1
|
Chen YJN, Shi RC, Xiang YC, Fan L, Tang H, He G, Zhou M, Feng XZ, Tan JD, Huang P, Ye X, Zhao K, Fu WY, Li LL, Bian XT, Chen H, Wang F, Wang T, Zhang CK, Zhou BH, Chen W, Liang TT, Lv JT, Kang X, Shi YX, Kim E, Qin YH, Hettinghouse A, Wang KD, Zhao XL, Yang MY, Tang YZ, Piao HL, Guo L, Liu CJ, Miao HM, Tang KL. Malate initiates a proton-sensing pathway essential for pH regulation of inflammation. Signal Transduct Target Ther 2024; 9:367. [PMID: 39737965 DOI: 10.1038/s41392-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages. Here, we found that L-malate exerts anti-inflammatory effect via BiP-IRF2BP2 signaling, which is a sensor of cytosolic pH in macrophages. First, L-malate, a TCA intermediate upregulated in pro-inflammatory macrophages, was identified as a potent anti-inflammatory metabolite through initial screening. Subsequent screening with DARTS and MS led to the isolation of L-malate-BiP binding. Further screening through protein‒protein interaction microarrays identified a L-malate-restrained coupling of BiP with IRF2BP2, a known anti-inflammatory protein. Interestingly, pH reduction, which promotes carboxyl protonation of L-malate, facilitates L-malate and carboxylate analogues such as succinate to bind BiP, and disrupt BiP-IRF2BP2 interaction in a carboxyl-dependent manner. Both L-malate and acidification inhibit BiP-IRF2BP2 interaction, and protect IRF2BP2 from BiP-driven degradation in macrophages. Furthermore, both in vitro and in vivo, BiP-IRF2BP2 signal is required for effects of both L-malate and pH on inflammatory responses. These findings reveal a previously unrecognized, proton/carboxylate dual sensing pathway wherein pH and L-malate regulate inflammatory responses, indicating the role of certain carboxylate metabolites as adaptors in the proton biosensing by interactions between macromolecules.
Collapse
Affiliation(s)
- Yu-Jia-Nan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China.
| | - Rong-Chen Shi
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Yuan-Cai Xiang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Li Fan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Hong Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Gang He
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Mei Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xin-Zhe Feng
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Jin-Dong Tan
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pan Huang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xiao Ye
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Kun Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Wen-Yu Fu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Liu-Li Li
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Xu-Ting Bian
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Feng Wang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Teng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - Chen-Ke Zhang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Bing-Hua Zhou
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Wan Chen
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Tao-Tao Liang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jing-Tong Lv
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xia Kang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, China
| | - You-Xing Shi
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Ellen Kim
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Yin-Hua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Army Medical University, Chongqing, 400038, China
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
| | - Kai-di Wang
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, China
| | - Xiang-Li Zhao
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Ming-Yu Yang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Yu-Zhen Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lin Guo
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, NY, 10003, USA.
- Department of Orthopedics and Rehabilitations, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Hong-Ming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Kang-Lai Tang
- Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Lometto S, Sparvoli D, Malengo G, Heimerl T, Hochberg GKA. The mitochondrial citrate synthase from Tetrahymena thermophila does not form an intermediate filament. Eur J Protistol 2024; 96:126121. [PMID: 39432950 DOI: 10.1016/j.ejop.2024.126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
The mitochondrial citrate synthase (mCS) purified from the ciliate Tetrahymena thermophila has been reported to form intermediate-filament-like structures during conjugation and to self-assemble into fibers when recombinantly expressed. This would represent a rare example of a tractable and recent origin of a novel cytoskeletal element. In an attempt to investigate the evolutionary emergence of this behavior, we re-investigated the ability of Tetrahymena's mCS to form filaments in vivo. Using strep-tagged mCS in Tetrahymena and monoclonal antibodies, we found no evidence of filamentous structures during conjugation or starvation. Extensive biochemical characterization of mCS revealed that the self-assembly of recombinant protein is triggered by a specific chemical moiety shared by MES and HEPES buffers used in previous studies. The absence of indicative phenotypes in fiber-deficient GFP-tagged mutants indicates that Tetrahymena mCS did not evolve a structural role in sexual reproduction or metabolic regulation.
Collapse
Affiliation(s)
- Stefano Lometto
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniela Sparvoli
- Laboratory of Pathogen Host Interactions, UMR5294, Université de Montpellier, INSERM, CNRS, Montpellier, Pl E. Bataillon Bat. 24 2et, CC107, Montpellier 34095, France
| | - Gabriele Malengo
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany; Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany.
| |
Collapse
|
3
|
Bearne SL. Biochemical communication between filament-forming enzymes: Potential Regulatory Roles of Metabolites in Enzyme Co-assemblies with CTP Synthase. Bioessays 2024; 46:e2400063. [PMID: 38975656 DOI: 10.1002/bies.202400063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 07/09/2024]
Abstract
A host of metabolic enzymes reversibly self-assemble to form membrane-less, intracellular filaments under normal physiological conditions and in response to stress. Often, these enzymes reside at metabolic control points, suggesting that filament formation affords an additional regulatory mechanism. Examples include cytidine-5'-triphosphate (CTP) synthase (CTPS), which catalyzes the rate-limiting step for the de novo biosynthesis of CTP; inosine-5'-monophosphate dehydrogenase (IMPDH), which controls biosynthetic access to guanosine-5'-triphosphate (GTP); and ∆1-pyrroline-5-carboxylate (P5C) synthase (P5CS) that catalyzes the formation of P5C, which links the Krebs cycle, urea cycle, and proline metabolism. Intriguingly, CTPS can exist in co-assemblies with IMPDH or P5CS. Since GTP is an allosteric activator of CTPS, the association of CTPS and IMPDH filaments accords with the need to coordinate pyrimidine and purine biosynthesis. Herein, a hypothesis is presented furnishing a biochemical connection underlying co-assembly of CTPS and P5CS filaments - potent inhibition of CTPS by glutamate γ-semialdehyde, the open-chain form of P5C.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Hugener J, Xu J, Wettstein R, Ioannidi L, Velikov D, Wollweber F, Henggeler A, Matos J, Pilhofer M. FilamentID reveals the composition and function of metabolic enzyme polymers during gametogenesis. Cell 2024; 187:3303-3318.e18. [PMID: 38906101 DOI: 10.1016/j.cell.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/06/2024] [Accepted: 04/19/2024] [Indexed: 06/23/2024]
Abstract
Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.
Collapse
Affiliation(s)
- Jannik Hugener
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland; Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Jingwei Xu
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Rahel Wettstein
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Lydia Ioannidi
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Daniel Velikov
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Florian Wollweber
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Adrian Henggeler
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Joao Matos
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland; Max Perutz Labs, University of Vienna, 1030 Vienna, Austria.
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Aguirre-Sampieri S, Casañal A, Emsley P, Garza-Ramos G. Cryo-EM structure of bacterial nitrilase reveals insight into oligomerization, substrate recognition, and catalysis. J Struct Biol 2024; 216:108093. [PMID: 38615726 PMCID: PMC7616060 DOI: 10.1016/j.jsb.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Many enzymes can self-assemble into higher-order structures with helical symmetry. A particularly noteworthy example is that of nitrilases, enzymes in which oligomerization of dimers into spiral homo-oligomers is a requirement for their enzymatic function. Nitrilases are widespread in nature where they catalyze the hydrolysis of nitriles into the corresponding carboxylic acid and ammonia. Here, we present the Cryo-EM structure, at 3 Å resolution, of a C-terminal truncate nitrilase from Rhodococcus sp. V51B that assembles in helical filaments. The model comprises a complete turn of the helical arrangement with a substrate-intermediate bound to the catalytic cysteine. The structure was solved having added the substrate to the protein. The length and stability of filaments was made more substantial in the presence of the aromatic substrate, benzonitrile, but not for aliphatic nitriles or dinitriles. The overall structure maintains the topology of the nitrilase family, and the filament is formed by the association of dimers in a chain-like mechanism that stabilizes the spiral. The active site is completely buried inside each monomer, while the substrate binding pocket was observed within the oligomerization interfaces. The present structure is in a closed configuration, judging by the position of the lid, suggesting that the intermediate is one of the covalent adducts. The proximity of the active site to the dimerization and oligomerization interfaces, allows the dimer to sense structural changes once the benzonitrile was bound, and translated to the rest of the filament, stabilizing the helical structure.
Collapse
Affiliation(s)
- Sergio Aguirre-Sampieri
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito Escolar S/N, Ciudad Universitaria, CDMX, Mexico
| | - Ana Casañal
- Human Technopole, Palazzo Italia, Viale Rita Levi‑Montalcini, 1, 20157 Milan, Italy
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Structural Studies Division, Francis Crick Avenue, CB2 0QH Cambridge, England
| | - Georgina Garza-Ramos
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, Circuito Escolar S/N, Ciudad Universitaria, CDMX, Mexico.
| |
Collapse
|
6
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. Nat Commun 2024; 15:3574. [PMID: 38678027 PMCID: PMC11055893 DOI: 10.1038/s41467-024-48030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Woulfe J, Munoz DG, Gray DA, Jinnah HA, Ivanova A. Inosine monophosphate dehydrogenase intranuclear inclusions are markers of aging and neuronal stress in the human substantia nigra. Neurobiol Aging 2024; 134:43-56. [PMID: 37992544 DOI: 10.1016/j.neurobiolaging.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
We explored mechanisms involved in the age-dependent degeneration of human substantia nigra (SN) dopamine (DA) neurons. Owing to its important metabolic functions in post-mitotic neurons, we investigated the developmental and age-associated changes in the purine biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH). Tissue microarrays prepared from post-mortem samples of SN from 85 neurologically intact participants humans spanning the age spectrum were immunostained for IMPDH combined with other proteins. SN DA neurons contained two types of IMPDH structures: cytoplasmic IMPDH filaments and intranuclear IMPDH inclusions. The former were not age-restricted and may represent functional units involved in sustaining purine nucleotide supply in these highly metabolically active cells. The latter showed age-associated changes, including crystallization, features reminiscent of pathological inclusion bodies, and spatial associations with Marinesco bodies; structures previously associated with SN neuron dysfunction and death. We postulate dichotomous roles for these two subcellularly distinct IMPDH structures and propose a nucleus-based model for a novel mechanism of SN senescence that is independent of previously known neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- John Woulfe
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - David G Munoz
- Li Ka Shing Knowledge Institute & Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, St. Michael's Hospital, Unity Health, University of Toronto, Toronto, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics & Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyona Ivanova
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children and Neurosurgery Research Department, St. Michael's Hospital, Toronto Unity Health, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
9
|
Nasalingkhan C, Sirinonthanawech N, Noree C. Robust assembly of the aldehyde dehydrogenase Ald4p in Saccharomyces cerevisiae. Biol Open 2023; 12:bio060070. [PMID: 37767855 PMCID: PMC10602002 DOI: 10.1242/bio.060070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023] Open
Abstract
As part of our studies of yeast aldehyde dehydrogenase (Ald4p) assembly, we identified a population of transformants (SWORD strain) that show more robust filament formation of GFP-tagged Ald4p (Ald4p-GFP) than that of a wild type ALD4::GFP strain. Sequencing of the ALD4 gene in the SWORD strain showed that the increased assembly was not due to changes to the ALD4 coding sequence, suggesting that a second mutation site was altering Ald4p assembly. Using short-read whole-genome sequencing, we identified spontaneous mutations in FLO9. Introduction of the SWORD allele of FLO9 into a wild-type ALD4::GFP yeast strain revealed that the changes to FLO9 were a contributor to the increased length of Ald4p-GFP filaments we observe in the SWORD strain and that this effect was not due to an increase in Ald4p protein levels. However, the expression of the FLO9 (SWORD) allele in wild-type yeast did not fully recapitulate the length control defect we observed in SWORD strains, arguing that there are additional genes contributing to the filament length phenotype. For our future work, this FLO9 from SWORD will be tested whether it could show global effect, promoting the assembly of some other filament-forming enzymes.
Collapse
Affiliation(s)
- Channarong Nasalingkhan
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom 73170Thailand
| | - Naraporn Sirinonthanawech
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom 73170Thailand
| | - Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom 73170Thailand
| |
Collapse
|
10
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559410. [PMID: 37808672 PMCID: PMC10557607 DOI: 10.1101/2023.09.25.559410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that all CDO-like enzymes are likely enzyme filaments. Our work represents the first structural characterization of a CDO. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Liu J, Zhang Y, Wang QQ, Zhou Y, Liu JL. Fat body-specific reduction of CTPS alleviates HFD-induced obesity. eLife 2023; 12:e85293. [PMID: 37695169 PMCID: PMC10495109 DOI: 10.7554/elife.85293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Obesity induced by high-fat diet (HFD) is a multi-factorial disease including genetic, physiological, behavioral, and environmental components. Drosophila has emerged as an effective metabolic disease model. Cytidine 5'-triphosphate synthase (CTPS) is an important enzyme for the de novo synthesis of CTP, governing the cellular level of CTP and the rate of phospholipid synthesis. CTPS is known to form filamentous structures called cytoophidia, which are found in bacteria, archaea, and eukaryotes. Our study demonstrates that CTPS is crucial in regulating body weight and starvation resistance in Drosophila by functioning in the fat body. HFD-induced obesity leads to increased transcription of CTPS and elongates cytoophidia in larval adipocytes. Depleting CTPS in the fat body prevented HFD-induced obesity, including body weight gain, adipocyte expansion, and lipid accumulation, by inhibiting the PI3K-Akt-SREBP axis. Furthermore, a dominant-negative form of CTPS also prevented adipocyte expansion and downregulated lipogenic genes. These findings not only establish a functional link between CTPS and lipid homeostasis but also highlight the potential role of CTPS manipulation in the treatment of HFD-induced obesity.
Collapse
Affiliation(s)
- Jingnan Liu
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- College of Life Sciences, Shanghai Normal UniversityShanghaiChina
| | - Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiao-Qi Wang
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Youfang Zhou
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
12
|
Uversky VN. Biological Liquid-Liquid Phase Separation, Biomolecular Condensates, and Membraneless Organelles: Now You See Me, Now You Don't. Int J Mol Sci 2023; 24:13150. [PMID: 37685957 PMCID: PMC10488282 DOI: 10.3390/ijms241713150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Liquid-liquid phase separation (LLPS, also known as biomolecular condensation) and the related biogenesis of various membraneless organelles (MLOs) and biomolecular condensates (BMCs) are now considered fundamental molecular mechanisms governing the spatiotemporal organization of the intracellular space [...].
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Bie M, Tang Y, Xia Y, Zhang Q, Tian Y, Cheng C, Li X, Qi X, Kang F. HIF-1α mediates osteoclast-induced disuse osteoporosis via cytoophidia in the femur of mice. Bone 2023; 168:116648. [PMID: 36563716 DOI: 10.1016/j.bone.2022.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Osteoporosis induced by disuse because of bed rest or the aerospace industry has become one of the most common skeletal disorders. However, mechanisms underlying the disuse osteoporosis remain largely unknown. We validated the tail-suspended model in mice and demonstrated that there is bone loss in the trabecular and cortical bones of the femur. Importantly, we showed that genetical deletion of hypoxia-inducible factor-1α (HIF-1α) in osteoclasts ameliorated osteoclastic bone resorption in the trabecular bone whereas pharmacological treatment with HIF-1α inhibitor protected the hindlimb-unloaded mice from disuse-induced osteoporosis in the trabecular and cortical bones. The HIF-1α knockout RAW264.7 cells and RNA-sequencing proved that HIF-1α is vital for osteoclastogenesis and bone resorption because it regulated the level of inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthetase (CTPS) via cellular myelocytomatosis (c-Myc) oncogene. The IMPDH and CTPS are vital nucleotide metabolic enzymes which have an important functional role in cell metabolism, and they can assemble into intracellular linear or ring-shaped structures to cope with cell stress. Interestingly, both in vitro and in vivo, the IMPDH and CTPS cytoophidia were found in osteoclasts, and the level of HIF-1α correlated with osteoclastogenesis and bone-resorbing activity. Our data revealed that HIF-1α/c-Myc/cytoophidia signalling might be required for osteoclasts to mediate cell metabolism in disuse-induced osteoporosis. Overall, our results revealed a new role of HIF-1α/c-Myc/cytoophidia in supporting osteoclastogenesis and bone resorption and exposed evidence for its role in the pathogenesis of disuse osteoporosis, which might provide promising therapeutic targets.
Collapse
Affiliation(s)
- Miaomiao Bie
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yi Tang
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuxing Xia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuanye Tian
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chunan Cheng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xinzhao Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xin Qi
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Feiwu Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
14
|
de Souza LP, Fernie AR. Databases and Tools to Investigate Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:231-249. [PMID: 36178629 DOI: 10.1007/978-1-0716-2624-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-metabolite interactions (PMIs) are directly responsible for the regulation of numerous processes. From the direct regulation of enzymes to complex developmental processes intermediated by hormones, PMIs are central to understanding the molecular mechanisms of important physiological phenomena. Still, proving such interactions experimentally has proven an arduous task. We discuss here some of the current technologies contributing to expand our knowledge on PMIs, with particular emphasis on platforms and databases to explore the highly heterogenous nature of characterized PMIs, which is likely to be an essential resource on the development of new computational approaches to predict and validate interactions based on large-scale PMI screenings.
Collapse
Affiliation(s)
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
15
|
Ruiz-Whalen DM, Aichele CP, Dyson ER, Gallen KC, Stark JV, Saunders JA, Simonet JC, Ventresca EM, Fuentes IM, Marmol N, Moise E, Neubert BC, Riggs DJ, Self AM, Alexander JI, Boamah E, Browne AJ, Correa I, Foster MJ, Harrington N, Holiday TJ, Henry RA, Lee EH, Longo SM, Lorenz LD, Martinez E, Nikonova A, Radu M, Smith SC, Steele LA, Strochlic TI, Archer NF, Aykit YJ, Bolotsky AJ, Boyle M, Criollo J, Eldor O, Cruz G, Fortuona VN, Gounder SD, Greenwood N, Ji KW, Johnson A, Lara S, Montanez B, Saurman M, Singh T, Smith DR, Stapf CA, Tondapu T, Tsiobikas C, Habas R, O'Reilly AM. Gaining Wings to FLY: Using Drosophila Oogenesis as an Entry Point for Citizen Scientists in Laboratory Research. Methods Mol Biol 2023; 2626:399-444. [PMID: 36715918 DOI: 10.1007/978-1-0716-2970-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Citizen science is a productive approach to include non-scientists in research efforts that impact particular issues or communities. In most cases, scientists at advanced career stages design high-quality, exciting projects that enable citizen contribution, a crowdsourcing process that drives discovery forward and engages communities. The challenges of having citizens design their own research with no or limited training and providing access to laboratory tools, reagents, and supplies have limited citizen science efforts. This leaves the incredible life experiences and immersion of citizens in communities that experience health disparities out of the research equation, thus hampering efforts to address community health needs with a full picture of the challenges that must be addressed. Here, we present a robust and reproducible approach that engages participants from Grade 5 through adult in research focused on defining how diet impacts disease signaling. We leverage the powerful genetics, cell biology, and biochemistry of Drosophila oogenesis to define how nutrients impact phenotypes associated with genetic mutants that are implicated in cancer and diabetes. Participants lead the project design and execution, flipping the top-down hierarchy of the prevailing scientific culture to co-create research projects and infuse the research with cultural and community relevance.
Collapse
Affiliation(s)
- Dara M Ruiz-Whalen
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
- eCLOSE Institute, Huntingdon Valley, PA, USA.
| | - Christopher P Aichele
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Ebony R Dyson
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Katherine C Gallen
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Jennifer V Stark
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jasmine A Saunders
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jacqueline C Simonet
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Arcadia University, Glenside, PA, USA
| | - Erin M Ventresca
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Albright College, Reading, PA, USA
| | - Isabela M Fuentes
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nyellis Marmol
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Emly Moise
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Benjamin C Neubert
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Devon J Riggs
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Ava M Self
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jennifer I Alexander
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Ernest Boamah
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Amanda J Browne
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Iliana Correa
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Maya J Foster
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nicole Harrington
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Troy J Holiday
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ryan A Henry
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Wilkes University, Wilkes-Barre, PA, USA
| | - Eric H Lee
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sheila M Longo
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Laurel D Lorenz
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Esteban Martinez
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Anna Nikonova
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Maria Radu
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shannon C Smith
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lindsay A Steele
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Todd I Strochlic
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA, USA
| | - Nicholas F Archer
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Y James Aykit
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Adam J Bolotsky
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Megan Boyle
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jennifer Criollo
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Oren Eldor
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gabriela Cruz
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Valerie N Fortuona
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Shreeya D Gounder
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nyim Greenwood
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kayla W Ji
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aminah Johnson
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- eCLOSE Institute, Huntingdon Valley, PA, USA
| | - Sophie Lara
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Maxwell Saurman
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Tanu Singh
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel R Smith
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Catherine A Stapf
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Tarang Tondapu
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Raymond Habas
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Alana M O'Reilly
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
- eCLOSE Institute, Huntingdon Valley, PA, USA.
| |
Collapse
|
16
|
Bennett JA, Steward LR, Rudolph J, Voss AP, Aydin H. The structure of the human LACTB filament reveals the mechanisms of assembly and membrane binding. PLoS Biol 2022; 20:e3001899. [PMID: 36534696 PMCID: PMC9815587 DOI: 10.1371/journal.pbio.3001899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/05/2023] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are complex organelles that play a central role in metabolism. Dynamic membrane-associated processes regulate mitochondrial morphology and bioenergetics in response to cellular demand. In tumor cells, metabolic reprogramming requires active mitochondrial metabolism for providing key metabolites and building blocks for tumor growth and rapid proliferation. To counter this, the mitochondrial serine beta-lactamase-like protein (LACTB) alters mitochondrial lipid metabolism and potently inhibits the proliferation of a variety of tumor cells. Mammalian LACTB is localized in the mitochondrial intermembrane space (IMS), where it assembles into filaments to regulate the efficiency of essential metabolic processes. However, the structural basis of LACTB polymerization and regulation remains incompletely understood. Here, we describe how human LACTB self-assembles into micron-scale filaments that increase their catalytic activity. The electron cryo-microscopy (cryoEM) structure defines the mechanism of assembly and reveals how highly ordered filament bundles stabilize the active state of the enzyme. We identify and characterize residues that are located at the filament-forming interface and further show that mutations that disrupt filamentation reduce enzyme activity. Furthermore, our results provide evidence that LACTB filaments can bind lipid membranes. These data reveal the detailed molecular organization and polymerization-based regulation of human LACTB and provide new insights into the mechanism of mitochondrial membrane organization that modulates lipid metabolism.
Collapse
Affiliation(s)
- Jeremy A. Bennett
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Lottie R. Steward
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Adam P. Voss
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
17
|
Fu X, Chen W, Pan Y, Liu C, Zhang Z, Shao S, Zhang W. CTPS cytoophidia formation affects cell cycle progression and promotes TSN‑induced apoptosis of MKN45 cells. Mol Med Rep 2022; 26:319. [PMID: 36043523 PMCID: PMC9471557 DOI: 10.3892/mmr.2022.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
Cytidine triphosphate synthase (CTPS) forms filamentous structures termed cytoophidia in numerous types of cell. Toosendanin (TSN) is a tetracyclic triterpenoid and induces CTPS to form cytoophidia in MKN45 cells. However, the effects of CTPS cytoophidia on the proliferation and apoptosis of human gastric cancer cells remain poorly understood. In the present study, CTPS‑overexpression and R294D‑CTPS mutant vectors were generated to assess the effect of CTPS cytoophidia on the proliferation and apoptosis of gastric cancer MKN45 cells. Formation of CTPS cytoophidia significantly inhibited MKN45 cell proliferation (evaluated using EdU incorporation assay), significantly blocked the cell cycle in G1 phase (assessed using flow cytometry) and significantly decreased mRNA and protein expression levels of cyclin D1 (assessed by reverse transcription‑quantitative PCR and western blotting, respectively). Furthermore, the number of apoptotic bodies and apoptosis rate were markedly elevated and mitochondrial membrane potential was markedly decreased. Moreover, mRNA and protein expression levels of Bax increased and Bcl‑2 decreased markedly in MKN45 cells following transfection with the CTPS‑overexpression vector. The proliferation rate increased, percentage of G1/G0‑phase cells decreased and apoptosis was attenuated in cells transfected with the R294D‑CTPS mutant vector and this mutation did not lead to formation of cytoophidia. The results of the present study suggested that formation of CTPS cytoophidia inhibited proliferation and promoted apoptosis in MKN45 cells. These results may provide insights into the role of CTPS cytoophidia in cancer cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Xuepeng Fu
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wen Chen
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yang Pan
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chang Liu
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhenzhu Zhang
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shuli Shao
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
18
|
Buey RM, Fernández‐Justel D, Jiménez A, Revuelta JL. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases. Protein Sci 2022; 31:e4399. [PMID: 36040265 PMCID: PMC9375230 DOI: 10.1002/pro.4399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.
Collapse
Affiliation(s)
- Rubén M. Buey
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - David Fernández‐Justel
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
19
|
Wu Z, Liu JL. CTP synthase does not form cytoophidia in Drosophila interfollicular stalks. Exp Cell Res 2022; 418:113250. [PMID: 35691380 DOI: 10.1016/j.yexcr.2022.113250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
CTP synthase (CTPS) catalyzes the final step of de novo synthesis of the nucleotide CTP. In 2010, CTPS has been found to form filamentous structures termed cytoophidia in Drosophila follicle cells and germline cells. Subsequently, cytoophidia have been reported in many species across three domains of life: bacteria, eukaryotes and archaea. Forming cytoophidia appears to be a highly conserved and ancient property of CTPS. To our surprise, here we find that polar cells and stalk cells, two specialized types of cells composing Drosophila interfollicular stalks, do not possess obvious cytoophidia. We show that Myc level is low in these two types of cells. Treatment with a glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), increases cytoophidium assembly in main follicle cells, but not in polar cells or stalk cells. Moreover, overexpressing Myc induces cytoophidium formation in stalk cells. When CTPS is overexpressed, cytoophidia can be observed both in stalk cells and polar cells. Our findings provide an interesting paradigm for the in vivo study of cytoophidium assembly and disassembly among different populations of follicle cells.
Collapse
Affiliation(s)
- Zheng Wu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210, Shanghai, China; Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
20
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
21
|
Connecting Ras and CTP synthase in Drosophila. Exp Cell Res 2022; 416:113155. [DOI: 10.1016/j.yexcr.2022.113155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/04/2022]
|
22
|
Miura N. Condensate Formation by Metabolic Enzymes in Saccharomyces cerevisiae. Microorganisms 2022; 10:232. [PMID: 35208686 PMCID: PMC8876316 DOI: 10.3390/microorganisms10020232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
Condensate formation by a group of metabolic enzymes in the cell is an efficient way of regulating cell metabolism through the formation of "membrane-less organelles." Because of the use of green fluorescent protein (GFP) for investigating protein localization, various enzymes were found to form condensates or filaments in living Saccharomyces cerevisiae, mammalian cells, and in other organisms, thereby regulating cell metabolism in the certain status of the cells. Among different environmental stresses, hypoxia triggers the spatial reorganization of many proteins, including more than 20 metabolic enzymes, to form numerous condensates, including "Glycolytic body (G-body)" and "Purinosome." These individual condensates are collectively named "Metabolic Enzymes Transiently Assembling (META) body". This review overviews condensate or filament formation by metabolic enzymes in S. cerevisiae, focusing on the META body, and recent reports in elucidating regulatory machinery of META body formation.
Collapse
Affiliation(s)
- Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
23
|
Zhang S, Feng HC, Liu JL. ASNS disruption shortens CTPS cytoophidia in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6080684. [PMID: 33561249 PMCID: PMC8022725 DOI: 10.1093/g3journal/jkaa060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Asparagine synthetase (ASNS) and CTP synthase (CTPS) are two metabolic enzymes that catalyze the biosynthesis of asparagine and CTP, respectively. Both CTPS and ASNS have been identified to form cytoophidia in Saccharomyces cerevisiae. Glutamine is a common substrate for both these enzymes, and they play an important role in glutamine homeostasis. Here, we find that the ASNS cytoophidia are shorter than the CTPS cytoophidia, and that disruption of ASNS shortens the length of CTPS cytoophidia. However, the deletion of CTPS has no effect on the formation and length of ASNS cytoophidia, or on the ASNS protein level. We also find that Asn1 overexpression induces the formation of a multi-dot structure in diauxic phase which suggests that the increased protein level may trigger cytoophidia formation. Collectively, our results reveal a connection between ASNS cytoophidia and CTPS cytoophidia.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Han-Chao Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
24
|
Hameleers L, Penttinen L, Ikonen M, Jaillot L, Fauré R, Terrapon N, Deuss PJ, Hakulinen N, Master ER, Jurak E. Polysaccharide utilization loci-driven enzyme discovery reveals BD-FAE: a bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:127. [PMID: 34059129 PMCID: PMC8165983 DOI: 10.1186/s13068-021-01976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Nowadays there is a strong trend towards a circular economy using lignocellulosic biowaste for the production of biofuels and other bio-based products. The use of enzymes at several stages of the production process (e.g., saccharification) can offer a sustainable route due to avoidance of harsh chemicals and high temperatures. For novel enzyme discovery, physically linked gene clusters targeting carbohydrate degradation in bacteria, polysaccharide utilization loci (PULs), are recognized 'treasure troves' in the era of exponentially growing numbers of sequenced genomes. RESULTS We determined the biochemical properties and structure of a protein of unknown function (PUF) encoded within PULs of metagenomes from beaver droppings and moose rumen enriched on poplar hydrolysate. The corresponding novel bifunctional carbohydrate esterase (CE), now named BD-FAE, displayed feruloyl esterase (FAE) and acetyl esterase activity on simple, synthetic substrates. Whereas acetyl xylan esterase (AcXE) activity was detected on acetylated glucuronoxylan from birchwood, only FAE activity was observed on acetylated and feruloylated xylooligosaccharides from corn fiber. The genomic contexts of 200 homologs of BD-FAE revealed that the 33 closest homologs appear in PULs likely involved in xylan breakdown, while the more distant homologs were found either in alginate-targeting PULs or else outside PUL contexts. Although the BD-FAE structure adopts a typical α/β-hydrolase fold with a catalytic triad (Ser-Asp-His), it is distinct from other biochemically characterized CEs. CONCLUSIONS The bifunctional CE, BD-FAE, represents a new candidate for biomass processing given its capacity to remove ferulic acid and acetic acid from natural corn and birchwood xylan substrates, respectively. Its detailed biochemical characterization and solved crystal structure add to the toolbox of enzymes for biomass valorization as well as structural information to inform the classification of new CEs.
Collapse
Affiliation(s)
- Lisanne Hameleers
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Leena Penttinen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Martina Ikonen
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Léa Jaillot
- Architecture Et Fonction Des Macromolécules Biologiques (AFMB), UMR7257 Centre National de La Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), USC1408 Institut National de Recherche Pour L'Agriculture, l'Alimentation Et L'Environnement (INRAE), 13288, Marseille cedex 9, France
| | - Régis Fauré
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Nicolas Terrapon
- Architecture Et Fonction Des Macromolécules Biologiques (AFMB), UMR7257 Centre National de La Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), USC1408 Institut National de Recherche Pour L'Agriculture, l'Alimentation Et L'Environnement (INRAE), 13288, Marseille cedex 9, France
| | - Peter J Deuss
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80130, Joensuu, Finland
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Edita Jurak
- Department of Bioproduct Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
25
|
Peng M, Chang CC, Liu JL, Sung LY. CTPS and IMPDH form cytoophidia in developmental thymocytes. Exp Cell Res 2021; 405:112662. [PMID: 34022203 DOI: 10.1016/j.yexcr.2021.112662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023]
Abstract
The cytoophidium, a filamentous structure formed by metabolic enzymes, has emerged as a novel regulatory machinery for certain proteins. The rate-limiting enzymes of de novo CTP and GTP synthesis, cytidine triphosphate synthase (CTPS) and inosine monophosphate dehydrogenase (IMPDH), are the most characterized cytoophidium-forming enzymes in mammalian models. Although the assembly of CTPS cytoophidia has been demonstrated in various organisms including multiple human cancers, a systemic survey for the presence of CTPS cytoophidia in mammalian tissues in normal physiological conditions has not yet been reported. Herein, we examine major organs of adult mouse and observe that CTPS cytoophidia are displayed by a specific thymocyte population ranging between DN3 to early DP stages. Most of these cytoophidium-presenting cells have both CTPS and IMPDH cytoophidia and undergo rapid cell proliferation. In addition, we show that cytoophidium formation is associated with active glycolytic metabolism as the cytoophidium-presenting cells exhibit higher levels of c-Myc, phospho-Akt and PFK. Inhibition of glycolysis with 2DG, however, disrupts most of cytoophidium structures and impairs cell proliferation. Our findings not only indicate that the regulation of CTPS and IMPDH cytoophidia are correlated with the metabolic switch triggered by pre-TCR signaling, but also suggest physiological roles of the cytoophidium in thymocyte development.
Collapse
Affiliation(s)
- Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan; Animal Resource Center, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
26
|
Morimune T, Tano A, Tanaka Y, Yukiue H, Yamamoto T, Tooyama I, Maruo Y, Nishimura M, Mori M. Gm14230 controls Tbc1d24 cytoophidia and neuronal cellular juvenescence. PLoS One 2021; 16:e0248517. [PMID: 33886577 PMCID: PMC8062039 DOI: 10.1371/journal.pone.0248517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
It is not fully understood how enzymes are regulated in the tiny reaction field of a cell. Several enzymatic proteins form cytoophidia, a cellular macrostructure to titrate enzymatic activities. Here, we show that the epileptic encephalopathy-associated protein Tbc1d24 forms cytoophidia in neuronal cells both in vitro and in vivo. The Tbc1d24 cytoophidia are distinct from previously reported cytoophidia consisting of inosine monophosphate dehydrogenase (Impdh) or cytidine-5'-triphosphate synthase (Ctps). Tbc1d24 cytoophidia is induced by loss of cellular juvenescence caused by depletion of Gm14230, a juvenility-associated lncRNA (JALNC) and zeocin treatment. Cytoophidia formation is associated with impaired enzymatic activity of Tbc1d24. Thus, our findings reveal the property of Tbc1d24 to form cytoophidia to maintain neuronal cellular juvenescence.
Collapse
Affiliation(s)
- Takao Morimune
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Ayami Tano
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yuya Tanaka
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Haruka Yukiue
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Takefumi Yamamoto
- Central Research Laboratory, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masaki Mori
- Molecular Neuroscience Research Center (MNRC), Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, Japan
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
27
|
Danchin A. Three overlooked key functional classes for building up minimal synthetic cells. Synth Biol (Oxf) 2021; 6:ysab010. [PMID: 35174295 PMCID: PMC8842674 DOI: 10.1093/synbio/ysab010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Assembly of minimal genomes revealed many genes encoding unknown functions. Three overlooked functional categories account for some of them. Cells are prone to make errors and age. As a first key function, discrimination between proper and changed entities is indispensable. Discrimination requires management of information, an authentic, yet abstract, currency of reality. For example proteins age, sometimes very fast. The cell must identify, then get rid of old proteins without destroying young ones. Implementing discrimination in cells leads to the second set of functions, usually ignored. Being abstract, information must nevertheless be embodied into material entities, with unavoidable idiosyncratic properties. This brings about novel unmet needs. Hence, the buildup of cells elicits specific but awkward material implementations, ‘kludges’ that become essential under particular settings, while difficult to identify. Finally, a third functional category characterizes the need for growth, with metabolic implementations allowing the cell to put together the growth of its cytoplasm, membranes, and genome, spanning different spatial dimensions. Solving this metabolic quandary, critical for engineering novel synthetic biology chassis, uncovered an unexpected role for CTP synthetase as the coordinator of nonhomothetic growth. Because a significant number of SynBio constructs aim at creating cell factories we expect that they will be attacked by viruses (it is not by chance that the function of the CRISPR system was identified in industrial settings). Substantiating the role of CTP, natural selection has dealt with this hurdle via synthesis of the antimetabolite 3′‐deoxy‐3′,4′‐didehydro‐CTP, recruited for antiviral immunity in all domains of life.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos Labs/Stellate Therapeutics, Institut Cochin, Paris, France
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, Pokfulam, SAR Hong Kong, China
| |
Collapse
|
28
|
Surasiang T, Noree C. Effects of A6E Mutation on Protein Expression and Supramolecular Assembly of Yeast Asparagine Synthetase. BIOLOGY 2021; 10:biology10040294. [PMID: 33916846 PMCID: PMC8065433 DOI: 10.3390/biology10040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Certain mutations causing extremely low abundance of asparagine synthetase (the enzyme responsible for producing asparagine, one of the amino acids required for normal growth and development) have been identified in humans with neurological problems and small head and brain size. Currently, yeast is becoming more popular in modeling many human diseases. In this study, we incorporate a mutation, associated with human asparagine synthetase deficiency, into the yeast asparagine synthetase gene to demonstrate that this mutation can also show similar effects as those observed in humans, leading to very low abundance of yeast asparagine synthetase and slower yeast growth rate. This suggests that our yeast system can be alternatively used to initially screen for any drugs that can help rescue the protein levels of asparagine synthetase before applying them to further studies in mammals and humans. Furthermore, this mutation might specifically be introduced into the asparagine synthetase gene of the target cancer cells in order to suppress the overproduction of asparagine synthetase within these abnormal cells, therefore inhibiting the growth of cancer, which might be helpful for patients with blood cancer to prevent them developing any resistance to the conventional asparaginase treatment. Abstract Asparagine synthetase deficiency (ASD) has been found to be caused by certain mutations in the gene encoding human asparagine synthetase (ASNS). Among reported mutations, A6E mutation showed the greatest reduction in ASNS abundance. However, the effect of A6E mutation has not yet been tested with yeast asparagine synthetase (Asn1/2p). Here, we constructed a yeast strain by deleting ASN2 from its genome, introducing the A6E mutation codon to ASN1, along with GFP downstream of ASN1. Our mutant yeast construct showed a noticeable decrease of Asn1p(A6E)-GFP levels as compared to the control yeast expressing Asn1p(WT)-GFP. At the stationary phase, the A6E mutation also markedly lowered the assembly frequency of the enzyme. In contrast to Asn1p(WT)-GFP, Asn1p(A6E)-GFP was insensitive to changes in the intracellular energy levels upon treatment with sodium azide during the log phase or fresh glucose at the stationary phase. Our study has confirmed that the effect of A6E mutation on protein expression levels of asparagine synthetase is common in both unicellular and multicellular eukaryotes, suggesting that yeast could be a model of ASD. Furthermore, A6E mutation could be introduced to the ASNS gene of acute lymphoblastic leukemia patients to inhibit the upregulation of ASNS by cancer cells, reducing the risk of developing resistance to the asparaginase treatment.
Collapse
|
29
|
Histone transcription regulator Slm9 is required for cytoophidium biogenesis. Exp Cell Res 2021; 403:112582. [PMID: 33812868 DOI: 10.1016/j.yexcr.2021.112582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/23/2022]
Abstract
The cytoophidium, a subcellular structure composed of CTP synthase, can be observed during the division of Schizosaccharomyces pombe. Cytoophidium formation changes periodically with the cell cycle of yeast cells. Here, we find that histone chaperone Slm9 is required for the integrity of cytoophidia in fission yeast. When the slm9 gene is knocked out, we observe that morphological characteristics, the abundance of cytoophidia and the division of the yeast cells are significantly affected. Fragmented cytoophidia occur in slm9 mutant cells, a phenomenon rarely observed in wild-type cells. Our study reveals a potential link between a chromosomal regulatory factor and cytoophidium biogenesis.
Collapse
|
30
|
Wang QQ, Zhao PA, Tastan ÖY, Liu JL. Polarised maintenance of cytoophidia in Drosophila follicle epithelia. Exp Cell Res 2021; 402:112564. [PMID: 33737069 DOI: 10.1016/j.yexcr.2021.112564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022]
Abstract
The metabolic enzyme CTP synthase (CTPS) can form filamentous structures named cytoophidia in numerous types of cells, including follicle cells. However, the regulation of cytoophidium assembly remains elusive. The apicobasal polarity, a defining characteristic of Drosophila follicle epithelium, is established and regulated by a variety of membrane domains. Here we show that CTPS can form cytoophidia in Drosophila epithelial follicle cells. Cytoophidia localise to the basolateral side of follicle cells. If apical polarity regulators are knocked down, cytoophidia become unstable and distribute abnormally. Knockdown of basolateral polarity regulators has no significant effect on cytoophidia, even though the polarity is disturbed. Our results indicate that cytoophidia are maintained via polarised distribution on the basolateral side of Drosophila follicle epithelia, which is primarily achieved through the apical polarity regulators.
Collapse
Affiliation(s)
- Qiao-Qi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peiyao A Zhao
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Ömür Y Tastan
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
31
|
Noree C, Sirinonthanawech N. Nuclear targeted Saccharomyces cerevisiae asparagine synthetases associate with the mitotic spindle regardless of their enzymatic activity. PLoS One 2020; 15:e0243742. [PMID: 33347445 PMCID: PMC7751962 DOI: 10.1371/journal.pone.0243742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, human asparagine synthetase has been found to be associated with the mitotic spindle. However, this event cannot be seen in yeast because yeast takes a different cell division process via closed mitosis (there is no nuclear envelope breakdown to allow the association between any cytosolic enzyme and mitotic spindle). To find out if yeast asparagine synthetase can also (but hiddenly) have this feature, the coding sequences of green fluorescent protein (GFP) and nuclear localization signal (NLS) were introduced downstream of ASN1 and ASN2, encoding asparagine synthetases Asn1p and Asn2p, respectively, in the yeast genome having mCherrry coding sequence downstream of TUB1 encoding alpha-tubulin, a building block of the mitotic spindle. The genomically engineered yeast strains showed co-localization of Asn1p-GFP-NLS (or Asn2p-GFP-NLS) and Tub1p-mCherry in dividing nuclei. In addition, an activity-disrupted mutation was introduced to ASN1 (or ASN2). The yeast mutants still exhibited co-localization between defective asparagine synthetase and mitotic spindle, indicating that the biochemical activity of asparagine synthetase is not required for its association with the mitotic spindle. Furthermore, nocodazole treatment was used to depolymerize the mitotic spindle, resulting in lack of association between the enzyme and the mitotic spindle. Although yeast cell division undergoes closed mitosis, preventing the association of its asparagine synthetase with the mitotic spindle, however, by using yeast constructs with re-localized Asn1/2p have suggested the moonlighting role of asparagine synthetase in cell division of higher eukaryotes.
Collapse
Affiliation(s)
- Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| | - Naraporn Sirinonthanawech
- Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, Thailand
| |
Collapse
|
32
|
Montrose K, López Cabezas RM, Paukštytė J, Saarikangas J. Winter is coming: Regulation of cellular metabolism by enzyme polymerization in dormancy and disease. Exp Cell Res 2020; 397:112383. [PMID: 33212148 DOI: 10.1016/j.yexcr.2020.112383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Metabolism feeds growth. Accordingly, metabolism is regulated by nutrient-sensing pathways that converge growth promoting signals into biosynthesis by regulating the activity of metabolic enzymes. When the environment does not support growth, organisms invest in survival. For cells, this entails transitioning into a dormant, quiescent state (G0). In dormancy, the activity of biosynthetic pathways is dampened, and catabolic metabolism and stress tolerance pathways are activated. Recent work in yeast has demonstrated that dormancy is associated with alterations in the physicochemical properties of the cytoplasm, including changes in pH, viscosity and macromolecular crowding. Accompanying these changes, numerous metabolic enzymes transition from soluble to polymerized assemblies. These large-scale self-assemblies are dynamic and depolymerize when cells resume growth. Here we review how enzyme polymerization enables metabolic plasticity by tuning carbohydrate, nucleic acid, amino acid and lipid metabolic pathways, with particular focus on its potential adaptive value in cellular dormancy.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Neuroscience Center, University of Helsinki, Finland.
| |
Collapse
|
33
|
Zhang Y, Liu J, Liu JL. The atlas of cytoophidia in Drosophila larvae. J Genet Genomics 2020; 47:321-331. [PMID: 32912804 DOI: 10.1016/j.jgg.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/07/2020] [Accepted: 06/21/2020] [Indexed: 02/08/2023]
Abstract
In 2010, cytidine 5'-triphosphate synthase (CTPS) was reported to form the filamentous or serpentine structure in Drosophila, which we termed the cytoophidium. In the last decade, CTPS filaments/cytoophidia have been found in bacteria, budding yeast, human cells, mice, fission yeast, plants, and archaea, indicating that this mechanism is highly conserved in evolution. In addition to CTPS, other metabolic enzymes have been identified to have the characteristics of forming cytoophidia or similar advanced structures, demonstrating that this is a basic strategy of cells. Nevertheless, our understanding of the physiological function of the cytoophidium remains incomplete and elusive. Here, we took the larva of Drosophila melanogaster as a model to systematically describe the localization and distribution of cytoophidia in different tissues during larval development. We found that the distribution pattern of CTPS cytoophidia is dynamic and heterogenic in larval tissues. Our study provides a road map for further understanding of the function and regulatory mechanism of cytoophidia.
Collapse
Affiliation(s)
- Yuanbing Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jingnan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
34
|
Lynch EM, Kollman JM, Webb BA. Filament formation by metabolic enzymes-A new twist on regulation. Curr Opin Cell Biol 2020; 66:28-33. [PMID: 32417394 DOI: 10.1016/j.ceb.2020.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/18/2023]
Abstract
Compartmentalization of metabolic enzymes through protein-protein interactions is an emerging mechanism for localizing and regulating metabolic activity. Self-assembly into linear filaments is a common strategy for cellular compartmentalization of enzymes. Polymerization is often driven by changes in the metabolic state of the cell, suggesting that it is a strategy for shifting metabolic flux in response to cellular demand. Although polymerization of metabolic enzymes is widespread, observed from bacteria to humans, we are just beginning to appreciate their role in regulating cellular metabolism. In most cases, one functional role of metabolic enzyme filaments is allosteric control of enzyme activity. Here, we highlight recent findings, providing insight into the structural and functional significance of filamentation of metabolic enzymes in cells.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington, USA
| | | | - Bradley A Webb
- Department of Biochemistry, West Virginia University, USA.
| |
Collapse
|
35
|
Dempwolff F, Sanchez S, Kearns DB. Tn FLX: a Third-Generation mariner-Based Transposon System for Bacillus subtilis. Appl Environ Microbiol 2020; 86:e02893-19. [PMID: 32169936 PMCID: PMC7205501 DOI: 10.1128/aem.02893-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/26/2020] [Indexed: 01/05/2023] Open
Abstract
Random transposon mutagenesis is a powerful and unbiased genetic approach to answer fundamental biological questions. Here, we introduce an improved mariner-based transposon system with enhanced stability during propagation and versatile applications in mutagenesis. We used a low-copy-number plasmid as a transposon delivery vehicle, which affords a lower frequency of unintended recombination during vector construction and propagation in Escherichia coli We generated a variety of transposons allowing for gene disruption or artificial overexpression, each in combination with one of four different antibiotic resistance markers. In addition, we provide transposons that will report gene/protein expression due to transcriptional or translational coupling. We believe that the TnFLX system will help enhance the flexibility of future transposon modification and application in Bacillus and other organisms.IMPORTANCE The stability of transposase-encoding vectors during cloning and propagation is crucial for the reliable application of transposons. Here, we increased the stability of the mariner delivery vehicle in E. coli Moreover, the TnFLX transposon system will improve the application of forward genetic methods with an increased number of antibiotic resistance markers and the ability to generate unbiased green fluorescent protein (GFP) fusions to report on protein translation and subcellular localization.
Collapse
Affiliation(s)
- Felix Dempwolff
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sandra Sanchez
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
36
|
Plana-Bonamaisó A, López-Begines S, Fernández-Justel D, Junza A, Soler-Tapia A, Andilla J, Loza-Alvarez P, Rosa JL, Miralles E, Casals I, Yanes O, de la Villa P, Buey RM, Méndez A. Post-translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions. eLife 2020; 9:56418. [PMID: 32254022 PMCID: PMC7176436 DOI: 10.7554/elife.56418] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
We report the in vivo regulation of Inosine-5´-monophosphate dehydrogenase 1 (IMPDH1) in the retina. IMPDH1 catalyzes the rate-limiting step in the de novo synthesis of guanine nucleotides, impacting the cellular pools of GMP, GDP and GTP. Guanine nucleotide homeostasis is central to photoreceptor cells, where cGMP is the signal transducing molecule in the light response. Mutations in IMPDH1 lead to inherited blindness. We unveil a light-dependent phosphorylation of retinal IMPDH1 at Thr159/Ser160 in the Bateman domain that desensitizes the enzyme to allosteric inhibition by GDP/GTP. When exposed to bright light, living mice increase the rate of GTP and ATP synthesis in their retinas; concomitant with IMPDH1 aggregate formation at the outer segment layer. Inhibiting IMPDH activity in living mice delays rod mass recovery. We unveil a novel mechanism of regulation of IMPDH1 in vivo, important for understanding GTP homeostasis in the retina and the pathogenesis of adRP10 IMPDH1 mutations.
Collapse
Affiliation(s)
- Anna Plana-Bonamaisó
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Santiago López-Begines
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics. University of Salamanca, Salamanca, Spain
| | - Alexandra Junza
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ariadna Soler-Tapia
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | - Esther Miralles
- Centres Cientifics i Tecnològics (CCiTUB), University of Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Isidre Casals
- Centres Cientifics i Tecnològics (CCiTUB), University of Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Oscar Yanes
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pedro de la Villa
- Physiology Unit, Dept of Systems Biology, School of Medicine, University of Alcalá, Madrid, Spain.,Visual Neurophysiology Group-IRYCIS, Madrid, Spain
| | - Ruben M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics. University of Salamanca, Salamanca, Spain
| | - Ana Méndez
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut de Neurociències, Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Campus Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Zhou S, Xiang H, Liu JL. CTP synthase forms cytoophidia in archaea. J Genet Genomics 2020; 47:213-223. [DOI: 10.1016/j.jgg.2020.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
|
38
|
Zhang B, Tastan ÖY, Zhou X, Guo CJ, Liu X, Thind A, Hu HH, Zhao S, Liu JL. The proline synthesis enzyme P5CS forms cytoophidia in Drosophila. J Genet Genomics 2020; 47:131-143. [PMID: 32317150 DOI: 10.1016/j.jgg.2020.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 01/26/2023]
Abstract
Compartmentation of enzymes via filamentation has arisen as a mechanism for the regulation of metabolism. In 2010, three groups independently reported that CTP synthase (CTPS) can assemble into a filamentous structure termed the cytoophidium. In searching for CTPS-interacting proteins, here we perform a yeast two-hybrid screening of Drosophila proteins and identify a putative CTPS-interacting protein, △1-pyrroline-5-carboxylate synthase (P5CS). Using the Drosophila follicle cell as the in vivo model, we confirm that P5CS forms cytoophidia, which are associated with CTPS cytoophidia. Overexpression of P5CS increases the length of CTPS cytoophidia. Conversely, filamentation of CTPS affects the morphology of P5CS cytoophidia. Finally, in vitro analyses confirm the filament-forming property of P5CS. Our work links CTPS with P5CS, two enzymes involved in the rate-limiting steps in pyrimidine and proline biosynthesis, respectively.
Collapse
Affiliation(s)
- Bo Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ömür Y Tastan
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Xian Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuyang Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Aaron Thind
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Huan-Huan Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
39
|
Johnson MC, Kollman JM. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation. eLife 2020; 9:e53243. [PMID: 31999252 PMCID: PMC7018514 DOI: 10.7554/elife.53243] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) mediates the first committed step in guanine nucleotide biosynthesis and plays important roles in cellular proliferation and the immune response. IMPDH reversibly polymerizes in cells and tissues in response to changes in metabolic demand. Self-assembly of metabolic enzymes is increasingly recognized as a general mechanism for regulating activity, typically by stabilizing specific conformations of an enzyme, but the regulatory role of IMPDH filaments has remained unclear. Here, we report a series of human IMPDH2 cryo-EM structures in both active and inactive conformations. The structures define the mechanism of filament assembly, and reveal how filament-dependent allosteric regulation of IMPDH2 makes the enzyme less sensitive to feedback inhibition, explaining why assembly occurs under physiological conditions that require expansion of guanine nucleotide pools. Tuning sensitivity to an allosteric inhibitor distinguishes IMPDH from other metabolic filaments, and highlights the diversity of regulatory outcomes that can emerge from self-assembly.
Collapse
Affiliation(s)
- Matthew C Johnson
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Justin M Kollman
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| |
Collapse
|
40
|
MicroRNA regulation of CTP synthase and cytoophidium in Drosophila melanogaster. Exp Cell Res 2019; 385:111688. [PMID: 31678212 DOI: 10.1016/j.yexcr.2019.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 11/21/2022]
Abstract
CTPsyn is a crucial metabolic enzyme which synthesizes CTP nucleotides. It has the extraordinary ability to compartmentalize into filaments termed cytoophidia. Though the structure is evolutionarily conserved across kingdoms, the mechanisms behind their formation remain unknown. MicroRNAs (miRNAs) are short single-stranded RNA capable of directing mRNA silencing and degradation. D. melanogaster has a high total gene count to miRNA gene number ratio, alluding to the possibility that CTPsyn too may come under their regulation. A thorough miRNA overexpression involving 123 miRNAs was conducted, followed by CTPsyn-specific staining upon cytoophidia-rich egg chambers. This revealed a small group of candidates which confer either a lengthening or truncating effect on cytoophidia, suggesting they may play a role in regulating CTPsyn. MiR-975 and miR-1014 are both cytoophidia-elongating, whereas miR-190 and miR-932 are cytoophidia-shortening. Though target prediction shows that miR-975 and miR-932 do indeed have binding sites on CTPsyn mRNA, in vitro assays instead revealed a low probability of this being true, instead indicating that the effects asserted by overexpressed miRNAs indirectly reach CTPsyn and its cytoophidia through the actions of middling elements. In silico target prediction and qPCR quantification indicated that, at least for miR-932 and miR-1014, these undetermined elements may be players in fat metabolism. This is the first study to thoroughly investigate miRNAs in connection to CTPsyn expression and activity in any species. The findings presented could serve as a basis for further queries into not only the fundamental aspects of the enzyme's regulation, but may uncover new facets of closely related pathways as well.
Collapse
|
41
|
Carlson CH, Gouker FE, Crowell CR, Evans L, DiFazio SP, Smart CD, Smart LB. Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.). ANNALS OF BOTANY 2019; 124:701-716. [PMID: 31008500 PMCID: PMC6821232 DOI: 10.1093/aob/mcz047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/08/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Increasing energy demands and the necessity to reduce greenhouse gas emissions are key motivating factors driving the development of lignocellulosic crops as an alternative to non-renewable energy sources. The effects of global climate change will require a better understanding of the genetic basis of complex adaptive traits to breed more resilient bioenergy feedstocks, like willow (Salix spp.). Shrub willow is a sustainable and dedicated bioenergy crop, bred to be fast-growing and high-yielding on marginal land without competing with food crops. In a rapidly changing climate, genomic advances will be vital for the sustained improvement of willow and other non-model bioenergy crops. Here, joint genetic mapping was used to exploit genetic variation garnered from both recent and historical recombination events in S. purpurea. METHODS A panel of North American naturalized S. purpurea accessions and full-sib F2S. purpurea population were genotyped and phenotyped for a suite of morphological, physiological, pest and disease resistance, and wood chemical composition traits, collected from multi-environment and multi-year replicated field trials. Controlling for population stratification and kinship in the association panel and spatial variation in the F2, a comprehensive mixed model analysis was used to dissect the complex genetic architecture and plasticity of these important traits. KEY RESULTS Individually, genome-wide association (GWAS) models differed in terms of power, but the combined approach, which corrects for yearly and environmental co-factors across datasets, improved the overall detection and resolution of associated loci. Although there were few significant GWAS hits located within support intervals of QTL for corresponding traits in the F2, many large-effect QTL were identified, as well as QTL hotspots. CONCLUSIONS This study provides the first comparison of linkage analysis and linkage disequilibrium mapping approaches in Salix, and highlights the complementarity and limits of these two methods for elucidating the genetic architecture of complex bioenergy-related traits of a woody perennial breeding programme.
Collapse
Affiliation(s)
- Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Fred E Gouker
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Chase R Crowell
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Luke Evans
- Institute for Behavioral Genetics and Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| |
Collapse
|
42
|
Zhang J, Liu JL. Temperature-sensitive cytoophidium assembly in Schizosaccharomyces pombe. J Genet Genomics 2019; 46:423-432. [PMID: 31611173 PMCID: PMC6868507 DOI: 10.1016/j.jgg.2019.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
The metabolic enzyme CTP synthase (CTPS) is able to compartmentalize into filaments, termed cytoophidia, in a variety of organisms including bacteria, budding yeast, fission yeast, fruit flies and mammals. A previous study in budding yeast shows that the filament-forming process of CTPS is not sensitive to temperature shift. Here we study CTPS filamentation in the fission yeast Schizosaccharomyces pombe. To our surprise, we find that both the length and the occurrence of cytoophidia in S. pombe decrease upon cold shock or heat shock. The temperature-dependent changes of cytoophidia are fast and reversible. Taking advantage of yeast genetics, we demonstrate that heat-shock proteins are required for cytoophidium assembly in S. pombe. Temperature sensitivity of cytoophidia makes S. pombe an attractive model system for future investigations of this novel membraneless organelle.
Collapse
Affiliation(s)
- Jing Zhang
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
43
|
Anti-Tumor Potential of IMP Dehydrogenase Inhibitors: A Century-Long Story. Cancers (Basel) 2019; 11:cancers11091346. [PMID: 31514446 PMCID: PMC6770829 DOI: 10.3390/cancers11091346] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 01/15/2023] Open
Abstract
The purine nucleotides ATP and GTP are essential precursors to DNA and RNA synthesis and fundamental for energy metabolism. Although de novo purine nucleotide biosynthesis is increased in highly proliferating cells, such as malignant tumors, it is not clear if this is merely a secondary manifestation of increased cell proliferation. Suggestive of a direct causative effect includes evidence that, in some cancer types, the rate-limiting enzyme in de novo GTP biosynthesis, inosine monophosphate dehydrogenase (IMPDH), is upregulated and that the IMPDH inhibitor, mycophenolic acid (MPA), possesses anti-tumor activity. However, historically, enthusiasm for employing IMPDH inhibitors in cancer treatment has been mitigated by their adverse effects at high treatment doses and variable response. Recent advances in our understanding of the mechanistic role of IMPDH in tumorigenesis and cancer progression, as well as the development of IMPDH inhibitors with selective actions on GTP synthesis, have prompted a reappraisal of targeting this enzyme for anti-cancer treatment. In this review, we summarize the history of IMPDH inhibitors, the development of new inhibitors as anti-cancer drugs, and future directions and strategies to overcome existing challenges.
Collapse
|
44
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
45
|
Hayward D, Kouznetsova VL, Pierson HE, Hasan NM, Guzman ER, Tsigelny IF, Lutsenko S. ANKRD9 is a metabolically-controlled regulator of IMPDH2 abundance and macro-assembly. J Biol Chem 2019; 294:14454-14466. [PMID: 31337707 DOI: 10.1074/jbc.ra119.008231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Members of a large family of Ankyrin Repeat Domain (ANKRD) proteins regulate numerous cellular processes by binding to specific protein targets and modulating their activity, stability, and other properties. The same ANKRD protein may interact with different targets and regulate distinct cellular pathways. The mechanisms responsible for switches in the ANKRDs' behavior are often unknown. We show that cells' metabolic state can markedly alter interactions of an ANKRD protein with its target and the functional outcomes of this interaction. ANKRD9 facilitates degradation of inosine monophosphate dehydrogenase 2 (IMPDH2), the rate-limiting enzyme in GTP biosynthesis. Under basal conditions ANKRD9 is largely segregated from the cytosolic IMPDH2 in vesicle-like structures. Upon nutrient limitation, ANKRD9 loses its vesicular pattern and assembles with IMPDH2 into rodlike filaments, in which IMPDH2 is stable. Inhibition of IMPDH2 activity with ribavirin favors ANKRD9 binding to IMPDH2 rods. The formation of ANKRD9/IMPDH2 rods is reversed by guanosine, which restores ANKRD9 associations with the vesicle-like structures. The conserved Cys109Cys110 motif in ANKRD9 is required for the vesicle-to-rods transition as well as binding and regulation of IMPDH2. Oppositely to overexpression, ANKRD9 knockdown increases IMPDH2 levels and prevents formation of IMPDH2 rods upon nutrient limitation. Taken together, the results suggest that a guanosine-dependent metabolic switch determines the mode of ANKRD9 action toward IMPDH2.
Collapse
Affiliation(s)
- Dawn Hayward
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Valentina L Kouznetsova
- The Moores Cancer Center, University of California San Diego, La Jolla, California 92093.,San Diego Supercomputer Center University of California San Diego, La Jolla, California 92093
| | - Hannah E Pierson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Nesrin M Hasan
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Estefany R Guzman
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Igor F Tsigelny
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,San Diego Supercomputer Center University of California San Diego, La Jolla, California 92093.,Department of Neurosciences, University of California San Diego, La Jolla, California 92093
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
46
|
Woo WK, Dzaki N, Thangadurai S, Azzam G. Ectopic miR-975 induces CTP synthase directed cell proliferation and differentiation in Drosophila melanogaster. Sci Rep 2019; 9:6096. [PMID: 30988367 PMCID: PMC6465261 DOI: 10.1038/s41598-019-42369-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
CTP synthase (CTPSyn) is an essential metabolic enzyme, synthesizing precursors required for nucleotides and phospholipids production. Previous studies have also shown that CTPSyn is elevated in various cancers. In many organisms, CTPSyn compartmentalizes into filaments called cytoophidia. In Drosophila melanogaster, only its isoform C (CTPSynIsoC) forms cytoophidia. In the fruit fly's testis, cytoophidia are normally seen in the transit amplification regions close to its apical tip, where the stem-cell niche is located, and development is at its most rapid. Here, we report that CTPSynIsoC overexpression causes the lengthening of cytoophidia throughout the entirety of the testicular body. A bulging apical tip is found in approximately 34% of males overexpressing CTPSynIsoC. Immunostaining shows that this bulged phenotype is most likely due to increased numbers of both germline cells and spermatocytes. Through a microRNA (miRNA) overexpression screen, we found that ectopic miR-975 concurrently increases both the expression levels of CTPSyn and the length of its cytoophidia. The bulging testes phenotype was also recovered at a penetration of approximately 20%. However, qPCR assays reveal that CTPSynIsoC and miR-975 overexpression each provokes a differential response in expression of a number of cancer-related genes, indicating that the shared CTPSyn upregulation seen in either case is likely the cause of observed testicular overgrowth. This study presents the first instance of consequences of miRNA-asserted regulation upon CTPSyn in D. melanogaster, and further reaffirms the enzyme's close ties to germline cells overgrowth.
Collapse
Affiliation(s)
- Wai Kan Woo
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Najat Dzaki
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
47
|
Hesketh A, Oliver SG. High-energy guanine nucleotides as a signal capable of linking growth to cellular energy status via the control of gene transcription. Curr Genet 2019; 65:893-897. [PMID: 30937517 PMCID: PMC6620469 DOI: 10.1007/s00294-019-00963-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022]
Abstract
This mini-review considers the idea that guanylate nucleotide energy charge acts as an integrative signal for the regulation of gene expression in eukaryotic cells and discusses possible routes for that signal's transduction. Gene expression is intimately linked with cell nutrition and diverse signaling systems serve to coordinate the synthesis of proteins required for growth and proliferation with the prevailing cellular nutritional status. Using short pathways for the inducible and futile consumption of ATP or GTP in engineered cells of Saccharomyces cerevisiae, we have recently shown that GTP levels can also play a role in determining how genes act to respond to changes in cellular energy supply. This review aims to interpret the importance of GTP as an integrative signal in the context of an increasing body of evidence indicating the spatio-temporal complexity of cellular de novo purine nucleotide biosynthesis.
Collapse
Affiliation(s)
- Andy Hesketh
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Stephen G Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
48
|
Wu Z, Liu JL. Cytoophidia respond to nutrient stress in Drosophila. Exp Cell Res 2019; 376:159-167. [PMID: 30768932 PMCID: PMC6403103 DOI: 10.1016/j.yexcr.2019.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/13/2019] [Accepted: 02/09/2019] [Indexed: 01/08/2023]
Abstract
CTP synthase (CTPsyn) is a metabolic enzyme essential for the de novo synthesis of CTP the nucleotide. CTPsyn can be compartmented into filamentous structures named cytoophidia. Cytoophidia are conserved in a wide range of species and are highly abundant in Drosophila ovaries. Here we report that cytoophidia elongate upon nutrient deprivation, CTPsyn overexpression or heat shock in Drosophila ovaries. We also show that the curvature of cytoophidia changes during apoptosis. Moreover, cytoophidia can be transported from nurse cells to the oocyte via ring canals. Our study demonstrates that cytoophidia can respond to stress and are very dynamic in Drosophila ovaries.
Collapse
Affiliation(s)
- Zheng Wu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210 Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210 Shanghai, China; MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
49
|
Laurinyecz B, Vedelek V, Kovács AL, Szilasi K, Lipinszki Z, Slezák C, Darula Z, Juhász G, Sinka R. Sperm-Leucylaminopeptidases are required for male fertility as structural components of mitochondrial paracrystalline material in Drosophila melanogaster sperm. PLoS Genet 2019; 15:e1007987. [PMID: 30802236 PMCID: PMC6388916 DOI: 10.1371/journal.pgen.1007987] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/26/2019] [Indexed: 01/30/2023] Open
Abstract
Drosophila melanogaster sperm reach an extraordinary long size, 1.8 mm, by the end of spermatogenesis. The mitochondrial derivatives run along the entire flagellum and provide structural rigidity for flagellar movement, but its precise function and organization is incompletely understood. The two mitochondrial derivatives differentiate and by the end of spermatogenesis the minor one reduces its size and the major one accumulates paracrystalline material inside it. The molecular constituents and precise function of the paracrystalline material have not yet been revealed. Here we purified the paracrystalline material from mature sperm and identified by mass spectrometry Sperm-Leucylaminopeptidase (S-Lap) family members as important constituents of it. To study the function of S-Lap proteins we show the characterization of classical mutants and RNAi lines affecting of the S-Lap genes and the analysis of their mutant phenotypes. We show that the male sterile phenotype of the S-Lap mutants is caused by defects in paracrystalline material accumulation and abnormal structure of the elongated major mitochondrial derivatives. Our work shows that S-Lap proteins localize and accumulate in the paracrystalline material of the major mitochondrial derivative. Therefore, we propose that S-Lap proteins are important constituents of the paracrystalline material of Drosophila melanogaster sperm.
Collapse
Affiliation(s)
| | - Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Attila L. Kovács
- Department of Anatomy, Eötvös Loránd University, Budapest, Hungary
| | - Kinga Szilasi
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Zoltán Lipinszki
- Institute of Biochemistry and MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Csilla Slezák
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Juhász
- Department of Anatomy, Eötvös Loránd University, Budapest, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
50
|
Fernández-Justel D, Núñez R, Martín-Benito J, Jimeno D, González-López A, Soriano EM, Revuelta JL, Buey RM. A Nucleotide-Dependent Conformational Switch Controls the Polymerization of Human IMP Dehydrogenases to Modulate their Catalytic Activity. J Mol Biol 2019; 431:956-969. [PMID: 30664871 DOI: 10.1016/j.jmb.2019.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/29/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo GTP biosynthetic pathway and plays essential roles in cell proliferation. As a clinical target, IMPDH has been studied for decades, but it has only been within the last years that we are starting to understand the complexity of the mechanisms of its physiological regulation. Here, we report structural and functional insights into how adenine and guanine nucleotides control a conformational switch that modulates the assembly of the two human IMPDH enzymes into cytoophidia and allosterically regulates their catalytic activity. In vitro reconstituted micron-length cytoophidia-like structures show catalytic activity comparable to unassembled IMPDH but, in turn, are more resistant to GTP/GDP allosteric inhibition. Therefore, IMPDH cytoophidia formation facilitates the accumulation of high levels of guanine nucleotides when the cell requires it. Finally, we demonstrate that most of the IMPDH retinopathy-associated mutations abrogate GTP/GDP-induced allosteric inhibition and alter cytoophidia dynamics.
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Rafael Núñez
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jaime Martín-Benito
- Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, 28039 Madrid, Spain
| | - David Jimeno
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Adrián González-López
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Eva María Soriano
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Rubén M Buey
- Metabolic Engineering Group, Dpto. Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|