Animals Clinic, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, St. Voutyra 11, 54627 Thessaloniki, Greece
| | | | - W. Kneifel
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - M. Saarela
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 VTT, Finland
| |
Collapse
|
47
|
Prasertsee T, Khantaprab N, Yamsakul P, Santiyanont P, Chokesajjawatee N, Patchanee P. Repetitive sequence-based PCR fingerprinting and the relationship of antimicrobial-resistance characteristics and corresponding genes among Salmonella strains from pig production. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)61054-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Williams-Nguyen J, Sallach JB, Bartelt-Hunt S, Boxall AB, Durso LM, McLain JE, Singer RS, Snow DD, Zilles JL. Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:394-406. [PMID: 27065386 DOI: 10.2134/jeq2015.07.0336] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We propose a simple causal model depicting relationships involved in dissemination of antibiotics and antibiotic resistance in agroecosystems and potential effects on human health, functioning of natural ecosystems, and agricultural productivity. Available evidence for each causal link is briefly summarized, and key knowledge gaps are highlighted. A lack of quantitative estimates of human exposure to environmental bacteria, in general, and antibiotic-resistant bacteria, specifically, is a significant data gap hindering the assessment of effects on human health. The contribution of horizontal gene transfer to resistance in the environment and conditions that might foster the horizontal transfer of antibiotic resistance genes into human pathogens also need further research. Existing research has focused heavily on human health effects, with relatively little known about the effects of antibiotics and antibiotic resistance on natural and agricultural ecosystems. The proposed causal model is used to elucidate gaps in knowledge that must be addressed by the research community and may provide a useful starting point for the design and analysis of future research efforts.
Collapse
|
49
|
Pan SY, Gao SH, Lin RC, Zhou SF, Dong HG, Tang MK, Yu ZL, Ko KM. New perspectives on dietary-derived treatments and food safety-antinomy in a new era. Crit Rev Food Sci Nutr 2016; 55:1836-59. [PMID: 24915382 DOI: 10.1080/10408398.2011.654286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite the advances in science and technology and wide use of chemical drugs, dietary intervention (or food therapy) remains useful in preventing or treating many human diseases. A huge body of evidence shows that the dietary pattern or habit is also an important contributing factor to the development of chronic diseases such as hypertension, type 2 diabetes, hyperlipidemia, and cancers. In recent years, over-the-counter health foods, nutraceuticals, and plant-derived medicinal products have been gaining popularity all over the world, particularly in developed countries. Unfortunately, owing to the contamination with various harmful substances in foods and the presence of toxic food components, food-borne diseases have also become increasingly problematic. Incidents of food poisonings or tainted food have been increasing worldwide, particularly in China and other developing countries. Therefore, the government should put in a greater effort in enforcing food safety by improving the surveillance mechanism and exerting highest standards of quality control for foods.
Collapse
Affiliation(s)
- Si-Yuan Pan
- a Beijing University of Chinese Medicine , Beijing , China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Foodborne Infectious Diseases: Historical Perspective and Overview. Food Microbiol 2015. [DOI: 10.1201/b19874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|