1
|
Choi H, Choi WS, Jeong JO. A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels 2024; 10:693. [PMID: 39590049 PMCID: PMC11594258 DOI: 10.3390/gels10110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogels are known for their high water retention capacity and biocompatibility and have become essential materials in tissue engineering and drug delivery systems. This review explores recent advancements in hydrogel technology, focusing on innovative types such as self-healing, tough, smart, and hybrid hydrogels, each engineered to overcome the limitations of conventional hydrogels. Self-healing hydrogels can autonomously repair structural damage, making them well-suited for applications in dynamic biomedical environments. Tough hydrogels are designed with enhanced mechanical properties, enabling their use in load-bearing applications such as cartilage regeneration. Smart hydrogels respond to external stimuli, including changes in pH, temperature, and electromagnetic fields, making them ideal for controlled drug release tailored to specific medical needs. Hybrid hydrogels, made from both natural and synthetic polymers, combine bioactivity and mechanical resilience, which is particularly valuable in engineering complex tissues. Despite these innovations, challenges such as optimizing biocompatibility, adjusting degradation rates, and scaling up production remain. This review provides an in-depth analysis of these emerging hydrogel technologies, highlighting their transformative potential in both tissue engineering and drug delivery while outlining future directions for their development in biomedical applications.
Collapse
Affiliation(s)
- Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Wan-Sun Choi
- Department of Orthopaedic Surgery, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Jin-Oh Jeong
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
2
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
3
|
Solanki R, Bhatia D. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels 2024; 10:440. [PMID: 39057463 PMCID: PMC11275390 DOI: 10.3390/gels10070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a highly heterogeneous disease and remains a global health challenge affecting millions of human lives worldwide. Despite advancements in conventional treatments like surgery, chemotherapy, and immunotherapy, the rise of multidrug resistance, tumor recurrence, and their severe side effects and the complex nature of the tumor microenvironment (TME) necessitates innovative therapeutic approaches. Recently, stimulus-responsive nanomedicines designed to target TME characteristics (e.g., pH alterations, redox conditions, enzyme secretion) have gained attention for their potential to enhance anticancer efficacy while minimizing the adverse effects of chemotherapeutics/bioactive compounds. Among the various nanocarriers, hydrogels are intriguing due to their high-water content, adjustable mechanical characteristics, and responsiveness to external and internal stimuli, making them promising candidates for cancer therapy. These properties make hydrogels an ideal nanocarrier for controlled drug release within the TME. This review comprehensively surveys the latest advancements in the area of stimulus-responsive hydrogels for cancer therapy, exploring various stimuli-responsive mechanisms, including biological (e.g., pH, redox), chemical (e.g., enzymes, glucose), and physical (e.g., temperature, light), as well as dual- or multi-stimuli responsiveness. Furthermore, this review addresses the current developments and challenges in hydrogels in cancer treatment. Our aim is to provide readers with a comprehensive understanding of stimulus-responsive hydrogels for cancer treatment, offering novel perspectives on their development for cancer therapy and other medical applications.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| |
Collapse
|
4
|
Webber MJ. Engineering a Pathway to Glucose-Responsive Therapeutics. Diabetes 2024; 73:1032-1038. [PMID: 38608241 DOI: 10.2337/dbi23-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
In 2014, the American Diabetes Association instituted a novel funding paradigm to support diabetes research through its Pathway to Stop Diabetes program. This program took a multifaceted approach to providing key funding to diabetes researchers to advance a broad spectrum of research programs on all aspects of understanding, managing, and treating diabetes. Here, the personal perspective of a 2019 Pathway Accelerator awardee is offered, describing a research program seeking to advance a materials-centered approach to engineering glucose-responsive devices and new delivery tools for better therapeutic outcomes in treating diabetes. This is offered alongside a personal reflection on 5 years of support from the ADA Pathway Program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
5
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
6
|
Xian S, Xiang Y, Liu D, Fan B, Mitrová K, Ollier RC, Su B, Alloosh MA, Jiráček J, Sturek M, Alloosh M, Webber MJ. Insulin-Dendrimer Nanocomplex for Multi-Day Glucose-Responsive Therapy in Mice and Swine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308965. [PMID: 37994248 DOI: 10.1002/adma.202308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Indexed: 11/24/2023]
Abstract
The management of diabetes in a manner offering autonomous insulin therapy responsive to glucose-directed need, and moreover with a dosing schedule amenable to facile administration, remains an ongoing goal to improve the standard of care. While basal insulins with reduced dosing frequency, even once-weekly administration, are on the horizon, there is still no approved therapy that offers glucose-responsive insulin function. Herein, a nanoscale complex combining both electrostatic- and dynamic-covalent interactions between a synthetic dendrimer carrier and an insulin analogue modified with a high-affinity glucose-binding motif yields an injectable insulin depot affording both glucose-directed and long-lasting insulin availability. Following a single injection, it is even possible to control blood glucose for at least one week in diabetic swine subjected to daily oral glucose challenges. Measurements of serum insulin concentration in response to challenge show increases in insulin corresponding to elevated blood glucose levels, an uncommon finding even in preclinical work on glucose-responsive insulin. Accordingly, the subcutaneous nanocomplex that results from combining electrostatic- and dynamic-covalent interactions between a modified insulin and a synthetic dendrimer carrier affords a glucose-responsive insulin depot for week-long control following a single routine injection.
Collapse
Affiliation(s)
- Sijie Xian
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Bowen Fan
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Katarína Mitrová
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, 16610, Czech Republic
| | - Rachel C Ollier
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Bo Su
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | | | - Jiří Jiráček
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, 16610, Czech Republic
| | | | | | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
7
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
8
|
Sivamaruthi BS, Kapoor DU, Kukkar RR, Gaur M, Elossaily GM, Prajapati BG, Chaiyasut C. Mesoporous Silica Nanoparticles: Types, Synthesis, Role in the Treatment of Alzheimer's Disease, and Other Applications. Pharmaceutics 2023; 15:2666. [PMID: 38140007 PMCID: PMC10747102 DOI: 10.3390/pharmaceutics15122666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, many individuals struggle with Alzheimer's disease (AD), an unrelenting and incapacitating neurodegenerative condition. Despite notable research endeavors, effective remedies for AD remain constrained, prompting the exploration of innovative therapeutic avenues. Within this context, silica-based nanoplatforms have emerged with pronounced potential due to their unique attributes like expansive surface area, customizable pore dimensions, and compatibility with living systems. These nanoplatforms hold promise as prospective interventions for AD. This assessment provides a comprehensive overview encompassing various forms of mesoporous silica nanoparticles (MSNs), techniques for formulation, and their applications in biomedicine. A significant feature lies in their ability to precisely guide and control the transport of therapeutic agents to the brain, facilitated by the adaptability of these nanoplatforms as drug carriers. Their utility as tools for early detection and monitoring of AD is investigated. Challenges and prospects associated with harnessing MSNs are studied, underscoring the imperative of stringent safety evaluations and optimization of how they interact with the body. Additionally, the incorporation of multifunctional attributes like imaging and targeting components is emphasized to enhance their efficacy within the intricate milieu of AD. As the battle against the profound repercussions of AD persists, MSNs emerge as a promising avenue with the potential to propel the development of viable therapeutic interventions.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Devesh U. Kapoor
- Department of Pharmacy, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India;
| | - Rajiv R. Kukkar
- School of Pharmacy, Raffles University, Neemrana 301705, Rajasthan, India
| | - Mansi Gaur
- Rajasthan Pharmacy College, Rajasthan University of Health Sciences, Jaipur 302033, Rajasthan, India
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Wienen D, Gries T, Cooper SL, Heath DE. An overview of polyurethane biomaterials and their use in drug delivery. J Control Release 2023; 363:376-388. [PMID: 37734672 DOI: 10.1016/j.jconrel.2023.09.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Polyurethanes are a versatile and highly tunable class of materials that possess unique properties including high tensile strength, abrasion and fatigue resistance, and flexibility at low temperatures. The tunability of polyurethane properties has allowed this class of polymers to become ubiquitous in our daily lives in fields as diverse as apparel, appliances, construction, and the automotive industry. Additionally, polyurethanes with excellent biocompatibility and hemocompatibility can be synthesized, enabling their use as biomaterials in the medical field. The tunable nature of polyurethane biomaterials also makes them excellent candidates as drug delivery vehicles, which is the focus of this review. The fundamental idea we aim to highlight in this article is the structure-property-function relationships found in polyurethane systems. Specifically, the chemical structure of the polymer determines its macroscopic properties and dictates the functions for which it will perform well. By exploring the structure-property-function relationships for polyurethanes, we aim to elucidate the fundamental properties that can be tailored to achieve controlled drug release and empower researchers to design new polyurethane systems for future drug delivery applications.
Collapse
Affiliation(s)
- David Wienen
- Institute of Textile Technology, RWTH Aachen, Germany
| | - Thomas Gries
- Institute of Textile Technology, RWTH Aachen, Germany
| | - Stuart L Cooper
- Department of Chemical and Biomolecular Engineering, The Ohio State University, USA
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Australia.
| |
Collapse
|
10
|
Yang JF, Yang S, Gong X, Bakh NA, Zhang G, Wang AB, Cherrington AD, Weiss MA, Strano MS. In Silico Investigation of the Clinical Translatability of Competitive Clearance Glucose-Responsive Insulins. ACS Pharmacol Transl Sci 2023; 6:1382-1395. [PMID: 37854621 PMCID: PMC10580396 DOI: 10.1021/acsptsci.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 10/20/2023]
Abstract
The glucose-responsive insulin (GRI) MK-2640 from Merck was a pioneer in its class to enter the clinical stage, having demonstrated promising responsiveness in in vitro and preclinical studies via a novel competitive clearance mechanism (CCM). The smaller pharmacokinetic response in humans motivates the development of new predictive, computational tools that can improve the design of therapeutics such as GRIs. Herein, we develop and use a new computational model, IM3PACT, based on the intersection of human and animal model glucoregulatory systems, to investigate the clinical translatability of CCM GRIs based on existing preclinical and clinical data of MK-2640 and regular human insulin (RHI). Simulated multi-glycemic clamps not only validated the earlier hypothesis of insufficient glucose-responsive clearance capacity in humans but also uncovered an equally important mismatch between the in vivo competitiveness profile and the physiological glycemic range, which was not observed in animals. Removing the inter-species gap increases the glucose-dependent GRI clearance from 13.0% to beyond 20% for humans and up to 33.3% when both factors were corrected. The intrinsic clearance rate, potency, and distribution volume did not apparently compromise the translation. The analysis also confirms a responsive pharmacokinetics local to the liver. By scanning a large design space for CCM GRIs, we found that the mannose receptor physiology in humans remains limiting even for the most optimally designed candidate. Overall, we show that this computational approach is able to extract quantitative and mechanistic information of value from a posteriori analysis of preclinical and clinical data to assist future therapeutic discovery and development.
Collapse
Affiliation(s)
- Jing Fan Yang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Sungyun Yang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Naveed A. Bakh
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Ge Zhang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Allison B. Wang
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Alan D. Cherrington
- Molecular
Physiology and Biophysics, Vanderbilt University
School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael A. Weiss
- Department
of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Michael S. Strano
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Tatarusanu SM, Lupascu FG, Profire BS, Szilagyi A, Gardikiotis I, Iacob AT, Caluian I, Herciu L, Giscă TC, Baican MC, Crivoi F, Profire L. Modern Approaches in Wounds Management. Polymers (Basel) 2023; 15:3648. [PMID: 37688274 PMCID: PMC10489962 DOI: 10.3390/polym15173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care products in order to maximize the healing outcome and minimize the financial cost. The market of wound dressings is a dynamic field which grows and evolves continuously as a result of extensive research on developing versatile formulations with innovative properties. Hydrogels are one of the most attractive wound care products which, in many aspects, are considered ideal for wound treatment and are widely exploited for extension of their advantages in healing process. Smart hydrogels (SHs) offer the opportunities of the modulation physico-chemical properties of hydrogels in response to external stimuli (light, pressure, pH variations, magnetic/electric field, etc.) in order to achieve innovative behavior of their three-dimensional matrix (gel-sol transitions, self-healing and self-adapting abilities, controlled release of drugs). The SHs response to different triggers depends on their composition, cross-linking method, and manufacturing process approach. Both native or functionalized natural and synthetic polymers may be used to develop stimuli-responsive matrices, while the mandatory characteristics of hydrogels (biocompatibility, water permeability, bioadhesion) are preserved. In this review, we briefly present the physiopathology and healing mechanisms of chronic wounds, as well as current therapeutic approaches. The rational of using traditional hydrogels and SHs in wound healing, as well as the current research directions for developing SHs with innovative features, are addressed and discussed along with their limitations and perspectives in industrial-scale manufacturing.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
- Research & Development Department, Antibiotice Company, 1 Valea Lupului Street, 707410 Iasi, Romania
| | - Florentina-Geanina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania; (A.S.); (I.G.)
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Iulian Caluian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Lorena Herciu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| | - Tudor-Catalin Giscă
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street 700115 Iasi, Romania;
| | - Mihaela-Cristina Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Florina Crivoi
- Department of Pharmaceutical Physics, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 University Street, 700115 Iasi, Romania;
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” of Iasi, 16 Universitatii Street, 700115 Iasi, Romania; (S.-M.T.); (F.-G.L.); (A.-T.I.); (I.C.); (L.H.)
| |
Collapse
|
12
|
Zhang R, Miao Q, Deng D, Wu J, Miao Y, Li Y. Research progress of advanced microneedle drug delivery system and its application in biomedicine. Colloids Surf B Biointerfaces 2023; 226:113302. [PMID: 37086686 DOI: 10.1016/j.colsurfb.2023.113302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Transdermal drug delivery is an effective way of drug delivery in addition to oral and intravenous administration. Among them, microneedle administration is a new type of subcutaneous drug delivery, which forms micron-level pores on the surface of the skin, making the drug enter the dermis through the cuticular layer of the skin in the least invasive way. This mode of drug delivery not only increases the permeation efficiency of transdermal drug delivery but also improves the bioavailability of drug delivery. At present, there are many kinds of research on microneedles, such as solid microneedles, hollow microneedles, soluble polymer microneedles, etc. However, some new microneedle drug delivery systems have been gradually developed and applied with the development of microneedle drug delivery technology, for meeting the more complex pathological environment. In this review, we focus on the principle, structure, and function of some new types of microneedles, such as stimulus-response microneedles, iontophoresis microneedles, and bionic microneedles. We summarize the effects of materials, geometry, and size on the properties of microneedles as well as their applications and potential developments in the field of biomedicine. We hope that this review can provide new ideas and help with the development of new microneedle drug delivery systems.
Collapse
Affiliation(s)
- Rui Zhang
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Miao
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
13
|
Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. SOFT MATTER 2023; 19:2013-2041. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Argentina.
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
14
|
Nejabat M, Kalani MR, Nejabat M, Hadizadeh F. Molecular dynamic and in vitro evaluation of chitosan/tripolyphosphate nanoparticles as an insulin delivery system at two different pH values. J Biomol Struct Dyn 2022; 40:10153-10161. [PMID: 34154515 DOI: 10.1080/07391102.2021.1940280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding the atomic interaction mechanism between chitosan and insulin at different pH levels is essential in the design of chitosan-based drug-delivery systems. In the present study, insulin-loaded nanoparticles were prepared via ionic gelation of tripolyphosphate (TPP) and chitosan with 76 ± 5.5% encapsulation efficiency. Our results showed that the nanoparticles were spherical with a size of 254 nm. Furthermore, the in vitro release profile of insulin was evaluated for two different pH levels. The release of insulin from nanoparticles after 48 h at pH 4.0 was 92%, compared to 56% at pH 7.4. The kinetics of the release were best fitted by the Weibull equation, which described a burst release in the first five hours followed by a sustained insulin release for up to 48 h. Moreover, we designed a long single chain chitosan (128 kDa)/TPP nanoparticles in real size for the first time and studied the system behavior in acidic and neutral environments using molecular dynamic simulation for 40 nanoseconds (ns). Our results showed that chitosan chains opened more with higher root-mean-square deviation (RMSD) values at pH 4.0 than at pH 7.4. Also, RMSD plots for insulin and TPP molecules showed that insulin molecules diffused away from chitosan chains, and that TPP were randomly dispersed further away from the chitosan chain in an acidic medium than in a neutral one. The in silico studies were in agreement with our in vitro data. Thus self-assembled chitosan/TPP nanoparticles show promise as a means to release protein drugs in acidic environments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Kalani
- School of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Nejabat
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Xian S, VandenBerg MA, Xiang Y, Yu S, Webber MJ. Glucose-Responsive Injectable Thermogels via Dynamic-Covalent Cross-Linking of Pluronic Micelles. ACS Biomater Sci Eng 2022; 8:4873-4885. [PMID: 36317822 DOI: 10.1021/acsbiomaterials.2c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Michael A. VandenBerg
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sihan Yu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J. Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Ye Z, Xiang Y, Monroe T, Yu S, Dong P, Xian S, Webber MJ. Polymeric Microneedle Arrays with Glucose-Sensing Dynamic-Covalent Bonding for Insulin Delivery. Biomacromolecules 2022; 23:4401-4411. [PMID: 36173091 DOI: 10.1021/acs.biomac.2c00878] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ongoing rise in diabetes incidence necessitates improved therapeutic strategies to enable precise blood glucose control with convenient device form factors. Microneedle patches are one such device platform capable of achieving therapeutic delivery through the skin. In recent years, polymeric microneedle arrays have been reported using methods of in situ polymerization and covalent crosslinking in microneedle molds. In spite of promising results, in situ polymerization carries a risk of exposure to toxic unreacted precursors remaining in the device. Here, a polymeric microneedle patch is demonstrated that uses dynamic-covalent phenylboronic acid (PBA)-diol bonds in a dual role affording both network crosslinking and glucose sensing. By this approach, a pre-synthesized and purified polymer bearing pendant PBA motifs is combined with a multivalent diol crosslinker to prepare dynamic-covalent hydrogel networks. The ability of these dynamic hydrogels to shear-thin and self-heal enables their loading to a microneedle mold by centrifugation. Subsequent drying then yields a patch of uniformly shaped microneedles with the requisite mechanical properties to penetrate skin. Insulin release from these materials is accelerated in the presence of glucose. Moreover, short-term blood glucose control in a diabetic rat model following application of the device to the skin confirms insulin activity and bioavailability. Accordingly, dynamic-covalent crosslinking facilitates a route for fabricating microneedle arrays circumventing the toxicity concerns of in situ polymerization, offering a convenient device form factor for therapeutic insulin delivery.
Collapse
Affiliation(s)
- Zhou Ye
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Thomas Monroe
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Sihan Yu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Ping Dong
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Sijie Xian
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 United States
| |
Collapse
|
17
|
Gera AK, Burra RK. The Rise of Polymeric Microneedles: Recent Developments, Advances, Challenges, and Applications with Regard to Transdermal Drug Delivery. J Funct Biomater 2022; 13:81. [PMID: 35735936 PMCID: PMC9224958 DOI: 10.3390/jfb13020081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022] Open
Abstract
The current scenario of the quest for microneedles (MNs) with biodegradability and biocompatibility properties is a potential research area of interest. Microneedles are considered to be robust, can penetrate the skin's deep-seated layers, and are easy to manufacture, and their applications from the clinical perspective are still ongoing with standard escalation. This review paper focuses on some of the pivotal variants of polymeric microneedles which are specifically dissolvable and swell-based MNs. It further explores the drug dissolution kinetics and insertion behavior mechanisms with an emphasis on the need for mathematical modeling of MNs. This review further evaluates the multifarious fabrication methods, with an update on the advances in the fabrication of polymeric MNs, the choice of materials used for the fabrication, the challenges in polymeric MN fabrication, and the prospects of polymeric MNs with applications pertinent to healthcare, by exclusively focusing on the procurable literature over the last decade.
Collapse
Affiliation(s)
- Aswani Kumar Gera
- Department of Electrical, Electronics & Communication Engineering, School of Technology, GITAM, Deemed to Be University, Visakhapatnam 530045, India;
| | | |
Collapse
|
18
|
Glucose-responsive insulin microneedle patch based on phenylboronic acid for 1 diabetes treatment. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Enzyme-Responsive Hydrogels as Potential Drug Delivery Systems-State of Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23084421. [PMID: 35457239 PMCID: PMC9031066 DOI: 10.3390/ijms23084421] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Fast advances in polymer science have provided new hydrogels for applications in drug delivery. Among modern drug formulations, polymeric type stimuli-responsive hydrogels (SRHs), also called smart hydrogels, deserve special attention as they revealed to be a promising tool useful for a variety of pharmaceutical and biomedical applications. In fact, the basic feature of these systems is the ability to change their mechanical properties, swelling ability, hydrophilicity, or bioactive molecules permeability, which are influenced by various stimuli, particularly enzymes. Indeed, among a great number of SHRs, enzyme-responsive hydrogels (ERHs) gain much interest as they possess several potential biomedical applications (e.g., in controlled release, drug delivery, etc.). Such a new type of SHRs directly respond to many different enzymes even under mild conditions. Therefore, they show either reversible or irreversible enzyme-induced changes both in chemical and physical properties. This article reviews the state-of-the art in ERHs designed for controlled drug delivery systems (DDSs). Principal enzymes used for biomedical hydrogel preparation were presented and different ERHs were further characterized focusing mainly on glucose oxidase-, β-galactosidase- and metalloproteinases-based catalyzed reactions. Additionally, strategies employed to produce ERHs were described. The current state of knowledge and the discussion were made on successful applications and prospects for further development of effective methods used to obtain ERH as DDSs.
Collapse
|
20
|
|
21
|
Primavera R, Bellotti E, Di Mascolo D, Di Francesco M, Wang J, Kevadiya BD, De Pascale A, Thakor AS, Decuzzi P. Insulin Granule-Loaded MicroPlates for Modulating Blood Glucose Levels in Type-1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53618-53629. [PMID: 34751556 PMCID: PMC8603355 DOI: 10.1021/acsami.1c16768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of β cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic-co-glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 μm base, encapsulating 200 nm insulin granules. Five configurations of these insulin-microPlates (INS-μPLs) were realized with different heights (5, 10, and 20 μm) and PLGA contents (10, 40, and, 60 mg). After detailed physicochemical and biopharmacological characterizations, the tissue-compliant 10H INS-μPL, realized with 10 mg of PLGA, presented the most effective release profile with ∼50% of the loaded insulin delivered at 4 weeks. In diabetic mice, a single 10H INS-μPL intraperitoneal deposition reduced BGLs to that of healthy mice within 1 h post-implantation (167.4 ± 49.0 vs 140.0 ± 9.2 mg/dL, respectively) and supported normoglycemic conditions for about 2 weeks. Furthermore, following the glucose challenge, diabetic mice implanted with 10H INS-μPL successfully regained glycemic control with a significant reduction in AUC0-120min (799.9 ± 134.83 vs 2234.60 ± 82.72 mg/dL) and increased insulin levels at 7 days post-implantation (1.14 ± 0.11 vs 0.38 ± 0.02 ng/mL), as compared to untreated diabetic mice. Collectively, these results demonstrate that INS-μPLs are a promising platform for the treatment of T1DM to be further optimized with the integration of smart glucose sensors.
Collapse
Affiliation(s)
- Rosita Primavera
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Elena Bellotti
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Daniele Di Mascolo
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Martina Di Francesco
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Jing Wang
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Bhavesh D. Kevadiya
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Angelo De Pascale
- Unit
of Endocrinology, Department of Internal Medicine & Medical Specialist
(DIMI), University of Genoa, 16136 Genoa, Italy
| | - Avnesh S. Thakor
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
22
|
Battistella C, Liang Y, Gianneschi NC. Innovations in Disease State Responsive Soft Materials for Targeting Extracellular Stimuli Associated with Cancer, Cardiovascular Disease, Diabetes, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007504. [PMID: 34145625 PMCID: PMC9836048 DOI: 10.1002/adma.202007504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Indexed: 05/10/2023]
Abstract
Recent advances in polymer chemistry, materials sciences, and biotechnology have allowed the preclinical development of sophisticated programmable nanomedicines and materials that are able to precisely respond to specific disease-associated triggers and microenvironments. These stimuli, endogenous to the targeted diseases, include pH, redox-state, small molecules, and protein upregulation. Herein, recent advances and innovative approaches in programmable soft materials capable of sensing the aforementioned disease-associated stimuli and responding via a range of dynamic processes including morphological and size transitions, changes in mobility and retention, as well as disassembly are described. In this field generally, the majority of ongoing and past research effort has focused on oncology. Given this interest, examples of the latest innovative approaches to chemo- and immunotherapy treatment strategies for cancer are presented. Moreover, as the field broadens its attention, applications of programmable materials in other diseases are highlighted, with a special focus on cardiovascular disease and diabetes mellitus, where limited attention is paid by the field, but where many promising avenues exist with high potential impact.
Collapse
Affiliation(s)
- Claudia Battistella
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
23
|
Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Palomino K, Magaña H, Bucio E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021; 7:182. [PMID: 34842654 PMCID: PMC8628675 DOI: 10.3390/gels7040182] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels are attractive biomaterials with favorable characteristics due to their water uptake capacity. However, hydrogel properties are determined by the cross-linking degree and nature, the tacticity, and the crystallinity of the polymer. These biomaterials can be sorted out according to the internal structure and by their response to external factors. In this case, the internal interaction can be reversible when the internal chains are led by physicochemical interactions. These physical hydrogels can be synthesized through several techniques such as crystallization, amphiphilic copolymers, charge interactions, hydrogen bonds, stereo-complexing, and protein interactions. In contrast, the internal interaction can be irreversible through covalent cross-linking. Synthesized hydrogels by chemical interactions present a high cross-linking density and are employed using graft copolymerization, reactive functional groups, and enzymatic methods. Moreover, specific smart hydrogels have also been denoted by their external response, pH, temperature, electric, light, and enzyme. This review deeply details the type of hydrogel, either the internal structure or the external response. Furthermore, we detail some of the main applications of these hydrogels in the biomedicine field, such as drug delivery systems, scaffolds for tissue engineering, actuators, biosensors, and many other applications.
Collapse
Affiliation(s)
- Moises Bustamante-Torres
- Departamento de Biología, Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - David Romero-Fierro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Belén Arcentales-Vera
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Kenia Palomino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
24
|
Facile synthesis of insulin fusion derivatives through sortase A ligation. Acta Pharm Sin B 2021; 11:2719-2725. [PMID: 34589392 PMCID: PMC8463260 DOI: 10.1016/j.apsb.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022] Open
Abstract
Insulin derivatives such as insulin detemir and insulin degludec are U.S. Food and Drug Administration (FDA)-approved long-acting insulin currently used by millions of people with diabetes. These derivatives are modified in C-terminal B29 lysine to retain insulin bioactivity. New and efficient methods for facile synthesis of insulin derivatives may lead to new discovery of therapeutic insulin. Herein, we report a new method using sortase A (SrtA)-mediated ligation for the synthesis of insulin derivatives with high efficiency and functional group tolerance in the C-terminal B chain. This new insulin molecule (Ins-SA) with an SrtA-recognizing motif can be conjugated to diverse groups with N-terminal oligoglycines to generate new insulin derivatives. We further demonstrated that a new insulin derivative synthesized by this SrtA-mediated ligation shows strong cellular and in vivo bioactivity. This enzymatic method can therefore be used for future insulin design and development.
Collapse
Key Words
- Alb, albumin
- Albumin-binding peptide SA21
- Boc, tert-butyloxycarbonyl
- DCM, dichloromethane
- DIEA, N,N-diisopropylethylamine
- DMEM, Dulbecco's Modified Eagle Medium
- DMF, dimethylformamide
- DMSO, dimethyl sulfoxide
- DOI, desoctapeptide (B23−30) insulin
- Diabetes mellitus
- EDT, 1,2-ethanedithiol
- FBS, fetal bovine serum
- Fmoc, 9-fluorenylmethoxycarbonyl
- HATU, 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate
- HBTU, O-(benxontriazol-1-yl)-1,1,3,3-tetramethyluronium
- HPLC, high performance liquid chromatography
- HTRF, homogeneous time resolved fluorescence
- IR-B, human insulin receptor isoform B
- ITT, insulin tolerance test
- Insulin synthesis
- LC‒MS, liquid chromatography mass spectrometry
- Long-acting insulin
- Mtt, 4-methyltrityl
- NBD-X, 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoic acid
- STZ, streptozotocin
- Sortase A (SrtA) ligation
- SrtA, sortase A
- THF, triflouroacetic acid
- TIS, triisoproylsilane
- i.p., intraperitoneal
- pAkt, phosphorylated protein kinase B
- t-Bu, tert-butyl
Collapse
|
25
|
Yu S, Xian S, Ye Z, Pramudya I, Webber MJ. Glucose-Fueled Peptide Assembly: Glucagon Delivery via Enzymatic Actuation. J Am Chem Soc 2021; 143:12578-12589. [PMID: 34280305 DOI: 10.1021/jacs.1c04570] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nature achieves remarkable function from the formation of transient, nonequilibrium materials realized through continuous energy input. The role of enzymes in catalyzing chemical transformations to drive such processes, often as part of stimuli-directed signaling, governs both material formation and lifetime. Inspired by the intricate nonequilibrium nanostructures of the living world, this work seeks to create transient materials in the presence of a consumable glucose stimulus under enzymatic control of glucose oxidase. Compared to traditional glucose-responsive materials, which typically engineer degradation to release insulin under high-glucose conditions, the transient nanofibrillar hydrogel materials here are stabilized in the presence of glucose but destabilized under conditions of limited glucose to release encapsulated glucagon. In the context of blood glucose control, glucagon offers a key antagonist to insulin in responding to hypoglycemia by signaling the release of glucose stored in tissues so as to restore normal blood glucose levels. Accordingly, these materials are evaluated in a prophylactic capacity in diabetic mice to release glucagon in response to a sudden drop in blood glucose brought on by an insulin overdose. Delivery of glucagon using glucose-fueled nanofibrillar hydrogels succeeds in limiting the onset and severity of hypoglycemia in mice. This general strategy points to a new paradigm in glucose-responsive materials, leveraging glucose as a stabilizing cue for responsive glucagon delivery in combating hypoglycemia. Moreover, compared to most fundamental reports achieving nonequilibrium and/or fueled classes of materials, the present work offers a rare functional example using a disease-relevant fuel to drive deployment of a therapeutic.
Collapse
Affiliation(s)
- Sihan Yu
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Sijie Xian
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Zhou Ye
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Irawan Pramudya
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| |
Collapse
|
26
|
Makvandi P, Jamaledin R, Chen G, Baghbantaraghdari Z, Zare EN, Di Natale C, Onesto V, Vecchione R, Lee J, Tay FR, Netti P, Mattoli V, Jaklenec A, Gu Z, Langer R. Stimuli-responsive transdermal microneedle patches. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 47:206-222. [PMID: 36338772 PMCID: PMC9635273 DOI: 10.1016/j.mattod.2021.03.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microneedle (MN) patches consisting of miniature needles have emerged as a promising tool to perforate the stratum corneum and translocate biomolecules into the dermis in a minimally invasive manner. Stimuli-responsive MN patches represent emerging drug delivery systems that release cargos on-demand as a response to internal or external triggers. In this review, a variety of stimuli-responsive MN patches for controlled drug release are introduced, covering the mechanisms of action toward different indications. Future opportunities and challenges with respect to clinical translation are also discussed.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Guojun Chen
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zahra Baghbantaraghdari
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | | | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Jesse Lee
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Franklin R. Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Paolo Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhen Gu
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
27
|
Zong Q, Guo R, Dong N, Ling G, Zhang P. Design and development of insulin microneedles for diabetes treatment. Drug Deliv Transl Res 2021; 12:973-980. [PMID: 33851362 DOI: 10.1007/s13346-021-00981-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 01/24/2023]
Abstract
As a painless and minimally invasive method of self-administration, microneedle is very promising to replace subcutaneous injection of insulin for type I diabetes treatment. Since the introduction of microneedles, many scholars have paid attention to and studied this technology, which has made it developed rapidly. However, there is no product on the market or in clinical trials at present. The reason is that there are still many technical problems in microneedle drug delivery system, such as the perfect integration of stable, controllable, fast, long-lasting, safe, and other necessary conditions. Here, we review the achievements that researchers have made that contain one or more of the above factors, and put some ideas to solve the limitations of insulin delivery by microneedles for reference.
Collapse
Affiliation(s)
- Qida Zong
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Ranran Guo
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Naijun Dong
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
28
|
Cook A, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS NANO 2021; 15:2068-2098. [PMID: 33555171 PMCID: PMC7905878 DOI: 10.1021/acsnano.0c09115] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Materials that respond to endogenous stimuli are being leveraged to enhance spatiotemporal control in a range of biomedical applications from drug delivery to diagnostic tools. The design of materials that undergo morphological or chemical changes in response to specific biological cues or pathologies will be an important area of research for improving efficacies of existing therapies and imaging agents, while also being promising for developing personalized theranostic systems. Internal stimuli-responsive systems can be engineered across length scales from nanometers to macroscopic and can respond to endogenous signals such as enzymes, pH, glucose, ATP, hypoxia, redox signals, and nucleic acids by incorporating synthetic bio-inspired moieties or natural building blocks. This Review will summarize response mechanisms and fabrication strategies used in internal stimuli-responsive materials with a focus on drug delivery and imaging for a broad range of pathologies, including cancer, diabetes, vascular disorders, inflammation, and microbial infections. We will also discuss observed challenges, future research directions, and clinical translation aspects of these responsive materials.
Collapse
Affiliation(s)
- Alexander
B. Cook
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| |
Collapse
|
29
|
Paula HCB, Silva RBC, Santos CM, Dantas FDS, de Paula RCM, de Lima LRM, de Oliveira EF, Figueiredo EAT, Dias FGB. Eco-friendly synthesis of an alkyl chitosan derivative. Int J Biol Macromol 2020; 163:1591-1598. [PMID: 32791282 DOI: 10.1016/j.ijbiomac.2020.08.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Chitosan (CH) was N-alkylated via Schiff base formation and further reduced via sodium borohydride. The reaction was carried out at room temperature, in a homogeneous aqueous medium, using as a source of alkyl group an essential oil (Eucalyptus staigeriana) containing an unsaturated aldehyde (3,7-dimethylocta-2,6-dienal). Derivatives were characterized by Infrared Spectroscopy, proton and carbon Nuclear Magnetic Resonance, XRD, particle size distribution and zeta potential. Chitosan hydrophobization evidence was given by FTIR as new bands at 2929 cm-1 due to methyl groups, along with the presence of strong band at 1580 cm-1 owing to N substitution. Moreover, carbon and proton NMR corroborated the insertion of methyl groups in chitosan backbone. The degree of substitution was found to be in the range 0.69-1.44. X-ray diffractograms revealed that the insertion of alkyl substituents in chitosan backbone led to a less crystalline material. Data from antibacterial activity revealed that chitosan and derivatives were effective against Gram-positive bacteria, whereby derivatives exhibited greater inhibitory effect than CH. Derivatives are likely candidates for use as carriers for active principles of interest of food, pharmacy and medicine.
Collapse
Affiliation(s)
- Haroldo C B Paula
- Post-Graduation in Chemistry Program, Building 940, Federal University of Ceará, Fortaleza 60455-760, Ceará, Brazil.
| | - Rudson B C Silva
- Department of Organic and Inorganic Chemistry, Building 940, Federal University of Ceará, Fortaleza 60455-760, Ceará, Brazil
| | - Clara M Santos
- Department of Organic and Inorganic Chemistry, Building 940, Federal University of Ceará, Fortaleza 60455-760, Ceará, Brazil
| | - Francisco D S Dantas
- Department of Organic and Inorganic Chemistry, Building 940, Federal University of Ceará, Fortaleza 60455-760, Ceará, Brazil
| | - Regina C M de Paula
- Department of Organic and Inorganic Chemistry, Building 940, Federal University of Ceará, Fortaleza 60455-760, Ceará, Brazil
| | - Laís R M de Lima
- Department of Organic and Inorganic Chemistry, Building 940, Federal University of Ceará, Fortaleza 60455-760, Ceará, Brazil
| | - Erick F de Oliveira
- Department of Organic and Inorganic Chemistry, Building 940, Federal University of Ceará, Fortaleza 60455-760, Ceará, Brazil
| | - Evânia A T Figueiredo
- Department of Food Science and Technology-DETAL, Building 858, Federal University of Ceará, Fortaleza 60356-000, Ceará, Brazil
| | - Flayanna G B Dias
- Department of Food Science and Technology-DETAL, Building 858, Federal University of Ceará, Fortaleza 60356-000, Ceará, Brazil
| |
Collapse
|
30
|
Zhang T, Qu Y, Gunatillake PA, Cass P, Locock KES, Blackman LD. Honey-inspired antimicrobial hydrogels resist bacterial colonization through twin synergistic mechanisms. Sci Rep 2020; 10:15796. [PMID: 32978445 PMCID: PMC7519120 DOI: 10.1038/s41598-020-72478-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Inspired by the interesting natural antimicrobial properties of honey, biohybrid composite materials containing a low-fouling polymer hydrogel network and an encapsulated antimicrobial peroxide-producing enzyme have been developed. These synergistically combine both passive and active mechanisms for reducing microbial bacterial colonization. The mechanical properties of these materials were assessed using compressive mechanical analysis, which revealed these hydrogels possessed tunable mechanical properties with Young's moduli ranging from 5 to 500 kPa. The long-term enzymatic activities of these materials were also assessed over a 1-month period using colorimetric assays. Finally, the passive low-fouling properties and active antimicrobial activity against a leading opportunistic pathogen, Staphylococcus epidermidis, were confirmed using bacterial cell counting and bacterial adhesion assays. This study resulted in non-adhesive substrate-permeable antimicrobial materials, which could reduce the viability of planktonic bacteria by greater than 7 logs. It is envisaged these new biohybrid materials will be important for reducing bacterial adherence in a range of industrial applications.
Collapse
Affiliation(s)
- Tiffany Zhang
- CSIRO Manufacturing, Research Way, Clayton, VIC, 3168, Australia
- Chimie ParisTech, Rue Pierre et Marie Curie, 75005, Paris, France
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC, 3168, Australia
| | | | - Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC, 3168, Australia.
| |
Collapse
|
31
|
Nanoparticles-encapsulated polymeric microneedles for transdermal drug delivery. J Control Release 2020; 325:163-175. [PMID: 32629134 DOI: 10.1016/j.jconrel.2020.06.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Polymeric microneedles (MNs) have been leveraged as a novel transdermal drug delivery platform for effective drug permeation, which were widely used in the treatment of various diseases. However, issues including limited loading capacity of hydrophobic drugs, uncontrollable drug release rates, and monotonic therapeutic strategy hamper the further application of polymeric MNs. As a recent emerging research topic, drawing inspiration from the ways that nanomedicine integrated with MNs have opened new avenues for disease therapy. In this review, we examined the recent studies employing nanoparticles (NPs)-encapsulated polymeric MNs (NPs@MNs) for transdermal delivery of various therapeutic cargos, particularly focused on the application of NPs@MNs for diabetes therapy, infectious disease therapy, cancer therapy, and other dermatological disease therapy. We also provided an overview of the clinical potential and future translation of NPs@MNs.
Collapse
|
32
|
Hosseini SH, Zohreh N, Karimi N, Gaeini N, Alipour S, Seidi F, Gholipour N. Magnetic nanoparticles double wrapped into cross-linked salep/PEGylated carboxymethyl cellulose; a biocompatible nanocarrier for pH-triggered release of doxorubicin. Int J Biol Macromol 2020; 158:994-1006. [PMID: 32434748 DOI: 10.1016/j.ijbiomac.2020.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
A magnetic nanocarrier was synthesized in which Fe3O4 nanoparticles were encapsulated into double layers of polysaccharide shells. The first shell, which was composed of cross-linked salep polysaccharide, contained multiple nitrogen atoms in its structure and provided numerous sites for multiple functionalization. A fluorescence dye and doxorubicin, as widely used chemotherapy agent, were easily attached to the first shell and then a second shell of PEGylated carboxymethyl cellulose enveloped the drug loaded carrier to enhance its biocompatibility and regulates the drug release behavior. The results of drug loading and release behavior showed that the resulting nanocarrier can carry large amounts of drug molecules and a remarkable pH-sensitive release was observed in vitro. The hemolysis and coagulation assays proved the biocompatibility of nanocarrier toward red blood cells and the MTT experiments confirmed that the drug loaded nanocarrier is highly toxic for MCF-7 cancer cells while the unloaded nanocarrier was almost nontoxic. Further flow cytometry experiments and confocal microscopy demonstrated that the double layered magnetic nanocarrier can penetrate into the cells and efficiently release the drug molecules into the cell nucleus. Moreover, the results of MRI experiments performed on the nanocarrier showed that it can be serve as a negative MRI contrast agent.
Collapse
Affiliation(s)
- Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Nafiseh Karimi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Nahid Gaeini
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Sakineh Alipour
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Nazila Gholipour
- Chemical Injuries Research Center, Faculty of Pharmacy, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Schiller JL, Lai SK. Tuning Barrier Properties of Biological Hydrogels. ACS APPLIED BIO MATERIALS 2020; 3:2875-2890. [DOI: 10.1021/acsabm.0c00187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Primavera R, Kevadiya BD, Swaminathan G, Wilson RJ, De Pascale A, Decuzzi P, Thakor AS. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E789. [PMID: 32325974 PMCID: PMC7221526 DOI: 10.3390/nano10040789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.
Collapse
Affiliation(s)
- Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Bhavesh D Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Ganesh Swaminathan
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Rudilyn Joyce Wilson
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| | - Angelo De Pascale
- Unit of Endocrinology, Department of Internal Medicine & Medical Specialist (DIMI), University of Genoa, 16163 Genoa, Italy;
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (B.D.K.); (G.S.); (R.J.W.)
| |
Collapse
|
35
|
Visser SAG, Kandala B, Fancourt C, Krug AW, Cho CR. A Model-Informed Drug Discovery and Development Strategy for the Novel Glucose-Responsive Insulin MK-2640 Enabled Rapid Decision Making. Clin Pharmacol Ther 2020; 107:1296-1311. [PMID: 31889297 PMCID: PMC7325312 DOI: 10.1002/cpt.1729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
A model‐informed drug discovery and development strategy played a key role in the novel glucose‐responsive insulin MK‐2640’s early clinical development strategy and supported a novel clinical trial paradigm to assess glucose responsiveness. The development and application of in silico modeling approaches by leveraging substantial published clinical insulin pharmacokinetic–pharmacodynamic (PKPD) data and emerging preclinical and clinical data enabled rapid quantitative decision making. Learnings can be applied to define PKPD properties of novel insulins that could become therapeutically meaningful for diabetic patients.
Collapse
Affiliation(s)
- Sandra A G Visser
- Department of Quantitative Pharmacology & Pharmacometrics (QP2) at Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Bhargava Kandala
- Department of Quantitative Pharmacology & Pharmacometrics (QP2) at Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Craig Fancourt
- Department of Quantitative Pharmacology & Pharmacometrics (QP2) at Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Alexander W Krug
- Department of Translational Pharmacology at Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Carolyn R Cho
- Department of Quantitative Pharmacology & Pharmacometrics (QP2) at Merck & Co. Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
36
|
Agazzi ML, Herrera SE, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Insulin Delivery from Glucose‐Responsive, Self‐Assembled, Polyamine Nanoparticles: Smart “Sense‐and‐Treat” Nanocarriers Made Easy. Chemistry 2020; 26:2456-2463. [DOI: 10.1002/chem.201905075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Maximiliano L. Agazzi
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Santiago E. Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - M. Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Waldemar A. Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química FísicaINQUIMAE-CONICETFacultad de Ciencias Exactas y NaturalesCiudad Universitaria Pabellón 2 Buenos Aires C1428EHA Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| |
Collapse
|
37
|
Volpatti LR, Matranga MA, Cortinas AB, Delcassian D, Daniel KB, Langer R, Anderson DG. Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery. ACS NANO 2020; 14:488-497. [PMID: 31765558 DOI: 10.1021/acsnano.9b06395] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.
Collapse
Affiliation(s)
- Lisa R Volpatti
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Morgan A Matranga
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Abel B Cortinas
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Derfogail Delcassian
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Department of Anesthesiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy , University of Nottingham , Nottingham , NG7 2RD United Kingdom
| | - Kevin B Daniel
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Robert Langer
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Department of Anesthesiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Daniel G Anderson
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- Department of Anesthesiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
38
|
Singhal A, Sinha N, Kumari P, Purkayastha M. Synthesis and Applications of Hydrogels in Cancer Therapy. Anticancer Agents Med Chem 2020; 20:1431-1446. [PMID: 31958041 DOI: 10.2174/1871521409666200120094048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 11/10/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Hydrogels are water-insoluble, hydrophilic, cross-linked, three-dimensional networks of polymer chains having the ability to swell and absorb water but do not dissolve in it, that comprise the major difference between gels and hydrogels. The mechanical strength, physical integrity and solubility are offered by the crosslinks. The different applications of hydrogels can be derived based on the methods of their synthesis, response to different stimuli, and their different kinds. Hydrogels are highly biocompatible and have properties similar to human tissues that make it suitable to be used in various biomedical applications, including drug delivery and tissue engineering. The role of hydrogels in cancer therapy is highly emerging in recent years. In the present review, we highlighted different methods of synthesis of hydrogels and their classification based on different parameters. Distinctive applications of hydrogels in the treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Anchal Singhal
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore-560027, India
| | - Niharika Sinha
- Department of Chemistry, Gautam Buddha University, Noida, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | | |
Collapse
|
39
|
Sergeeva TY, Mukhitova RK, Nizameev IR, Kadirov MK, Sapunova AS, Voloshina AD, Mukhametzyanov TA, Ziganshina AY, Antipin IS. A Glucose-Responsive Polymer Nanocarrier Based on Sulfonated Resorcinarene for Controlled Insulin Delivery. Chempluschem 2020; 84:1560-1566. [PMID: 31943934 DOI: 10.1002/cplu.201900428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/18/2019] [Indexed: 01/01/2023]
Abstract
A nanocarrier (p(6SRA-5B)) for glucose-controlled insulin delivery consists of sulfonated resorcinarenes (SRA) that are assembled into a spherical shell and are attached to each other with phenylboronate linkers. p(6SRA-5B) is stable in water and blood plasma at normal glucose concentrations. At high glucose levels (>5 mM), p(6SRA-5B) dissociates into SRA and phenylboronates through competitive interaction with excess glucose. Insulin was successfully encapsulated into the cavity of p(6SRA-5B) and its release was investigated in water and blood plasma by NMR, UV, CD, and fluorescence spectroscopy. The results show that the dissociation of the nanocarrier and the insulin release occurs with an increase in glucose concentration. At 5 mM glucose, the nanocarrier is stable, and the insulin release does not exceed 10 %. Increasing the glucose concentration to 7.5-10 mM results in a 40-100 % insulin release. p(6SRA-5B) is thus a promising insulin nanocarrier for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Tatiana Yu Sergeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, 420088, Russia
| | - Rezeda K Mukhitova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, 420088, Russia
| | - Irek R Nizameev
- Kazan National Research Technical University named after A.N. Tupolev - KAI, K. Marx str. 10, Kazan, 420111, Russia
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, 420088, Russia
| | - Anastasia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, 420088, Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, 420088, Russia
| | - Timur A Mukhametzyanov
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan, 420008, Russia
| | - Albina Y Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, 420088, Russia
| | - Igor S Antipin
- A. M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya str. 18, Kazan, 420008, Russia
| |
Collapse
|
40
|
|
41
|
Kadambar VK, Bellare M, Bollella P, Katz E, Melman A. Electrochemical control of the catalytic activity of immobilized enzymes. Chem Commun (Camb) 2020; 56:13800-13803. [DOI: 10.1039/d0cc06190e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulation of the catalytic activity of enzymes immobilized on carbon nanotube electrodes was achieved by changing their local pH environment using electrochemical reactions.
Collapse
Affiliation(s)
| | - Madhura Bellare
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Artem Melman
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
42
|
Dragan ES, Dinu MV. Polysaccharides constructed hydrogels as vehicles for proteins and peptides. A review. Carbohydr Polym 2019; 225:115210. [DOI: 10.1016/j.carbpol.2019.115210] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
|
43
|
Gholamali I. Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00134-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Yalinca Z, Tüzmen Ş. Applications of Biopolymeric Gels in Medical Biotechnology. BIO MONOMERS FOR GREEN POLYMERIC COMPOSITE MATERIALS 2019:77-94. [DOI: 10.1002/9781119301714.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
VandenBerg MA, Webber MJ. Biologically Inspired and Chemically Derived Methods for Glucose-Responsive Insulin Therapy. Adv Healthc Mater 2019; 8:e1801466. [PMID: 30605265 DOI: 10.1002/adhm.201801466] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The controlled delivery of therapeutics in a manner responsive to physiological indicators has promise in realizing new therapeutic approaches to combat disease. This approach is especially relevant in the context of diabetes. Natural fluctuations in blood glucose seen in the healthy state, complete with peaks and troughs, are poorly regulated as a result of detrimental production or ineffective signaling of the insulin hormone. While several manifestations of diabetes are treated with regularly administered exogenous insulin, the present standard of care results in suboptimal glycemic management that poorly recreates natural hormone control, leading to long-term instability and a significantly increased risk for secondary health complications. New synthetic technologies that make insulin available only when needed, and at the exact dose required, have been explored under the broad vision of realizing a "fully synthetic pancreas." Yet, many challenges remain to realizing a technology that is appropriately responsive, safe, and well integrated into a manageable routine. Herein, many of the approaches explored thus far to sense physiological blood glucose and elicit response through the release of therapeutic insulin are summarized. The approaches point to a new, autonomous approach to managing diabetes with biomimetic therapy.
Collapse
Affiliation(s)
- Michael A. VandenBerg
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| | - Matthew J. Webber
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| |
Collapse
|
46
|
Varanko AK, Chilkoti A. Molecular and Materials Engineering for Delivery of Peptide Drugs to Treat Type 2 Diabetes. Adv Healthc Mater 2019; 8:e1801509. [PMID: 30762299 DOI: 10.1002/adhm.201801509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/11/2019] [Indexed: 01/06/2023]
Abstract
Type 2 diabetes is exploding globally. Despite numerous treatment options, nearly half of type 2 diabetics are unsuccessful at properly managing the disease, primarily due to a lack of patient compliance, driven by adverse side effects as well as complicated and frequent dosing schedules. Improving the delivery of type 2 diabetes drugs has the potential to increase patient compliance and thus, greatly enhance health outcomes and quality of life. This review focuses on molecular and materials engineering strategies that have been implemented to improve the delivery of peptide drugs to treat type 2 diabetes. Peptide drugs benefit from high potency and specificity but suffer from instability and short half-lives that limit their utility as therapeutics and pose a significant delivery challenge. Several approaches have been developed to improve the availability and efficacy of antidiabetic peptides and proteins in vivo. These methods are reviewed herein and include devices, which sustain the release of peptides in long term, and molecular engineering strategies, which prolong circulation time and slow the release of therapeutic peptides. By optimizing the delivery of these peptides and proteins using these approaches, long-term glucose control can be achieved in type 2 diabetes patients.
Collapse
Affiliation(s)
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
47
|
Lin K, Yi J, Mao X, Wu H, Zhang LM, Yang L. Glucose-sensitive hydrogels from covalently modified carboxylated pullulan and concanavalin A for smart controlled release of insulin. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|
49
|
Glucose-responsive insulin by molecular and physical design. Nat Chem 2019; 9:937-943. [PMID: 28937662 DOI: 10.1038/nchem.2857] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
The concept of a glucose-responsive insulin (GRI) has been a recent objective of diabetes technology. The idea behind the GRI is to create a therapeutic that modulates its potency, concentration or dosing relative to a patient's dynamic glucose concentration, thereby approximating aspects of a normally functioning pancreas. From the perspective of the medicinal chemist, the GRI is also important as a generalized model of a potentially new generation of therapeutics that adjust potency in response to a critical therapeutic marker. The aim of this Perspective is to highlight emerging concepts, including mathematical modelling and the molecular engineering of insulin itself and its potency, towards a viable GRI. We briefly outline some of the most important recent progress toward this goal and also provide a forward-looking viewpoint, which asks if there are new approaches that could spur innovation in this area as well as to encourage synthetic chemists and chemical engineers to address the challenges and promises offered by this therapeutic approach.
Collapse
|
50
|
Gaballa H, Theato P. Glucose-Responsive Polymeric Micelles via Boronic Acid–Diol Complexation for Insulin Delivery at Neutral pH. Biomacromolecules 2019; 20:871-881. [DOI: 10.1021/acs.biomac.8b01508] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heba Gaballa
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Strasse. 18, D-76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|