1
|
Dufloo J, Andreu-Moreno I, Moreno-García J, Valero-Rello A, Sanjuán R. Receptor-binding proteins from animal viruses are broadly compatible with human cell entry factors. Nat Microbiol 2025:10.1038/s41564-024-01879-4. [PMID: 39747691 DOI: 10.1038/s41564-024-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
Cross-species transmission of animal viruses poses a threat to human health. However, systematic experimental assessments of these risks remain scarce. A critical step in viral infection is cellular internalization mediated by viral receptor-binding proteins (RBPs). Here we constructed viral pseudotypes bearing the RBPs of 102 enveloped RNA viruses and assayed their infectivity across 5,202 RBP-cell combinations. This showed that most of the tested viruses have the potential to enter human cells. Pseudotype infectivity varied widely among the 14 viral families examined and was influenced by RBP characteristics, host of origin and target cell type. Cellular gene expression data revealed that the availability of specific cell-surface receptors is not necessarily the main factor limiting viral entry and that additional host factors must be considered. Altogether, these results suggest weak interspecies barriers in the early stages of infection and advance our understanding of the molecular interactions driving viral zoonosis.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Jorge Moreno-García
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Ana Valero-Rello
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Universitat de València - Consejo Superior de Investigaciones Científicas, Paterna, Spain.
| |
Collapse
|
2
|
Zheng L, Wang S. Recent advances in solid-state nuclear magnetic resonance studies on membrane fusion proteins. FEBS J 2024. [PMID: 39552293 DOI: 10.1111/febs.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
Membrane fusion is an essential biological process that merges two separate lipid bilayers into a whole one. Membrane fusion proteins facilitate this process by bringing lipid bilayers in close proximity to reduce the repulsive energy between membranes. Along with their interactions with membranes, the structures and dynamics of membrane fusion proteins are key to elucidating the mechanisms of membrane fusion. Solid-state NMR (SSNMR) spectroscopy has unique advantages in determining the structures and dynamics of membrane fusion proteins in their membrane-bound states. It has been extensively applied to reveal conformational changes in intermediate states of viral membrane fusion proteins and to characterize the critical lipid-membrane interactions that drive the fusion process. In this review, we summarize recent advancements in SSNMR techniques for studying membrane fusion proteins and their applications in elucidating the mechanisms of membrane fusion.
Collapse
Affiliation(s)
- Lifen Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Wang S, Cheng P, Guo K, Ren S, Tadele BA, Liang Z, Sun Y, Yin X, Wang X. Lumpy skin disease virus enters into host cells via dynamin-mediated endocytosis and macropinocytosis. Vet Microbiol 2024; 298:110254. [PMID: 39307114 DOI: 10.1016/j.vetmic.2024.110254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 11/19/2024]
Abstract
Lumpy skin disease virus (LSDV), a ruminant poxvirus of the Capripoxvirus genus, is the etiologic agent of an economically important cattle disease categorized as a notifiable disease by the World Organization for Animal Health. However, the endocytic pathway and their regulatory molecules have not been characterized for LSDV. In the present study, specific pharmacological inhibitors were used to analyze the mechanism of LSDV entry into Mardin-Darby Bovine Kidney cell (MDBK) and bovine mammary epithelial cell (BMEC). The results showed that LSDV entered MDBK and BMEC cells depends on low-pH conditions and dynamin. However, the inhibitor of caveolae- and clathrin-mediated endocytosis cann't inhibit LSDV entry into MDBK and BMEC cells. Furthermore, treatment with specific inhibitors demonstrated that LSDV entry into MDBK and BMEC cells via macropinocytosis depended on the Na1/H1 exchanger (NHE) but not phosphatidylinositol 3-kinase (PI3K). In addition, results demonstrated that these inhibitors inhibited LSDV entry but did not have effect on LSDV binding. Taken together, our study demonstrated that LSDV enters MDBK and BMEC cells through macropinocytosis pathway in a low-PH- and dynamin-dependent manner while independent on PI3K. Results presented in this study potentially provides insight into the entry mechanisms of LSDV, and it may facilitate the development of therapeutic interventions.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ke Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Berihun Afera Tadele
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Mekelle University College of Veterinary Sciences, Mekelle, Tigray, Ethiopia
| | - Zhengji Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
4
|
Liu Y, Wang K, Gong X, Qu W, Xiao Y, Sun H, Kang J, Sheng J, Wu F, Dai F. Schisandra chinensis inhibits the entry of BoHV-1 by blocking PI3K-Akt pathway and enhances the m6A methylation of gD to inhibit the entry of progeny virus. Front Microbiol 2024; 15:1444414. [PMID: 39104584 PMCID: PMC11298802 DOI: 10.3389/fmicb.2024.1444414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Schisandra chinensis, a traditional Chinese medicine known for its antitussive and sedative effects, has shown promise in preventing various viral infections. Bovine herpesvirus-1 (BoHV-1) is an enveloped DNA virus that causes respiratory disease in cattle, leading to significant economic losses in the industry. Because the lack of previous reports on Schisandra chinensis resisting BoHV-1 infection, this study aimed to investigate the specific mechanisms involved. Results from TCID50, qPCR, IFA, and western blot analyses demonstrated that Schisandra chinensis could inhibit BoHV-1 entry into MDBK cells, primarily through its extract Methylgomisin O (Meth O). The specific mechanism involved Meth O blocking BoHV-1 entry into cells via clathrin- and caveolin-mediated endocytosis by suppressing the activation of PI3K-Akt signaling pathway. Additionally, findings from TCID50, qPCR, co-immunoprecipitation and western blot assays revealed that Schisandra chinensis blocked BoHV-1 gD transcription through enhancing m6A methylation of gD after virus entry, thereby hindering gD protein expression and preventing progeny virus entry into cells and ultimately inhibiting BoHV-1 replication. Overall, these results suggest that Schisandra chinensis can resist BoHV-1 infection by targeting the PI3K-Akt signaling pathway and inhibiting gD transcription.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Kang Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiao Gong
- Qingdao YeBio Bio-Engineering Co., Ltd., Qingdao, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yangyang Xiao
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Hongtao Sun
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinliang Sheng
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
- College of Animal Science and Technology, Shihezi University, Xinjiang, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, China
| | - Feiyan Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Liu Y, Yang D, Jiang W, Chi T, Kang J, Wang Z, Wu F. Cell entry of bovine respiratory syncytial virus through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK pathways. Front Microbiol 2024; 15:1393127. [PMID: 38690369 PMCID: PMC11059085 DOI: 10.3389/fmicb.2024.1393127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is an RNA virus with envelope that causes acute, febrile, and highly infectious respiratory diseases in cattle. However, the manner and mechanism of BRSV entry into cells remain unclear. In this study, we aimed to explore the entry manner of BRSV into MDBK cells and its regulatory mechanism. Our findings, based on virus titer, virus copies, western blot and IFA analysis, indicate that BRSV enters MDBK cells through endocytosis, relying on dynamin, specifically via clathrin-mediated endocytosis rather than caveolin-mediated endocytosis and micropinocytosis. We observed that the entered BRSV initially localizes in early endosomes and subsequently localizes in late endosomes. Additionally, our results of western blot, virus titer and virus copies demonstrate that BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways. Overall, our study suggests that BRSV enters MDBK cells through clathrin-mediated endocytosis, entered BRSV is trafficked to late endosome via early endosome, BRSV entry through clathrin-mediated endocytosis is regulated by PI3K-Akt and Src-JNK signaling pathways.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Dongliang Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, Gansu, China
| | - Wen Jiang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Tianying Chi
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jingli Kang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhiliang Wang
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Prevention and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| |
Collapse
|
6
|
Liu Y, Zhang Q, Zou M, Cui J, Shi X, Li L, Wu F, Xu X. Cell entry of Bovine herpesvirus-1 through clathrin- and caveolin-mediated endocytosis requires activation of PI3K-Akt-NF-κB and Ras-p38 MAPK pathways as well as the interaction of BoHV-1 gD with cellular receptor nectin-1. Vet Microbiol 2023; 279:109672. [PMID: 36774841 DOI: 10.1016/j.vetmic.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) can infect all breeds of cattle and cause severe respiratory organs and genital tract diseases. However, the mechanism of BoHV-1 entering the cells remains unclear. In this study, we explored the mechanism of BoHV-1 entering MDBK cells. We found that the entry of BoHV-1 was blocked by NH4Cl and bafilomycin A1, indicating that BoHV-1 entry is dependent on the acidic environment of endosome. Specific inhibitor dynasore and small interfering RNA (siRNA) knockdown of dynamin-2 inhibited BoHV-1 entry, showing that dynamin is required in BoHV-1 entry. The results of specific inhibitor, siRNA knockdown and co-localization indicating clathrin- and caveolin- mediated endocytosis play a role in BoHV-1 entry. BoHV-1 infection was not affected by EIPA which is a specific inhibitor of macropinocytosis. In addition, we found that BoHV-1 triggered PI3K-Akt-NF-κB and Ras-p38 MAPK signaling pathways to induce clathrin-mediated and caveolin-mediated endocytosis at the early stage of BoHV-1 infection. BoHV-1 binding was sufficient to activate the endocytic signaling pathways and promote viral entry. These two signaling pathways were activated by transfection of viral gD protein, and were inhibited by deletion of viral gD protein and the siRNA knockdown of cellular receptor nectin-1. The results of co-localization indicating the entered BoHV-1 is traced to late endosomes via early endosomes. Our results suggested the interaction of viral gD protein and cellular receptor nectin-1 triggered the PI3K-Akt-NF-κB and Ras-p38 MAPK signaling pathways and induced clathrin-mediated and caveolin-mediated endocytosis to promote BoHV-1 entry into MDBK cells at the early stage of BoHV-1 infection.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zou
- State Key Laboratory of Animal Genetical Engineered Vaccine of Ministry of Science and Technology, Qingdao YeBio Biological Engineering Company Limited, Qingdao, Shandong 266110, China
| | - Jin Cui
- Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linjie Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Zhou YQ, Wang K, Wang XY, Cui HY, Zhao Y, Zhu P, Chen ZN. SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg Microbes Infect 2022; 11:1135-1144. [PMID: 35343395 PMCID: PMC9037224 DOI: 10.1080/22221751.2022.2059403] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants is threatening public health around the world. Endocytosis functions as an important way for viral infection, and SARS-CoV-2 bears no exception. However, the specific endocytic mechanism of SARS-CoV-2 remains unknown. In this study, we used endocytic inhibitors to evaluate the role of different endocytic routes in SARS-CoV-2 pseudovirus infection and found that the viral infection was associated with caveolar/lipid raft- and cytoskeleton-mediated endocytosis, but independent of the clathrin-mediated endocytosis and macropinocytosis. Meanwhile, the knockdown of CD147 and Rab5a in Vero E6 and Huh-7 cells inhibited SARS-CoV-2 pseudovirus infection, and the co-localization of spike protein, CD147, and Rab5a was observed in pseudovirus-infected Vero E6 cells, which was weakened by CD147 silencing, illustrating that SARS-CoV-2 pseudovirus entered the host cells via CD147-mediated endocytosis. Additionally, Arf6 silencing markedly inhibited pseudovirus infection in Vero E6 and Huh-7 cells, while little change was observed in CD147 knockout-Vero E6 cells. This finding indicated Arf6-mediated CD147 trafficking plays a vital role in SARS-CoV-2 entry. Taken together, our findings provide new insights into the CD147-Arf6 axis in mediating SARS-CoV-2 pseudovirus entry into the host cells, and further suggest that blockade of this pathway seems to be a feasible approach to prevent the SARS-CoV-2 infection clinically.
Collapse
Affiliation(s)
- Yun-Qi Zhou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xue-Yan Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhi-Nan Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
8
|
Wang Y, Zhang Y, Zuo W, Bo Z, Zhang C, Zhang X, Wu Y. Avian Reovirus σB Interacts with Caveolin-1 in Lipid Rafts during Dynamin-Dependent Caveolae-Mediated Endocytosis. Viruses 2022; 14:v14102201. [PMID: 36298756 PMCID: PMC9608613 DOI: 10.3390/v14102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Caveolin-1 (Cav-1) is the basic component of caveolae, a specialized form of lipid raft that plays an essential role in endocytic viral entry. However, the evidence of direct involvement of caveolae and Cav-1 in avian reovirus (ARV) entry remains insufficient. In this study, the membrane lipid rafts were isolated as detergent-resistant microdomains (DRMs) by sucrose gradient centrifugation, and the capsid protein σB of ARV was found to associate with Cav-1 in DRMs fractions. Additionally, the interaction between ARV σB protein and Cav-1 was demonstrated by immunofluorescence co-localization and co-immunoprecipitation assays. Furthermore, we found that the internalization of ARV is sensitive to caveolae and dynamin inhibitors, while it is insensitive to clathrin inhibitors. In conclusion, these results indicate that the ARV σB protein interacts with Cav-1 during dynamin-dependent caveolae-mediated endocytosis for the entry of ARV.
Collapse
Affiliation(s)
- Yuyang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Yangyang Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wei Zuo
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zongyi Bo
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
9
|
Ren PX, Shang WJ, Yin WC, Ge H, Wang L, Zhang XL, Li BQ, Li HL, Xu YC, Xu EH, Jiang HL, Zhu LL, Zhang LK, Bai F. A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacol Sin 2022; 43:483-493. [PMID: 33907306 PMCID: PMC8076879 DOI: 10.1038/s41401-021-00668-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
The COVID-19, caused by SARS-CoV-2, is threatening public health, and there is no effective treatment. In this study, we have implemented a multi-targeted anti-viral drug design strategy to discover highly potent SARS-CoV-2 inhibitors, which simultaneously act on the host ribosome, viral RNA as well as RNA-dependent RNA polymerases, and nucleocapsid protein of the virus, to impair viral translation, frameshifting, replication, and assembly. Driven by this strategy, three alkaloids, including lycorine, emetine, and cephaeline, were discovered to inhibit SARS-CoV-2 with EC50 values of low nanomolar levels potently. The findings in this work demonstrate the feasibility of this multi-targeting drug design strategy and provide a rationale for designing more potent anti-virus drugs.
Collapse
Affiliation(s)
- Peng-Xuan Ren
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Wei-Juan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wan-Chao Yin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huan Ge
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Wang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Xiang-Lei Zhang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Bing-Qian Li
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Hong-Lin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ye-Chun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eric H Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Liang Jiang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Li Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fang Bai
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Russell CC, Prichard KL, O'Brien NS, McCluskey A, Robinson PJ, Baker JR. Synthesis of Phthaladyn-29 and Naphthalimide-10, GTP Site Directed Dynamin GTPase Inhibitors. Methods Mol Biol 2022; 2417:239-258. [PMID: 35099804 DOI: 10.1007/978-1-0716-1916-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein we describe the detailed synthesis of the dynamin inhibitors Phthaladyn-29 and Napthaladyn-10, and their chemical scaffold matched partner inactive compounds. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Cecilia C Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate L Prichard
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas S O'Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jennifer R Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
11
|
Liu J, Alvarez FJD, Clare DK, Noel JK, Zhang P. CryoEM structure of the super-constricted two-start dynamin 1 filament. Nat Commun 2021; 12:5393. [PMID: 34518553 PMCID: PMC8437954 DOI: 10.1038/s41467-021-25741-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Dynamin belongs to the large GTPase superfamily, and mediates the fission of vesicles during endocytosis. Dynamin molecules are recruited to the neck of budding vesicles to assemble into a helical collar and to constrict the underlying membrane. Two helical forms were observed: the one-start helix in the constricted state and the two-start helix in the super-constricted state. Here we report the cryoEM structure of a super-constricted two-start dynamin 1 filament at 3.74 Å resolution. The two strands are joined by the conserved GTPase dimeric interface. In comparison with the one-start structure, a rotation around Hinge 1 is observed, essential for communicating the chemical power of the GTPase domain and the mechanical force of the Stalk and PH domain onto the underlying membrane. The Stalk interfaces are well conserved and serve as fulcrums for adapting to changing curvatures. Relative to one-start, small rotations per interface accumulate to bring a drastic change in the helical pitch. Elasticity theory rationalizes the diversity of dynamin helical symmetries and suggests corresponding functional significance.
Collapse
Affiliation(s)
- Jiwei Liu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Frances Joan D Alvarez
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Daniel K Clare
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | | | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
12
|
Yapici-Eser H, Koroglu YE, Oztop-Cakmak O, Keskin O, Gursoy A, Gursoy-Ozdemir Y. Neuropsychiatric Symptoms of COVID-19 Explained by SARS-CoV-2 Proteins' Mimicry of Human Protein Interactions. Front Hum Neurosci 2021; 15:656313. [PMID: 33833673 PMCID: PMC8021734 DOI: 10.3389/fnhum.2021.656313] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
The first clinical symptoms focused on the presentation of coronavirus disease 2019 (COVID-19) have been respiratory failure, however, accumulating evidence also points to its presentation with neuropsychiatric symptoms, the exact mechanisms of which are not well known. By using a computational methodology, we aimed to explain the molecular paths of COVID-19 associated neuropsychiatric symptoms, based on the mimicry of the human protein interactions with SARS-CoV-2 proteins. Methods: Available 11 of the 29 SARS-CoV-2 proteins' structures have been extracted from Protein Data Bank. HMI-PRED (Host-Microbe Interaction PREDiction), a recently developed web server for structural PREDiction of protein-protein interactions (PPIs) between host and any microbial species, was used to find the "interface mimicry" through which the microbial proteins hijack host binding surfaces. Classification of the found interactions was conducted using the PANTHER Classification System. Results: Predicted Human-SARS-CoV-2 protein interactions have been extensively compared with the literature. Based on the analysis of the molecular functions, cellular localizations and pathways related to human proteins, SARS-CoV-2 proteins are found to possibly interact with human proteins linked to synaptic vesicle trafficking, endocytosis, axonal transport, neurotransmission, growth factors, mitochondrial and blood-brain barrier elements, in addition to its peripheral interactions with proteins linked to thrombosis, inflammation and metabolic control. Conclusion: SARS-CoV-2-human protein interactions may lead to the development of delirium, psychosis, seizures, encephalitis, stroke, sensory impairments, peripheral nerve diseases, and autoimmune disorders. Our findings are also supported by the previous in vivo and in vitro studies from other viruses. Further in vivo and in vitro studies using the proteins that are pointed here, could pave new targets both for avoiding and reversing neuropsychiatric presentations.
Collapse
Affiliation(s)
- Hale Yapici-Eser
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Yunus Emre Koroglu
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Graduate School of Sciences and Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Ozgur Oztop-Cakmak
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- College of Engineering, Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Research Center for Translational Medicine, Koç University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
13
|
Shang C, Zhuang X, Zhang H, Li Y, Zhu Y, Lu J, Ge C, Cong J, Li T, Tian M, Jin N, Li X. Inhibitors of endosomal acidification suppress SARS-CoV-2 replication and relieve viral pneumonia in hACE2 transgenic mice. Virol J 2021; 18:46. [PMID: 33639976 PMCID: PMC7914043 DOI: 10.1186/s12985-021-01515-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 and broke out as a global pandemic in late 2019. The acidic pH environment of endosomes is believed to be essential for SARS-CoV-2 to be able to enter cells and begin replication. However, the clinical use of endosomal acidification inhibitors, typically chloroquine, has been controversial with this respect. Methods In this study, RT-qPCR method was used to detect the SARS-CoV-2N gene to evaluate viral replication. The CCK-8 assay was also used to evaluate the cytotoxic effect of SARS-CoV-2. In situ hybridization was used to examine the distribution of the SARS-CoV-2 gene in lung tissues. Hematoxylin and eosin staining was also used to evaluate virus-associated pathological changes in lung tissues. Results In this study, analysis showed that endosomal acidification inhibitors, including chloroquine, bafilomycin A1 and NH4CL, significantly reduced the viral yields of SARS-CoV-2 in Vero E6, Huh-7 and 293T-ACE2 cells. Chloroquine and bafilomycin A1 also improved the viability and proliferation of Vero E6 cells after SARS-CoV-2 infection. Moreover, in the hACE2 transgenic mice model of SARS-CoV-2 infection, chloroquine and bafilomycin A1 reduced viral replication in lung tissues and alleviated viral pneumonia with reduced inflammatory exudation and infiltration in peribronchiolar and perivascular tissues, as well as improved structures of alveolar septum and pulmonary alveoli. Conclusions Our research investigated the antiviral effects of endosomal acidification inhibitors against SARS-CoV-2 in several infection models and provides an experimental basis for further mechanistic studies and drug development.
Collapse
Affiliation(s)
- Chao Shang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China
| | - Xinyu Zhuang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China
| | - He Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China
| | - Jing Lu
- Agricultural College, Yanbian University, Yanji, 133002, People's Republic of China
| | - Chenchen Ge
- Agricultural College, Yanbian University, Yanji, 133002, People's Republic of China
| | - Jianan Cong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China
| | - Tingyu Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China
| | - Mingyao Tian
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China.
| | - Ningyi Jin
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China. .,Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| | - Xiao Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, 130122, People's Republic of China. .,Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, People's Republic of China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
14
|
Oscanoa TJ, Romero-Ortuno R, Carvajal A, Savarino A. A pharmacological perspective of chloroquine in SARS-CoV-2 infection: An old drug for the fight against a new coronavirus? Int J Antimicrob Agents 2020; 56:106078. [PMID: 32629115 PMCID: PMC7334645 DOI: 10.1016/j.ijantimicag.2020.106078] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is having serious consequences on health and the economy worldwide. All evidence-based treatment strategies need to be considered to combat this new virus. Drugs need to be considered on scientific grounds of efficacy, safety and cost. Chloroquine (CQ) and hydroxychloroquine (HCQ) are old drugs used in the treatment of malaria. Moreover, their antiviral properties have been previously studied, including against coronaviruses, where evidence of efficacy has been found. In the current race against time triggered by the COVID-19 pandemic, the search for new antivirals is very important. However, consideration should be given to old drugs with known anti-coronavirus activity, such as CQ and HCQ. These could be integrated into current treatment strategies while novel treatments are awaited, also in light of the fact that they display an anticoagulant effect that facilitates the activity of low-molecular-weight heparin, aimed at preventing acute respiratory distress syndrome (ARDS)-associated thrombotic events. The safety of CQ and HCQ has been studied for over 50 years, however recently published data raise concerns for cardiac toxicity of CQ/HCQ in patients with COVID-19. This review also re-examines the real information provided by some of the published alarming reports, although concluding that cardiac toxicity should in any case be stringently monitored in patients receiving CQ/HCQ.
Collapse
Affiliation(s)
- Teodoro J Oscanoa
- Department of Pharmacology, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru, and Drug Safety Research Center, Facultad de Medicina Humana, Universidad de San Martín de Porres, Hospital Almenara, ESSALUD, Lima, Peru.
| | - Roman Romero-Ortuno
- Discipline of Medical Gerontology, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland, and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Alfonso Carvajal
- Centro de Estudios sobre la Seguridad de los Medicamentos (CESME), Universidad de Valladolid, Valladolid, Spain
| | - Andrea Savarino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
15
|
Han S, Mao L, Liao Y, Sun S, Zhang Z, Mo Y, Liu H, Zhi X, Lin S, Seo HS, Guo H. Sec62 Suppresses Foot-and-Mouth Disease Virus Proliferation by Promotion of IRE1α-RIG-I Antiviral Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 203:429-440. [PMID: 31167774 DOI: 10.4049/jimmunol.1801546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/06/2019] [Indexed: 01/01/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is highly infectious and causes a major plague in animal farming. Unfolded protein response is one of the major cellular responses to pathogenic infections, which performs a crucial role in cell survival, apoptosis, and antiviral innate immune response. In this study, we showed that FMDV infection activated two unfolded protein response branches (PERK-eIF2α and ATF6 signaling) in both baby hamster kidney cells (BHK-21) and porcine kidney (PK-15) cells, whereas it suppressed the IRE1α-XBP1 signaling by decreasing IRE1α level. Further study revealed IRE1α signaling as an important antiviral innate immune mechanism against FMDV. Sec62, the transport protein, was greatly decreased at the late stages of FMDV infection. By overexpression and knockdown study, we also found that the expression of Sec62 was positively involved in the levels of IRE1α and RIG-I and subsequent activation of downstream antiviral signaling pathways in FMDV-infected PK-15 cells. Taken together, our study demonstrates that Sec62 is an important antiviral factor that upregulates IRE1α-RIG-I-dependent antiviral innate immune responses, and FMDV evades antiviral host defense mechanism by downregulating Sec62-IRE1α/RIG-I.
Collapse
Affiliation(s)
- Shichong Han
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Lejiao Mao
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, People's Republic of China; and
| | - Shiqi Sun
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Zhihui Zhang
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Yaxia Mo
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Haiyun Liu
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Xiaoying Zhi
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China
| | - Shunmei Lin
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Ho Seong Seo
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Huichen Guo
- World Organisation for Animal Health-China National Foot-and-Mouth Disease Reference Laboratory, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, People's Republic of China;
| |
Collapse
|
16
|
Zhao T, Cui L, Yu X, Zhang Z, Shen X, Hua X. Entry of sapelovirus into IPEC-J2 cells is dependent on caveolae-mediated endocytosis. Virol J 2019; 16:37. [PMID: 30909932 PMCID: PMC6434631 DOI: 10.1186/s12985-019-1144-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/13/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Porcine sapelovirus (PSV), a species of the genus Sapelovirus within the family Picornaviridae, are a significant cause of enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in pigs. However, the life cycle of PSV on the molecular level is largely unknown. METHODS Here, we used chemical inhibitors, RNA interference, and overexpression of dominant negative (DN) mutant plasmids to verify the roles of distinct endocytic pathways involved in PSV entry into porcine small intestinal epithelial cell line (IPEC-J2). RESULTS Our experiments indicated that PSV infection was inhibited when cells were pre-treated with NH4Cl or chloroquine. Inhibitors nystatin, methyl-β-cyclodextrin, dynasore and wortmannin dramatically reduced PSV entry efficiency, whereas the inhibitors chlorpromazine and EIPA had no effect. Furthermore, overexpression caveolin DN mutant and siRNA against caveolin also decreased virus titers and VP1 protein synthesis, whereas overexpression EPS15 DN mutant and siRNA against EPS15 did not reduce virus infection. CONCLUSIONS Our findings suggest that PSV entry into IPEC-J2 cells depends on caveolae/lipid raft mediated-endocytosis, that is pH-dependent and requires dynamin and PI3K but is independent of clathrin and macropinocytosis.
Collapse
Affiliation(s)
- Tingting Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Li Cui
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Xiangqian Yu
- Shanghai Pudong New Area Center for Animal Disease Control and Prevention, Shanghai, 200136, China
| | - Zhonghai Zhang
- Shanghai Pudong New Area Center for Animal Disease Control and Prevention, Shanghai, 200136, China
| | - Xiaojuan Shen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China
| | - Xiuguo Hua
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, China.
| |
Collapse
|
17
|
Abdellatif ME, Sinzger C, Walther P. Investigating HCMV entry into host cells by STEM tomography. J Struct Biol 2018; 204:406-419. [DOI: 10.1016/j.jsb.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
|
18
|
Dynamin Is Required for Efficient Cytomegalovirus Maturation and Envelopment. J Virol 2018; 92:JVI.01418-18. [PMID: 30282704 DOI: 10.1128/jvi.01418-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/22/2018] [Indexed: 12/17/2022] Open
Abstract
Cytomegalovirus secondary envelopment occurs in a virus-induced cytoplasmic assembly compartment (vAC) generated via a drastic reorganization of the membranes of the secretory and endocytic systems. Dynamin is a eukaryotic GTPase that is implicated in membrane remodeling and endocytic membrane fission events; however, the role of dynamin in cellular trafficking of viruses beyond virus entry is only partially understood. Mouse embryonic fibroblasts (MEF) engineered to excise all three isoforms of dynamin were infected with mouse cytomegalovirus (MCMV-K181). Immediate-early (IE1; m123) viral protein was detected in these triple dynamin knockout (TKO) cells, as well as in mock-induced parental MEF, at early times postinfection, although levels were reduced in TKO cells, indicating that virus entry was affected but not eliminated. Levels of IE1 protein and another viral early protein (m04) were normalized by 48 h postinfection; however, late protein (m55; gB) expression was reduced in infected TKO cells compared to parental MEF. Ultrastructural analysis revealed intact stages of nuclear virus maturation in both cases with equivalent numbers of nucleocapsids containing packaged viral DNA (C-capsids), indicating successful viral DNA replication, capsid assembly, and genome packaging. Most importantly, severe defects in virus envelopment were visualized in TKO cells but not in parental cells. Dynamin inhibitor (dynasore)-treated MEF showed a phenotype similar to TKO cells upon mouse cytomegalovirus infection, confirming the role of dynamin in late maturation processes. In summary, dynamin-mediated endocytic pathways are critical for the completion of cytoplasmic stages of cytomegalovirus maturation.IMPORTANCE Viruses are known to exploit specific cellular functions at different stages of their life cycle in order to replicate, avoid immune recognition by the host and to establish a successful infection. Cytomegalovirus (CMV)-infected cells are characterized by a prominent cytoplasmic inclusion (virus assembly compartment [vAC]) that is the site of virus maturation and envelopment. While endocytic membranes are known to be the functional components of vAC, knowledge of specific endocytic pathways implicated in CMV maturation and envelopment is lacking. We show here that dynamin, which is an integral part of host endocytic machinery, is largely dispensable for early stages of CMV infection but is required at a late stage of CMV maturation. Studies on dynamin function in CMV infection will help us understand the host-virus interaction pathways amenable to targeting by conventional small molecules, as well as by newer generation nucleotide-based therapeutics (e.g., small interfering RNA, CRISPR/CAS gRNA, etc.).
Collapse
|
19
|
Robinson M, Schor S, Barouch-Bentov R, Einav S. Viral journeys on the intracellular highways. Cell Mol Life Sci 2018; 75:3693-3714. [PMID: 30043139 PMCID: PMC6151136 DOI: 10.1007/s00018-018-2882-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/01/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Viruses are obligate intracellular pathogens that are dependent on cellular machineries for their replication. Recent technological breakthroughs have facilitated reliable identification of host factors required for viral infections and better characterization of the virus-host interplay. While these studies have revealed cellular machineries that are uniquely required by individual viruses, accumulating data also indicate the presence of broadly required mechanisms. Among these overlapping cellular functions are components of intracellular membrane trafficking pathways. Here, we review recent discoveries focused on how viruses exploit intracellular membrane trafficking pathways to promote various stages of their life cycle, with an emphasis on cellular factors that are usurped by a broad range of viruses. We describe broadly required components of the endocytic and secretory pathways, the Endosomal Sorting Complexes Required for Transport pathway, and the autophagy pathway. Identification of such overlapping host functions offers new opportunities to develop broad-spectrum host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanford Schor
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Lane Building, Rm L127, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Kong L, Sochacki KA, Wang H, Fang S, Canagarajah B, Kehr AD, Rice WJ, Strub MP, Taraska JW, Hinshaw JE. Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 2018; 560:258-262. [PMID: 30069048 PMCID: PMC6121775 DOI: 10.1038/s41586-018-0378-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
Abstract
Membrane fission is a fundamental process in the regulation and remodeling of cell membranes. Dynamin, a large GTPase, mediates membrane fission by assembling around, constricting and cleaving the necks of budding vesicles1. Here, we report a 3.75 Å resolution cryo-EM structure of the membrane-associated helical polymer of human dynamin-1 in the GMPPCP bound state. The structure defines the helical symmetry of the dynamin polymer and the positions of the oligomeric interfaces, which were validated by cell-based endocytosis assays. Compared to the lipid-free tetramer form2, membrane-associated dynamin binds to the lipid bilayer with its pleckstrin homology domain (PHD) and self-assembles across the helical rungs via the GTPase domain3. Notably, interaction with the membrane and helical assembly is accommodated by a severely bent bundle signaling element (BSE), which connects the GTPase domain with the rest of the protein. The BSE conformation is asymmetric across the inter-rung GTPase interface, and is unique compared to all known nucleotide-bound states of dynamin. The structure suggests that the BSE bends from forces generated from the GTPase dimer interaction that are transferred across the stalk to the PHD and lipid membrane. Mutations disrupting the BSE kink impaired endocytosis. We also report a 10.1 Å resolution cryo-EM map of a super-constricted dynamin polymer showing localized conformational changes at the BSE and GTPase domains induced by GTP hydrolysis that drive membrane constriction. Altogether, the results provide a structural basis for dynamin’s mechanism of action on lipid membrane.
Collapse
Affiliation(s)
- Leopold Kong
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Shunming Fang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Bertram Canagarajah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Andrew D Kehr
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
21
|
Sun Y, Li J, Gao GF, Tien P, Liu W. Bunyavirales ribonucleoproteins: the viral replication and transcription machinery. Crit Rev Microbiol 2018. [PMID: 29516765 DOI: 10.1080/1040841x.2018.1446901] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Bunyavirales order is one of the largest groups of segmented negative-sense single-stranded RNA viruses, which includes many pathogenic strains that cause severe human diseases. The RNA segments of the bunyavirus genome are separately encapsidated by multiple copies of nucleoprotein (N), and both termini of each N-encapsidated genomic RNA segment bind to one copy of the viral L polymerase protein. The viral genomic RNA, N and L protein together form the ribonucleoprotein (RNP) complex that constitutes the molecular machinery for viral genome replication and transcription. Recently, breakthroughs have been achieved in understanding the architecture of bunyavirus RNPs with the determination of the atomic structures of the N and L proteins from various members of this order. In this review, we discuss the structures and functions of these bunyavirus RNP components, as well as viral genome replication and transcription mechanisms.
Collapse
Affiliation(s)
- Yeping Sun
- a CAS Key Laboratory of Pathogenic Microbiology and Immunology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| | - Jing Li
- a CAS Key Laboratory of Pathogenic Microbiology and Immunology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| | - George F Gao
- a CAS Key Laboratory of Pathogenic Microbiology and Immunology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , China.,b National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Po Tien
- a CAS Key Laboratory of Pathogenic Microbiology and Immunology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| | - Wenjun Liu
- a CAS Key Laboratory of Pathogenic Microbiology and Immunology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
22
|
Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 2017; 5:e00293. [PMID: 28596841 PMCID: PMC5461643 DOI: 10.1002/prp2.293] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Emerging viruses such as HIV, dengue, influenza A, SARS coronavirus, Ebola, and other viruses pose a significant threat to human health. Majority of these viruses are responsible for the outbreaks of pathogenic lethal infections. To date, there are no effective therapeutic strategies available for the prophylaxis and treatment of these infections. Chloroquine analogs have been used for decades as the primary and most successful drugs against malaria. Concomitant with the emergence of chloroquine‐resistant Plasmodium strains and a subsequent decrease in the use as antimalarial drugs, other applications of the analogs have been investigated. Since the analogs have interesting biochemical properties, these drugs are found to be effective against a wide variety of viral infections. As antiviral action, the analogs have been shown to inhibit acidification of endosome during the events of replication and infection. Moreover, immunomodulatory effects of analogs have been beneficial to patients with severe inflammatory complications of several viral diseases. Interestingly, one of the successful targeting strategies is the inhibition of HIV replication by the analogs in vitro which are being tested in several clinical trials. This review focuses on the potentialities of chloroquine analogs for the treatment of endosomal low pH dependent emerging viral diseases.
Collapse
|
23
|
Blaas D. Viral entry pathways: the example of common cold viruses. Wien Med Wochenschr 2016; 166:211-26. [PMID: 27174165 PMCID: PMC4871925 DOI: 10.1007/s10354-016-0461-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/12/2016] [Indexed: 02/02/2023]
Abstract
For infection, viruses deliver their genomes into the host cell. These nucleic acids are usually tightly packed within the viral capsid, which, in turn, is often further enveloped within a lipid membrane. Both protect them against the hostile environment. Proteins and/or lipids on the viral particle promote attachment to the cell surface and internalization. They are likewise often involved in release of the genome inside the cell for its use as a blueprint for production of new viruses. In the following, I shall cursorily discuss the early more general steps of viral infection that include receptor recognition, uptake into the cell, and uncoating of the viral genome. The later sections will concentrate on human rhinoviruses, the main cause of the common cold, with respect to the above processes. Much of what is known on the underlying mechanisms has been worked out by Renate Fuchs at the Medical University of Vienna.
Collapse
Affiliation(s)
- Dieter Blaas
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Dr. Bohr Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|
24
|
Huang Y, Wang W, Ren Q. Two host microRNAs influence WSSV replication via STAT gene regulation. Sci Rep 2016; 6:23643. [PMID: 27029712 PMCID: PMC4814834 DOI: 10.1038/srep23643] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in post-transcriptional regulation of gene expression. During viral infection, viruses utilize hosts to enhance their replication by altering cellular miRNAs. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway plays crucial roles in the antiviral responses. In this study, two miRNAs (miR-9041 and miR-9850) from Macrobrachium rosenbergii were found to promote white spot syndrome virus (WSSV) replication. The up-regulation of miR-9041 or miR-9850 suppresses STAT expression in the gills of M. rosenbergii, which subsequently down-regulates the expression of its downstream dynamin (Dnm) genes: Dnm1, Dnm2, and Dnm3. Knockdown of miR-9041 and miR-9850 restricts WSSV replication by up-regulating STAT and Dnm gene expression. The silencing of STAT, Dnm1, Dnm2, or Dnm3 led to an increase of the number of WSSV copies in shrimp. The injection of recombinant Dnm1, Dnm2, or Dnm3 proteins could inhibit WSSV replication in vivo. Overall, our research indicates the roles of host miRNAs in the enhancement of WSSV replication by regulating the host JAK/STAT pathway.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity &Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
25
|
Abdel-Hamid MK, Macgregor KA, Odell LR, Chau N, Mariana A, Whiting A, Robinson PJ, McCluskey A. 1,8-Naphthalimide derivatives: new leads against dynamin I GTPase activity. Org Biomol Chem 2015; 13:8016-28. [PMID: 26118967 DOI: 10.1039/c5ob00751h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fragment-based in silico screening against dynamin I (dynI) GTPase activity identified the 1,8-naphthalimide framework as a potential scaffold for the design of new inhibitors targeting the GTP binding pocket of dynI. Structure-based design, synthesis and subsequent optimization resulted in the development of a library of 1,8-naphthalimide derivatives, called the Naphthaladyn™ series, with compounds 23 and 29 being the most active (IC50 of 19.1 ± 0.3 and 18.5 ± 1.7 μM respectively). Compound 29 showed effective inhibition of clathrin-mediated endocytosis (IC50(CME) 66 μM). The results introduce 29 as an optimised GTP-competitive lead Naphthaladyn™ compound for the further development of naphthalimide-based dynI GTPase inhibitors.
Collapse
Affiliation(s)
- Mohammed K Abdel-Hamid
- Centre for Chemical Biology, Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jiang Y, Tang R, Duncan B, Jiang Z, Yan B, Mout R, Rotello VM. Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules. Angew Chem Int Ed Engl 2015; 54:506-10. [PMID: 25393227 PMCID: PMC4314441 DOI: 10.1002/anie.201409161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 12/17/2022]
Abstract
The use of nanoparticle-stabilized nanocapsules (NPSCs) for the direct cytosolic delivery of siRNA is reported. In this approach, siRNA is complexed with cationic arginine-functionalized gold nanoparticles by electrostatic interactions, with the resulting ensemble self-assembled onto the surface of fatty acid nanodroplets to form a NPSC/siRNA nanocomplex. The complex rapidly delivers siRNA into the cytosol through membrane fusion, a mechanism supported by cellular uptake studies. Using destabilized green fluorescent protein (deGFP) as a target, 90% knockdown was observed in HEK293 cells. Moreover, the delivery of siRNA targeting polo-like kinase 1 (siPLK1) efficiently silenced PLK1 expression in cancer cells with concomitant cytotoxicity.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Rui Tang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Bo Yan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| |
Collapse
|
27
|
Caì Y, Postnikova EN, Bernbaum JG, Yú SQ, Mazur S, Deiuliis NM, Radoshitzky SR, Lackemeyer MG, McCluskey A, Robinson PJ, Haucke V, Wahl-Jensen V, Bailey AL, Lauck M, Friedrich TC, O'Connor DH, Goldberg TL, Jahrling PB, Kuhn JH. Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway. J Virol 2015; 89:844-56. [PMID: 25355889 PMCID: PMC4301170 DOI: 10.1128/jvi.02697-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/23/2014] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. IMPORTANCE Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein.
Collapse
Affiliation(s)
- Yíngyún Caì
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Elena N Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - John G Bernbaum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Shu Qìng Yú
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Steven Mazur
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Nicole M Deiuliis
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Matthew G Lackemeyer
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Adam McCluskey
- Department of Chemistry, Centre for Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Victoria Wahl-Jensen
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Adam L Bailey
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Michael Lauck
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Tony L Goldberg
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
28
|
Jiang Y, Tang R, Duncan B, Jiang Z, Yan B, Mout R, Rotello VM. Direct Cytosolic Delivery of siRNA Using Nanoparticle-Stabilized Nanocapsules. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Abstract
The cell signaling plays a pivotal role in regulating cellular processes and is often manipulated by viruses as they rely on the functions offered by cells for their propagation. The first stage of their host life is to pass the genetic materials into the cell. Although some viruses can directly penetrate into cytosol, in fact, most virus entry into their host cells is through endocytosis. This machinery initiates with cell type specific cellular signaling pathways, and the signaling compounds can be proteins, lipids, and carbohydrates. The activation can be triggered in a very short time after virus binds on target cells, such as receptors. The signaling pathways involved in regulation of viral entry are wide diversity that often cross-talk between different endocytosis results. Furthermore, some viruses have the ability to use the multiple internalization pathways which leads to the regulation being even more complex. In this paper, we discuss some recent advances in our understanding of cellular pathways for virus entry, molecular signaling during virus entry, formation of endocytic vesicles, and the traffic.
Collapse
Affiliation(s)
- Pei-I Chi
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
30
|
Productive entry of HIV-1 during cell-to-cell transmission via dynamin-dependent endocytosis. J Virol 2013; 87:8110-23. [PMID: 23678185 DOI: 10.1128/jvi.00815-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 can be transmitted as cell-free virus or via cell-to-cell contacts. Cell-to-cell transmission between CD4(+) T cells is the more efficient mode of transmission and is predominant in lymphoid tissue, where the majority of virus resides. Yet the cellular mechanisms underlying productive cell-to-cell transmission in uninfected target cells are unclear. Although it has been demonstrated that target cells can take up virus via endocytosis, definitive links between this process and productive infection remain undefined, and this route of transmission has been proposed to be nonproductive. Here, we report that productive cell-to-cell transmission can occur via endocytosis in a dynamin-dependent manner and is sensitive to clathrin-associated antagonists. These data were obtained in a number of CD4(+) T-cell lines and in primary CD4(+) T cells, using both CXCR4- and CCR5-tropic virus. However, we also found that HIV-1 demonstrated flexibility in its use of such endocytic pathways as certain allogeneic transmissions were seen to occur in a dynamin-dependent manner but were insensitive to clathrin-associated antagonists. Also, depleting cells of the clathrin accessory protein AP180 led to a viral uptake defect associated with enhanced infection. Collectively, these data demonstrate that endosomal uptake of HIV-1 during cell-to-cell transmission leads to productive infection, but they are also indicative of a flexible model of viral entry during cell-to-cell transmission, in which the virus can alter its entry route according to the pressures that it encounters.
Collapse
|