1
|
Argudo PG. Lipids and proteins: Insights into the dynamics of assembly, recognition, condensate formation. What is still missing? Biointerphases 2024; 19:038501. [PMID: 38922634 DOI: 10.1116/6.0003662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Lipid membranes and proteins, which are part of us throughout our lives, have been studied for decades. However, every year, new discoveries show how little we know about them. In a reader-friendly manner for people not involved in the field, this paper tries to serve as a bridge between physicists and biologists and new young researchers diving into the field to show its relevance, pointing out just some of the plethora of lines of research yet to be unraveled. It illustrates how new ways, from experimental to theoretical approaches, are needed in order to understand the structures and interactions that take place in a single lipid, protein, or multicomponent system, as we are still only scratching the surface.
Collapse
Affiliation(s)
- Pablo G Argudo
- Max Planck Institute for Polymer Research (MPI-P), Mainz 55128, Germany
| |
Collapse
|
2
|
Bian J, Su X, Yuan X, Zhang Y, Lin J, Li X. Endoplasmic reticulum membrane contact sites: cross-talk between membrane-bound organelles in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2956-2967. [PMID: 36847172 DOI: 10.1093/jxb/erad068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/20/2023] [Indexed: 05/21/2023]
Abstract
Eukaryotic cells contain organelles surrounded by monolayer or bilayer membranes. Organelles take part in highly dynamic and organized interactions at membrane contact sites, which play vital roles during development and response to stress. The endoplasmic reticulum extends throughout the cell and acts as an architectural scaffold to maintain the spatial distribution of other membrane-bound organelles. In this review, we highlight the structural organization, dynamics, and physiological functions of membrane contact sites between the endoplasmic reticulum and various membrane-bound organelles, especially recent advances in plants. We briefly introduce how the combined use of dynamic and static imaging techniques can enable monitoring of the cross-talk between organelles via membrane contact sites. Finally, we discuss future directions for research fields related to membrane contact.
Collapse
Affiliation(s)
- Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Su
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyan Yuan
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Vormittag S, Ende RJ, Derré I, Hilbi H. Pathogen vacuole membrane contact sites - close encounters of the fifth kind. MICROLIFE 2023; 4:uqad018. [PMID: 37223745 PMCID: PMC10117887 DOI: 10.1093/femsml/uqad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review, we discuss how these MCS components are subverted by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.
Collapse
Affiliation(s)
| | | | - Isabelle Derré
- Corresponding author. Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, United States. Tel: +1-434-924-2330; E-mail:
| | - Hubert Hilbi
- Corresponding author. Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland. Tel: +41-44-634-2650; E-mail:
| |
Collapse
|
4
|
Kim S, Coukos R, Gao F, Krainc D. Dysregulation of organelle membrane contact sites in neurological diseases. Neuron 2022; 110:2386-2408. [PMID: 35561676 PMCID: PMC9357093 DOI: 10.1016/j.neuron.2022.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The defining evolutionary feature of eukaryotic cells is the emergence of membrane-bound organelles. Compartmentalization allows each organelle to maintain a spatially, physically, and chemically distinct environment, which greatly bolsters individual organelle function. However, the activities of each organelle must be balanced and are interdependent for cellular homeostasis. Therefore, properly regulated interactions between organelles, either physically or functionally, remain critical for overall cellular health and behavior. In particular, neuronal homeostasis depends heavily on the proper regulation of organelle function and cross talk, and deficits in these functions are frequently associated with diseases. In this review, we examine the emerging role of organelle contacts in neurological diseases and discuss how the disruption of contacts contributes to disease pathogenesis. Understanding the molecular mechanisms underlying the formation and regulation of organelle contacts will broaden our knowledge of their role in health and disease, laying the groundwork for the development of new therapies targeting interorganelle cross talk and function.
Collapse
Affiliation(s)
- Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Robert Coukos
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Fanding Gao
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
6
|
Gao Y, Xiong J, Chu QZ, Ji WK. PDZD8-mediated lipid transfer at contacts between the ER and late endosomes/lysosomes is required for neurite outgrowth. J Cell Sci 2021; 135:256568. [PMID: 33912962 DOI: 10.1242/jcs.255026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and late endosomes/lysosomes (LE/lys) are emerging as critical hubs for diverse cellular events, and changes in their extents are linked to severe neurological diseases. While recent studies show that the synaptotagmin-like mitochondrial-lipid-binding (SMP) domain-containing protein PDZD8 may mediate the formation of ER-LE/lys MCSs, the cellular functions of PDZD8 remain largely elusive. Here, we attempt to investigate the lipid transfer activities of PDZD8 and the extent to which its cellular functions depend on its lipid transfer activities. In accordance with recent studies, we demonstrate that PDZD8 is a protrudin (ZFYVE27)-interacting protein and that PDZD8 acts as a tether at ER-LE/lys MCSs. Furthermore, we discover that the SMP domain of PDZD8 binds glycerophospholipids and ceramides both in vivo and in vitro, and that the SMP domain can transport lipids between membranes in vitro. Functionally, PDZD8 is required for LE/lys positioning and neurite outgrowth, which is dependent on the lipid transfer activity of the SMP domain.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Juan Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qing-Zhu Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
7
|
Tosal-Castano S, Peselj C, Kohler V, Habernig L, Berglund LL, Ebrahimi M, Vögtle FN, Höög J, Andréasson C, Büttner S. Snd3 controls nucleus-vacuole junctions in response to glucose signaling. Cell Rep 2021; 34:108637. [PMID: 33472077 DOI: 10.1016/j.celrep.2020.108637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Membrane contact sites facilitate the exchange of metabolites between organelles to support interorganellar communication. The nucleus-vacuole junctions (NVJs) establish physical contact between the perinuclear endoplasmic reticulum (ER) and the vacuole. Although the NVJ tethers are known, how NVJ abundance and composition are controlled in response to metabolic cues remains elusive. Here, we identify the ER protein Snd3 as central factor for NVJ formation. Snd3 interacts with NVJ tethers, supports their targeting to the contacts, and is essential for NVJ formation. Upon glucose exhaustion, Snd3 relocalizes from the ER to NVJs and promotes contact expansion regulated by central glucose signaling pathways. Glucose replenishment induces the rapid dissociation of Snd3 from the NVJs, preceding the slow disassembly of the junctions. In sum, this study identifies a key factor required for formation and regulation of NVJs and provides a paradigm for metabolic control of membrane contact sites.
Collapse
Affiliation(s)
- Sergi Tosal-Castano
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Sweden
| | - Mahsa Ebrahimi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Stefan-Meier-Straße 17, 79104 Freiburg, Germany; Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Johanna Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden; Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria.
| |
Collapse
|
8
|
Kohler V, Büttner S. Remodelling of Nucleus-Vacuole Junctions During Metabolic and Proteostatic Stress. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211016608. [PMID: 34124572 PMCID: PMC7610967 DOI: 10.1177/25152564211016608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Cellular adaptation to stress and metabolic cues requires a coordinated response of different intracellular compartments, separated by semipermeable membranes. One way to facilitate interorganellar communication is via membrane contact sites, physical bridges between opposing organellar membranes formed by an array of tethering machineries. These contact sites are highly dynamic and establish an interconnected organellar network able to quickly respond to external and internal stress by changing size, abundance and molecular architecture. Here, we discuss recent work on nucleus-vacuole junctions, connecting yeast vacuoles with the nucleus. Appearing as small, single foci in mitotic cells, these contacts expand into one enlarged patch upon nutrient exhaustion and entry into quiescence or can be shaped into multiple large foci essential to sustain viability upon proteostatic stress at the nuclear envelope. We highlight the remarkable plasticity and rapid remodelling of these contact sites upon metabolic or proteostatic stress and their emerging importance for cellular fitness.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner‐Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner‐Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
9
|
Cheema JY, He J, Wei W, Fu C. The Endoplasmic Reticulum-Mitochondria Encounter Structure and its Regulatory Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211064491. [PMID: 37366373 PMCID: PMC10243566 DOI: 10.1177/25152564211064491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In fungi, the endoplasmic reticulum-mitochondria encounter structure (ERMES) is present between the endoplasmic reticulon (ER) and mitochondria to promote the formation of the ER-mitochondria contact sites. Four constitutive components (Mmm1, Mdm12, Mdm34, and Mdm10) assemble to form the ERMES complex while regulator proteins are required for regulating the organization and function of the ERMES complex. Multiple regulator proteins, including Gem1, Lam6, Tom7, and Emr1, of the ERMES complex, have been identified recently. In this review, we discuss the organization of the ERMES complex and the roles of the regulator proteins of the ERMES complex.
Collapse
Affiliation(s)
- Javairia Y. Cheema
- Ministry of Education Key Laboratory for Cellular
Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National
Laboratory for Physical Sciences at the Microscale, School of Life Sciences,
Division of Life Sciences and Medicine, University of Science and Technology
of China, Hefei, P.R. China
| | - Jiajia He
- Ministry of Education Key Laboratory for Cellular
Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National
Laboratory for Physical Sciences at the Microscale, School of Life Sciences,
Division of Life Sciences and Medicine, University of Science and Technology
of China, Hefei, P.R. China
| | - Wenfan Wei
- Ministry of Education Key Laboratory for Cellular
Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National
Laboratory for Physical Sciences at the Microscale, School of Life Sciences,
Division of Life Sciences and Medicine, University of Science and Technology
of China, Hefei, P.R. China
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Cellular
Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National
Laboratory for Physical Sciences at the Microscale, School of Life Sciences,
Division of Life Sciences and Medicine, University of Science and Technology
of China, Hefei, P.R. China
| |
Collapse
|
10
|
Zaman MF, Nenadic A, Radojičić A, Rosado A, Beh CT. Sticking With It: ER-PM Membrane Contact Sites as a Coordinating Nexus for Regulating Lipids and Proteins at the Cell Cortex. Front Cell Dev Biol 2020; 8:675. [PMID: 32793605 PMCID: PMC7387695 DOI: 10.3389/fcell.2020.00675] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
Membrane contact sites between the cortical endoplasmic reticulum (ER) and the plasma membrane (PM) provide a direct conduit for small molecule transfer and signaling between the two largest membranes of the cell. Contact is established through ER integral membrane proteins that physically tether the two membranes together, though the general mechanism is remarkably non-specific given the diversity of different tethering proteins. Primary tethers including VAMP-associated proteins (VAPs), Anoctamin/TMEM16/Ist2p homologs, and extended synaptotagmins (E-Syts), are largely conserved in most eukaryotes and are both necessary and sufficient for establishing ER-PM association. In addition, other species-specific ER-PM tether proteins impart unique functional attributes to both membranes at the cell cortex. This review distils recent functional and structural findings about conserved and species-specific tethers that form ER-PM contact sites, with an emphasis on their roles in the coordinate regulation of lipid metabolism, cellular structure, and responses to membrane stress.
Collapse
Affiliation(s)
- Mohammad F Zaman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Ana Radojičić
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,The Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
Fenech EJ, Lari F, Charles PD, Fischer R, Laétitia-Thézénas M, Bagola K, Paton AW, Paton JC, Gyrd-Hansen M, Kessler BM, Christianson JC. Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling. eLife 2020; 9:e57306. [PMID: 32614325 PMCID: PMC7332293 DOI: 10.7554/elife.57306] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane regulate essential cellular activities including protein quality control, calcium flux, and sterol homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to be ER-localised, but for most their organisation and cellular roles remain poorly defined. Using a comparative proteomic workflow, we mapped over 450 protein-protein interactions for 21 stably expressed, full-length E3s. Bioinformatic analysis linked ER-E3s and their interactors to multiple homeostatic, regulatory, and metabolic pathways. Among these were four membrane-embedded interactors of RNF26, a polytopic E3 whose abundance is auto-regulated by ubiquitin-proteasome dependent degradation. RNF26 co-assembles with TMEM43, ENDOD1, TMEM33 and TMED1 to form a complex capable of modulating innate immune signalling through the cGAS-STING pathway. This RNF26 complex represents a new modulatory axis of STING and innate immune signalling at the ER membrane. Collectively, these data reveal the broad scope of regulation and differential functionalities mediated by ER-E3s for both membrane-tethered and cytoplasmic processes.
Collapse
Affiliation(s)
- Emma J Fenech
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Federica Lari
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Philip D Charles
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Marie Laétitia-Thézénas
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of AdelaideAdelaideAustralia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of AdelaideAdelaideAustralia
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - John C Christianson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Botnar Research CentreOxfordUnited Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Botnar Research CentreOxfordUnited Kingdom
| |
Collapse
|
12
|
Bo Otto F, Thumm M. Nucleophagy-Implications for Microautophagy and Health. Int J Mol Sci 2020; 21:ijms21124506. [PMID: 32599961 PMCID: PMC7352367 DOI: 10.3390/ijms21124506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleophagy, the selective subtype of autophagy that targets nuclear material for autophagic degradation, was not only shown to be a model system for the study of selective macroautophagy, but also for elucidating the role of the core autophagic machinery within microautophagy. Nucleophagy also emerged as a system associated with a variety of disease conditions including cancer, neurodegeneration and ageing. Nucleophagic processes are part of natural cell development, but also act as a response to various stress conditions. Upon releasing small portions of nuclear material, micronuclei, the autophagic machinery transfers these micronuclei to the vacuole for subsequent degradation. Despite sharing many cargos and requiring the core autophagic machinery, recent investigations revealed the aspects that set macro- and micronucleophagy apart. Central to the discrepancies found between macro- and micronucleophagy is the nucleus vacuole junction, a large membrane contact site formed between nucleus and vacuole. Exclusion of nuclear pore complexes from the junction and its exclusive degradation by micronucleophagy reveal compositional differences in cargo. Regarding their shared reliance on the core autophagic machinery, micronucleophagy does not involve normal autophagosome biogenesis observed for macronucleophagy, but instead maintains a unique role in overall microautophagy, with the autophagic machinery accumulating at the neck of budding vesicles.
Collapse
|
13
|
Lee CA, Blackstone C. ER morphology and endo-lysosomal crosstalk: Functions and disease implications. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158544. [PMID: 31678515 DOI: 10.1016/j.bbalip.2019.158544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/03/2023]
Abstract
The endoplasmic reticulum (ER) is a continuous endomembrane system comprising the nuclear envelope, ribosome-studded sheets, dense peripheral matrices, and an extensive polygonal network of interconnected tubules. In addition to performing numerous critical cellular functions, the ER makes extensive contacts with other organelles, including endosomes and lysosomes. The molecular and functional characterization of these contacts has advanced significantly over the past several years. These contacts participate in key functions such as cholesterol transfer, endosome tubule fission, and Ca2+ exchange. Disruption of key proteins at these sites can result in often severe diseases, particularly those affecting the nervous system.
Collapse
Affiliation(s)
- Crystal A Lee
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Funato K, Riezman H, Muñiz M. Vesicular and non-vesicular lipid export from the ER to the secretory pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158453. [PMID: 31054928 DOI: 10.1016/j.bbalip.2019.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/26/2022]
Abstract
The endoplasmic reticulum is the site of synthesis of most glycerophospholipids, neutral lipids and the initial steps of sphingolipid biosynthesis of the secretory pathway. After synthesis, these lipids are distributed within the cells to create and maintain the specific compositions of the other secretory organelles. This represents a formidable challenge, particularly while there is a simultaneous and quantitatively important flux of membrane components stemming from the vesicular traffic of proteins through the pathway, which can also vary depending on the cell type and status. To meet this challenge cells have developed an intricate system of interorganellar contacts and lipid transport proteins, functioning in non-vesicular lipid transport, which are able to ensure membrane lipid homeostasis even in the absence of membrane trafficking. Nevertheless, under normal conditions, lipids are transported in cells by both vesicular and non-vesicular mechanisms. In this review we will discuss the mechanism and roles of vesicular and non-vesicular transport of lipids from the ER to other organelles of the secretory pathway.
Collapse
Affiliation(s)
- Kouichi Funato
- Department of Bioresource Science and Technology, Hiroshima University, Japan.
| | - Howard Riezman
- NCCR Chemical Biology and Department of Biochemistry, Sciences II, University of Geneva, Switzerland.
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
15
|
Rapid Nuclear Exclusion of Hcm1 in Aging Saccharomyces cerevisiae Leads to Vacuolar Alkalization and Replicative Senescence. G3-GENES GENOMES GENETICS 2018. [PMID: 29519938 PMCID: PMC5940150 DOI: 10.1534/g3.118.200161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The yeast, Saccharomyces cerevisiae, like other higher eukaryotes, undergo a finite number of cell divisions before exiting the cell cycle due to the effects of aging. Here, we show that yeast aging begins with the nuclear exclusion of Hcm1 in young cells, resulting in loss of acidic vacuoles. Autophagy is required for healthy aging in yeast, with proteins targeted for turnover by autophagy directed to the vacuole. Consistent with this, vacuolar acidity is necessary for vacuolar function and yeast longevity. Using yeast genetics and immunofluorescence microscopy, we confirm that vacuolar acidity plays a critical role in cell health and lifespan, and is potentially maintained by a series of Forkhead Box (Fox) transcription factors. An interconnected transcriptional network involving the Fox proteins (Fkh1, Fkh2 and Hcm1) are required for transcription of v-ATPase subunits and vacuolar acidity. As cells age, Hcm1 is rapidly excluded from the nucleus in young cells, blocking the expression of Hcm1 targets (Fkh1 and Fkh2), leading to loss of v-ATPase gene expression, reduced vacuolar acidification, increased α-syn-GFP vacuolar accumulation, and finally, diminished replicative lifespan (RLS). Loss of vacuolar acidity occurs about the same time as Hcm1 nuclear exclusion and is conserved; we have recently demonstrated that lysosomal alkalization similarly contributes to aging in C. elegans following a transition from progeny producing to post-reproductive life. Our data points to a molecular mechanism regulating vacuolar acidity that signals the end of RLS when acidification is lost.
Collapse
|
16
|
Rzepnikowska W, Flis K, Kaminska J, Grynberg M, Urbanek A, Ayscough KR, Zoladek T. Amino acid substitution equivalent to human chorea-acanthocytosis I2771R in yeast Vps13 protein affects its binding to phosphatidylinositol 3-phosphate. Hum Mol Genet 2017; 26:1497-1510. [PMID: 28334785 PMCID: PMC5393151 DOI: 10.1093/hmg/ddx054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/09/2017] [Indexed: 12/16/2022] Open
Abstract
The rare human disorder chorea-acanthocytosis (ChAc) is caused by mutations in hVPS13A gene. The hVps13A protein interacts with actin and regulates the level of phosphatidylinositol 4-phosphate (PI4P) in the membranes of neuronal cells. Yeast Vps13 is involved in vacuolar protein transport and, like hVps13A, participates in PI4P metabolism. Vps13 proteins are conserved in eukaryotes, but their molecular function remains unknown. One of the mutations found in ChAc patients causes amino acids substitution I2771R which affects the localization of hVps13A in skeletal muscles. To dissect the mechanism of pathogenesis of I2771R, we created and analyzed a yeast strain carrying the equivalent mutation. Here we show that in yeast, substitution I2749R causes dysfunction of Vps13 protein in endocytosis and vacuolar transport, although the level of the protein is not affected, suggesting loss of function. We also show that Vps13, like hVps13A, influences actin cytoskeleton organization and binds actin in immunoprecipitation experiments. Vps13-I2749R binds actin, but does not function in the actin cytoskeleton organization. Moreover, we show that Vps13 binds phospholipids, especially phosphatidylinositol 3-phosphate (PI3P), via its SHR_BD and APT1 domains. Substitution I2749R attenuates this ability. Finally, the localization of Vps13-GFP is altered when cellular levels of PI3P are decreased indicating its trafficking within the endosomal membrane system. These results suggest that PI3P regulates the functioning of Vps13, both in protein trafficking and actin cytoskeleton organization. Attenuation of PI3P-binding ability in the mutant hVps13A protein may be one of the reasons for its mislocalization and disrupted function in cells of patients suffering from ChAc.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Agnieszka Urbanek
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Kathryn R Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
17
|
Organelle Communication at Membrane Contact Sites (MCS): From Curiosity to Center Stage in Cell Biology and Biomedical Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:1-12. [DOI: 10.1007/978-981-10-4567-7_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Abstract
Cellular membranes communicate extensively via contact sites that form between two membranes. Such sites allow exchange of specific ions, lipids or proteins between two compartments without content mixing, thereby preserving organellar architecture during the transfer process. Even though the molecular compositions of membrane contact sites are diverse, it is striking that several of these sites, including contact sites between the endoplasmic reticulum (ER) and endosomes, Golgi and the plasma membrane (PM), and contact sites between lysosomes and peroxisomes, contain phosphorylated derivatives of phosphatidylinositol known as phosphoinositides. In this mini-review we discuss the involvement and functions of phosphoinositides in membrane contact sites.
Collapse
|
19
|
Vacuole membrane contact sites and domains: emerging hubs to coordinate organelle function with cellular metabolism. Biochem Soc Trans 2016; 44:528-33. [DOI: 10.1042/bst20150277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 02/07/2023]
Abstract
Eukaryotic cells rely on a set of membrane-enclosed organelles to perform highly efficient reactions in an optimized environment. Trafficking of molecules via vesicular carriers and membrane contact sites (MCS) allow the coordination between these compartments, though the precise mechanisms are still enigmatic. Among the cellular organelles, the lysosome/vacuole stands out as a central hub, where multiple pathways merge. Importantly, the delivered material is degraded and the monomers are recycled for further usage, which explains its wide variety of roles in controlling cellular metabolism. We will highlight recent advances in the field by focusing on the yeast vacuole as a model system to understand lysosomal function in general.
Collapse
|
20
|
RAB7 counteracts PI3K-driven macropinocytosis activated at early stages of melanoma development. Oncotarget 2016; 6:11848-62. [PMID: 26008978 PMCID: PMC4494909 DOI: 10.18632/oncotarget.4055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022] Open
Abstract
Derailed endolysosomal trafficking is emerging as a widespread feature of aggressive neoplasms. However, the oncogenic signals that alter membrane homeostasis and their specific contribution to cancer progression remain unclear. Understanding the upstream drivers and downstream regulators of aberrant vesicular trafficking is distinctly important in melanoma. This disease is notorious for its inter- and intra-tumoral heterogeneity. Nevertheless, melanomas uniformly overexpress a cluster of endolysosomal genes, being particularly addicted to the membrane traffic regulator RAB7. Still, the underlying mechanisms and temporal determinants of this dependency have yet to be defined. Here we addressed these questions by combining electron microscopy, real time imaging and mechanistic analyses of vesicular trafficking in normal and malignant human melanocytic cells. This strategy revealed Class I PI3K as the key trigger of a hyperactive influx of macropinosomes that melanoma cells counteract via RAB7-mediated lysosomal degradation. In addition, gain- and loss-of-function in vitro studies followed by histopathological validation in clinical biopsies and genetically-engineered mouse models, traced back the requirement of RAB7 to the suppression of premature cellular senescence traits elicited in melanocytes by PI3K-inducing oncogenes. Together, these results provide new insight into the regulators and modes of action of RAB7, broadening the impact of endosomal fitness on melanoma development.
Collapse
|
21
|
New Insight Into the Roles of Membrane Microdomains in Physiological Activities of Fungal Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:119-80. [PMID: 27241220 DOI: 10.1016/bs.ircmb.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The organization of biological membranes into structurally and functionally distinct lateral microdomains is generally accepted. From bacteria to mammals, laterally compartmentalized membranes seem to be a vital attribute of life. The crucial fraction of our current knowledge about the membrane microdomains has been gained from studies on fungi. In this review we summarize the evidence of the microdomain organization of membranes from fungal cells, with accent on their enormous diversity in composition, temporal dynamics, modes of formation, and recognized engagement in the cell physiology. A special emphasis is laid on the fact that in addition to their other biological functions, membrane microdomains also mediate the communication among different membranes within a eukaryotic cell and coordinate their functions. Involvement of fungal membrane microdomains in stress sensing, regulation of lipid homeostasis, and cell differentiation is discussed more in detail.
Collapse
|
22
|
Hariri H, Ugrankar R, Liu Y, Henne WM. Inter-organelle ER-endolysosomal contact sites in metabolism and disease across evolution. Commun Integr Biol 2016; 9:e1156278. [PMID: 27489577 PMCID: PMC4951168 DOI: 10.1080/19420889.2016.1156278] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/13/2016] [Indexed: 12/29/2022] Open
Abstract
Since their initial observation, contact sites formed between different organelles have transitioned from ignored curiosities to recognized centers for the exchange of metabolites and lipids. Contact formed between the ER and endomembrane system (eg. the plasma membrane, endosomes, and lysosomes) is of particular biomedical interest, as it governs aspects of lipid metabolism, organelle identity, and cell signaling. Here, we review the field of ER-endolysosomal communication from the perspective of three model systems: budding yeast, the fruit fly D. melanogaster, and mammals. From this broad perspective, inter-organelle communication displays a consistent role in metabolic regulation that was differentially tuned during the development of complex metazoan life. We also examine the current state of understanding of lipid exchange between organelles, and discuss molecular mechanisms by which this occurs.
Collapse
Affiliation(s)
- Hanaa Hariri
- Department of Cell Biology, UT Southwestern Medical Center , Dallas, TX, USA
| | - Rupali Ugrankar
- Department of Cell Biology, UT Southwestern Medical Center , Dallas, TX, USA
| | - Yang Liu
- Department of Cell Biology, UT Southwestern Medical Center , Dallas, TX, USA
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center , Dallas, TX, USA
| |
Collapse
|
23
|
Quon E, Beh CT. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange. Lipid Insights 2016; 8:55-63. [PMID: 26949334 PMCID: PMC4772907 DOI: 10.4137/lpi.s37190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 11/07/2022] Open
Abstract
Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions.
Collapse
Affiliation(s)
- Evan Quon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.; Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
24
|
All about that fat: Lipid modification of proteins in Cryptococcus neoformans. J Microbiol 2016; 54:212-22. [PMID: 26920881 DOI: 10.1007/s12275-016-5626-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
Lipid modification of proteins is a widespread, essential process whereby fatty acids, cholesterol, isoprenoids, phospholipids, or glycosylphospholipids are attached to polypeptides. These hydrophobic groups may affect protein structure, function, localization, and/or stability; as a consequence such modifications play critical regulatory roles in cellular systems. Recent advances in chemical biology and proteomics have allowed the profiling of modified proteins, enabling dissection of the functional consequences of lipid addition. The enzymes that mediate lipid modification are specific for both the lipid and protein substrates, and are conserved from fungi to humans. In this article we review these enzymes, their substrates, and the processes involved in eukaryotic lipid modification of proteins. We further focus on its occurrence in the fungal pathogen Cryptococcus neoformans, highlighting unique features that are both relevant for the biology of the organism and potentially important in the search for new therapies.
Collapse
|
25
|
Monje-Galvan V, Klauda JB. Peripheral membrane proteins: Tying the knot between experiment and computation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1584-93. [PMID: 26903211 DOI: 10.1016/j.bbamem.2016.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/05/2016] [Accepted: 02/12/2016] [Indexed: 01/31/2023]
Abstract
Experimental biology has contributed to answer questions about the morphology of a system and how molecules organize themselves to maintain a healthy functional cell. Single-molecule techniques, optical and magnetic experiments, and fluorescence microscopy have come a long way to probe structural and dynamical information at multiple scales. However, some details are simply too small or the processes are too short-lived to detect by experiments. Computational biology provides a bridge to understand experimental results at the molecular level, makes predictions that have not been seen in vivo, and motivates new fields of research. This review focuses on the advances on peripheral membrane proteins (PMPs) studies; what is known about their interaction with membranes, their role in cell biology, and some limitations that both experiment and computation still have to overcome to gain better structural and functional understanding of these PMPs. As many recent reviews have acknowledged, interdisciplinary efforts between experiment and computation are needed in order to have useful models that lead future directions in the study of PMPs. We present new results of a case study on a PMP that behaves as an intricate machine controlling lipid homeostasis between cellular organelles, Osh4 in yeast Saccharomyces cerevisiae. Molecular dynamics simulations were run to examine the interaction between the protein and membrane models that reflect the lipid diversity of the endoplasmic reticulum and trans-Golgi membranes. Our study is consistent with experimental data showing several residues that interact to smaller or larger extent with the bilayer upon stable binding (~200 ns into the trajectory). We identified PHE239 as a key residue stabilizing the protein-membrane interaction along with two other binding regions, the ALPS-like motif and the β6-β7 loops in the mouth region of the protein. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Viviana Monje-Galvan
- Department of Chemical and Biomolecular Engineering, College Park, MD 20742, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, College Park, MD 20742, USA; Biophysics Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
26
|
Ungermann C. vCLAMPs—an intimate link between vacuoles and mitochondria. Curr Opin Cell Biol 2015; 35:30-6. [DOI: 10.1016/j.ceb.2015.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
|
27
|
Raiborg C, Wenzel EM, Stenmark H. ER-endosome contact sites: molecular compositions and functions. EMBO J 2015; 34:1848-58. [PMID: 26041457 DOI: 10.15252/embj.201591481] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 01/05/2023] Open
Abstract
Recent studies have revealed the existence of numerous contact sites between the endoplasmic reticulum (ER) and endosomes in mammalian cells. Such contacts increase during endosome maturation and play key roles in cholesterol transfer, endosome positioning, receptor dephosphorylation, and endosome fission. At least 7 distinct contact sites between the ER and endosomes have been identified to date, which have diverse molecular compositions. Common to these contact sites is that they impose a close apposition between the ER and endosome membranes, which excludes membrane fusion while allowing the flow of molecular signals between the two membranes, in the form of enzymatic modifications, or ion, lipid, or protein transfer. Thus, ER-endosome contact sites ensure coordination of molecular activities between the two compartments while keeping their general compositions intact. Here, we review the molecular architectures and cellular functions of known ER-endosome contact sites and discuss their implications for human health.
Collapse
Affiliation(s)
- Camilla Raiborg
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research Oslo University Hospital, Oslo, Norway
| | - Eva M Wenzel
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway Department of Molecular Cell Biology, Institute for Cancer Research Oslo University Hospital, Oslo, Norway Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
28
|
Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature 2015; 520:234-8. [DOI: 10.1038/nature14359] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 02/27/2015] [Indexed: 01/03/2023]
|
29
|
Trimble WS, Grinstein S. Barriers to the free diffusion of proteins and lipids in the plasma membrane. ACTA ACUST UNITED AC 2015; 208:259-71. [PMID: 25646084 PMCID: PMC4315255 DOI: 10.1083/jcb.201410071] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization.
Collapse
Affiliation(s)
- William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sergio Grinstein
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5C 1N8, Canada
| |
Collapse
|
30
|
Membrane trafficking in the yeast Saccharomyces cerevisiae model. Int J Mol Sci 2015; 16:1509-25. [PMID: 25584613 PMCID: PMC4307317 DOI: 10.3390/ijms16011509] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM), or the external medium, via the exocytosis or secretory pathway (SEC), and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway) or directly (alkaline phosphatase or ALP pathway). Plasma membrane proteins can be internalized by endocytosis (END) and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway). Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.
Collapse
|
31
|
Hönscher C, Mari M, Auffarth K, Bohnert M, Griffith J, Geerts W, van der Laan M, Cabrera M, Reggiori F, Ungermann C. Cellular Metabolism Regulates Contact Sites between Vacuoles and Mitochondria. Dev Cell 2014; 30:86-94. [DOI: 10.1016/j.devcel.2014.06.006] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/04/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
|