1
|
Fu L, Zhang H, Dai Y, Zhang H, Pan X, Chen S, Tan L. Revealing metabolic alterations in brucellosis patients by targeted metabolomics. J Pharm Biomed Anal 2024; 249:116370. [PMID: 39047467 DOI: 10.1016/j.jpba.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/30/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Brucellosis, a zoonotic disease caused by brucella infection, presents metabolic profile changes in patients that have not been extensively explored. This study utilized an ultra-high performance liquid chromatography tandem mass spectrometry based targeted metabolomic approach to comprehensively investigated metabolic changes in Brucella patients. Serum samples of brucellosis 50 patients and 50 well-matched healthy controls were analyzed for 228 metabolites, revealing significant alterations in 83 metabolites in brucellosis patients. Notably, disruptions were observed in key metabolite pathways, such as amino acid metabolism, urea cycle, tricarboxylic acid cycle (TCA), and fatty acid metabolism. Patients diagnosed with Brucellosis exhibited distinct differences in the levels of aspartate, glutamate, β-alanine, and asparagine when compared to controls. Within the urea cycle, a significant downregulation of arginine was observed, whereas ornithine levels were considerably upregulated. In the TCA cycle, concentrations of 2-oxoglutarate, succinate, and malate were significantly elevated, while citrate levels demonstrated a notable decrease. Due to the interruption of the TCA cycle, glycolysis was accelerated to compensate for the resultant energy deficit in Brucella patients. Concurrently, there was a significant increase in the levels of short and medium-chain fatty acids, while long-chain fatty acids showed a marked decrease. The study systematically revealed significant metabolic alterations in Brucellosis patients and further explored the potential correlation between these changes and clinic symptoms, including fatigue, muscle soreness and prolonged fever. The results enhanced our understanding of Brucellosis, offering valuable insights potentially beneficial in formulating more effective treatment strategies and improving prognostic approaches.
Collapse
Affiliation(s)
- Lei Fu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Hao Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongfeng Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Barbieux E, Potemberg G, Stubbe FX, Fraikin A, Poncin K, Reboul A, Rouma T, Zúñiga-Ripa A, De Bolle X, Muraille E. Genome-wide analysis of Brucella melitensis growth in spleen of infected mice allows rational selection of new vaccine candidates. PLoS Pathog 2024; 20:e1012459. [PMID: 39186777 PMCID: PMC11346958 DOI: 10.1371/journal.ppat.1012459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Live attenuated vaccines (LAVs) whose virulence would be controlled at the tissue level could be a crucial tool to effectively fight intracellular bacterial pathogens, because they would optimize the induction of protective immune memory while avoiding the long-term persistence of vaccine strains in the host. Rational development of these new LAVs implies developing an exhaustive map of the bacterial virulence genes according to the host organs implicated. We report here the use of transposon sequencing to compare the bacterial genes involved in the multiplication of Brucella melitensis, a major causative agent of brucellosis, in the lungs and spleens of C57BL/6 infected mice. We found 257 and 135 genes predicted to be essential for B. melitensis multiplication in the spleen and lung, respectively, with 87 genes common to both organs. We selected genes whose deletion is predicted to produce moderate or severe attenuation in the spleen, the main known reservoir of Brucella, and compared deletion mutants for these genes for their ability to protect mice against challenge with a virulent strain of B. melitensis. The protective efficacy of a deletion mutant for the plsC gene, implicated in phospholipid biosynthesis, is similar to that of the reference Rev.1 vaccine but with a shorter persistence in the spleen. Our results demonstrate that B. melitensis faces different selective pressures depending on the organ and underscore the effectiveness of functional genome mapping for the design of new safer LAV candidates.
Collapse
Affiliation(s)
- Emeline Barbieux
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Georges Potemberg
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - François-Xavier Stubbe
- Unité de recherche en physiologie moléculaire (URPhyM)-Laboratoire de Génétique moléculaire (GéMo), University of Namur, Namur, Belgium
| | - Audrey Fraikin
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Katy Poncin
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Angeline Reboul
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Thomas Rouma
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología - IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Xavier De Bolle
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes (URBM)-Laboratoire d’Immunologie et de Microbiologie, NARILIS, University of Namur, Namur, Belgium
- Laboratoire de Parasitologie, and ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
3
|
Wang Z, Chen C, Xiong M, Tan J, Wu K, Liu H, Xing DF, Wang A, Ren N, Zhao L. Microbial interactions facilitating efficient methane driven denitrification via in-situ utilization of short chain fatty acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172901. [PMID: 38697549 DOI: 10.1016/j.scitotenv.2024.172901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
High nitrate pollution in agriculture and industry poses a challenge to emerging methane oxidation coupled denitrification. In this study, an efficient nitrate removal efficiency of 100 % was achieved at an influent loading rate of 400 mg-N/L·d, accompanied by the production of short chain fatty acids (SCFAs) with a maximum value of 80.9 mg/L. Batch tests confirmed that methane was initially converted to acetate, which then served as a carbon source for denitrification. Microbial community characterization revealed the dominance of heterotrophic denitrifiers, including Simplicispira (22.8 %), Stappia (4.9 %), and the high‑nitrogen-tolerant heterotrophic denitrifier Diaphorobacter (19.0 %), at the nitrate removal rate of 400 mg-N/L·d. Notably, the low abundance of methanotrophs ranging from 0.24 % to 3.75 % across all operational stages does not fully align with the abundance of pmoA genes, suggesting the presence of other functional microorganisms capable of methane oxidation and SCFAs production. These findings could facilitate highly efficient denitrification driven by methane and contributed to the development of denitrification using methane as an electron donor.
Collapse
Affiliation(s)
- Zihan Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Minli Xiong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingyan Tan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kaikai Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Heng Liu
- School of Biopharmaceuticals, Heilongjiang Agricultural Engineering Vocational College, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Lan H, Shu W, Jiang D, Yu L, Xu G. Cas-based bacterial detection: recent advances and perspectives. Analyst 2024; 149:1398-1415. [PMID: 38357966 DOI: 10.1039/d3an02120c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Persistent bacterial infections pose a formidable threat to global health, contributing to widespread challenges in areas such as food safety, medical hygiene, and animal husbandry. Addressing this peril demands the urgent implementation of swift and highly sensitive detection methodologies suitable for point-of-care testing and large-scale screening. These methodologies play a pivotal role in the identification of pathogenic bacteria, discerning drug-resistant strains, and managing and treating diseases. Fortunately, new technology, the CRISPR/Cas system, has emerged. The clustered regularly interspaced short joint repeats (CRISPR) system, which is part of bacterial adaptive immunity, has already played a huge role in the field of gene editing. It has been employed as a diagnostic tool for virus detection, featuring high sensitivity, specificity, and single-nucleotide resolution. When applied to bacterial detection, it also surpasses expectations. In this review, we summarise recent advances in the detection of bacteria such as Mycobacterium tuberculosis (MTB), methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli (E. coli), Salmonella and Acinetobacter baumannii (A. baumannii) using the CRISPR/Cas system. We emphasize the significance and benefits of this methodology, showcasing the capability of diverse effector proteins to swiftly and precisely recognize bacterial pathogens. Furthermore, the CRISPR/Cas system exhibits promise in the identification of antibiotic-resistant strains. Nevertheless, this technology is not without challenges that need to be resolved. For example, CRISPR/Cas systems must overcome natural off-target effects and require high-quality nucleic acid samples to improve sensitivity and specificity. In addition, limited applicability due to the protospacer adjacent motif (PAM) needs to be addressed to increase its versatility. Despite the challenges, we are optimistic about the future of bacterial detection using CRISPR/Cas. We have already highlighted its potential in medical microbiology. As research progresses, this technology will revolutionize the detection of bacterial infections.
Collapse
Affiliation(s)
- Huatao Lan
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Weitong Shu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Dan Jiang
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
5
|
Analysis of the Brucella suis Twin Arginine Translocation System and Its Substrates Shows That It Is Essential for Viability. Infect Immun 2023; 91:e0045922. [PMID: 36448838 PMCID: PMC9872638 DOI: 10.1128/iai.00459-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bacteria use the twin arginine translocator (Tat) system to export folded proteins from the cytosol to the bacterial envelope or to the extracellular environment. As with most Gram-negative bacteria, the Tat system of the zoonotic pathogen Brucella spp. is encoded by a three-gene operon, tatABC. Our attempts, using several different strategies, to create a Brucella suis strain 1330 tat mutant were all unsuccessful. This suggested that, for B. suis, Tat is essential, in contrast to a recent report for Brucella melitensis. This was supported by our findings that two molecules that inhibit the Pseudomonas aeruginosa Tat system also inhibit B. suis, B. melitensis, and Brucella abortus growth in vitro. In a bioinformatic screen of the B. suis 1330 proteome, we identified 28 proteins with putative Tat signal sequences. We used a heterologous reporter assay based on export of the Tat-dependent amidase AmiA by using the Tat signal sequences from the Brucella proteins to confirm that 20 of the 28 candidates can engage the Tat pathway.
Collapse
|
6
|
The regulon of Brucella abortus two-component system BvrR/BvrS reveals the coordination of metabolic pathways required for intracellular life. PLoS One 2022; 17:e0274397. [PMID: 36129877 PMCID: PMC9491525 DOI: 10.1371/journal.pone.0274397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Brucella abortus is a facultative intracellular pathogen causing a severe zoonotic disease worldwide. The two-component regulatory system (TCS) BvrR/BvrS of B. abortus is conserved in members of the Alphaproteobacteria class. It is related to the expression of genes required for host interaction and intracellular survival. Here we report that bvrR and bvrS are part of an operon composed of 16 genes encoding functions related to nitrogen metabolism, DNA repair and recombination, cell cycle arrest, and stress response. Synteny of this genomic region within close Alphaproteobacteria members suggests a conserved role in coordinating the expression of carbon and nitrogen metabolic pathways. In addition, we performed a ChIP-Seq analysis after exposure of bacteria to conditions that mimic the intracellular environment. Genes encoding enzymes at metabolic crossroads of the pentose phosphate shunt, gluconeogenesis, cell envelope homeostasis, nucleotide synthesis, cell division, and virulence are BvrR/BvrS direct targets. A 14 bp DNA BvrR binding motif was found and investigated in selected gene targets such as virB1, bvrR, pckA, omp25, and tamA. Understanding gene expression regulation is essential to elucidate how Brucella orchestrates a physiological response leading to a furtive pathogenic strategy.
Collapse
|
7
|
Minjárez-Sáenz M, Martínez-Júlvez M, Yruela I, Medina M. Mining the Flavoproteome of Brucella ovis, the Brucellosis Causing Agent in Ovis aries. Microbiol Spectr 2022; 10:e0229421. [PMID: 35315701 PMCID: PMC9045290 DOI: 10.1128/spectrum.02294-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/19/2022] [Indexed: 11/20/2022] Open
Abstract
Flavoproteins are a diverse class of proteins that are mostly enzymes and contain as cofactors flavin mononucleotide (FMN) and/or flavin adenine dinucleotide (FAD), which enable them to participate in a wide range of physiological reactions. We have compiled 78 potential proteins building the flavoproteome of Brucella ovis (B. ovis), the causative agent of ovine brucellosis. The curated list of flavoproteins here reported is based on (i) the analysis of sequence, structure and function of homologous proteins, and their classification according to their structural domains, clans, and expected enzymatic functions; (ii) the constructed phylogenetic trees of enzyme functional classes using 19 Brucella strains and 26 pathogenic and/or biotechnological relevant alphaproteobacteria together with B. ovis; and (iii) the evaluation of the genetic context for each entry. Candidates account for ∼2.7% of the B. ovis proteome, and 75% of them use FAD as cofactor. Only 55% of these flavoproteins belong to the core proteome of Brucella and contribute to B. ovis processes involved in maintenance activities, survival and response to stress, virulence, and/or infectivity. Several of the predicted flavoproteins are highly divergent in Brucella genus from revised proteins and for them it is difficult to envisage a clear function. This might indicate modified catalytic activities or even divergent processes and mechanisms still not identified. We have also detected the lack of some functional flavoenzymes in B. ovis, which might contribute to it being nonzoonotic. Finally, potentiality of B. ovis flavoproteome as the source of antimicrobial targets or biocatalyst is discussed. IMPORTANCE Some microorganisms depend heavily on flavin-dependent activities, but others maintain them at a minimum. Knowledge about flavoprotein content and functions in different microorganisms will help to identify their metabolic requirements, as well as to benefit either industry or health. Currently, most flavoproteins from the sheep pathogen Brucella ovis are only automatically annotated in databases, and only two have been experimentally studied. Indeed, certain homologues with unknown function are not characterized, and they might relate to still not identified mechanisms or processes. Our research has identified 78 members that comprise its flavoproteome, 76 of them flavoenzymes, which mainly relate to bacteria survival, virulence, and/or infectivity. The list of flavoproteins here presented allows us to better understand the peculiarities of Brucella ovis and can be applied as a tool to search for candidates as new biocatalyst or antimicrobial targets.
Collapse
Affiliation(s)
- Martha Minjárez-Sáenz
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Inmaculada Yruela
- Estación Experimental de Aula Dei, CSIC, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| |
Collapse
|
8
|
The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms 2022; 10:microorganisms10040813. [PMID: 35456863 PMCID: PMC9025488 DOI: 10.3390/microorganisms10040813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Collapse
|
9
|
Moreno E, Blasco JM, Letesson JJ, Gorvel JP, Moriyón I. Pathogenicity and Its Implications in Taxonomy: The Brucella and Ochrobactrum Case. Pathogens 2022; 11:377. [PMID: 35335701 PMCID: PMC8954888 DOI: 10.3390/pathogens11030377] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
The intracellular pathogens of the genus Brucella are phylogenetically close to Ochrobactrum, a diverse group of free-living bacteria with a few species occasionally infecting medically compromised patients. A group of taxonomists recently included all Ochrobactrum organisms in the genus Brucella based on global genome analyses and alleged equivalences with genera such as Mycobacterium. Here, we demonstrate that such equivalencies are incorrect because they overlook the complexities of pathogenicity. By summarizing Brucella and Ochrobactrum divergences in lifestyle, structure, physiology, population, closed versus open pangenomes, genomic traits, and pathogenicity, we show that when they are adequately understood, they are highly relevant in taxonomy and not unidimensional quantitative characters. Thus, the Ochrobactrum and Brucella differences are not limited to their assignments to different "risk-groups", a biologically (and hence, taxonomically) oversimplified description that, moreover, does not support ignoring the nomen periculosum rule, as proposed. Since the epidemiology, prophylaxis, diagnosis, and treatment are thoroughly unrelated, merging free-living Ochrobactrum organisms with highly pathogenic Brucella organisms brings evident risks for veterinarians, medical doctors, and public health authorities who confront brucellosis, a significant zoonosis worldwide. Therefore, from taxonomical and practical standpoints, the Brucella and Ochrobactrum genera must be maintained apart. Consequently, we urge researchers, culture collections, and databases to keep their canonical nomenclature.
Collapse
Affiliation(s)
- Edgardo Moreno
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40101, Costa Rica
| | - José María Blasco
- Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, 50059 Zaragoza, Spain;
| | - Jean Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Faculty of Science, University of Namur, 5000 Namur, Belgium;
| | - Jean Pierre Gorvel
- Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, 13009 Marseille, France
| | - Ignacio Moriyón
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
10
|
Brucella ovis Cysteine Biosynthesis Contributes to Peroxide Stress Survival and Fitness in the Intracellular Niche. Infect Immun 2021; 89:IAI.00808-20. [PMID: 33753413 DOI: 10.1128/iai.00808-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Brucella ovis is an ovine intracellular pathogen with tropism for the male genital tract. To establish and maintain infection, B. ovis must survive stressful conditions inside host cells, including low pH, nutrient limitation, and reactive oxygen species. The same conditions are often encountered in axenic cultures during stationary phase. Studies of stationary phase may thus inform our understanding of Brucella infection biology, yet the genes and pathways that are important in Brucella stationary-phase physiology remain poorly defined. We measured fitness of a barcoded pool of B. ovis Tn-himar mutants as a function of growth phase and identified cysE as a determinant of fitness in stationary phase. CysE catalyzes the first step in cysteine biosynthesis from serine, and we provide genetic evidence that two related enzymes, CysK1 and CysK2, function redundantly to catalyze cysteine synthesis at steps downstream of CysE. Deleting cysE (ΔcysE) or both cysK1 and cysK2 (ΔcysK1 ΔcysK2) results in premature entry into stationary phase, reduced culture yield, and sensitivity to exogenous hydrogen peroxide. These phenotypes can be chemically complemented by cysteine or glutathione. ΔcysE and ΔcysK1 ΔcysK2 strains have no defect in host cell entry in vitro but have significantly diminished intracellular fitness between 2 and 24 h postinfection. Our study has uncovered unexpected redundancy at the CysK step of cysteine biosynthesis in B. ovis and demonstrates that cysteine anabolism is a determinant of peroxide stress survival and fitness in the intracellular niche.
Collapse
|
11
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
12
|
Yang X, Wang N, Cao X, Bie P, Xing Z, Yin S, Jiang H, Wu Q. First isolation and characterization of Brucella suis from yak. Genome 2020; 63:397-405. [PMID: 32384250 DOI: 10.1139/gen-2019-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brucella spp., facultative intracellular pathogens that can persistently colonize animal host cells and cause zoonosis, affect public health and safety. A Brucella strain was isolated from yak in Qinghai Province. To detect whether this isolate could cause an outbreak of brucellosis and to reveal its genetic characteristics, several typing and whole-genome sequencing methods were applied to identify its species and genetic characteristics. Phylogenetic analysis based on MLVA and whole-genome sequencing revealed the genetic characteristics of the isolated strain. The results showed that the isolated strain is a B. suis biovar 1 smooth strain, and this isolate was named B. suis QH05. The results of comparative genomics and MLVA showed that B. suis QH05 is not a vaccine strain. Comparison with other B. suis strains isolated from humans and animals indicated that B. suis QH05 may be linked to specific animal and human sources. In conclusion, B. suis QH05 does not belong to the Brucella epidemic species in China, and as the first isolation of B. suis from yak, this strain expands the host range of B. suis.
Collapse
Affiliation(s)
- Xiaowen Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.,Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ning Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaofang Cao
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Pengfei Bie
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhifeng Xing
- Heilongjiang Provincial Center for Disease Control and Prevention, Haerbin 150030, China
| | - Shihui Yin
- Heilongjiang Provincial Center for Disease Control and Prevention, Haerbin 150030, China
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qingmin Wu
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Whole-Genome Sequencing of Mexican Strains of Anaplasma marginale: An Approach to the Causal Agent of Bovine Anaplasmosis. Int J Genomics 2020; 2020:5902029. [PMID: 32351981 PMCID: PMC7178543 DOI: 10.1155/2020/5902029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/21/2020] [Accepted: 03/06/2020] [Indexed: 11/21/2022] Open
Abstract
Anaplasma marginale is the main etiologic agent of bovine anaplasmosis, and it is extensively distributed worldwide. We have previously reported the first genome sequence of a Mexican strain of A. marginale (Mex-01-001-01). In this work, we report the genomic analysis of one strain from Hidalgo (MEX-14-010-01), one from Morelos (MEX-17-017-01), and two strains from Veracruz (MEX-30-184-02 and MEX-30-193-01). We found that the genome average size is 1.16-1.17 Mbp with a GC content close to 49.80%. The genomic comparison reveals that most of the A. marginale genomes are highly conserved and the phylogeny showed that Mexican strains cluster with Brazilian strains. The genomic information contained in the four draft genomes of A. marginale from Mexico will contribute to understanding the molecular landscape of this pathogen.
Collapse
|
14
|
Kauffman LK, Petersen CA. Canine Brucellosis: Old Foe and Reemerging Scourge. Vet Clin North Am Small Anim Pract 2019; 49:763-779. [PMID: 30961996 DOI: 10.1016/j.cvsm.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genus Brucella is a primary cause of reproductive diseases. Widely known as a problem in livestock, Brucella is gaining notoriety as a cause of canine reproductive disease and as a scourge to dog breeders. Only within the last few decades has the risk of severe brucellosis in dogs, and the people who own and work with them, been more fully appreciated. This review summarizes the epidemiology, clinical signs, and advances in diagnosis and management of Brucella canis. Canine brucellosis prevention, owner education, and possible therapies for the future are also discussed.
Collapse
Affiliation(s)
| | - Christine A Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, 145 North Riverside Drive, Iowa City, IA 52242, USA; Center for Emerging Infectious Diseases, University of Iowa Research Park, Coralville, IA 52241, USA.
| |
Collapse
|
15
|
Sidhu-Muñoz RS, Sancho P, Cloeckaert A, Zygmunt MS, de Miguel MJ, Tejedor C, Vizcaíno N. Characterization of Cell Envelope Multiple Mutants of Brucella ovis and Assessment in Mice of Their Vaccine Potential. Front Microbiol 2018; 9:2230. [PMID: 30294312 PMCID: PMC6158377 DOI: 10.3389/fmicb.2018.02230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023] Open
Abstract
Brucella ovis is a non-zoonotic Brucella species lacking specific vaccine. It presents a narrow host range, a unique biology relative to other Brucella species, and important distinct surface properties. To increase our knowledge on its peculiar surface and virulence features, and seeking to develop a specific vaccine, multiple mutants for nine relevant cell-envelope-related genes were investigated. Mutants lacking Omp10 plus Omp19 could not be obtained, suggesting that at least one of these lipoproteins is required for viability. A similar result was obtained for the double deletion of omp31 and omp25 that encode two major surface proteins. Conversely, the absence of major Omp25c (proved essential for internalization in HeLa cells) together with Omp25 or Omp31 was tolerated by the bacterium. Although showing important in vitro and in vivo defects, the Δomp10Δomp31Δomp25c mutant was obtained, demonstrating that B. ovis PA survives to the simultaneous absence of Omp10 and four out seven proteins of the Omp25/Omp31 family (i.e., Omp31, Omp25c, Omp25b, and Omp31b, the two latter naturally absent in B. ovis). Three multiple mutants were selected for a detailed analysis of virulence in the mouse model. The Δomp31Δcgs and Δomp10Δomp31Δomp25c mutants were highly attenuated when inoculated at 106 colony forming units/mouse but they established a persistent infection when the infection dose was increased 100-fold. The Δomp10ΔugpBΔomp31 mutant showed a similar behavior until week 3 post-infection but was then totally cleared from spleen. Accordingly, it was retained as vaccine candidate for mice protection assays. When compared to classical B. melitensis Rev1 heterologous vaccine, the triple mutant induced limited splenomegaly, a significantly higher antibody response against whole B. ovis PA cells, an equivalent memory cellular response and, according to spleen colonization measurements, better protection against a challenge with virulent B. ovis PA. Therefore, it would be a good candidate to be evaluated in the natural host as a specific vaccine against B. ovis that would avoid the drawbacks of B. melitensis Rev1. In addition, the lack in this attenuated strain of Omp31, recognized as a highly immunogenic protein during B. ovis infection, would favor the differentiation between infected and vaccinated animals using Omp31 as diagnostic target.
Collapse
Affiliation(s)
- Rebeca Singh Sidhu-Muñoz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Pilar Sancho
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Axel Cloeckaert
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - Michel Stanislas Zygmunt
- Plasticité Génomique, Biodiversité, Antibiorésistance (PGBA), UR1282 - Infectiologie Animale, Santé Publique (IASP-311), Institut National de la Recherche Agronomique Centre Val de Loire, Nouzilly, France
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón - IA2, Zaragoza, Spain
| | - Carmen Tejedor
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Nieves Vizcaíno
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Pérez-Etayo L, de Miguel MJ, Conde-Álvarez R, Muñoz PM, Khames M, Iriarte M, Moriyón I, Zúñiga-Ripa A. The CO 2-dependence of Brucella ovis and Brucella abortus biovars is caused by defective carbonic anhydrases. Vet Res 2018; 49:85. [PMID: 30185220 PMCID: PMC6126018 DOI: 10.1186/s13567-018-0583-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Brucella bacteria cause brucellosis, a major zoonosis whose control requires efficient diagnosis and vaccines. Identification of classical Brucella spp. has traditionally relied on phenotypic characterization, including surface antigens and 5–10% CO2 necessity for growth (CO2-dependence), a trait of Brucella ovis and most Brucella abortus biovars 1–4 strains. Although molecular tests are replacing phenotypic methods, CO2-dependence remains of interest as it conditions isolation and propagation and reflects Brucella metabolism, an area of active research. Here, we investigated the connection of CO2-dependence and carbonic anhydrases (CA), the enzymes catalyzing the hydration of CO2 to the bicarbonate used by anaplerotic and biosynthetic carboxylases. Based on the previous demonstration that B. suis carries two functional CAs (CAI and CAII), we analyzed the CA sequences of CO2-dependent and -independent brucellae and spontaneous mutants. The comparisons strongly suggested that CAII is not functional in CO2-dependent B. abortus and B. ovis, and that a modified CAII sequence explains the CO2-independent phenotype of spontaneous mutants. Then, by mutagenesis and heterologous plasmid complementation and chromosomal insertion we proved that CAI alone is enough to support CO2-independent growth of B. suis in rich media but not of B. abortus in rich media or B. suis in minimal media. Finally, we also found that insertion of a heterologous active CAII into B. ovis reverted the CO2-dependence but did not alter its virulence in the mouse model. These results allow a better understanding of central aspects of Brucella metabolism and, in the case of B. ovis, provide tools for large-scale production of diagnostic antigens and vaccines.
Collapse
Affiliation(s)
- Lara Pérez-Etayo
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal del Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal del Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
| | - Mammar Khames
- Department of Biology, University of Medea, 26000, Medea, Algeria.,National Veterinary High School, Algiers, Algeria
| | - Maite Iriarte
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología-IDISNA, Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
17
|
Xu D, Song J, Li G, Cai W, Zong S, Li Z, Liu W, Hu S, Bu Z. A novel small RNA Bmsr1 enhances virulence in Brucella melitensis M28. Vet Microbiol 2018; 223:1-8. [PMID: 30173733 DOI: 10.1016/j.vetmic.2018.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/12/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023]
Abstract
Brucellosis, caused by Brucella spp., is one of the most serious zoonotic bacterial diseases. Small RNAs (sRNAs) are recognized as a key player in bacterial post-transcription regulation, since they participate in many biological processes with high efficiency and may govern the intracellular biochemistry and virulence of some pathogenic bacteria. Here, a novel small regulatory RNA, Bmsr1 (Brucella melitensis M28 small RNA 1), was identified in a virulent Brucella melitensis M28 strain based on bioinformatic analysis, reverse transcription PCR (RT-PCR), and Northern blot. The Bmsr1 expression level was highly induced after infection of macrophage cells RAW264.7 at 48 h, suggesting a role for Bmsr1 during in vitro infection. Indeed, bmsr1 deletion mutant of M28 attenuated its intracellular survival in RAW264.7 at 24 h and 48 h post-infection. In a mouse model of chronic infection, bmsr1 deletion strain displayed decreased colonization in the spleen while Bmsr1-overexpressed strain showed higher colonization levels than wild type pathogen. Isobaric tags for relative and absolute quantification (iTRAQ) revealed that 314 proteins were differentially expressed in M28Δbmsr1 compared with wild type. Functional annotation analysis demonstrated that most of those proteins are involved in biological processes and those proteins in the ribosome and nitrogen metabolism pathways were enriched. iTRAQ results combined with target prediction identified several potential target genes related to virulence, including virB2, virB9, virB10, virB11, and vjbR and many metabolism genes. Taken together, this study revealed the contribution of a novel sRNA Bmsr1 to virulence of B. melitensis M28, probably by influencing genes involved in T4SS, virulence regulator VjbR and other metabolism genes.
Collapse
Affiliation(s)
- Da Xu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Jiabao Song
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Shucheng Zong
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhaoli Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Wenxing Liu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Sen Hu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China.
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
18
|
Zúñiga-Ripa A, Barbier T, Lázaro-Antón L, de Miguel MJ, Conde-Álvarez R, Muñoz PM, Letesson JJ, Iriarte M, Moriyón I. The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models. Front Microbiol 2018; 9:641. [PMID: 29675004 PMCID: PMC5896264 DOI: 10.3389/fmicb.2018.00641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the genus Brucella infect a range of vertebrates causing a worldwide extended zoonosis. The best-characterized brucellae infect domestic livestock, behaving as stealthy facultative intracellular parasites. This stealthiness depends on envelope molecules with reduced pathogen-associated molecular patterns, as revealed by the low lethality and ability to persist in mice of these bacteria. Infected cells are often engorged with brucellae without signs of distress, suggesting that stealthiness could also reflect an adaptation of the parasite metabolism to use local nutrients without harming the cell. To investigate this, we compared key metabolic abilities of Brucella abortus 2308 Wisconsin (2308W), a cattle biovar 1 virulent strain, and B. suis 513, the reference strain of the ancestral biovar 5 found in wild rodents. B. suis 513 used a larger number of C substrates and showed faster growth rates in vitro, two features similar to those of B. microti, a species phylogenomically close to B. suis biovar 5 that infects voles. However, whereas B. microti shows enhanced lethality and reduced persistence in mice, B. suis 513 was similar to B. abortus 2308W in this regard. Mutant analyses showed that B. suis 513 and B. abortus 2308W were similar in that both depend on phosphoenolpyruvate synthesis for virulence but not on the classical gluconeogenic fructose-1,6-bisphosphatases Fbp-GlpX or on isocitrate lyase (AceA). However, B. suis 513 used pyruvate phosphate dikinase (PpdK) and phosphoenolpyruvate carboxykinase (PckA) for phosphoenolpyruvate synthesis in vitro while B. abortus 2308W used only PpdK. Moreover, whereas PpdK dysfunction causes attenuation of B. abortus 2308W in mice, in B. suis, 513 attenuation occurred only in the double PckA-PpdK mutant. Also contrary to what occurs in B. abortus 2308, a B. suis 513 malic enzyme (Mae) mutant was not attenuated, and this independence of Mae and the role of PpdK was confirmed by the lack of attenuation of a double Mae-PckA mutant. Altogether, these results decouple fast growth rates from enhanced mouse lethality in the brucellae and suggest that an Fbp-GlpX-independent gluconeogenic mechanism is ancestral in this group and show differences in central C metabolic steps that may reflect a progressive adaptation to intracellular growth.
Collapse
Affiliation(s)
- Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Thibault Barbier
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Leticia Lázaro-Antón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - María J de Miguel
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Jean J Letesson
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
19
|
Utilization of Host Polyamines in Alternatively Activated Macrophages Promotes Chronic Infection by Brucella abortus. Infect Immun 2018; 86:IAI.00458-17. [PMID: 29203548 DOI: 10.1128/iai.00458-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Treatment of intracellular bacterial pathogens with antibiotic therapy often requires a long course of multiple drugs. A barrier to developing strategies that enhance antibiotic efficacy against these pathogens is our poor understanding of the intracellular nutritional environment that maintains bacterial persistence. The intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs); however, knowledge of the metabolic adaptations promoting exploitation of this niche is limited. Here we show that one mechanism promoting enhanced survival in AAMs is a shift in macrophage arginine utilization from production of nitric oxide (NO) to biosynthesis of polyamines, induced by interleukin 4 (IL-4)/IL-13 treatment. Production of polyamines by infected AAMs promoted both intracellular survival of B. abortus and chronic infection in mice, as inhibition of macrophage polyamine synthesis or inactivation of the putative putrescine transporter encoded by potIHGF reduced both intracellular survival in AAMs and persistence in mice. These results demonstrate that increased intracellular availability of polyamines induced by arginase-1 expression in IL-4/IL-13-induced AAMs promotes chronic persistence of B. abortus within this niche and suggest that targeting of this pathway may aid in eradicating chronic infection.
Collapse
|
20
|
Zai X, Yang Q, Yin Y, Li R, Qian M, Zhao T, Li Y, Zhang J, Fu L, Xu J, Chen W. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses. Front Microbiol 2017; 8:2347. [PMID: 29238329 PMCID: PMC5712581 DOI: 10.3389/fmicb.2017.02347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic balance under stress. In conclusion, our results provide a better understanding of the global metabolic adaptations of B. abortus associated with distinct environmental stresses. The identification of proteins necessary for stress resistance is crucial toward elucidating the infectious process in order to control brucellosis, and may facilitate the discovery of novel therapeutic targets and effective vaccines.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Mengying Qian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Taoran Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
21
|
Caudill MT, Budnick JA, Sheehan LM, Lehman CR, Purwantini E, Mukhopadhyay B, Caswell CC. Proline utilization system is required for infection by the pathogenic α-proteobacterium Brucella abortus. MICROBIOLOGY-SGM 2017; 163:970-979. [PMID: 28691659 DOI: 10.1099/mic.0.000490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proline utilization (Put) systems have been described in a number of bacteria; however, the importance and functionality of the Put system in the intracellular pathogen Brucellaabortus has not been explored. Generally, bacterial Put systems are composed of the bifunctional enzyme proline dehydrogenase PutA and its transcriptional activator PutR. Here, we demonstrate that the genes putA (bab2_0518) and putR (bab2_0517) are critical for the chronic infection of mice by B. abortus, but putA and putR are not required for the survival and replication of the bacteria in naive macrophages. Additionally, in vitro experiments revealed that putR is necessary for the ability of the bacteria to withstand oxidative stress, as a ΔputR deletion strain is hypersensitive to hydrogen peroxide exposure. Quantitative reverse transcription-PCR and putA-lacZ transcriptional reporter studies revealed that PutR acts as a transcriptional activator of putA in Brucella, and electrophoretic mobility shift assays confirmed that PutR binds directly to the putA promoter region. Biochemical analyses demonstrated that a purified recombinant B. abortus PutA protein possesses quintessential proline dehydrogenase activity, as PutA is capable of catalysing the conversion of proline to glutamate. Altogether, these data are the first to reveal that the Put system plays a significant role in the ability of B. abortus to replicate and survive within its host, as well as to describe the genetic regulation and biochemical activity of the Put system in Brucella.
Collapse
Affiliation(s)
- Mitchell T Caudill
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - James A Budnick
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Lauren M Sheehan
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Christian R Lehman
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Endang Purwantini
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
22
|
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ. Brucella central carbon metabolism: an update. Crit Rev Microbiol 2017; 44:182-211. [PMID: 28604247 DOI: 10.1080/1040841x.2017.1332002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
Collapse
Affiliation(s)
- T Barbier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - A Zúñiga-Ripa
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - S Moussa
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - H Plovier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - J F Sternon
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - L Lázaro-Antón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - R Conde-Álvarez
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - X De Bolle
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - M Iriarte
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - I Moriyón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - J J Letesson
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| |
Collapse
|
23
|
Abdou E, Jiménez de Bagüés MP, Martínez-Abadía I, Ouahrani-Bettache S, Pantesco V, Occhialini A, Al Dahouk S, Köhler S, Jubier-Maurin V. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity. Front Cell Infect Microbiol 2017; 7:186. [PMID: 28573107 PMCID: PMC5435760 DOI: 10.3389/fcimb.2017.00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original "in vitro model of persistence" consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL), were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work therefore contributes significantly to the unraveling of persistence mechanisms in this important zoonotic pathogen.
Collapse
Affiliation(s)
- Elias Abdou
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - María P. Jiménez de Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón (CITA-Universidad de Zaragoza)Zaragoza, Spain
| | - Ignacio Martínez-Abadía
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - Safia Ouahrani-Bettache
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - Véronique Pantesco
- Institut de Médecine Régénératrice et Biothérapie—U1183 Institut National de la Santé et de la Recherche MédicaleMontpellier, France
| | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - Véronique Jubier-Maurin
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| |
Collapse
|
24
|
Bao Y, Tian M, Li P, Liu J, Ding C, Yu S. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate. Vet Res 2017; 48:17. [PMID: 28376905 PMCID: PMC5381064 DOI: 10.1186/s13567-017-0422-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/07/2017] [Indexed: 11/25/2022] Open
Abstract
Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 105 colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.
Collapse
Affiliation(s)
- Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Peng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Jiameng Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
25
|
Letesson JJ, Barbier T, Zúñiga-Ripa A, Godfroid J, De Bolle X, Moriyón I. Brucella Genital Tropism: What's on the Menu. Front Microbiol 2017; 8:506. [PMID: 28400761 PMCID: PMC5368252 DOI: 10.3389/fmicb.2017.00506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Thibault Barbier
- Research Unit in Microorganisms Biology, University of Namur Bruxelles, Belgium
| | - Amaia Zúñiga-Ripa
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Edificio de Investigación, Instituto de Salud Tropical e Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra Pamplona, Spain
| | - Jacques Godfroid
- Arctic Infection Biology, UiT - The Arctic University of Norway Tromsø, Norway
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology, University of Namur Bruxelles, Belgium
| | - Ignacio Moriyón
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Edificio de Investigación, Instituto de Salud Tropical e Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra Pamplona, Spain
| |
Collapse
|
26
|
Brucella abortus: Current Research and Future Trends. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Brambila-Tapia AJL, Poot-Hernández AC, Garcia-Guevara JF, Rodríguez-Vázquez K. Correlation of Metabolic Variables with the Number of ORFs in Human Pathogenic and Phylogenetically Related Non- or Less-Pathogenic Bacteria. Curr Microbiol 2016; 72:758-66. [DOI: 10.1007/s00284-016-1013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 01/13/2016] [Indexed: 11/29/2022]
|
28
|
Ronneau S, Petit K, De Bolle X, Hallez R. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat Commun 2016; 7:11423. [PMID: 27109061 PMCID: PMC4848567 DOI: 10.1038/ncomms11423] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/24/2016] [Indexed: 01/17/2023] Open
Abstract
The alarmone (p)ppGpp is commonly used by bacteria to quickly respond to nutrient starvation. Although (p)ppGpp synthetases such as SpoT have been extensively studied, little is known about the molecular mechanisms stimulating alarmone synthesis upon starvation. Here, we describe an essential role of the nitrogen-related phosphotransferase system (PTSNtr) in controlling (p)ppGpp accumulation in Caulobacter crescentus. We show that cells sense nitrogen starvation by way of detecting glutamine deprivation using the first enzyme (EINtr) of PTSNtr. Decreasing intracellular glutamine concentration triggers phosphorylation of EINtr and its downstream components HPr and EIIANtr. Once phosphorylated, both HPr∼P and EIIANtr∼P stimulate (p)ppGpp accumulation by modulating SpoT activities. This burst of second messenger primarily impacts the non-replicative phase of the cell cycle by extending the G1 phase. This work highlights a new role for bacterial PTS systems in stimulating (p)ppGpp accumulation in response to metabolic cues and in controlling cell cycle progression and cell growth. The small molecule (p)ppGpp is commonly produced by bacteria as a signal of nutrient starvation. Here, Ronneau et al. show that (p)ppGpp accumulation in the model bacterium Caulobacter crescentus is modulated by a nitrogen-related phosphotransferase system in response to glutamine deprivation.
Collapse
Affiliation(s)
- Séverin Ronneau
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Kenny Petit
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Xavier De Bolle
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Régis Hallez
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| |
Collapse
|
29
|
Yang X, Li Y, Zang J, Li Y, Bie P, Lu Y, Wu Q. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp. Mol Genet Genomics 2016; 291:905-12. [DOI: 10.1007/s00438-015-1154-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/01/2015] [Indexed: 01/11/2023]
|
30
|
In Situ Characterization of Splenic Brucella melitensis Reservoir Cells during the Chronic Phase of Infection in Susceptible Mice. PLoS One 2015; 10:e0137835. [PMID: 26376185 PMCID: PMC4574346 DOI: 10.1371/journal.pone.0137835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/22/2015] [Indexed: 01/22/2023] Open
Abstract
Brucella are facultative intracellular Gram-negative coccobacilli that chronically infect humans as well as domestic and wild-type mammals, and cause brucellosis. Alternatively activated macrophages (M2a) induced by IL-4/IL-13 via STAT6 signaling pathways have been frequently described as a favorable niche for long-term persistence of intracellular pathogens. Based on the observation that M2a-like macrophages are induced in the spleen during the chronic phase of B. abortus infection in mice and are strongly infected in vitro, it has been suggested that M2a macrophages could be a potential in vivo niche for Brucella. In order to test this hypothesis, we used a model in which infected cells can be observed directly in situ and where the differentiation of M2a macrophages is favored by the absence of an IL-12-dependent Th1 response. We performed an in situ analysis by fluorescent microscopy of the phenotype of B. melitensis infected spleen cells from intranasally infected IL-12p40-/- BALB/c mice and the impact of STAT6 deficiency on this phenotype. Most of the infected spleen cells contained high levels of lipids and expressed CD11c and CD205 dendritic cell markers and Arginase1, but were negative for the M2a markers Fizz1 or CD301. Furthermore, STAT6 deficiency had no effect on bacterial growth or the reservoir cell phenotype in vivo, leading us to conclude that, in our model, the infected cells were not Th2-induced M2a macrophages. This characterization of B. melitensis reservoir cells could provide a better understanding of Brucella persistence in the host and lead to the design of more efficient therapeutic strategies.
Collapse
|