1
|
Ji X, Chen Z, Wang Q, Li B, Wei Y, Li Y, Lin J, Cheng W, Guo Y, Wu S, Mao L, Xiang Y, Lan T, Gu S, Wei M, Zhang JZ, Jiang L, Wang J, Xu J, Cao N. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab 2024; 36:839-856.e8. [PMID: 38367623 DOI: 10.1016/j.cmet.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/19/2022] [Revised: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.
Collapse
Affiliation(s)
- Xiaoqian Ji
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Zihao Chen
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Qiyuan Wang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Bin Li
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yan Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yun Li
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Lin
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Weisheng Cheng
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yijie Guo
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Shilin Wu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Longkun Mao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Yuzhou Xiang
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong 510006, China
| | - Shanshan Gu
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Meng Wei
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lan Jiang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangdong 510080, China
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangdong 510080, China.
| |
Collapse
|
2
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
3
|
Aji G, Jiang S, Obulkasim H, Lu Z, Wang W, Xia P. Sphingosine kinase 2 regulates insulin receptor trafficking in hepatocytes. Exp Biol Med (Maywood) 2023; 248:44-51. [PMID: 36408724 PMCID: PMC9989153 DOI: 10.1177/15353702221131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Disturbed insulin receptor (InsR) trafficking is associated with impaired insulin signaling and the development of diabetes. Sphingosine kinase (SphK), including SphK1 and SphK2, is a key enzyme of sphingolipid metabolism, which has been implicated in the regulation of membrane trafficking. More recently, we have reported that SphK2 is a key regulator of hepatic insulin signaling and glucose homeostasis. However, the role of SphK in InsR trafficking is still undefined. Huh7 cells were treated with specific SphK1 and SphK2 inhibitors or SphK1- and SphK2-specific small interfering RNA (siRNA) in the presence or absence of insulin. Flow cytometry and immunofluorescence assays were carried out to investigate the role of SphK in InsR trafficking. InsR endocytosis, recycling, and insulin signaling were analyzed. Inhibition of SphK2, but not SphK1, by either specific pharmaceutic inhibitors or siRNA, significantly suppressed InsR endocytosis and recycling following insulin stimulation. Consequently, the insulin-stimulated Akt activation was significantly attenuated by SphK2 inhibition in hepatocytes. Moreover, the effect of SphK2 on InsR trafficking was mediated via the clathrin-dependent mechanism. Thus, our results show that SphK2 is able to regulate InsR trafficking. These findings suggest that SphK2 may impinge on hepatic insulin signaling by regulating InsR trafficking, providing further mechanistic evidence that SphK2 could serve as a potential intervention target against insulin resistance and T2D (type 2 diabetes).
Collapse
Affiliation(s)
- Gulibositan Aji
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China.,Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Sheng Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Halmurat Obulkasim
- Department of General Surgery, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
| | - Zhiqiang Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| | - Pu Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Yan H, Zhao H, Yi SW, Zhuang H, Wang DW, Jiang JG, Shen GF. Sphingosine-1-Phosphate Protects Against the Development of Cardiac Remodeling via Sphingosine Kinase 2 and the S1PR2/ERK Pathway. Curr Med Sci 2022; 42:702-710. [PMID: 35963947 DOI: 10.1007/s11596-022-2600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2020] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Cardiac remodeling is a common pathological change in various cardiovascular diseases and can ultimately result in heart failure. Thus, there is an urgent need for more effective strategies to aid in cardiac protection. Our previous work found that sphingosine-1-phosphate (S1P) could ameliorate cardiac hypertrophy. In this study, we aimed to investigate whether S1P could prevent cardiac fibrosis and the associated mechanisms in cardiac remodeling. METHODS Eight-week-old male C57BL/6 mice were randomly divided into a sham, transverse aortic constriction (TAC) or a TAC+S1P treatment group. RESULTS We found that S1P treatment improved cardiac function in TAC mice and that the cardiac fibrosis ratio in the TAC+S1P group was significantly lower and was accompanied by a decrease in α-smooth muscle actin (α-SMA) and collagen type I (COL I) expression compared with the TAC group. We also found that one of the key S1P enzymes, sphingosine kinase 2 (SphK2), which was mainly distributed in cytoblasts, was downregulated in the cardiac remodeling case and recovered after S1P treatment in vivo and in vitro. In addition, our in vitro results showed that S1P treatment activated extracellular regulated protein kinases (ERK) phosphorylation mainly through the S1P receptor 2 (S1PR2) and spurred p-ERK transposition from the cytoplasm to cytoblast in H9c2 cells exposed to phenylephrine. CONCLUSION These findings suggest that SphK2 and the S1PR2/ERK pathway may participate in the anti-remodeling effect of S1P on the heart. This work therefore uncovers a novel potential therapy for the prevention of cardiac remodeling.
Collapse
Affiliation(s)
- Hui Yan
- Wuhan No. 4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hu Zhao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Wei Yi
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhuang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dao-Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Gang Jiang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gui-Fen Shen
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Janneh AH, Ogretmen B. Targeting Sphingolipid Metabolism as a Therapeutic Strategy in Cancer Treatment. Cancers (Basel) 2022; 14:2183. [PMID: 35565311 PMCID: PMC9104917 DOI: 10.3390/cancers14092183] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are bioactive molecules that have key roles in regulating tumor cell death and survival through, in part, the functional roles of ceramide accumulation and sphingosine-1-phosphate (S1P) production, respectively. Mechanistic studies using cell lines, mouse models, or human tumors have revealed crucial roles of sphingolipid metabolic signaling in regulating tumor progression in response to anticancer therapy. Specifically, studies to understand ceramide and S1P production pathways with their downstream targets have provided novel therapeutic strategies for cancer treatment. In this review, we present recent evidence of the critical roles of sphingolipids and their metabolic enzymes in regulating tumor progression via mechanisms involving cell death or survival. The roles of S1P in enabling tumor growth/metastasis and conferring cancer resistance to existing therapeutics are also highlighted. Additionally, using the publicly available transcriptomic database, we assess the prognostic values of key sphingolipid enzymes on the overall survival of patients with different malignancies and present studies that highlight their clinical implications for anticancer treatment.
Collapse
Affiliation(s)
| | - Besim Ogretmen
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
6
|
Genest M, Comunale F, Planchon D, Govindin P, Noly D, Vacher S, Bièche I, Robert B, Malhotra H, Schoenit A, Tashireva LA, Casas J, Gauthier-Rouvière C, Bodin S. Upregulated flotillins and sphingosine kinase 2 derail AXL vesicular traffic to promote epithelial-mesenchymal transition. J Cell Sci 2022; 135:274986. [PMID: 35394045 DOI: 10.1242/jcs.259178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Altered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes. AXL overexpression, frequently observed in cancer cells, is linked to EMT and metastasis formation. In flotillin-overexpressing non-tumoral mammary epithelial cells and in invasive breast carcinoma cells, we found that the UFIT pathway-mediated AXL endocytosis allows its stabilization and depends on sphingosine kinase 2, a lipid kinase recruited in flotillin-rich plasma membrane domains and endosomes. Thus, the deregulation of vesicular trafficking following flotillin upregulation, and through sphingosine kinase 2, emerges as a new mechanism of AXL overexpression and EMT-inducing signaling pathway activation.
Collapse
Affiliation(s)
- Mallory Genest
- CRBM, University of Montpellier, CNRS, 1919 route de Mende, 34293 Montpellier, France
| | - Franck Comunale
- CRBM, University of Montpellier, CNRS, 1919 route de Mende, 34293 Montpellier, France
| | - Damien Planchon
- CRBM, University of Montpellier, CNRS, 1919 route de Mende, 34293 Montpellier, France
| | - Pauline Govindin
- CRBM, University of Montpellier, CNRS, 1919 route de Mende, 34293 Montpellier, France
| | - Dune Noly
- CRBM, University of Montpellier, CNRS, 1919 route de Mende, 34293 Montpellier, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, Paris 75005, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris 75005, France
| | - Bruno Robert
- IRCM, Campus Val d'Aurelle, 208 avenue des Apothicaires, 34298 Montpellier, France
| | - Himanshu Malhotra
- CRBM, University of Montpellier, CNRS, 1919 route de Mende, 34293 Montpellier, France
| | - Andreas Schoenit
- CRBM, University of Montpellier, CNRS, 1919 route de Mende, 34293 Montpellier, France
| | - Liubov A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain.,Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), 28029 Madrid, Spain
| | | | - Stéphane Bodin
- CRBM, University of Montpellier, CNRS, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
7
|
Gutner UA, Shupik MA. The Role of Sphingosine-1-Phosphate in Neurodegenerative Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
8
|
Molinar-Inglis O, Birch CA, Nicholas D, Orduña-Castillo L, Cisneros-Aguirre M, Patwardhan A, Chen B, Grimsey NJ, Coronel LJ, Lin H, Gomez Menzies PK, Lawson MA, Patel HH, Trejo J. aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, β-arrestin-2-mediated SphK1-S1PR1-Akt signaling axis. Proc Natl Acad Sci U S A 2021; 118:e2106623118. [PMID: 34873055 PMCID: PMC8670512 DOI: 10.1073/pnas.2106623118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via β-arrestin-2 (β-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a β-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)-rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates β-arr2-dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal-regulated kinase 1/2 (ERK1/2) activation is also dependent on β-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-β-arr2-mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, β-arr2-driven signaling pathways in caveolae.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Cierra A Birch
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dequina Nicholas
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697
| | - Lennis Orduña-Castillo
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Metztli Cisneros-Aguirre
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Anand Patwardhan
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Buxin Chen
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Neil J Grimsey
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences and Biomedical Sciences, School of Pharmacy, University of Georgia, Athens, GA 30682
| | - Luisa J Coronel
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Huilan Lin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Patrick K Gomez Menzies
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Mark A Lawson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Hemal H Patel
- VA San Diego Health Care System, San Diego, CA 92161
- Department of Anesthesiology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
9
|
Khan SA, Goliwas KF, Deshane JS. Sphingolipids in Lung Pathology in the Coronavirus Disease Era: A Review of Sphingolipid Involvement in the Pathogenesis of Lung Damage. Front Physiol 2021; 12:760638. [PMID: 34690821 PMCID: PMC8531546 DOI: 10.3389/fphys.2021.760638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Sphingolipids are bioactive lipids involved in the regulation of cell survival, proliferation, and the inflammatory response. The SphK/S1P/S1PR pathway (S1P pathway) is a driver of many anti-apoptotic and proliferative processes. Pro-survival sphingolipid sphingosine-1-phosphate (S1P) initiates its signaling cascade by interacting with various sphingosine-1-phosphate receptors (S1PR) through which it is able to exert its pro-survival or inflammatory effects. Whereas sphingolipids, including ceramides and sphingosines are pro-apoptotic. The pro-apoptotic lipid, ceramide, can be produced de novo by ceramide synthases and converted to sphingosine by way of ceramidases. The balance of these antagonistic lipids and how this balance manifests is the essence of the sphingolipid rheostat. Recent studies on SARS-CoV-2 have implicated the S1P pathway in the pathogenesis of novel coronavirus disease COVID-19-related lung damage. Accumulating evidence indicates that an aberrant inflammatory process, known as "cytokine storm" causes lung injury in COVID-19, and studies have shown that the S1P pathway is involved in signaling this hyperinflammatory response. Beyond the influence of this pathway on cytokine storm, over the last decade the S1P pathway has been investigated for its role in a wide array of lung pathologies, including pulmonary fibrosis, pulmonary arterial hypertension (PAH), and lung cancer. Various studies have used S1P pathway modulators in models of lung disease; many of these efforts have yielded results that point to the potential efficacy of targeting this pathway for future treatment options. Additionally, they have emphasized S1P pathway's significant role in inflammation, fibrosis, and a number of other endothelial and epithelial changes that contribute to lung damage. This review summarizes the S1P pathway's involvement in COVID-19 and chronic lung diseases and discusses the potential for targeting S1P pathway as a therapeutic option for these diseases.
Collapse
Affiliation(s)
| | | | - Jessy S. Deshane
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Sattar RSA, Sumi MP, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Mahajan B, Saluja SS. S1P signaling, its interactions and cross-talks with other partners and therapeutic importance in colorectal cancer. Cell Signal 2021; 86:110080. [PMID: 34245863 DOI: 10.1016/j.cellsig.2021.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-Phosphate (S1P) plays an important role in normal physiology, inflammation, initiation and progression of cancer. Deregulation of S1P signaling causes aberrant proliferation, affects survival, leads to angiogenesis and metastasis. Sphingolipid rheostat is crucial for cellular homeostasis. Discrepancy in sphingolipid metabolism is linked to cancer and drug insensitivity. Owing to these diverse functions and being a potent mediator of tumor growth, S1P signaling might be a suitable candidate for anti-tumor therapy or combination therapy. In this review, with a focus on colorectal cancer we have summarized the interacting partners of S1P signaling pathway, its therapeutic approaches along with the contribution of S1P signaling to various cancer hallmarks.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
11
|
Sukocheva OA, Hu DG, Meech R, Bishayee A. Divergence of Intracellular Trafficking of Sphingosine Kinase 1 and Sphingosine-1-Phosphate Receptor 3 in MCF-7 Breast Cancer Cells and MCF-7-Derived Stem Cell-Enriched Mammospheres. Int J Mol Sci 2021; 22:ijms22094314. [PMID: 33919234 PMCID: PMC8122545 DOI: 10.3390/ijms22094314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer MCF-7 cell-line-derived mammospheres were shown to be enriched in cells with a CD44+/CD24- surface profile, consistent with breast cancer stem cells (BCSC). These BCSC were previously reported to express key sphingolipid signaling effectors, including pro-oncogenic sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1P3). In this study, we explored intracellular trafficking and localization of SphK1 and S1P3 in parental MCF-7 cells, and MCF-7 derived BCSC-enriched mammospheres treated with growth- or apoptosis-stimulating agents. Intracellular trafficking and localization were assessed using confocal microscopy and cell fractionation, while CD44+/CD24- marker status was confirmed by flow cytometry. Mammospheres expressed significantly higher levels of S1P3 compared to parental MCF-7 cells (p < 0.01). Growth-promoting agents (S1P and estrogen) induced SphK1 and S1P3 translocation from cytoplasm to nuclei, which may facilitate the involvement of SphK1 and S1P3 in gene regulation. In contrast, pro-apoptotic cytokine tumor necrosis factor α (TNFα)-treated MCF-7 cells demonstrated increased apoptosis and no nuclear localization of SphK1 and S1P3, suggesting that TNFα can inhibit nuclear translocation of SphK1 and S1P3. TNFα inhibited mammosphere formation and induced S1P3 internalization and degradation. No nuclear translocation of S1P3 was detected in TNFα-stimulated mammospheres. Notably, SphK1 and S1P3 expression and localization were highly heterogenous in mammospheres, suggesting the potential for a large variety of responses. The findings provide further insights into the understanding of sphingolipid signaling and intracellular trafficking in BCs. Our data indicates that the inhibition of SphK1 and S1P3 nuclear translocation represents a novel method to prevent BCSCs proliferation.
Collapse
Affiliation(s)
- Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia
- Correspondence: (O.A.S.); or (A.B.)
| | - Dong Gui Hu
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia; (D.G.H.); (R.M.)
| | - Robyn Meech
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia; (D.G.H.); (R.M.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: (O.A.S.); or (A.B.)
| |
Collapse
|
12
|
Ding T, Zhi Y, Xie W, Yao Q, Liu B. Rational design of SphK inhibitors using crystal structures aided by computer. Eur J Med Chem 2021; 213:113164. [PMID: 33454547 DOI: 10.1016/j.ejmech.2021.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Sphingosine kinases (SphKs) are lipid kinases that catalyze the phosphorylation of sphingosine (Sph) to sphingosine-1-phosphate (S1P). As a bioactive lipid, S1P plays a role outside and inside the cell to regulate biological processes. The overexpression of SphKs is related to a variety of pathophysiological conditions. Targeting the S1P signaling pathway is a potential treatment strategy for many diseases. SphKs are key kinases of the S1P signaling pathway. The SphK family includes two isoforms: SphK1 and SphK2. Determination of the co-crystal structure of SphK1 with various inhibitors has laid a solid foundation for the development of small molecule inhibitors targeting SphKs. This paper reviews the differences and connections between the two isoforms and the structure of SphK1 crystals, especially the structure of its Sph "J-shaped" channel binding site. This review also summarizes the recent development of SphK1 and SphK2 selective inhibitors and the exploration of the unresolved SphK2 structure.
Collapse
Affiliation(s)
- Tiandi Ding
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Ying Zhi
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| | - Bo Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| |
Collapse
|
13
|
Velazquez FN, Hernandez-Corbacho M, Trayssac M, Stith JL, Bonica J, Jean B, Pulkoski-Gross MJ, Carroll BL, Salama MF, Hannun YA, Snider AJ. Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell Signal 2020; 79:109875. [PMID: 33290840 PMCID: PMC8244749 DOI: 10.1016/j.cellsig.2020.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Hernandez-Corbacho
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph Bonica
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Bernandie Jean
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael J Pulkoski-Gross
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Brittany L Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
14
|
Blankenbach KV, Claas RF, Aster NJ, Spohner AK, Trautmann S, Ferreirós N, Black JL, Tesmer JJG, Offermanns S, Wieland T, Meyer zu Heringdorf D. Dissecting G q/11-Mediated Plasma Membrane Translocation of Sphingosine Kinase-1. Cells 2020; 9:cells9102201. [PMID: 33003441 PMCID: PMC7599897 DOI: 10.3390/cells9102201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/24/2022] Open
Abstract
Diverse extracellular signals induce plasma membrane translocation of sphingosine kinase-1 (SphK1), thereby enabling inside-out signaling of sphingosine-1-phosphate. We have shown before that Gq-coupled receptors and constitutively active Gαq/11 specifically induced a rapid and long-lasting SphK1 translocation, independently of canonical Gq/phospholipase C (PLC) signaling. Here, we further characterized Gq/11 regulation of SphK1. SphK1 translocation by the M3 receptor in HEK-293 cells was delayed by expression of catalytically inactive G-protein-coupled receptor kinase-2, p63Rho guanine nucleotide exchange factor (p63RhoGEF), and catalytically inactive PLCβ3, but accelerated by wild-type PLCβ3 and the PLCδ PH domain. Both wild-type SphK1 and catalytically inactive SphK1-G82D reduced M3 receptor-stimulated inositol phosphate production, suggesting competition at Gαq. Embryonic fibroblasts from Gαq/11 double-deficient mice were used to show that amino acids W263 and T257 of Gαq, which interact directly with PLCβ3 and p63RhoGEF, were important for bradykinin B2 receptor-induced SphK1 translocation. Finally, an AIXXPL motif was identified in vertebrate SphK1 (positions 100–105 in human SphK1a), which resembles the Gαq binding motif, ALXXPI, in PLCβ and p63RhoGEF. After M3 receptor stimulation, SphK1-A100E-I101E and SphK1-P104A-L105A translocated in only 25% and 56% of cells, respectively, and translocation efficiency was significantly reduced. The data suggest that both the AIXXPL motif and currently unknown consequences of PLCβ/PLCδ(PH) expression are important for regulation of SphK1 by Gq/11.
Collapse
Affiliation(s)
- Kira Vanessa Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Ralf Frederik Claas
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Natalie Judith Aster
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Anna Katharina Spohner
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
| | - Sandra Trautmann
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Nerea Ferreirós
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (N.F.)
| | - Justin L. Black
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette, West Lafayette, IN 47907-2054, USA;
| | - Stefan Offermanns
- Abteilung für Pharmakologie, Max-Planck-Institut für Herz- und Lungenforschung, 61231 Bad Nauheim, Germany;
| | - Thomas Wieland
- Experimentelle Pharmakologie Mannheim, European Center for Angioscience, Universität Heidelberg, 68167 Mannheim, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (K.V.B.); (R.F.C.); (N.J.A.); (A.K.S.)
- Correspondence: ; Tel.: +49-69-6301-3906
| |
Collapse
|
15
|
Investigating the binding mechanism of sphingosine kinase 1/2 inhibitors: Insights into subtype selectivity by homology modeling, molecular dynamics simulation and free energy calculation studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
16
|
Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res 2020; 156:104793. [PMID: 32278039 DOI: 10.1016/j.phrs.2020.104793] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/04/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a signaling lipid, synthetized by sphingosine kinases (SPHK1 and SPHK2), that affects cardiovascular function in various ways. S1P signaling is complex, particularly since its molecular action is reliant on the differential expression of its receptors (S1PR1, S1PR2, S1PR3, S1PR4, S1PR5) within various tissues. Significance of this sphingolipid is manifested early in vertebrate development as certain defects in S1P signaling result in embryonic lethality due to defective vasculo- or cardiogenesis. Similar in the mature organism, S1P orchestrates both physiological and pathological processes occurring in the heart and vasculature of higher eukaryotes. S1P regulates cell fate, vascular tone, endothelial function and integrity as well as lymphocyte trafficking, thus disbalance in its production and signaling has been linked with development of such pathologies as arterial hypertension, atherosclerosis, endothelial dysfunction and aberrant angiogenesis. Number of signaling mechanisms are critical - from endothelial nitric oxide synthase through STAT3, MAPK and Akt pathways to HDL particles involved in redox and inflammatory balance. Moreover, S1P controls both acute cardiac responses (cardiac inotropy and chronotropy), as well as chronic processes (such as apoptosis and hypertrophy), hence numerous studies demonstrate significance of S1P in the pathogenesis of hypertrophic/fibrotic heart disease, myocardial infarction and heart failure. This review presents current knowledge concerning the role of S1P in the cardiovascular system, as well as potential therapeutic approaches to target S1P signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- E Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - T J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - M Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
17
|
Riboni L, Abdel Hadi L, Navone SE, Guarnaccia L, Campanella R, Marfia G. Sphingosine-1-Phosphate in the Tumor Microenvironment: A Signaling Hub Regulating Cancer Hallmarks. Cells 2020; 9:E337. [PMID: 32024090 PMCID: PMC7072483 DOI: 10.3390/cells9020337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
As a key hub of malignant properties, the cancer microenvironment plays a crucial role intimately connected to tumor properties. Accumulating evidence supports that the lysophospholipid sphingosine-1-phosphate acts as a key signal in the cancer extracellular milieu. In this review, we have a particular focus on glioblastoma, representative of a highly aggressive and deleterious neoplasm in humans. First, we highlight recent advances and emerging concepts for how tumor cells and different recruited normal cells contribute to the sphingosine-1-phosphate enrichment in the cancer microenvironment. Then, we describe and discuss how sphingosine-1-phosphate signaling contributes to favor cancer hallmarks including enhancement of proliferation, stemness, invasion, death resistance, angiogenesis, immune evasion and, possibly, aberrant metabolism. We also discuss the potential of how sphingosine-1-phosphate control mechanisms are coordinated across distinct cancer microenvironments. Further progress in understanding the role of S1P signaling in cancer will depend crucially on increasing knowledge of its participation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| |
Collapse
|
18
|
Kim S, Sieburth D. Sphingosine Kinase Activates the Mitochondrial Unfolded Protein Response and Is Targeted to Mitochondria by Stress. Cell Rep 2019; 24:2932-2945.e4. [PMID: 30208318 PMCID: PMC6206875 DOI: 10.1016/j.celrep.2018.08.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 11/22/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is critical for maintaining mitochondrial protein homeostasis in response to mitochondrial stress, but early steps in UPRmt activation are not well understood. Here, we report a function for SPHK-1 sphingosine kinase in activating the UPRmt in C. elegans. Genetic deficiency of sphk-1 in the intestine inhibits UPRmt activation, whereas selective SPHK-1 intestinal overexpression is sufficient to activate the UPRmt. Acute mitochondrial stress leads to rapid, reversible localization of SPHK-1::GFP fusion proteins with mitochondrial membranes before UPRmt activation. SPHK-1 variants lacking kinase activity or mitochondrial targeting fail to rescue the stress-induced UPRmt activation defects of sphk-1 mutants. Activation of the UPRmt by the nervous system requires sphk-1 and elicits SPHK-1 mitochondrial association in the intestine. We propose that stress-regulated mitochondrial recruitment of SPHK-1 and subsequent S1P production are critical early events for both cell autonomous and cell non-autonomous UPRmt activation. The mitochondrial unfolded protein response (UPRmt) maintains mitochondrial protein homeostasis in response to stress. Kim and Sieburth identify SPHK-1/sphingosine kinase as a positive regulator of the UPRmt that promotes UPRmt activation in response to a variety of mitochondrial stressors. SPHK-1 associates with mitochondria and SPHK-1 mitochondrial association is stress dependent, reversible, and necessary for the UPRmt, indicating that SPHK-1 mitochondrial targeting is an early step in UPRmt activation.
Collapse
Affiliation(s)
- Sungjin Kim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Derek Sieburth
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
19
|
Abstract
Pulmonary arterial hypertension (PAH), characterized by high morbidity and mortality, is a serious hazard to human life. Until now, the long-term survival of the PAH patients is still suboptimal. Recently, sphingosine kinase 1 (SPHK1) has drawn more and more attention due to its essential role in the pulmonary vasoconstriction, remodeling of pulmonary blood vessels and right cardiac lesions in PAH patients, and this enzyme is regarded as a new target for the treatment of PAH. Here, we discussed the multifarious functions of SPHK1 in PAH physiology and pathogenesis. Moreover, the structural features of SPHK1 and binding modes with different inhibitors were summarized. Finally, recent advances in the medicinal chemistry research of SPHK1 inhibitors are presented.
Collapse
|
20
|
Fang Z, Pyne S, Pyne NJ. WITHDRAWN: Ceramide and Sphingosine 1-Phosphate in adipose dysfunction. Prog Lipid Res 2019:100991. [PMID: 31442525 DOI: 10.1016/j.plipres.2019.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Zijian Fang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
21
|
Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res 2019; 74:145-159. [PMID: 30951736 DOI: 10.1016/j.plipres.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The increased adipose tissue mass of obese individuals enhances the risk of metabolic syndrome, type 2 diabetes and cardiovascular diseases. During pathological expansion of adipose tissue, multiple molecular controls of lipid storage, adipocyte turn-over and endocrine secretion are perturbed and abnormal lipid metabolism results in a distinct lipid profile. There is a role for ceramides and sphingosine 1-phosphate (S1P) in inducing adipose dysfunction. For instance, the alteration of ceramide biosynthesis, through the de-regulation of key enzymes, results in aberrant formation of ceramides (e.g. C16:0 and C18:0) which block insulin signaling and promote adipose inflammation. Furthermore, S1P can induce defective adipose tissue phenotypes by promoting chronic inflammation and inhibiting adipogenesis. These abnormal changes are discussed in the context of possible therapeutic approaches to re-establish normal adipose function and to, thereby, increase insulin sensitivity in type 2 diabetes. Such novel approaches include blockade of ceramide biosynthesis using inhibitors of sphingomyelinase or dihydroceramide desaturase and by antagonism of S1P receptors, such as S1P2.
Collapse
|
22
|
Adams DR, Tawati S, Berretta G, Rivas PL, Baiget J, Jiang Z, Alsfouk A, Mackay SP, Pyne NJ, Pyne S. Topographical Mapping of Isoform-Selectivity Determinants for J-Channel-Binding Inhibitors of Sphingosine Kinases 1 and 2. J Med Chem 2019; 62:3658-3676. [DOI: 10.1021/acs.jmedchem.9b00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Affiliation(s)
- David R. Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Salha Tawati
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Giacomo Berretta
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Paula Lopez Rivas
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Jessica Baiget
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Zhong Jiang
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Aisha Alsfouk
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Nigel J. Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| |
Collapse
|
23
|
Vettorazzi M, Vila L, Lima S, Acosta L, Yépes F, Palma A, Cobo J, Tengler J, Malik I, Alvarez S, Marqués P, Cabedo N, Sanz MJ, Jampilek J, Spiegel S, Enriz RD. Synthesis and biological evaluation of sphingosine kinase 2 inhibitors with anti-inflammatory activity. Arch Pharm (Weinheim) 2019; 352:e1800298. [DOI: 10.1002/ardp.201800298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL); San Luis Argentina
| | - Laura Vila
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - Santiago Lima
- Department of Biology and Department of Biochemistry and Molecular Biology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Lina Acosta
- Laboratorio de Síntesis Orgánica, Escuela de Química; Universidad Industrial de Santander; Bucaramanga Colombia
| | - Felipe Yépes
- Laboratorio de Síntesis Orgánica, Escuela de Química; Universidad Industrial de Santander; Bucaramanga Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química; Universidad Industrial de Santander; Bucaramanga Colombia
| | - Justo Cobo
- Inorganic and Organic Department; University of Jaén; Jaén Spain
| | - Jan Tengler
- Medis International a.s.; Bolatice Czech Republic
| | - Ivan Malik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Comenius University; Bratislava Slovakia
| | - Sergio Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL); San Luis Argentina
| | - Patrice Marqués
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - Nuria Cabedo
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - María J. Sanz
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - Josef Jampilek
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Comenius University; Bratislava Slovakia
| | - Sarah Spiegel
- Department of Biology and Department of Biochemistry and Molecular Biology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Ricardo D. Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL); San Luis Argentina
| |
Collapse
|
24
|
Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene 2018; 38:1151-1165. [PMID: 30250299 PMCID: PMC6363647 DOI: 10.1038/s41388-018-0504-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2017] [Revised: 07/10/2018] [Accepted: 08/24/2018] [Indexed: 11/09/2022]
Abstract
While the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death. Although SK2 has been implicated in cancer initiation and progression, the mechanisms regulating SK2 subcellular localization are undefined. Here, we report that SK2 interacts with the intermediate chain subunits of the retrograde-directed transport motor complex, cytoplasmic dynein 1 (DYNC1I1 and -2), and we show that this interaction, particularly with DYNC1I1, facilitates the transport of SK2 away from the plasma membrane. DYNC1I1 is dramatically downregulated in patient samples of glioblastoma (GBM), where lower expression of DYNC1I1 correlates with poorer patient survival. Notably, low DYNC1I1 expression in GBM cells coincided with more SK2 localized to the plasma membrane, where it has been recently implicated in oncogenesis. Re-expression of DYNC1I1 reduced plasma membrane-localized SK2 and extracellular S1P formation, and decreased GBM tumor growth and tumor-associated angiogenesis in vivo. Consistent with this, chemical inhibition of SK2 reduced the viability of patient-derived GBM cells in vitro and decreased GBM tumor growth in vivo. Thus, these findings demonstrate a tumor-suppressive function of DYNC1I1, and uncover new mechanistic insights into SK2 regulation which may have implications in targeting this enzyme as a therapeutic strategy in GBM.
Collapse
|
25
|
Abstract
Despite progress in understanding molecular aberrations that contribute to the development and progression of ovarian cancer, virtually all patients succumb to drug resistant disease at relapse. Emerging data implicate bioactive sphingolipids and regulation of sphingolipid metabolism as components of response to chemotherapy or development of resistance. Increases in cytosolic ceramide induce apoptosis in response to therapy with multiple classes of chemotherapeutic agents. Aberrations in sphingolipid metabolism that accelerate the catabolism of ceramide or that prevent the production and accumulation of ceramide contribute to resistance to standard of care platinum- and taxane-based agents. The aim of this review is to highlight current literature and research investigating the influence of the sphingolipids and enzymes that comprise the sphingosine-1-phosphate pathway on the progression of ovarian cancer. The focus of the review is on the utility of sphingolipid-centric therapeutics as a mechanism to circumvent drug resistance in this tumor type.
Collapse
Affiliation(s)
- Kelly M Kreitzburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Abstract
Sphingosine kinases (SK1 and SK2) are key, druggable targets within the sphingolipid metabolism pathway that promote tumor growth and pathologic inflammation. A variety of isozyme-selective and dual inhibitors of SK1 and SK2 have been described in the literature, and at least one compound has reached clinical testing in cancer patients. In this chapter, we will review the rationale for targeting SKs and summarize the preclinical and emerging clinical data for ABC294640 as the first-in-class selective inhibitor of SK2.
Collapse
|
27
|
Flotillin proteins recruit sphingosine to membranes and maintain cellular sphingosine-1-phosphate levels. PLoS One 2018; 13:e0197401. [PMID: 29787576 PMCID: PMC5963794 DOI: 10.1371/journal.pone.0197401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2018] [Accepted: 04/30/2018] [Indexed: 01/09/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important lipid signalling molecule. S1P is produced via intracellular phosphorylation of sphingosine (Sph). As a lipid with a single fatty alkyl chain, Sph may diffuse rapidly between cellular membranes and through the aqueous phase. Here, we show that the absence of microdomains generated by multimeric assemblies of flotillin proteins results in reduced S1P levels. Cellular phenotypes of flotillin knockout mice, including changes in histone acetylation and expression of Isg15, are recapitulated when S1P synthesis is perturbed. Flotillins bind to Sph in vitro and increase recruitment of Sph to membranes in cells. Ectopic re-localisation of flotillins within the cell causes concomitant redistribution of Sph. The data suggest that flotillins may directly or indirectly regulate cellular sphingolipid distribution and signalling.
Collapse
|
28
|
Kleuser B. Divergent Role of Sphingosine 1-Phosphate in Liver Health and Disease. Int J Mol Sci 2018; 19:ijms19030722. [PMID: 29510489 PMCID: PMC5877583 DOI: 10.3390/ijms19030722] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Arthur-Scheunert Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
29
|
Neubauer HA, Pham DH, Zebol JR, Moretti PAB, Peterson AL, Leclercq TM, Chan H, Powell JA, Pitman MR, Samuel MS, Bonder CS, Creek DJ, Gliddon BL, Pitson SM. An oncogenic role for sphingosine kinase 2. Oncotarget 2018; 7:64886-64899. [PMID: 27588496 PMCID: PMC5323123 DOI: 10.18632/oncotarget.11714] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2016] [Accepted: 08/25/2016] [Indexed: 01/02/2023] Open
Abstract
While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an anti-proliferative/pro-apoptotic function for SK2, while others indicate it has a pro-survival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Heidi A Neubauer
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Duyen H Pham
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Julia R Zebol
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Amanda L Peterson
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, Australia
| | - Tamara M Leclercq
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Huasheng Chan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
30
|
Sphingomyelin Metabolism Is a Regulator of K-Ras Function. Mol Cell Biol 2018; 38:MCB.00373-17. [PMID: 29158292 DOI: 10.1128/mcb.00373-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
K-Ras must localize to the plasma membrane (PM) for biological activity. We show here that multiple acid sphingomyelinase (ASM) inhibitors, including tricyclic antidepressants, mislocalized phosphatidylserine (PtdSer) and K-RasG12V from the PM, resulting in abrogation of K-RasG12V signaling and potent, selective growth inhibition of mutant K-Ras-transformed cancer cells. Concordantly, in nude mice, the ASM inhibitor fendiline decreased the rate of growth of oncogenic K-Ras-expressing MiaPaCa-2 tumors but had no effect on the growth of the wild-type K-Ras-expressing BxPC-3 tumors. ASM inhibitors also inhibited activated LET-60 (a K-Ras ortholog) signaling in Caenorhabditis elegans, as evidenced by suppression of the induced multivulva phenotype. Using RNA interference against C. elegans genes encoding other enzymes in the sphingomyelin (SM) biosynthetic pathway, we identified 14 enzymes whose knockdown strongly or moderately suppressed the LET-60 multivulva phenotype. In mammalian cells, pharmacological agents that target these enzymes all depleted PtdSer from the PM and caused K-RasG12V mislocalization. These effects correlated with changes in SM levels or subcellular distribution. Selected compounds, including sphingosine kinase inhibitors, potently inhibited the proliferation of oncogenic K-Ras-expressing pancreatic cancer cells. In conclusion, these results show that normal SM metabolism is critical for K-Ras function, which may present therapeutic options for the treatment of K-Ras-driven cancers.
Collapse
|
31
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
32
|
Neiband MS, Mani-Varnosfaderani A, Benvidi A. Classification of sphingosine kinase inhibitors using counter propagation artificial neural networks: A systematic route for designing selective SphK inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:91-109. [PMID: 28121178 DOI: 10.1080/1062936x.2017.1280535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/25/2016] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Accurate and robust classification models for describing and predicting the activity of 330 chemicals that are sphingosine kinase 1 (SphK1) and/or sphingosine kinase 2 (SphK2) inhibitors were derived. The classification models developed in this work assist in finding selective subspaces in chemical space occupied by particular groups of SphK inhibitors. A combination of a genetic algorithm (GA) and a counter propagation artificial neural network (CPANN) was utilized to select the most efficient subsets of the molecular descriptors. The optimized models in this work reasonably separate active inhibitors of SphK1 from active SphK2 inhibitors. Generally, the CPANN models in this work were used to classify the compounds according to their therapeutic targets and activities. The simplicity of the chosen descriptors and their relative importance sheds some light on the structural features necessary to induce selective inhibitory activity to the studied molecules. The areas under the receiver operating characteristic (ROC) curves for the GA-CPANN models in this work were 0.934 and 0.922 for active SphK1 and SphK2 inhibitors, respectively. Generally, the results in this work suggest some important molecular features and pharmacophores that could help medicinal chemists develop selective and potent SphK inhibitors.
Collapse
Affiliation(s)
- M S Neiband
- a Department of Chemistry , Yazd University , Yazd , Iran
| | - A Mani-Varnosfaderani
- b Chemometrics and Chemoinformatics Laboratory , Tarbiat Modares University , Tehran , Iran
| | - A Benvidi
- a Department of Chemistry , Yazd University , Yazd , Iran
| |
Collapse
|
33
|
Ng ML, Wadham C, Sukocheva OA. The role of sphingolipid signalling in diabetes‑associated pathologies (Review). Int J Mol Med 2017; 39:243-252. [PMID: 28075451 PMCID: PMC5358714 DOI: 10.3892/ijmm.2017.2855] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2016] [Accepted: 11/14/2016] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinase (SphK) is an important signalling enzyme that catalyses the phosphorylation of sphingosine (Sph) to form sphingosine‑1‑phosphate (S1P). The multifunctional lipid, S1P binds to a family of five G protein-coupled receptors (GPCRs). As an intracellular second messenger, S1P activates key signalling cascades responsible for the maintenance of sphingolipid metabolism, and has been implicated in the progression of cancer, and the development of other inflammatory and metabolic diseases. SphK and S1P are critical molecules involved in the regulation of various cellular metabolic processes, such as cell proliferation, survival, apoptosis, adhesion and migration. There is strong evidence supporting the critical roles of SphK and S1P in the progression of diabetes mellitus, including insulin sensitivity and insulin secretion, pancreatic β‑cell apoptosis, and the development of diabetic inflammatory state. In this review, we summarise the current state of knowledge for SphK/S1P signalling effects, associated with the development of insulin resistance, pancreatic β‑cell death and the vascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Mei Li Ng
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW 2050
- Sydney Medical School, Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
- Advanced Medical and Dental Institute, University Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
- Correspondence to: Dr Mei Li Ng, Advanced Medical and Dental Institute, University Sains Malaysia, No. 1-8 (Lot 8), Persiaran Seksyen 4, 1, Bandar Putra Bertam, Kepala Batas, Penang 13200, Malaysia, E-mail:
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031
| | - Olga A. Sukocheva
- School of Social Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
34
|
Custódio R, McLean CJ, Scott AE, Lowther J, Kennedy A, Clarke DJ, Campopiano DJ, Sarkar-Tyson M, Brown AR. Characterization of secreted sphingosine-1-phosphate lyases required for virulence and intracellular survival of Burkholderia pseudomallei. Mol Microbiol 2016; 102:1004-1019. [PMID: 27632710 DOI: 10.1111/mmi.13531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, plays a critical role in the orchestration of immune responses. S1P levels within the mammalian host are tightly regulated, in part through the activity of S1P lyase (S1PL) which catalyses its irreversible degradation. Herein, we describe the identification and characterization of secreted S1PL orthologues encoded by the facultative intracellular bacteria Burkholderia pseudomallei and Burkholderia thailandensis. These bacterial orthologues exhibited S1PL enzymatic activity, functionally complemented an S1PL-deficient yeast strain and conferred resistance to the antimicrobial sphingolipid D-erythro-sphingosine. We report that secretion of these bacterial S1PLs is pH-dependent, and is observed during intracellular infection. S1PL-deficient mutants displayed impaired intracellular replication in murine macrophages (associated with an inability to evade the maturing phagosome) and were significantly attenuated in murine and larval infection models. Furthermore, treatment of Burkholderia-infected macrophages with either S1P or a selective agonist of S1P receptor 1 enhanced bacterial colocalisation with LAMP-1 and reduced their intracellular survival. In summary, our studies confirm bacterial-encoded S1PL as a critical virulence determinant of B. pseudomallei and B. thailandensis, further highlighting the pivotal role of S1P in host-pathogen interactions. In addition, our data suggest that S1P pathway modulators have potential for the treatment of intracellular infection.
Collapse
Affiliation(s)
- Rafael Custódio
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | - Andrew E Scott
- Microbiology, Defence Science and Technology Laboratory, Porton Down, UK
| | | | | | | | | | - Mitali Sarkar-Tyson
- Microbiology, Defence Science and Technology Laboratory, Porton Down, UK.,Marshall Centre for Infectious Diseases and Training, School of Pathology and Laboratory Medicine, University of Western Australia, WA 6009, Australia
| | - Alan R Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
35
|
Dimasi DP, Pitson SM, Bonder CS. Examining the Role of Sphingosine Kinase-2 in the Regulation of Endothelial Cell Barrier Integrity. Microcirculation 2016; 23:248-65. [DOI: 10.1111/micc.12271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2015] [Accepted: 01/25/2016] [Indexed: 12/30/2022]
Affiliation(s)
- David P. Dimasi
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
- School of Medicine; University of Adelaide; Adelaide South Australia Australia
- School of Biological Sciences; University of Adelaide; Adelaide South Australia Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
- School of Medicine; University of Adelaide; Adelaide South Australia Australia
- School of Biological Sciences; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
36
|
Sphingosine Kinases: Emerging Structure-Function Insights. Trends Biochem Sci 2016; 41:395-409. [PMID: 27021309 DOI: 10.1016/j.tibs.2016.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
Sphingosine kinases (SK1 and SK2) catalyse the conversion of sphingosine into sphingosine 1-phosphate and control fundamental cellular processes, including cell survival, proliferation, differentiation, migration, and immune function. In this review, we highlight recent breakthroughs in the structural and functional characterisation of SK1 and these are contextualised by analysis of crystal structures for closely related prokaryotic lipid kinases. We identify a putative dimerisation interface and propose novel regulatory mechanisms governing structural plasticity induced by phosphorylation and interaction with phospholipids and proteins. Our analysis suggests that the catalytic function and regulation of the enzymes might be dependent on conformational mobility and it provides a roadmap for future interrogation of SK1 function and its role in physiology and disease.
Collapse
|
37
|
Canlas J, Holt P, Carroll A, Rix S, Ryan P, Davies L, Matusica D, Pitson SM, Jessup CF, Gibbins IL, Haberberger RV. Sphingosine kinase 2-deficiency mediated changes in spinal pain processing. Front Mol Neurosci 2015; 8:29. [PMID: 26283908 PMCID: PMC4522551 DOI: 10.3389/fnmol.2015.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2015] [Accepted: 06/26/2015] [Indexed: 11/15/2022] Open
Abstract
Chronic pain is one of the most burdensome health issues facing the planet (as costly as diabetes and cancer combined), and in desperate need for new diagnostic targets leading to better therapies. The bioactive lipid sphingosine 1-phosphate (S1P) and its receptors have recently been shown to modulate nociceptive signaling at the level of peripheral nociceptors and central neurons. However, the exact role of S1P generating enzymes, in particular sphingosine kinase 2 (Sphk2), in nociception remains unknown. We found that both sphingosine kinases, Sphk1 and Sphk2, were expressed in spinal cord (SC) with higher levels of Sphk2 mRNA compared to Sphk1. All three Sphk2 mRNA-isoforms were present with the Sphk2.1 mRNA showing the highest relative expression. Mice deficient in Sphk2 (Sphk2−/−) showed in contrast to mice deficient in Sphk1 (Sphk1−/−) substantially lower spinal S1P levels compared to wild-type C57BL/6 mice. In the formalin model of acute peripheral inflammatory pain, Sphk2−/− mice showed facilitation of nociceptive transmission during the late response, whereas responses to early acute pain, and the number of c-Fos immunoreactive dorsal horn neurons were not different between Sphk2−/− and wild-type mice. Chronic peripheral inflammation (CPI) caused a bilateral increase in mechanical sensitivity in Sphk2−/− mice. Additionally, CPI increased the relative mRNA expression of P2X4 receptor, brain-derived neurotrophic factor and inducible nitric oxide synthase in the ipsilateral SC of wild-type but not Sphk2−/− mice. Similarly, Sphk2−/− mice showed in contrast to wild-type no CPI-dependent increase in areas of the dorsal horn immunoreactive for the microglia marker Iba-1 and the astrocyte marker Glial fibrillary acidic protein (GFAP). Our results suggest that the tightly regulated cell signaling enzyme Sphk2 may be a key component for facilitation of nociceptive circuits in the CNS leading to central sensitization and pain memory formation.
Collapse
Affiliation(s)
- Jastrow Canlas
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Phillip Holt
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Alexander Carroll
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Shane Rix
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Paul Ryan
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Lorena Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology Adelaide, SA, Australia
| | - Claire F Jessup
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Ian L Gibbins
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Rainer V Haberberger
- Pain and Pulmonary Neurobiology, Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| |
Collapse
|
38
|
Adada MM, Canals D, Jeong N, Kelkar AD, Hernandez-Corbacho M, Pulkoski-Gross MJ, Donaldson JC, Hannun YA, Obeid LM. Intracellular sphingosine kinase 2-derived sphingosine-1-phosphate mediates epidermal growth factor-induced ezrin-radixin-moesin phosphorylation and cancer cell invasion. FASEB J 2015. [PMID: 26209696 DOI: 10.1096/fj.15-274340] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023]
Abstract
The bioactive sphingolipid sphingosine-1-phosphate (S1P) mediates cellular proliferation, mitogenesis, inflammation, and angiogenesis. These biologies are mediated through S1P binding to specific GPCRs [sphingosine-1-phosphate receptor (S1PR)1-5] and some other less well-characterized intracellular targets. Ezrin-radixin-moesin (ERM) proteins, a family of adaptor molecules linking the cortical actin cytoskeleton to the plasma membrane, are emerging as critical regulators of cancer invasion via regulation of cell morphology and motility. Recently, we identified S1P as an acute ERM activator (via phosphorylation) through its action on S1PR2. In this work, we dissect the mechanism of S1P generation downstream of epidermal growth factor (EGF) leading to ERM phosphorylation and cancer invasion. Using pharmacologic inhibitors, small interfering RNA technologies, and genetic approaches, we demonstrate that sphingosine kinase (SK)2, and not SK1, is essential and sufficient in EGF-mediated ERM phosphorylation in HeLa cells. In fact, knocking down SK2 decreased ERM activation 2.5-fold. Furthermore, we provide evidence that SK2 is necessary to mediate EGF-induced invasion. In addition, overexpressing SK2 causes a 2-fold increase in HeLa cell invasion. Surprisingly, and for the first time, we find that this event, although dependent on S1PR2 activation, does not generate and does not require extracellular S1P secretion, therefore introducing a potential novel model of autocrine/intracrine action of S1P that still involves its GPCRs. These results define new mechanistic insights for EGF-mediated invasion and novel actions of SK2, therefore setting the stage for novel targets in the treatment of growth factor-driven malignancies.
Collapse
Affiliation(s)
- Mohamad M Adada
- *Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; and Northport Veterans Affairs Medical Center, North Port, New York, USA
| | - Daniel Canals
- *Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; and Northport Veterans Affairs Medical Center, North Port, New York, USA
| | - Nara Jeong
- *Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; and Northport Veterans Affairs Medical Center, North Port, New York, USA
| | - Ashwin D Kelkar
- *Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; and Northport Veterans Affairs Medical Center, North Port, New York, USA
| | - Maria Hernandez-Corbacho
- *Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; and Northport Veterans Affairs Medical Center, North Port, New York, USA
| | - Michael J Pulkoski-Gross
- *Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; and Northport Veterans Affairs Medical Center, North Port, New York, USA
| | - Jane C Donaldson
- *Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; and Northport Veterans Affairs Medical Center, North Port, New York, USA
| | - Yusuf A Hannun
- *Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; and Northport Veterans Affairs Medical Center, North Port, New York, USA
| | - Lina M Obeid
- *Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA; and Northport Veterans Affairs Medical Center, North Port, New York, USA
| |
Collapse
|
39
|
Kitatani K, Taniguchi M, Okazaki T. Role of Sphingolipids and Metabolizing Enzymes in Hematological Malignancies. Mol Cells 2015; 38:482-95. [PMID: 25997737 PMCID: PMC4469906 DOI: 10.14348/molcells.2015.0118] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids such as ceramide, sphingosine-1-phosphate and sphingomyelin have been emerging as bioactive lipids since ceramide was reported to play a role in human leukemia HL-60 cell differentiation and death. Recently, it is well-known that ceramide acts as an inducer of cell death, that sphingomyelin works as a regulator for microdomain function of the cell membrane, and that sphingosine-1-phosphate plays a role in cell survival/proliferation. The lipids are metabolized by the specific enzymes, and each metabolite could be again returned to the original form by the reverse action of the different enzyme or after a long journey of many metabolizing/synthesizing pathways. In addition, the metabolites may serve as reciprocal bio-modulators like the rheostat between ceramide and sphingosine-1-phosphate. Therefore, the change of lipid amount in the cells, the subcellular localization and the downstream signal in a specific subcellular organelle should be clarified to understand the pathobiological significance of sphingolipids when extracellular stimulation induces a diverse of cell functions such as cell death, proliferation and migration. In this review, we focus on how sphingolipids and their metabolizing enzymes cooperatively exert their function in proliferation, migration, autophagy and death of hematopoetic cells, and discuss the way developing a novel therapeutic device through the regulation of sphingolipids for effectively inhibiting cell proliferation and inducing cell death in hematological malignancies such as leukemia, malignant lymphoma and multiple myeloma.
Collapse
Affiliation(s)
- Kazuyuki Kitatani
- Tohoku Medical Megabank Organization, Sendai,
Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai,
Japan
| | - Makoto Taniguchi
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293,
Japan
| | - Toshiro Okazaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293,
Japan
- Department of Medicine, Division of Hematology/Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293,
Japan
| |
Collapse
|
40
|
Yu H, Sun C, Argraves KM. Periodontal inflammation and alveolar bone loss induced by Aggregatibacter actinomycetemcomitans is attenuated in sphingosine kinase 1-deficient mice. J Periodontal Res 2015; 51:38-49. [PMID: 25900155 DOI: 10.1111/jre.12276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/04/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid, which is generated by activation of sphingosine kinase (SK) 1 and/or 2 in most mammalian cells with various stimuli, including the oral pathogen Aggregatibacter actinomycetemcomitans. S1P signaling has been shown to regulate the migration of monocytes and macrophages (osteoclast precursors) from the circulation to bone tissues and affect bone homeostasis. We aimed to determine the effects of SK1 deficiency on S1P generation, proinflammatory cytokine production, chemotaxis of monocytes and macrophages, and periodontitis induced by A. actinomycetemcomitans. MATERIAL AND METHODS Murine bone marrow-derived monocytes and macrophages (BMMs) from SK1 knockout (KO) mice or wild-type (WT) mice were either untreated or exposed to A. actinomycetemcomitans. The mRNA levels of SK1, SK2 and intracellular sphingolipid levels were quantified. In addition, murine WT BMMs were treated with vehicle, S1P, with or without A. actinomycetemcomitans and the mRNA levels of cyclooxygenase 2 (COX-2), interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF) were quantified. The protein levels of prostaglandin E2, IL-1β, IL-6 and TNF-α were quantified in the cell media of SK1 KO BMMs or WT BMMs with or without bacterial stimulation. Furthermore, a transwell migration assay was performed and the number of migrated WT BMMs in the presence of vehicle, bacteria-stimulated media, with or without S1P was quantified. Finally, in vivo studies were performed on SK1 KO and WT mice by injecting either phosphate-buffered saline or A. actinomycetemcomitans in the periodontal tissues. The mice maxillae were scanned by micro-computed tomography, and alveolar bone volume was analyzed. The number of periodontal leukocytes and osteoclasts were quantified in maxillary tissue sections. RESULTS SK1 mRNA levels significantly increased after A. actinomycetemcomitans stimulation in murine WT BMMs, but were undetectable in SK1 KO BMMs. Deficiency of SK1 in murine BMMs resulted in decreased S1P generation induced by A. actinomycetemcomitans as compared with WT BMMs. Additionally, low levels of S1P (≤ 1 μM) did not have a significant impact on the mRNA production of COX-2, IL-1β, IL-6 and TNF in murine BMMs with or without the presence of A. actinomycetemcomitans. There were no significant differences in prostaglandin E2 , IL-1β, IL-6 and TNF-α protein levels in the media between SK1 KO BMMs and WT BMMs with or without bacterial stimulation. Importantly, low levels of S1P (≤ 1 μM) dose-dependently promoted the chemotaxis of BMMs. The bacteria-stimulated media derived from SK1 BMMs significantly reduced the chemotaxis response compared with WT control. Finally, SK1 KO mice showed significantly attenuated alveolar bone loss stimulated by A. actinomycetemcomitans compared with WT mice treated with A. actinomycetemcomitans. Histological analysis of periodontal tissue sections revealed that SK1 KO mice treated with A. actinomycetemcomitans significantly reduced the number of infiltrated periodontal leukocytes and mature osteoclasts attached on the alveolar bone compared with WT mice. CONCLUSION Our studies support that SK1 and S1P play an important role in the inflammatory bone loss response induced by the oral pathogen A. actinomycetemcomitans. Reducing S1P generation by inhibiting SK1 has the potential as a novel therapeutic strategy for periodontitis and other inflammatory bone loss diseases.
Collapse
Affiliation(s)
- H Yu
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA
| | - C Sun
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - K M Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
41
|
Pulli I, Blom T, Löf C, Magnusson M, Rimessi A, Pinton P, Törnquist K. A novel chimeric aequorin fused with caveolin-1 reveals a sphingosine kinase 1-regulated Ca²⁺ microdomain in the caveolar compartment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2173-82. [PMID: 25892494 DOI: 10.1016/j.bbamcr.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/12/2014] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022]
Abstract
Caveolae are plasma membrane invaginations enriched in sterols and sphingolipids. Sphingosine kinase 1 (SK1) is an oncogenic protein that converts sphingosine to sphingosine 1-phosphate (S1P), which is a messenger molecule involved in calcium signaling. Caveolae contain calcium responsive proteins, but the effects of SK1 or S1P on caveolar calcium signaling have not been investigated. We generated a Caveolin-1-Aequorin fusion protein (Cav1-Aeq) that can be employed for monitoring the local calcium concentration at the caveolae ([Ca²⁺]cav). In HeLa cells, Cav1-Aeq reported different [Ca²⁺] as compared to the plasma membrane [Ca²⁺] in general (reported by SNAP25-Aeq) or as compared to the cytosolic [Ca²⁺] (reported by cyt-Aeq). The Ca²⁺ signals detected by Cav1-Aeq were significantly attenuated when the caveolar structures were disrupted by methyl-β-cyclodextrin, suggesting that the caveolae are specific targets for Ca²⁺ signaling. HeLa cells overexpressing SK1 showed increased [Ca²⁺]cav during histamine-induced Ca²⁺ mobilization in the absence of extracellular Ca²⁺ as well as during receptor-operated Ca²⁺ entry (ROCE). The SK1-induced increase in [Ca²⁺]cav during ROCE was reverted by S1P receptor antagonists. In accordance, pharmacologic inhibition of SK1 reduced the [Ca²⁺]cav during ROCE. S1P treatment stimulated the [Ca²⁺]cav upon ROCE. The Ca²⁺ responses at the plasma membrane in general were not affected by SK1 expression. In summary, our results show that SK1/S1P-signaling regulates Ca²⁺ signals at the caveolae. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Ilari Pulli
- Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tomas Blom
- University Of Helsinki, 00014 Helsinki, Finland
| | - Christoffer Löf
- University Of Turku, Department of Physiology, Institute of Biomedicine, Kiinamyllynkatu 10, 20520 Turku, Finland
| | | | - Alessandro Rimessi
- University of Ferrara, Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Paolo Pinton
- University of Ferrara, Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Kid Törnquist
- Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; Minerva Foundation Institute For Medical Research, Biomedicum Helsinki, 00270 Helsinki, Finland.
| |
Collapse
|
42
|
Salama MF, Carroll B, Adada M, Pulkoski-Gross M, Hannun YA, Obeid LM. A novel role of sphingosine kinase-1 in the invasion and angiogenesis of VHL mutant clear cell renal cell carcinoma. FASEB J 2015; 29:2803-13. [PMID: 25805832 DOI: 10.1096/fj.15-270413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2015] [Accepted: 02/25/2015] [Indexed: 12/12/2022]
Abstract
Sphingosine kinase 1 (SK1), the enzyme responsible for sphingosine 1-phosphate (S1P) production, is overexpressed in many human solid tumors. However, its role in clear cell renal cell carcinoma (ccRCC) has not been described previously. ccRCC cases are usually associated with mutations in von Hippel-Lindau (VHL) and subsequent normoxic stabilization of hypoxia-inducible factor (HIF). We previously showed that HIF-2α up-regulates SK1 expression during hypoxia in glioma cells. Therefore, we hypothesized that the stabilized HIF in ccRCC cells will be associated with increased SK1 expression. Here, we demonstrate that SK1 is overexpressed in 786-0 renal carcinoma cells lacking functional VHL, with concomitant high S1P levels that appear to be HIF-2α mediated. Moreover, examining the TCGA RNA seq database shows that SK1 expression was ∼2.7-fold higher in solid tumor tissue from ccRCC patients, and this was associated with less survival. Knockdown of SK1 in 786-0 ccRCC cells had no effect on cell proliferation. On the other hand, this knockdown resulted in an ∼3.5-fold decrease in invasion, less phosphorylation of focal adhesion kinase (FAK), and an ∼2-fold decrease in angiogenesis. Moreover, S1P treatment of SK1 knockdown cells resulted in phosphorylation of FAK and invasion, and this was mediated by S1P receptor 2. These results suggest that higher SK1 and S1P levels in VHL-defective ccRCC could induce invasion in an autocrine manner and angiogenesis in a paracrine manner. Accordingly, targeting SK1 could reduce both the invasion and angiogenesis of ccRCC and therefore improve the survival rate of patients.
Collapse
Affiliation(s)
- Mohamed F Salama
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Brittany Carroll
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Mohamad Adada
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Michael Pulkoski-Gross
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Yusuf A Hannun
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Lina M Obeid
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
43
|
Münzer P, Schmid E, Walker B, Fotinos A, Chatterjee M, Rath D, Vogel S, Hoffmann SM, Metzger K, Seizer P, Geisler T, Gawaz M, Borst O, Lang F. Sphingosine kinase 1 (Sphk1) negatively regulates platelet activation and thrombus formation. Am J Physiol Cell Physiol 2014; 307:C920-7. [PMID: 25231106 DOI: 10.1152/ajpcell.00029.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a powerful regulator of platelet formation. Enzymes generating S1P include sphingosine kinase 1. The present study thus explored the role of sphingosine kinase 1 in platelet formation and function. Activation-dependent platelet integrin αIIbβ3 activation and secretion of platelets lacking functional sphingosine kinase 1 (sphk1(-/-)) and of wild-type platelets (sphk1(+/+)) were determined utilizing flow cytometry and chronolume luciferin assay. Cytosolic Ca(2+) activity ([Ca(2+)]i) and aggregation were measured using fura-2 fluorescence and aggregometry, respectively. In vitro platelet adhesion and thrombus formation were evaluated using a flow chamber with shear rates of 1,700 s(-1). Activation-dependent increase of [Ca(2+)]i, degranulation (release of alpha and dense granules), integrin αIIbβ3 activation, and aggregation were all significantly increased in sphk1(-/-) platelets compared with sphk1(+/+) platelets. Moreover, while platelet adhesion and thrombus formation under arterial shear rates were significantly augmented in Sphk1-deficient platelets, bleeding time and blood count were unaffected in sphk1(-/-) mice. In conclusion, sphingosine kinase 1 is a powerful negative regulator of platelet function counteracting degranulation, aggregation, and thrombus formation.
Collapse
Affiliation(s)
- Patrick Münzer
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Evi Schmid
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Britta Walker
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Anna Fotinos
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Madhumita Chatterjee
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Dominik Rath
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Sebastian Vogel
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Sascha M Hoffmann
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany
| | - Katja Metzger
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Peter Seizer
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Tobias Geisler
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Oliver Borst
- Department of Physiology, University of Tübingen, Tübingen, Germany. Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany; and
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
44
|
α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab 2014; 19:993-1007. [PMID: 24814481 DOI: 10.1016/j.cmet.2014.04.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/06/2013] [Revised: 01/24/2014] [Accepted: 03/26/2014] [Indexed: 02/07/2023]
Abstract
Glucose metabolism in pancreatic β cells stimulates insulin granule exocytosis, and this process requires generation of a lipid signal. However, the signals involved in lipid amplification of glucose-stimulated insulin secretion (GSIS) are unknown. Here we show that in β cells, glucose stimulates production of lipolysis-derived long-chain saturated monoacylglycerols, which further increase upon inhibition of the membrane-bound monoacylglycerol lipase α/β-Hydrolase Domain-6 (ABHD6). ABHD6 expression in β cells is inversely proportional to GSIS. Exogenous monoacylglycerols stimulate β cell insulin secretion and restore GSIS suppressed by the pan-lipase inhibitor orlistat. Whole-body and β-cell-specific ABHD6-KO mice exhibit enhanced GSIS, and their islets show elevated monoacylglycerol production and insulin secretion in response to glucose. Inhibition of ABHD6 in diabetic mice restores GSIS and improves glucose tolerance. Monoacylglycerol binds and activates the vesicle priming protein Munc13-1, thereby inducing insulin exocytosis. We propose saturated monoacylglycerol as a signal for GSIS and ABHD6 as a negative modulator of insulin secretion.
Collapse
|
45
|
Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 2013; 23:4608-16. [PMID: 23845219 DOI: 10.1016/j.bmcl.2013.06.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 11/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) signaling plays a vital role in mitogenesis, cell migration and angiogenesis. Sphingosine kinases (SphKs) catalyze a key step in sphingomyelin metabolism that leads to the production of S1P. There are two isoforms of SphK and observations made with SphK deficient mice show the two isoforms can compensate for each other's loss. Thus, inhibition of both isoforms is likely required to block SphK dependent angiogenesis. A structure based approach was used to design and synthesize a series of SphK inhibitors resulting in the identification of the first potent inhibitors of both isoforms of human SphK. Additionally, to our knowledge, this series of inhibitors contains the only sufficiently potent inhibitors of murine SphK1 with suitable physico-chemical properties to pharmacologically interrogate the role of SphK1 in rodent models and to reproduce the phenotype of SphK1 (-/-) mice.
Collapse
|
46
|
Neubauer HA, Pitson SM. Roles, regulation and inhibitors of sphingosine kinase 2. FEBS J 2013; 280:5317-36. [PMID: 23638983 DOI: 10.1111/febs.12314] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
The bioactive sphingolipids ceramide, sphingosine and sphingosine-1-phosphate (S1P) are important signalling molecules that regulate a diverse array of cellular processes. Most notably, the balance of the levels of these three sphingolipids in cells, termed the 'sphingolipid rheostat', can dictate cell fate, where ceramide and sphingosine enhance apoptosis and S1P promotes cell survival and proliferation. The sphingosine kinases (SKs) catalyse the production of S1P from sphingosine and are therefore central regulators of the sphingolipid rheostat and attractive targets for cancer therapy. Two SKs exist in humans: SK1 and SK2. SK1 has been extensively studied and there is a large body of evidence to demonstrate its role in promoting cell survival, proliferation and neoplastic transformation. SK1 is also elevated in many human cancers which appears to contribute to carcinogenesis, chemotherapeutic resistance and poor patient outcome. SK2, however, has not been as well characterized, and there are contradictions in the key physiological functions that have been proposed for this isoform. Despite this, many studies are now emerging that implicate SK2 in key roles in a variety of diseases, including the development of a range of solid tumours. Here, we review the literature examining SK2, its physiological and pathophysiological functions, the current knowledge of its regulation, and recent developments in targeting this complex enzyme.
Collapse
Affiliation(s)
- Heidi A Neubauer
- Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Molecular and Biomedical Science, University of Adelaide, Australia
| | | |
Collapse
|
47
|
Liu K, Guo TL, Hait NC, Allegood J, Parikh HI, Xu W, Kellogg GE, Grant S, Spiegel S, Zhang S. Biological characterization of 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145) as a selective sphingosine kinase-2 inhibitor and anticancer agent. PLoS One 2013; 8:e56471. [PMID: 23437140 PMCID: PMC3577900 DOI: 10.1371/journal.pone.0056471] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2012] [Accepted: 01/08/2013] [Indexed: 12/20/2022] Open
Abstract
In our effort to develop selective sphingosine kinase-2 (SphK2) inhibitors as pharmacological tools, a thiazolidine-2,4-dione analogue, 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145), was synthesized and biologically characterized. Biochemical assay results indicate that K145 is a selective SphK2 inhibitor. Molecular modeling studies also support this notion. In vitro studies using human leukemia U937 cells demonstrated that K145 accumulates in U937 cells, suppresses the S1P level, and inhibits SphK2. K145 also exhibited inhibitory effects on the growth of U937 cells as well as apoptotic effects in U937 cells, and that these effects may be through the inhibition of down-stream ERK and Akt signaling pathways. K145 also significantly inhibited the growth of U937 tumors in nude mice by both intraperitoneal and oral administration, thus demonstrating its in vivo efficacy as a potential lead anticancer agent. The antitumor activity of K145 was also confirmed in a syngeneic mouse model by implanting murine breast cancer JC cells in BALB/c mice. Collectively, these results strongly encourage further optimization of K145 as a novel lead compound for development of more potent and selective SphK2 inhibitors.
Collapse
Affiliation(s)
- Kai Liu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tai L. Guo
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nitai C. Hait
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hardik I. Parikh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Wenfang Xu
- School of Pharmaceutical Sciences, Shandong University, Shandong, People’s Republic of China
| | - Glen E. Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Steven Grant
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Abstract
Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology and Pathobiology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
49
|
Orr Gandy KA, Obeid LM. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:157-66. [PMID: 22801037 DOI: 10.1016/j.bbalip.2012.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 12/01/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important bioactive sphingolipid metabolite that has been implicated in numerous physiological and cellular processes. Not only does S1P play a structural role in cells by defining the components of the plasma membrane, but in the last 20 years it has been implicated in various significant cell signaling pathways and physiological processes: for example, cell migration, survival and proliferation, cellular architecture, cell-cell contacts and adhesions, vascular development, atherosclerosis, acute pulmonary injury and respiratory distress, inflammation and immunity, and tumorogenesis and metastasis [1,2]. Given the wide variety of cellular and physiological processes in which S1P is involved, it is immediately obvious why the mechanisms governing S1P synthesis and degradation, and the manner in which these processes are regulated, are necessary to understand. In gaining more knowledge about regulation of the sphingosine kinase (SK)/S1P pathway, many potential therapeutic targets may be revealed. This review explores the roles of the SK/S1P pathway in disease, summarizes available SK enzyme inhibitors and examines their potential as therapeutic agents. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
50
|
Carr JM, Mahalingam S, Bonder CS, Pitson SM. Sphingosine kinase 1 in viral infections. Rev Med Virol 2012; 23:73-84. [PMID: 22639116 DOI: 10.1002/rmv.1718] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/24/2022]
Abstract
Sphingosine kinase 1 (SphK1) is an enzyme that phosphorylates the lipid sphingosine to generate sphingosine-1-phosphate (S1P). S1P can act intracellularly as a signaling molecule and extracellularly as a receptor ligand. The SphK1/S1P axis has well-described roles in cell signaling, the cell death/survival decision, the production of a pro-inflammatory response, immunomodulation, and control of vascular integrity. Agents targeting the SphK1/S1P axis are being actively developed as therapeutics for cancer and immunological and inflammatory disorders. Control of cell death/survival and pro-inflammatory immune responses is central to the pathology of infectious disease, and we can capitalize on the knowledge provided by investigations of SphK1/S1P in cancer and immunology to assess its application to selected human infections. We have herein reviewed the growing literature relating viral infections to changes in SphK1 and S1P. SphK1 activity is reportedly increased following human cytomegalovirus and respiratory syncytial virus infections, and elevated SphK1 enhances influenza virus infection. In contrast, SphK1 activity is reduced in bovine viral diarrhea virus and dengue virus infections. Sphingosine analogs that modulate S1P receptors have proven useful in animal models in alleviating influenza virus infection but have shown no benefit in simian human immunodeficiency virus and lymphocytic choriomeningitis virus infections. We have rationalized a role for SphK1/S1P in dengue virus, chikungunya virus, and Ross River virus infections, on the basis of the biology and the pathology of these diseases. The increasing number of effective SphK1 and S1P modulating agents currently in development makes it timely to investigate these roles with the potential for developing modulators of SphK1 and S1P for novel anti-viral therapies.
Collapse
Affiliation(s)
- Jillian M Carr
- Microbiology and Infectious Diseases, Flinders Medical Science and Technology, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|