1
|
Luo J, Lai C, Xu X, Shi J, Hu J, Guo K, Mulati Y, Xiao Y, Kong D, Liu C, Xu K. Mechanism of prognostic marker SPOCK3 affecting malignant progression of prostate cancer and construction of prognostic model. BMC Cancer 2023; 23:741. [PMID: 37563543 PMCID: PMC10416445 DOI: 10.1186/s12885-023-11151-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND SPOCK3 is a secreted extracellular matrix proteoglycan. This study aimed to investigate the effect of SPOCK3 on the malignant progression of prostate cancer and to construct a prognostic model to predict DFS of patients with prostate cancer. METHODS Clinical and transcriptome sequencing data for prostate cancer were download from the TCGA and GEO databases. The survival curve showed that SPOCK3 has prognostic significance. GO, KEGG, and GSEA enrichment analysis were used to investigate how SPOCK3 affects the malignant progression of prostate cancer. Based on ESTIMATE and ssGSEA, the relationship between SPOCK3 and immune cell infiltration in prostate cancer tissue was clarified. Univariate and multivariate COX regression analysis was used to identify the independent prognostic factors of prostate cancer OS and to construct a nomogram. The calibration curve and ROC curves were drawn to assess the nomogram's predictive power. RESULTS The survival curve revealed that patients in the low-expression group of SPOCK3 had a poor prognosis. According to enrichment analysis, SOPCK3-related genes were enriched in collagen-containing extracellular matrix, PI3K-Akt, and MAPK signaling pathway. ESTIMATE analysis revealed that SPOCK3 expression was positively correlated with the interstitial score, immune score, and ESTIMATE score. The results of ssGSEA analysis revealed that the infiltration levels of Mast cells, NK cells, and B cells were higher in the SPOCK3 high expression group. Cox regression analysis showed that SPOCK3 expression level, T and Gleason score were independent risk factors of patient prognosis, and a nomogram was constructed. The ROC curve showed the AUCs of DFS at 2, 3, and 5 years. CONCLUSION SPOCK3 is a protective factor for DFS in prostate cancer patients. SPOCK3 is significantly associated with immune cell infiltration. The prognostic model constructed based on SPOCK3 has excellent predictive performance.
Collapse
Affiliation(s)
- Jiawen Luo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cong Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoting Xu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juanyi Shi
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jintao Hu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaixuan Guo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yelisudan Mulati
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfei Xiao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Degeng Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Liu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, China.
| | - Kewei Xu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510000, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Maciej-Hulme ML, Van Gemst JJ, Sanderson P, Rops ALWMM, Berden JH, Smeets B, Amster IJ, Rabelink TJ, Van Der Vlag J. Glomerular endothelial glycocalyx-derived heparan sulfate inhibits glomerular leukocyte influx and attenuates experimental glomerulonephritis. Front Mol Biosci 2023; 10:1177560. [PMID: 37325479 PMCID: PMC10267401 DOI: 10.3389/fmolb.2023.1177560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Proliferative forms of glomerulonephritis are characterized by the influx of leukocytes, albuminuria, and loss of kidney function. The glomerular endothelial glycocalyx is a thick carbohydrate layer that covers the endothelium and is comprised of heparan sulfate (HS), which plays a pivotal role in glomerular inflammation by facilitating endothelial-leukocyte trafficking. We hypothesize that the exogenous glomerular glycocalyx may reduce the glomerular influx of inflammatory cells during glomerulonephritis. Indeed, administration of mouse glomerular endothelial cell (mGEnC)-derived glycocalyx constituents, or the low-molecular-weight heparin enoxaparin, reduced proteinuria in mice with experimental glomerulonephritis. Glomerular influx of granulocytes and macrophages, as well as glomerular fibrin deposition, was reduced by the administration of mGEnC-derived glycocalyx constituents, thereby explaining the improved clinical outcome. HSglx also inhibited granulocyte adhesion to human glomerular endothelial cells in vitro. Notably, a specific HSglx fraction inhibited both CD11b and L-selectin binding to activated mGEnCs. Mass spectrometry analysis of this specific fraction revealed six HS oligosaccharides, ranging from tetra- to hexasaccharides with 2-7 sulfates. In summary, we demonstrate that exogenous HSglx reduces albuminuria during glomerulonephritis, which is possibly mediated via multiple mechanisms. Our results justify the further development of structurally defined HS-based therapeutics for patients with (acute) inflammatory glomerular diseases, which may be applicable to non-renal inflammatory diseases as well.
Collapse
Affiliation(s)
- Marissa L Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jasper J Van Gemst
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Patience Sanderson
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Angelique L W M M Rops
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jo H Berden
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Ton J Rabelink
- Department of Nephrology, Einthoven Laboratory for Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Johan Van Der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
3
|
Yao J, Hua X, Shi J, Hu X, Lui K, He K, Mai J, Lan T, Lu M. LncRNA THEMIS2-211, a tumor-originated circulating exosomal biomarker, promotes the growth and metastasis of hepatocellular carcinoma by functioning as a competing endogenous RNA. FASEB J 2022; 36:e22238. [PMID: 35224785 DOI: 10.1096/fj.202101564r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major challenge for human health. Finding reliable diagnostic biomarkers and therapeutic targets for HCC is highly desired in the clinic. Currently, circulating exosomal lncRNA is a promising biomarker for the diagnosis of cancer and lncRNA is also a potential target in cancer therapy. Here, the diagnostic value of a panel based on exosomal lncRNA THEMIS2-211 and PRKACA-202, superior to that of AFP, was identified for diagnosing human HCC. Besides, the performance of exosomal lncRNA THEMIS2-211 alone exceeds that of AFP in diagnosing early-stage HCC patients (stage I). Furthermore, lncRNA THEMIS2-211 is highly expressed in HCC tissues and correlated with the poor prognosis of HCC patients. LncRNA THEMIS2-211 is upregulated and localized in the cytoplasm of HCC cells. LncRNA THEMIS2-211 exerts its biological function as an oncogene that promotes the proliferation, migration, invasion, EMT of HCC cells by physically interacting with miR-940 and therefore promoting SPOCK1 expressions. Rescue assays show the regulation of SPOCK1 by lncRNA THEMIS2-211 dependents on miR-940. The discovery of lncRNA THEMIS2-211 further illuminates the molecular pathogenesis of HCC and the THEMIS2-211/miR-940/SPOCK1 axis may act as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jiyou Yao
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Xuefeng Hua
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Jiewei Shi
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaoyuan Hu
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Kayin Lui
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kaitao He
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Jialuo Mai
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | - Tian Lan
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Minqiang Lu
- Department of HBP SURGERY II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Sun LR, Li SY, Guo QS, Zhou W, Zhang HM. SPOCK1 Involvement in Epithelial-to-Mesenchymal Transition: A New Target in Cancer Therapy? Cancer Manag Res 2020; 12:3561-3569. [PMID: 32547193 PMCID: PMC7244346 DOI: 10.2147/cmar.s249754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cancer metastasis is the main obstacle to increasing the lifespan of cancer patients. Epithelial-to-mesenchymal transition (EMT) plays a significant role in oncogenic processes, including tumor invasion, intravasation, and micrometastasis formation, and is especially critical for cancer invasion and metastasis. The extracellular matrix (ECM) plays a crucial role in the occurrence of EMT corresponding to the change in adhesion between cells and matrices. Conclusion SPOCK1 is a critical regulator of the ECM and mediates EMT in cancer cells. This suggests an important role for SPOCK1 in tumorigenesis, migration and invasion. SPOCK1 is a critical regulator of some processes involved in cancer progression, including cancer cell proliferation, apoptosis and migration. Herein, the functions of SPOCK1 in cancer progression are expounded, revealing the association between SPOCK1 and EMT in cancer metastasis. SPOCK1 is a positive downstream regulator of transforming growth factor-β, and SPOCK1-mediated EMT regulates invasion and metastasis through the Wnt/β-catenin pathway and PI3K/Akt signaling pathway. It is of significance that SPOCK1 may be an attractive prognostic biomarker and therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Si-Yu Li
- Department of Pathology, Hangzhou Third Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Qiu-Shi Guo
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wei Zhou
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hong-Mei Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
6
|
Chiarini A, Onorati F, Marconi M, Pasquali A, Patuzzo C, Malashicheva A, Irtyega O, Faggian G, Pignatti PF, Trabetti E, Armato U, Dal Pra I. Studies on sporadic non-syndromic thoracic aortic aneurysms: II. Alterations of extra-cellular matrix components and focal adhesion proteins. Eur J Prev Cardiol 2019; 25:51-58. [PMID: 29708036 DOI: 10.1177/2047487318759120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. Here, we focused on morphologic and molecular changes of the extracellular matrix of the tunica media of SNSTAAs. Design Single centre design. Methods Surgical media samples from seven SNSTAAs and seven controls underwent quantitative polymerase chain reaction, proteomics-bioinformatics, immunoblotting, histology and immunohistochemistry analysis. Results A down-regulation of Decorin mRNA with unchanged protein levels associated with a remarkable increase of collagen fibres. A reduced and distorted network of elastic fibres partnered with an attenuated expression of microfibril-associated glycoprotein1 despite the rise of MFAP2 gene-encoded mRNA levels. An increasingly proteolysed paxillin (55 kDa PXN), a focal adhesion protein, combined with an upregulated 62 kDa PXN holoprotein, without changes in amount and phosphorylation of focal adhesion kinase (pp125FAK). The upregulation of SPOCK2-encoded Testican2 proteoglycan and of ectodysplasin (EDA) protein was coupled with a down-regulation of EDA2 receptor (EDA2R). Conclusions Several tunica media extracellular matrix-related changes favour SNSTAA development. A steady level of decorin and a microfibril-associated glycoprotein1 protein shortage cause the assembly of structurally defective collagen and elastic fibres. Up-regulation of PXN holoproteins perturbs PXN/pp125FAK interaction and focal adhesion functioning. Testican2 up-regulation suppresses the membrane-type matrix metalloproteinase inhibiting activities of other SPOCK family members thus enhancing extracellular matrix proteolysis. Finally, the altered EDA•EDA2R signalling would impact on the remodelling of SNSTAA tunica media. Altogether, our results pave the way to a deeper molecular understanding of SNSTAAs necessary to identify their early diagnostic biochemical markers.
Collapse
Affiliation(s)
- Anna Chiarini
- 1 Histology and Embryology Section, University of Verona Medical School, Italy
| | - Francesco Onorati
- 2 Department of Surgical Sciences, University of Verona Medical School, Italy
| | - Maddalena Marconi
- 1 Histology and Embryology Section, University of Verona Medical School, Italy
| | | | - Cristina Patuzzo
- 3 Biology and Genetics Section, University of Verona Medical School, Italy
| | | | - Olga Irtyega
- 4 Federal Almazov Medical Research Centre, Saint Petersburg, Russia
| | - Giuseppe Faggian
- 2 Department of Surgical Sciences, University of Verona Medical School, Italy
| | - Pier F Pignatti
- 3 Biology and Genetics Section, University of Verona Medical School, Italy
| | | | - Ubaldo Armato
- 1 Histology and Embryology Section, University of Verona Medical School, Italy
| | - Ilaria Dal Pra
- 1 Histology and Embryology Section, University of Verona Medical School, Italy
| |
Collapse
|
7
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
8
|
Barrera-Ocampo A, Arlt S, Matschke J, Hartmann U, Puig B, Ferrer I, Zürbig P, Glatzel M, Sepulveda-Falla D, Jahn H. Amyloid-β Precursor Protein Modulates the Sorting of Testican-1 and Contributes to Its Accumulation in Brain Tissue and Cerebrospinal Fluid from Patients with Alzheimer Disease. J Neuropathol Exp Neurol 2016; 75:903-16. [PMID: 27486134 PMCID: PMC5015660 DOI: 10.1093/jnen/nlw065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The mechanisms leading to amyloid-β (Aβ) accumulation in sporadic Alzheimer disease (AD) are unknown but both increased production or impaired clearance likely contribute to aggregation. To understand the potential roles of the extracellular matrix proteoglycan Testican-1 in the pathophysiology of AD, we used samples from AD patients and controls and an in vitro approach. Protein expression analysis showed increased levels of Testican-1 in frontal and temporal cortex of AD patients; histological analysis showed that Testican-1 accumulates and co-aggregates with Aβ plaques in the frontal, temporal and entorhinal cortices of AD patients. Proteomic analysis identified 10 fragments of Testican-1 in cerebrospinal fluid (CSF) from AD patients. HEK293T cells expressing human wild type or mutant Aβ precursor protein (APP) were transfected with Testican-1. The co-expression of both proteins modified the sorting of Testican-1 into the endocytic pathway leading to its transient accumulation in Golgi, which seemed to affect APP processing, as indicated by reduced Aβ40 and Aβ42 levels in APP mutant cells. In conclusion, patient data reflect a clearance impairment that may favor Aβ accumulation in AD brains and our in vitro model supports the notion that the interaction between APP and Testican-1 may be a key step in the production and aggregation of Aβ species.
Collapse
Affiliation(s)
- Alvaro Barrera-Ocampo
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| | - Sönke Arlt
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| | - Jakob Matschke
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| | - Ursula Hartmann
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| | - Berta Puig
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| | - Isidre Ferrer
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| | - Petra Zürbig
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| | - Markus Glatzel
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| | - Diego Sepulveda-Falla
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| | - Holger Jahn
- From the Institute of Neuropathology (AB-O, JM, BP, MG, DS-F), Department of Psychiatry and Psychotherapy (SA, HJ), University Medical Center Hamburg-Eppendorf, Hamburg, Germany, Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany (UH), Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Spain (IF), Mosaiques Diagnostics and Therapeutics AG, Hannover, Germany (PZ), and Department of Pharmaceutical Sciences, Natura Research Group, Faculty of Natural Sciences, ICESI University, Cali, Colombia (AB-O)
| |
Collapse
|
9
|
Hartmann U, Hülsmann H, Seul J, Röll S, Midani H, Breloy I, Hechler D, Müller R, Paulsson M. Testican-3: a brain-specific proteoglycan member of the BM-40/SPARC/osteonectin family. J Neurochem 2013; 125:399-409. [DOI: 10.1111/jnc.12212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 01/18/2013] [Accepted: 02/06/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Ursula Hartmann
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD); University of Cologne; Cologne Germany
| | - Hanni Hülsmann
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
| | - Judith Seul
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
| | - Sandra Röll
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
| | - Heven Midani
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
| | - Isabelle Breloy
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
| | - Daniel Hechler
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
| | - Regina Müller
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
| | - Mats Paulsson
- Center for Biochemistry; Medical Faculty; University of Cologne; Cologne Germany
- Center for Molecular Medicine (CMMC); University of Cologne; Cologne Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD); University of Cologne; Cologne Germany
| |
Collapse
|
10
|
Baratta CA, Brown TJ, Al-Dhalaan F, Ringuette MJ. Evolution and Function of SPARC and Tenascins: Matricellular Counter-Adhesive Glycoproteins with Pleiotropic Effects on Angiogenesis and Tissue Fibrosis. EVOLUTION OF EXTRACELLULAR MATRIX 2013. [DOI: 10.1007/978-3-642-36002-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche. PLoS Genet 2009; 5:e1000420. [PMID: 19282985 PMCID: PMC2652107 DOI: 10.1371/journal.pgen.1000420] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 02/12/2009] [Indexed: 02/07/2023] Open
Abstract
For females, menarche is a most significant physiological event. Age at menarche (AAM) is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS) examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects—all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan), which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR) q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09×10−3 and 4.37×10−3, respectively, in the Chinese cohort and combined p values (obtained by Fisher's method) of 5.19×10−5 and 1.02×10−4, respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2), a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM. Menarche is a physical milestone in a woman's life. Age at menarche (AAM) is related to many common female health problems. AAM is mainly determined by genetic factors. However, the specific genes and the associated mechanisms underlying AAM are largely unknown. Here, taking advantage of the most recent technological advances in the field of human genetics, we identified multiple genetic variants in a gene, SPOCK, which are associated with AAM variation in a group of Caucasian women. This association was subsequently confirmed not only in two independent groups of Caucasian women but also across ethnic boundaries in one group of Chinese women. In addition, SPOCK has a function in regulating a key factor involved in menstrual cycles, MMP-2, which provides further support to our findings. Our study provides a solid basis for further investigation of the gene, which may help to reveal the underlying mechanisms for the timing of menarche and for AAM's relationship with women's health in general.
Collapse
|
12
|
Purification and characterization of a recombinant human testican-2 expressed in baculovirus-infected Sf9 insect cells. Protein Expr Purif 2008; 58:132-9. [DOI: 10.1016/j.pep.2007.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/23/2007] [Accepted: 09/10/2007] [Indexed: 11/20/2022]
|
13
|
Abstract
The polysaccharide heparan sulphate is ubiquitously expressed as a proteoglycan in extracellular matrices and on cell surfaces. Heparan sulphate has marked sequence diversity that allows it to specifically interact with many proteins. This Review focuses on the multiple roles of heparan sulphate in inflammatory responses and, in particular, on its participation in almost every stage of leukocyte transmigration through the blood-vessel wall. Heparan sulphate is involved in the initial adhesion of leukocytes to the inflamed endothelium, the subsequent chemokine-mediated transmigration through the vessel wall and the establishment of both acute and chronic inflammatory reactions.
Collapse
Affiliation(s)
- Christopher R Parish
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Röll S, Seul J, Paulsson M, Hartmann U. Testican-1 is dispensable for mouse development. Matrix Biol 2006; 25:373-81. [PMID: 16806869 DOI: 10.1016/j.matbio.2006.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 05/12/2006] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
Testicans are proteoglycans belonging to the BM-40/SPARC/osteonectin family of extracellular calcium-binding proteins. Testican-1 is strongly expressed in the brain and has been reported to modulate neuronal attachment and matrix metalloproteinase activation. Characterization of the mouse testican-1 gene (Ticn1), consisting of 12 exons out of which exon 3 is alternatively spliced, allowed the construction of a gene targeting construct. Mice deficient in testican-1 showed no obvious morphological or behavioral abnormalities, were fertile, and had normal life spans. Despite the fact that neither of the testican-1 homologues expressed in the brain, testican-2, testican-3 and SC1/hevin, showed an increased expression in Ticn1 null mice, these results, together with those from other gene targetings, indicate extensive functional redundancy among brain proteoglycans.
Collapse
Affiliation(s)
- Sandra Röll
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
15
|
Rucci N, Recchia I, Angelucci A, Alamanou M, Del Fattore A, Fortunati D, Susa M, Fabbro D, Bologna M, Teti A. Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: implications for therapy. J Pharmacol Exp Ther 2006; 318:161-72. [PMID: 16627750 DOI: 10.1124/jpet.106.102004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
c-Src is a proto-oncogene, belonging to the nonreceptor protein kinases family, which plays a prominent role in carcinogenesis. In this study, we tested the hypothesis that c-Src could promote breast cancer metastasis acting on several cell types and that pharmacological disruption of its kinase activity could be beneficial for the treatment of metastases. Female BALB/c-nu/nu mice were subjected to intracardiac injection of the human breast cancer cells MDA-MB-231 (MDA-231), which induced prominent bone and visceral metastases. These were pharmacologically reduced by treatment with the c-Src inhibitor [7-{4-[2-(2-methoxy-ethylamino-ethoxy]-phenyl}-5-(3-methoxy-phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine] CGP76030 (100 mg/kg/day p.o.), resulting in decreased morbidity and lethality. Metastases were more severe in mice injected with MDA-231 cells stably transfected with wild-type c-Src (MDA-231-SrcWT), whereas transfection in injected cells of a c-Src kinase-dead dominant-negative construct (MDA-231-SrcDN) resulted in reduced morbidity, lethality, and incidence of metastases similar to the mice treated with the inhibitor. An analogous beneficial effect of c-Src inhibition was observed in subcutaneous and intratibial implanted tumors. In vitro, c-Src suppression reduced MDA-231 cell aggressiveness. It also impaired osteoclast bone resorption both directly and by reducing expression by osteoblasts of the osteoclastogenic cytokines interleukin-1beta and interleukin-6, whereas parathyroid hormone-related peptide was not implicated. c-Src was also modestly but consistently involved in the enhancement of endothelial cell proliferation in vitro and angiogenesis in vivo. In conclusion, we propose that c-Src disruption affects the metastatic process and thus is a therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Nadia Rucci
- Department of Experimental Medicine, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hausser HJ, Decking R, Brenner RE. Testican-1, an inhibitor of pro-MMP-2 activation, is expressed in cartilage. Osteoarthritis Cartilage 2004; 12:870-7. [PMID: 15501402 DOI: 10.1016/j.joca.2004.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 07/26/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recently, testican-1 has been described to be an inhibitor of MT1-MMP and MT3-MMP mediated pro-MMP-2 activation. As MT1-MMP mediated pro-MMP-2 activation is of significance for cartilage destruction in osteoarthritis, we studied the expression and localization of testican-1 in human articular cartilage. METHODS Cartilage samples from the medial and lateral tibia plateau were obtained from osteoarthritic patients who underwent joint replacements, and were graded histomorphologically by Mankin score. Testican-1 expression was assessed in RNA isolated directly from cartilage as well as in freshly isolated chondrocytes by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantified by real-time RT-PCR. Testican-1 protein was localized by immunohistochemistry in human osteoarthritic cartilage samples, in human fetal knee joint, and in knees from mice. RESULTS Testican-1 mRNA could be detected in cartilage and in freshly isolated chondrocytes both from moderately and from severely damaged osteoarthritic cartilage. In the same donor, expression in chondrocytes from more severely affected regions was decreased compared with chondrocytes from less affected regions. By immunolocalization, testican-1 protein could be detected in chondrocytes predominantly of the superficial and transitional zones. Matrix staining in these zones was greatly reduced in samples from more severely affected osteoarthritic cartilage. A similar distribution was found in the articular cartilage of knees from 7-week-old mice. In addition to articular cartilage, testican-1 was also present in growth plate cartilage. CONCLUSIONS Testican-1 is a component of cartilage, both of the joint and of the growth plate. Given its activity as an inhibitor of MT1-MMP mediated pro-MMP-2 activation, it is reasonable to speculate that it participates in the regulation of matrix turnover in cartilage.
Collapse
Affiliation(s)
- Heinz-J Hausser
- University of Ulm, Division for Biochemistry of Joint and Connective Tissue Diseases, Ulm, Germany.
| | | | | |
Collapse
|
17
|
Edgell CJS, BaSalamah MA, Marr HS. Testican-1: A Differentially Expressed Proteoglycan with Protease Inhibiting Activities. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 236:101-22. [PMID: 15261737 DOI: 10.1016/s0074-7696(04)36003-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Testican-1 is a highly conserved, multidomain proteoglycan that is most prominently expressed in the thalamus of the brain, and is upregulated in activated astroglial cells of the cerebrum. Several functions of this gene product have now been demonstrated in vitro including membrane-type matrix metalloproteinase inhibition, cathepsin L inhibition, and low-affinity calcium binding. The purified gene product has been shown to inhibit cell attachment and neurite extensions in culture. Functions of testican in vivo have yet to be demonstrated in knockout mice or other models. Testican has been shown to carry substantial amounts of chondroitin sulfate as well as other oligosaccharides, but the biological significance of these embellishments is not yet known.
Collapse
Affiliation(s)
- Cora-Jean S Edgell
- Pathology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7525, USA
| | | | | |
Collapse
|
18
|
Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH. Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:1-51. [PMID: 15548418 DOI: 10.1016/s0074-7696(04)41001-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upregulation of cathepsin L expression, whether during development or cell transformation, or mediated by ectopic expression from a plasmid, alters the targeting of the protease and thus its physiological function. Upregulated procathepsin L is targeted to small dense core vesicles and to the dense cores of multivesicular bodies, as well as to lysosomes and to the plasma membrane for selective secretion. The multivesicular vesicles resemble secretory lysosomes characterized in specialized cell types in that they are endosomes that stably store an upregulated protein and they possess the tetraspanin CD63. Morphologically the multivesicular endosomes also resemble late endosomes, but they store procathepsin L, not the active protease, and they are not the major site for LAMP-1 accumulation. Distinction between the lysosomal proenzyme and active protease thus identifies two populations of multivesicular endosomes in fibroblasts, one a storage compartment and one an enzymatically active compartment. A distinctive targeting pathway using aggregation is utilized to enrich the storage endosomes with a particular lysosomal protease that can potentially activate and be secreted.
Collapse
Affiliation(s)
- John Collette
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, Florida 33101 USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Bocock JP, Edgell CJS, Marr HS, Erickson AH. Human proteoglycan testican-1 inhibits the lysosomal cysteine protease cathepsin L. ACTA ACUST UNITED AC 2003; 270:4008-15. [PMID: 14511383 DOI: 10.1046/j.1432-1033.2003.03789.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Testican-1, a secreted proteoglycan enriched in brain, has a single thyropin domain that is highly homologous to domains previously shown to inhibit cysteine proteases. We demonstrate that purified recombinant human testican-1 is a strong competitive inhibitor of the lysosomal cysteine protease, cathepsin L, with a Ki of 0.7 nM, but it does not inhibit the structurally related lysosomal cysteine protease cathepsin B. Testican-1 inhibition of cathepsin L is independent of its chondroitin sulfate chains and is effective at both pH 5.5 and 7.2. At neutral pH, testican-1 also stabilizes cathepsin L, slowing pH-induced denaturation and allowing the protease to remain active longer, although the rate of proteolysis is reduced. These data indicate that testican-1 is capable of modulating cathepsin L activity both in intracellular vesicles and in the extracellular milieu.
Collapse
Affiliation(s)
- Jeffrey P Bocock
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Testican-1 is a highly conserved, multidomain, chondroitin sulfate proteoglycan that is most abundantly transcribed in the brain by neurons. This testican messenger RNA is not detected in normal quiescent astrocytes, but is up regulated when these cells are activated in response to injury such as cerebral stroke. Other chondroitin sulfate proteoglycans found in glial scars, including neurocan, have been shown to inhibit neural cell attachment and neurite extensions and may thus impede axonal regeneration. Here we report the expression and purification of a proteoglycan form of recombinant testican and its effects on neuron-derived cells in culture. We demonstrate that testican inhibits attachment of Neuro-2a cells and their ability to form neurite extensions. Both testican proteoglycan and the core glycoprotein that has been depleted of chondroitin sulfate inhibit cell attachment. Pre-treatment of the culture substratum with testican inhibits Neuro-2a attachment, but pre-treatment of the cells with testican does not inhibit their attachment. Testican, therefore, blocks attachment sites on cultureware and may also block attachment sites in the extracellular matrix of the brain.
Collapse
Affiliation(s)
- Henry S Marr
- Pathology and Laboratory Medicine Department, University of North Carolina, Via Romea, 4, Chapel Hill, NC 27599-7525, USA
| | | |
Collapse
|
21
|
Chen CP, Aplin JD. Placental extracellular matrix: gene expression, deposition by placental fibroblasts and the effect of oxygen. Placenta 2003; 24:316-25. [PMID: 12657504 DOI: 10.1053/plac.2002.0904] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Database mining revealed 102 extracellular matrix (ECM) genes amongst about 10000 mRNA species expressed in human placenta, and these were classified into collagens (23), non-collagenous glycoproteins (59) and proteoglycans (23). A panel of antibodies to selected collagens and glycoproteins was used to examine ECM distribution in the placental villous stroma. Collagens I and IV, fibronectin and fibrillin I were abundant in first trimester and term tissue. Some areas lacked collagen I, while collagen IV was clearly evident in interstitial locations. At term, laminin was present in the stroma as well as in trophoblastic and vascular basement membranes. Thrombospondin I, tenascin C and elastin showed more restricted distributions. Fibrosis has been reported in association with ischaemia, so ECM production by cultured term and first trimester placental fibroblasts was evaluated at three different oxygen concentrations. Fibronectin and collagen IV were more strongly expressed than collagen I, fibrillin I or thrombospondin I, while the production of laminin and elastin was very low. Reducing the oxygen tension led to a selective increase in fibronectin and collagen IV production. Thus both quantitative and qualitative alterations in ECM composition may be expected to accompany prolonged hypoxia.
Collapse
Affiliation(s)
- C-P Chen
- Academic Unit of Obstetrics and Gynaecology, Schools of Medicine and Biological Sciences, University of Manchester, UK
| | | |
Collapse
|
22
|
Vannahme C, Smyth N, Miosge N, Gösling S, Frie C, Paulsson M, Maurer P, Hartmann U. Characterization of SMOC-1, a novel modular calcium-binding protein in basement membranes. J Biol Chem 2002; 277:37977-86. [PMID: 12130637 DOI: 10.1074/jbc.m203830200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated the novel gene SMOC-1 that encodes a secreted modular protein containing an EF-hand calcium-binding domain homologous to that in BM-40. It further consists of two thyroglobulin-like domains, a follistatin-like domain and a novel domain. Recombinant expression in human cells showed that SMOC-1 is a glycoprotein with a calcium-dependent conformation. Results from Northern blots, reverse transcriptase-PCR, and immunoblots revealed a widespread expression in many tissues. Immunofluorescence studies with an antiserum directed against recombinant human SMOC-1 demonstrated a basement membrane localization of the protein and additionally its presence in other extracellular matrices. Immunogold electron microscopy confirmed the localization of SMOC-1 within basement membranes in kidney and skeletal muscle as well as its expression in the zona pellucida surrounding the oocyte.
Collapse
Affiliation(s)
- Christian Vannahme
- Institute for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Testican is a highly conserved, differentially expressed gene product of unknown function. Since testican is expressed by human endothelial cells and includes a signal sequence, it was our hypothesis that testican protein would be present in blood. We have developed chicken antibodies specific for testican sequence near the N-terminal and identified a 130-kDa form of testican in human plasma. This is much larger than the calculated molecular weight of the encoded polypeptide, suggesting glycosylation of this plasma protein, and large forms of recombinant testican produced in culture were found to include chondroitin sulfate. The 130-kDa form of testican is unstable in plasma. It is converted to smaller stable forms by separable plasma factors that can be blocked by certain serine protease inhibitors. Testican size conversion may be important in its functional activation or decay. One testican domain has strong homology to thyropin-type cysteine protease-inhibitors. Thus, testican may have a function related to protease inhibition in the blood.
Collapse
Affiliation(s)
- M A BaSalamah
- Pathology & Laboratory Medicine Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7525, USA
| | | | | | | |
Collapse
|
24
|
Stark M, Danielsson O, Griffiths WJ, Jörnvall H, Johansson J. Peptide repertoire of human cerebrospinal fluid: novel proteolytic fragments of neuroendocrine proteins. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 754:357-67. [PMID: 11339279 DOI: 10.1016/s0378-4347(00)00628-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polypeptides in human cerebrospinal fluid (CSF), isolated by phase separation in chloroform-methanol-water and reversed-phase HPLC, were characterised by sequence analysis and mass spectrometry. This identified the presence of peptide fragments of testican, neuroendocrine specific protein VGF, neuroendocrine protein 7B2, chromogranin B/secretogranin I, chromogranin A, osteopontin, IGF-II E-peptide and proenkephalin. The majority of these fragments were generated by proteolysis at dibasic sites, suggesting that they are derived by activities related to prohormone convertase(s). Several of the fragments have previously not been detected, and their functions in CSF or elsewhere are unknown. A characteristic feature of all these fragments is a very high content of acidic residues, in particular glutamic acid. In addition to the fragments of neuroendocrine proteins, endothelin-binding receptor-like protein 2, ribonuclease 1, IGF-binding protein 6, albumin, alpha1-acid glycoprotein 1, prostaglandin-H2 D-isomerase, apolipoprotein A1, transthyretin, beta2-microglobulin, ubiquitin, fibrinopeptide A, and C4A anaphylatoxin were found.
Collapse
Affiliation(s)
- M Stark
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
25
|
Abstract
Follistatin was first described in 1987 as a follicle-stimulating hormone inhibiting substance present in ovarian follicular fluid. We now know that this effect of follistatin is only one of its many properties in a number of reproductive and nonreproductive systems. A majority of these functions are facilitated through the affinity of follistatin for activin, where activin's effects are neutralized through its binding to follistatin. As such, the interplay between follistatin and activin represents a powerful regulatory mechanism that impinges on a variety of cellular processes within the body. In this review we focus on the biochemical characteristics of follistatin and its interaction with activin and discuss the emerging role of these proteins as potent tissue regulators in the gonad, pituitary gland, pregnancy membranes, vasculature, and liver. Consideration is also given to the larger family of proteins that contain follistatin-like modules, in particular with regard to their functional and structural implications.
Collapse
Affiliation(s)
- D J Phillips
- Institute of Reproduction and Development, Monash University, Clayton, Victoria, 3168, Australia.
| | | |
Collapse
|