1
|
Ali S, Zulfiqar M, Summer M, Arshad M, Noor S, Nazakat L, Javed A. Zebrafish as an innovative model for exploring cardiovascular disease induction mechanisms and novel therapeutic interventions: a molecular insight. Mol Biol Rep 2024; 51:904. [PMID: 39133413 DOI: 10.1007/s11033-024-09814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Cardiovascular disease (CVD) is a common cardiac disorder that leads to heart attacks, strokes, and heart failure. It is primarily characterized by conditions that impact the heart and blood arteries, including peripheral artery disease, arrhythmias, atherosclerosis, myocardial ischemia, congenital heart abnormalities, heart failure, rheumatic heart disease, hypertension, and cardiomyopathies. These conditions are mainly effect the heart and blood vessels, causing blockages or weakened pumping, due to severe hereditary and environmental factors. The frequency of CVD is rising significantly as life expectancy increases. Despite this, no effective treatment or management for its symptoms has been found. One of the most difficult obstacles to overcome, is finding a suitable animal model for drug screening and drug development. Although rodents, mice, swine, and mammals serve as the basis for most animal models of cardiovascular disease, no model accurately captures the epidemiology of the condition. Zebrafish (Danio rerio) have drawn the interest of the international scientific community due to certain shortcomings of the previously discussed animal models because they are smaller, less costly, and have an incredibly high rate of reproduction. This review article emphasizes the significance of using zebrafish as an animal model to investigate the possible facets of cardiovascular disease. Moreover, the ultimate purpose of this review article is to establish the advantages of employing zebrafish over other animal models and to investigate the boundaries of using zebrafish to study human disease. Furthermore, the mechanisms of cardiovascular diseases induction in zebrafish were covered to improve understanding for readers. Finally, the analysis of cardiotoxicity using Zebra fish model, is also explained. In order to stop the health index from deteriorating, the current study also covers some innovative, effective, and relatively safer treatments for treatment and management of cardiotoxicity.
Collapse
Affiliation(s)
- Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Maryam Zulfiqar
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Mahnoor Arshad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Abdullah Javed
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Erdemli Z, Gul M, Kayhan E, Gokturk N, Bag HG, Erdemli ME. High-fat and carbohydrate diet caused chronic kidney damage by disrupting kidney function, caspase-3, oxidative stress and inflammation. Prostaglandins Other Lipid Mediat 2024; 172:106822. [PMID: 38395139 DOI: 10.1016/j.prostaglandins.2024.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The study aimed to compare the effects of a diet rich in fat, carbohydrates and protein on rat kidneys. The study was conducted on 40 Wistar albino rats bred at İnönü University Faculty of Medicine after the approval of the ethics committee. Rats were randomly divided into 4 groups: Control group, and the groups where the animals were fed with high carbohydrate, fat and protein rich feed. After the applications, the rat kidney tissues were removed by laparoscopy under anesthesia and blood samples were collected. 13 weeks long fat-rich and carbohydrate feed application had negative effects on oxidant-antioxidant balance, oxidative stress index, inflammation markers, kidney functions tests, histopathology and immunohistochemistry caspase-3 findings in rat kidney tissues, especially in the carbohydrate group when compared to the controls. Protein-rich feed, there were no significant difference in biochemical and histopathology compared to the control group. Fat and carbohydrate rich feed led to an increase in oxidative stress in rat kidney tissues. Oxidative stress led to nephrotoxicity, which in turn led to chronic kidney tissue damages. A more balanced and protein-rich diet instead of excessive sugar and fatty food intake could be suggested to prevent chronic kidney damage.
Collapse
Affiliation(s)
- Zeynep Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gul
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Elif Kayhan
- Department of Histology and Embryology, Medical Faculty, Turgut Ozal University, Malatya, Turkey
| | - Nurcan Gokturk
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Harika Gozukara Bag
- Department of Biostatistics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Erman Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| |
Collapse
|
3
|
Ijaz MU, Shahid H, Hayat MF, Khan HA, Al-Ghanim KA, Riaz MN. The therapeutic potential of isosakuranetin against perfluorooctane sulfonate instigated cardiac toxicity via modulating Nrf-2/Keap-1 pathway, inflammatory, apoptotic, and histological profile. Cell Biochem Funct 2024; 42:e4060. [PMID: 38816947 DOI: 10.1002/cbf.4060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a pervasive organic toxicant that damages body organs, including heart. Isosakuranetin (ISN) is a plant-based flavonoid that exhibits a broad range of pharmacological potentials. The current investigation was conducted to evaluate the potential role of ISN to counteract PFOS-induced cardiac damage in rats. Twenty-four albino rats (Rattus norvegicus) were distributed into four groups, including control, PFOS (10 mg/kg) intoxicated, PFOS + ISN (10 mg/kg + 20 mg/kg) treated, and ISN (20 mg/kg) alone supplemented group. It was revealed that PFOS intoxication reduced the expressions of Nrf-2 and its antioxidant genes while escalating the expression of Keap-1. Furthermore, PFOS exposure reduced the activities of glutathione reductase (GSR), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), Heme oxygenase-1 (HO-1) and glutathione (GSH) contents while upregulating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Besides, PFOS administration upregulated the levels of creatine kinase-MB (CK-MB), troponin I, creatine phosphokinase (CPK), and lactate dehydrogenase (LDH). Moreover, the levels of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were increased after PFOS intoxication. Additionally, PFOS exposure downregulated the expression of Bcl-2 while upregulating the expressions of Bax and Caspase-3. Furthermore, PFOS administration disrupted the normal architecture of cardiac tissues. Nonetheless, ISN treatment remarkably protected the cardiac tissues via regulating aforementioned dysregulations owing to its antioxidative, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Humna Shahid
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Faisal Hayat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Hammad Ahmad Khan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
4
|
Erdemli Z, Gul M, Gokturk N, Kayhan E, Demircigil N, Ozsoy EN, Gozukara Bag H, Erdemli ME. Ameliorative effects of thymoquinone on the caspase 3, kidney function and oxidative stress tartrazine-induced nephrotoxicity. Toxicon 2024; 241:107660. [PMID: 38408527 DOI: 10.1016/j.toxicon.2024.107660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
First in the literature this study aimed to investigate the effects of Tartrazine, a common industrial food dye, on kidney and whether Thymoquinone has a protective effect in tartrazine-induced nephrotoxicity. The study conducted on the rats bred at İnönü University Experimental Animals Production and Research Center. Wistar albino rats were randomly divided into 4 groups, where each group included 8 rats: control, Tartrazine, Thymoquinone, and Tartrazine + Thymoquinone groups. The experiments continued for 3 weeks and then, kidney tissues and blood samples were collected from the rats under anesthesia. Malondialdehyde (MDA), super oxidized dismutase (SOD), total oxidant status (TOS), increase in Oxidative stress index (OSI), glutathione (GSH), Glutathione peroxidase (GSH-Px), catalase (CAT), Total antioxidant status (TAS) levels decreased in the kidney tissues collected from the tartrazine group. Serum Bun and Creatinine levels increased in the tartrazine group. Tartrazine administration damaged and degenerated the glomeruli and cortical distal tubes in the histopathology of kidney tissues, also different degrees of inflammatory cell infiltration were observed in the renal cortex and medulla. Thymoquinone and tartrazine administration improved both biochemical and histopathological parameters. Tartrazine administration induced nephrotoxicity. This could be observed with the increase in oxidant capacity and the deterioration of kidney functions. Thymoquinone was observed to demonstrate strong antioxidant properties. Thymoquinone could be used primarily as a protective agent against Tartrazine-induced toxicity.
Collapse
Affiliation(s)
- Zeynep Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gul
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nurcan Gokturk
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Elif Kayhan
- Department of Histology and Embryology, Medical Faculty, Turgut Ozal University, Malatya, Turkey
| | - Nursena Demircigil
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Eda Nur Ozsoy
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Harika Gozukara Bag
- Department of Biostatistics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Erman Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| |
Collapse
|
5
|
He YX, Wang T, Li WX, Chen YX. Long noncoding RNA protein-disulfide isomerase-associated 3 regulated high glucose-induced podocyte apoptosis in diabetic nephropathy through targeting miR-139-3p. World J Diabetes 2024; 15:260-274. [PMID: 38464366 PMCID: PMC10921158 DOI: 10.4239/wjd.v15.i2.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/13/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy (DN). The regulatory relationship between long noncoding RNAs (lncRNAs) and podocyte apoptosis has recently become another research hot spot in the DN field. AIM To investigate whether lncRNA protein-disulfide isomerase-associated 3 (Pdia3) could regulate podocyte apoptosis through miR-139-3p and revealed the underlying mechanism. METHODS Using normal glucose or high glucose (HG)-cultured podocytes, the cellular functions and exact mechanisms underlying the regulatory effects of lncRNA Pdia3 on podocyte apoptosis and endoplasmic reticulum stress (ERS) were explored. LncRNA Pdia3 and miR-139-3p expression were measured through quantitative real-time polymerase chain reaction. Relative cell viability was detected through the cell counting kit-8 colorimetric assay. The podocyte apoptosis rate in each group was measured through flow cytometry. The interaction between lncRNA Pdia3 and miR-139-3p was examined through the dual luciferase reporter assay. Finally, western blotting was performed to detect the effect of lncRNA Pdia3 on podocyte apoptosis and ERS via miR-139-3p. RESULTS The expression of lncRNA Pdia3 was significantly downregulated in HG-cultured podocytes. Next, lncRNA Pdia3 was involved in HG-induced podocyte apoptosis. Furthermore, the dual luciferase reporter assay confirmed the direct interaction between lncRNA Pdia3 and miR-139-3p. LncRNA Pdia3 overexpression attenuated podocyte apoptosis and ERS through miR-139-3p in HG-cultured podocytes. CONCLUSION Taken together, this study demonstrated that lncRNA Pdia3 overexpression could attenuate HG-induced podocyte apoptosis and ERS by acting as a competing endogenous RNA of miR-139-3p, which might provide a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Yin-Xi He
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang 050000, Hebei Province, China
| | - Ting Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Wen-Xian Li
- Department of Endocrinology, The First Hospital of Zhangjiakou, Zhangjiakou 075000, Hebei Province, China
| | - Yan-Xia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
6
|
Nna VU, McGrowder D, Nwokocha C. Nutraceutical management of metabolic syndrome as a palliative and a therapeutic to coronavirus disease (COVID) crisis. Arch Physiol Biochem 2023; 129:1123-1142. [PMID: 33770443 DOI: 10.1080/13813455.2021.1903041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The global market for medicinal plants and herbs is on the increase due to their desirability, efficacy, and less adverse effects as complementary and alternative medications to the orthodox pharmaceuticals, perhaps due to their natural components and qualities. Metabolic syndromes are managed with changes in diet, exercise, lifestyle modifications and the use of pharmacological agents. Plants are now known to have potent antioxidant and cholinergic activities which are relevant to the management of several metabolic syndromes, which are unfortunately, co-morbidity factors in the coronavirus disease crisis. This review will focus on the biological activities of some plant products used as complementary and alternative medicines in the management of metabolic syndromes, and on their reported antiviral, antithrombotic, angiotensin-converting enzyme inhibitory properties, which are integral to their usage in the management of viral infections and may give an avenue for prophylactic and therapeutics especially in the absence of vaccines/formulated antiviral therapies.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Donovan McGrowder
- Department of Pathology, The University of the West Indies, Mona, Jamaica
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences (Physiology Section), The University of the West Indies, Mona, Jamaica
| |
Collapse
|
7
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Baghcheghi Y, Beheshti F, Seyedi F, Hosseini M, Hedayati-Moghadam M. Thymoquinone improved redox homeostasis in the heart and aorta of hypothyroid rats. Clin Exp Hypertens 2022; 44:656-662. [PMID: 35942678 DOI: 10.1080/10641963.2022.2108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Propylthiouracil (PTU) is a common drug that is used in medicine for treating hyperthyroidism. Furthermore, hypothyroidism can also be induced with PTU. Considering the antioxidant effects of thymoquinone (TMQ), this study was designed to find out whether TMQ could counteract the oxidative damage in the heart and aorta tissues induced by hypothyroidism in rats. METHODS Animals were arranged into four groups: (1) Control, (2) PTU, (3) PTU-TMQ 5, and (4) PTU-TMQ 10. Hypothyroidism was induced in rats by giving 0.05% PTU in drinking water. PTU and TMQ (5 and 10 mg/kg, ip) treatments were done for 42 days. Finally, the animals were sacrificed and the serum of the rats was collected for thyroxine level assessment. The heart and aorta tissues were also removed for biochemical oxidative stress markers measurement. RESULTS A lower serum thyroxine level was observed after PTU treatment compared to the control group. Hypothyroidism also was accompanied by a decrease of thiol content, and superoxide dismutase (SOD), and catalase (CAT) activities in the heart and aorta tissues while increased malondialdehyde (MDA). Furthermore, a significant reduction in oxidative damage was noted in the heart and aorta following the administration of TMQ (5 and 10 mg/kg) which was indicated by the reduction in MDA and improved activities of SOD, CAT, and thiol. CONCLUSION In this study, TMQ was found to improve oxidative damages in the heart and aorta tissues of hypothyroid rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Fatemeh Seyedi
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran.,Department of Anatomical Sciences, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran.,Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
9
|
Salehi A, Hosseini SM, Kazemi S. Antioxidant and Anticarcinogenic Potentials of Propolis for Dimethylhydrazine-Induced Colorectal Cancer in Wistar Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8497562. [PMID: 35782078 PMCID: PMC9246617 DOI: 10.1155/2022/8497562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 12/30/2022]
Abstract
Propolis is a natural compound with anticarcinogenic properties. The present study aimed to compare the inhibitory effect of ethanolic extract of propolis (EEP) and vitamin E on dimethylhydrazine-induced colon lesions in rats. In this study, 60 rats were randomly categorized into six 10-member groups. After 13 weeks, blood and colon tissue were sampled to examine some factors. The parameters included red (RBC) and white (WBC) blood cell profile, lactate dehydrogenase (LDH), C-reactive protein (CRP), total protein (TP), creatine kinase (CPK), and albumin, as well as the extent of colon histological lesions, protein expression (adenomatous polyposis coli (APC), proliferating cell nuclear antigen (PCNA), carcinoembryonic antigen (CEA), and platelet-derived growth factor (PDGF)), and oxidative stress markers (total antioxidant capacity (TAC), malondialdehyde (MDA), and superoxide dismutase (SOD)) in colon tissue. A significant decrease was observed in congestion, mitotic index, inflammation, and cell destruction in colon tissue in dimethylhydrazine group in comparison with the control group (P < 0.05). The EEP exposed rats exhibited a significant lower oxidative stress than the DMH group (P < 0.05). Furthermore, the extract significantly affected TAC level (P < 0.05). While the expression level of APC rose substantially in the EEP-treated group compared to the DMH group, the level of PCNA, CEA, and PDGF proteins significantly reduced. It seems that the EEP can efficiently prevent DMH-induced colonic lesions. Furthermore, its effectiveness is more than the vitamin E, which is a strong antioxidant.
Collapse
Affiliation(s)
- Alireza Salehi
- Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
10
|
Song WJ, Song QL, Chen XL, Liu GH, Zou ZH, Tan J, Liu LX, Zeng YB. Effects of honeycomb extract on the growth performance, carcass traits, immunity, antioxidant function and intestinal microorganisms of yellow bantam broilers. Poult Sci 2022; 101:101811. [PMID: 35709681 PMCID: PMC9207294 DOI: 10.1016/j.psj.2022.101811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Although many studies have already described the physiological effects of bee products, such as honey, propolis, pollen, and royal jelly, on livestock farming, the health benefits of the honeycomb are still not fully understood. The problem of drug residues and bacterial resistance caused by the abuse of antibiotics is becoming increasingly serious. For this reason, a safe, green substitute has to be sought. We conducted a comparative study of honeycomb extract (HE) and an antibiotic on growth performance, carcass traits, immunity, antioxidant function and intestinal microorganisms of yellow bantam broilers. A total of four hundred eighty 21-day-old female yellow bantam broilers were randomly divided into 5 groups of 6 replicates of 16 birds each. The 5 groups were as follows, with birds receiving a basal diet supplemented with 150 ppm (mg/kg) of chlortetracycline (CTE), a basal diet without HE (control group), and a basal diet with 0.1%, 0.15%, or 0.2% HE for 60 days. The results showed that HE addition significantly increased average daily feed intake (ADFI), average daily gain (ADG), decrease feed gain ratio (F/G) from 21 to 80 and 51 to 80 days of age compared to the control group, with all 3 HE addition groups having statistically identical values to the antibiotic group. HE implementation dramatically increased spleen index, serum immunoglobulin A (IgA), immunoglobulin M (IgM,), glutathione peroxide (GSH-Px), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and total cecum bacteria and Lactobacillus compared to the control group, numerically at the same level as, or even better than, the antibiotic group. HE and CTE both markly reduced serum malondialdehyde (MDA) concentration compared to the control group, with higher concentrations of HE reducing the effect more dramatically than antibiotics. Both HE and CTE significantly raised dressed yield compared to the control group. In summary, HE, as a potential antibiotic alternative, improved growth performance, carcass traits, immune function, serum antioxidant capacity and intestinal microorganisms in yellow bantam broilers. According to the cubic regression analyses, the recommended supplemental dose of HE was calculated to be 0.15 to 0.17% for female yellow bantam broilers between 21 and 80 d of age.
Collapse
Affiliation(s)
- W J Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, P. R. China
| | - Q L Song
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, P. R. China.
| | - X L Chen
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, P. R. China
| | - G H Liu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China; Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, P. R. China
| | - Z H Zou
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, P. R. China
| | - J Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, P. R. China
| | - L X Liu
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, P. R. China
| | - Y B Zeng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, P. R. China
| |
Collapse
|
11
|
Belce A, Ozkan BN, Dumlu FS, Sisman BH, Guler EM. Evaluation of Oxidative Stress and Inflammatory Biomarkers Pre and Post-Treatment in New Diagnosed Atherosclerotic Patients. Clin Exp Hypertens 2022; 44:320-325. [PMID: 35172655 DOI: 10.1080/10641963.2022.2036993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. It is characterized by lipid accumulation in the arterial wall, increased hyperlipidemia, oxidative stress, lipid peroxidation, and protein oxidation. Our study included 45 patients ages of 40-60 and 45 healthy volunteers with similar demographic characteristics without any chronic disease as well. Fasting plasma glucose, BUN, creatinine, LDL-cholesterol, HDL-cholesterol, triglyceride, total cholesterol, HbA1c, and C-reactive protein (CRP) levels were measured using commercial kits by autoanalyzer. The oxidative stress biomarkers total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), native thiol (NT), catalase (CAT), paraoxonase (PON1), and arylesterase (ARES) enzyme activities were measured using photometric methods. The inflammatory biomarkers interleukin 1 beta (IL-1β), tumor necrosis factor-α (TNF-α), presepsin (PSPN), and raftlin (RFTN1) levels were measured with ELISA Kits. Oxidative stress index (OSI) and disulfide (DIS) were calculated. The clinical, biochemical biomarkers such as BUN, creatinine, HDL, LDL, total cholesterol, triglyceride, and CRP levels were found to be higher than the control group and lower post-treatment compared to the pre-treatment group (p <0.001). The oxidative stress parameters, TOS, OSI, and DIS levels were found to be higher than the control group, and the levels before the treatment were statistically significantly higher than after the treatment (p < 0.001). Antioxidant biomarkers TAS, TT, and NT levels were low in the patient group. Inflammatory biomarkers were highest before treatment and decreased with treatment. Oxidative stress and inflammation, which increased in atherosclerosis patients may guide disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Ahmet Belce
- Department of Medical Biochemistry, Biruni University, Faculty of Medicine, Zeytinburnu, Istanbul
| | - Beyza Nur Ozkan
- Department of Medical Biochemistry, University of Health Science Turkey, Hamidiye Faculty of Medicine, Uskudar, Istanbul
| | - Fatma Sena Dumlu
- Department of Medical Biochemistry, University of Health Science Turkey, Hamidiye Faculty of Medicine, Uskudar, Istanbul
| | - Behice Hande Sisman
- Department of Cardiology, Bezmialem Vakıf University, Faculty of Medicine, Fatih, Istanbul
| | - Eray Metin Guler
- Department of Medical Biochemistry, University of Health Sciences Turkey, Haydarpasa Numune Health Application and Research Center, Uskudar, Istanbul
| |
Collapse
|
12
|
Fadwa EO, Amthaghri S, Akdad M, El-Haidani A, Eddouks M. Effect of Pelargonium graveolens on Glucose Metabolism in Streptozotocin-Induced Diabetic Rats. Cardiovasc Hematol Disord Drug Targets 2022; 22:CHDDT-EPUB-120925. [PMID: 35170422 DOI: 10.2174/1871529x22666220216102243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
AIMS The study aimed to assess the antihyperglycemic activity of Pelargonium graveolens. BACKGROUND Pelargonium graveolens (P. graveolens) (Geraniaceae) is a medicinal plant frequently used in traditional medicine in Morocco and Algeria as remedy against a multitude of illnesses. Interestingly, it is used in the Moroccan pharmacopeia for managing diabetes. OBJECTIVE The current study was carried out in order to assess the antihyperglycemic activity of P. graveolens in normal and streptozotocin(STZ)-induced diabetic rats, as well as to evaluate the acute toxicity of the leaves aqueous extract of Pelargonium graveolens (PGLAE). METHODS The therapeutic effect of PGLAE at a dose of 40 mg/kg on blood glucose levels was investigated in normal and STZ-induced diabetic rats after a single oral (6h) and a repeated (15 days) oral administration. The acute toxicity of the PGLAE was examined in accordance the OECD test guideline. Post-treatment, body weight, signs of toxicity, and/or mortality were observed for 14 days. Further assays such as the oral glucose tolerance test, histopathological examination and antioxidant activity was also performed according to standard protocols. RESULTS Findings exhibited that both single and repeated oral doses of PGLAE (40 mg/kg) produced significant reduction of blood glucose levels in normal and diabetic rats. All treated animals survived and no apparent adverse effects were observed during the duration of the acute toxicity study. Importantly, oral LD50 of PGLAE was greater than 2000 mg/kg BW. Furthermore, a remarkable influence on glucose tolerance was also noticed after PGLAE treatment. Moreover, PGLAE was able to improve histopathological structure of liver and possesses a potential antioxidant effect in vitro. CONCLUSION In conclusion, this study reports the antidiabetic effect of PGLAE in rats supporting then its traditional use for the management of diabetes.
Collapse
Affiliation(s)
- El-Ouady Fadwa
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000. Errachidia. Morocco
| | - Smail Amthaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000. Errachidia. Morocco
| | - Mourad Akdad
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000. Errachidia. Morocco
| | - Ahmed El-Haidani
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000. Errachidia. Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000. Errachidia. Morocco
| |
Collapse
|
13
|
Kaya ST, Agan K, Fulden-Agan A, Agyar-Yoldas P, Ozarslan TO, Kekecoglu M, Kaya A. Protective effect of propolis on myocardial ischemia/reperfusion injury in males and ovariectomized females but not in intact females. J Food Biochem 2022; 46:e14109. [PMID: 35142377 DOI: 10.1111/jfbc.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study is to investigate the effect of propolis, which may have estrogenic effects, on myocardial ischemia/reperfusion (mI/R) injury not only in male rats but also in intact and ovariectomized (ovx) female rats. Six groups were formed: untreated males (n = 8), treated males (n = 9), untreated intact females (n = 9), treated intact females (n = 10), untreated ovx females (n = 10), and treated ovx females (n = 8). An alcoholic extract of a single dose of propolis (200 mg/kg) was administered orally daily for 14 days. Thirty minutes of ischemia and 120 min of reperfusion were performed. Blood pressure, heart rate, arrhythmias (ventricular premature contraction [VPC], ventricular tachycardia [VT], ventricular fibrillation [VF]), and myocardial infarct size were evaluated. Total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and 17 beta-estradiol (E2) were measured. The untreated females showed more resistance to mI/R injury than the untreated males, as evidenced by lower duration, incidence, and score of arrhythmias, and smaller infarct size (p < .05). After ovx, this resistance disappeared. Propolis improved these values in treated males and treated ovx females (p < .05). Propolis increased TAS in treated males and decreased TOS in treated ovx females as well as elevated SOD in all treated groups (p < .05). Propolis decreased E2 level in treated intact females; however, it increased E2 level in treated ovx females (p < .05). The results revealed that propolis could protect the heart against mI/R injury in males and ovx females. PRACTICAL APPLICATIONS: It is known that the female heart has an increased sensitivity to myocardial ischemia/reperfusion (mI/R) injury due to estrogen deficiency and/or estrogen deprivation following menopause or surgical removal of the ovaries. Propolis has the potential to mimic estrogen under physiological and pathophysiological conditions, as well as its antioxidant property. The results indicated that propolis decreased myocardial infarct size, arrhythmia score, arrhythmia duration, and incidence in ovariectomized female rats and male rats. In addition, the present results demonstrated that an alcoholic extract of propolis as a natural product can effectively maintain the resistance of female heart to mI/R injury after estrogen deficiency.
Collapse
Affiliation(s)
- Salih Tunc Kaya
- Faculty of Arts and Science, Department of Biology, Duzce University, Duzce, Turkey
| | - Kagan Agan
- Coordination Unit of Healthy and Environmental, Duzce University, Duzce, Turkey
| | - Aydan Fulden-Agan
- Beekeeping Research, Development and Application Centre, Duzce University, Duzce, Turkey
| | - Pınar Agyar-Yoldas
- Coordination Unit of Healthy and Environmental, Duzce University, Duzce, Turkey
| | - Talat Ogulcan Ozarslan
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Meral Kekecoglu
- Faculty of Arts and Science, Department of Biology, Duzce University, Duzce, Turkey.,Beekeeping Research, Development and Application Centre, Duzce University, Duzce, Turkey
| | - Adnan Kaya
- Faculty of Medicine, Department of Internal Medicine, Cardiology Section, Duzce University, Duzce, Turkey
| |
Collapse
|
14
|
Geraniol ameliorated serum lipid profile and improved antioxidant defense system in pancreas, liver and heart tissues of alloxan-induced diabetic rats. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Akdad M, Bouchra A, Eddouks M. Beneficial Effect of Saharan Propolis on Glucose Metabolism in Streptozotocin-induced Diabetic Rats. Cardiovasc Hematol Disord Drug Targets 2021; 21:243-252. [PMID: 34792007 DOI: 10.2174/1871529x21666211118141935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
AIMS The aim of the study was to evaluate the antihyperglycemic activity of propolis from Saharan region of Morocco. BACKGROUND Propolis is known from ancient times for its beneficial action on health. OBJECTIVE The study aimed to evaluate the effect of Moroccan propolis aqueous extract from the desert region on glycemia and lipid metabolism. METHODS The antihyperglycemic and antidyslipidemic activities of Moroccan propolis aqueous extract were evaluated in streptozotocin-induced diabetic rats. Glycemia was monitored during acute (6h) and subchronic treatments. Histopathological analysis of the liver and the serum lipid profile was also evaluated in addition to the glucose tolerance. RESULTS This work demonstrated that the aqueous extract of Moroccan propolis exhibited a significant antihyperglycemic effect in diabetic rats. Histopathological data demonstrated that propolis acts positively on the liver of diabetic rats. In addition, the preliminary phytochemical screening revealed that Moroccan propolis contains several phytochemicals. Finally, Moroccan propolis had a potent antioxidant activity which may be due to the richness in polyphenols content (90.91 mg EAG/1 g of extract). CONCLUSION The present study shows that Moroccan propolis from the hot desert region possesses a potent antihyperglycemic effect.
Collapse
Affiliation(s)
- Mourad Akdad
- Team of Ethnopharmacology and Pharmacognosy. Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000. Morocco
| | - Azzoui Bouchra
- Team of Ethnopharmacology and Pharmacognosy. Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000. Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy. Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000. Morocco
| |
Collapse
|
16
|
Renoprotection Induced by Aerobic Training Is Dependent on Nitric Oxide Bioavailability in Obese Zucker Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3683796. [PMID: 34621463 PMCID: PMC8492245 DOI: 10.1155/2021/3683796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
Aerobic training (AT) promotes several health benefits that may attenuate the progression of obesity associated diabetes. Since AT is an important nitric oxide (NO−) inducer mediating kidney-healthy phenotype, the present study is aimed at investigating the effects of AT on metabolic parameters, morphological, redox balance, inflammatory profile, and vasoactive peptides in the kidney of obese-diabetic Zucker rats receiving L-NAME (N(omega)-nitro-L-arginine methyl ester). Forty male Zucker rats (6 wk old) were assigned into four groups (n = 10, each): sedentary lean rats (CTL-Lean), sedentary obese rats (CTL-Obese), AT trained obese rats without blocking nitric oxide synthase (NOS) (Obese+AT), and obese-trained with NOS block (Obese+AT+L-NAME). AT groups ran 60 min in the maximal lactate steady state (MLSS), five days/wk/8 wk. Obese+AT rats improved glycemic homeostasis, SBP, aerobic capacity, renal mitochondria integrity, redox balance, inflammatory profile (e.g., TNF-α, CRP, IL-10, IL-4, and IL-17a), and molecules related to renal NO− metabolism (klotho/FGF23 axis, vasoactive peptides, renal histology, and reduced proteinuria). However, none of these positive outcomes were observed in CTL-Obese and Obese+AT+L-NAME (p < 0.0001) groups. Although Obese+AT+L-NAME lowered BP (compared with CTL-Obese; p < 0.0001), renal damage was observed after AT intervention. Furthermore, AT training under conditions of low NO− concentration increased signaling pathways associated with ACE-2/ANG1-7/MASr. We conclude that AT represents an important nonpharmacological intervention to improve kidney function in obese Zucker rats. However, these renal and metabolic benefits promoted by AT are dependent on NO− bioavailability and its underlying regulatory mechanisms.
Collapse
|
17
|
Feriani A, Bizzarri M, Tir M, Aldawood N, Alobaid H, Allagui MS, Dahmash W, Tlili N, Mnafgui K, Alwasel S, Harrath AH. High-fat diet-induced aggravation of cardiovascular impairment in permethrin-treated Wistar rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112461. [PMID: 34224971 DOI: 10.1016/j.ecoenv.2021.112461] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This study characterized the impact of post-weaning high-fat diet (HFD) and/or permethrin (PER) treatment on heart dysfunction and fibrosis, as well as atherogenic risk, in rats by investigating interactions between HFD and PER. Our results revealed that HFD and/or PER induced remarkable cardiotoxicity by promoting cardiac injury, biomarker leakage into the plasma and altering heart rate and electrocardiogram pattern, as well as plasma ion levels. HFD and/or PER increased plasma total cholesterol, triacylglycerols, and low-density lipoprotein (LDL) cholesterol levels but significantly reduced high-density lipoprotein (HDL) cholesterol. Cardiac content of peroxidation malonaldehyde, protein carbonyls, and reactive oxygen species were remarkably elevated, while glutathione levels and superoxide dismutase, catalase and glutathione peroxidase activities were inhibited in animals receiving a HFD and/or PER. Furthermore, cardiac DNA fragmentation and upregulation of Bax and caspase-3 gene expression supported the ability of HFD and/or PER to induce apoptosis and inflammation in rat hearts. High cardiac TGF-β1 expression explained the profibrotic effects of PER either with the standard diet or HFD. Masson's Trichrome staining clearly demonstrated that HFD and PER could cause cardiac fibrosis. Additionally, increased oxidized LDL and the presence of several lipid droplets in arterial tissues highlighted the atherogenic effects of HFD and/or PER in rats. Such PER-induced cardiac and vascular dysfunctions were aggravated by and associated with a HFD, implying that obese individuals may be more vulnerable to PER exposure. Collectively, post-weaning exposure to HFD and/or PER may promote heart failure and fibrosis, demonstrating the pleiotropic effects of exposure to environmental factors early in life.
Collapse
Affiliation(s)
- Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Mariano Bizzarri
- Sapienza University of Rome, Dept of Experimental Medicine, Syst Biol Grp Lab, Rome, Italy
| | - Meriam Tir
- Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092 Tunis, Tunisia
| | - Nouf Aldawood
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hussah Alobaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Waleed Dahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia
| | - Kais Mnafgui
- Laboratory of Animal Ecophysiology, Faculty of Science of Sfax, 3018 Sfax, Tunisia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
18
|
Propolis in Metabolic Syndrome and Its Associated Chronic Diseases: A Narrative Review. Antioxidants (Basel) 2021; 10:antiox10030348. [PMID: 33652692 PMCID: PMC7996839 DOI: 10.3390/antiox10030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Propolis is a resinous product collected by bees from plants to protect and maintain the homeostasis of their hives. Propolis has been used therapeutically by humans for centuries. This review article attempts to analyze the potential use of propolis in metabolic syndrome (MetS) and its associated chronic diseases. MetS and its chronic diseases were shown to be involved in at least seven out of the top 10 causes of death in 2019. Patients with MetS are also at a heightened risk of severe morbidity and mortality in the present COVID-19 pandemic. Propolis with its antioxidant and anti-inflammatory properties is potentially useful in ameliorating the symptoms of MetS and its associated chronic diseases. The aim of this article is to provide a comprehensive review on propolis and its therapeutic benefit in MetS and its chronic diseases, with an emphasis on in vitro and in vivo studies, as well as human clinical trials. Moreover, the molecular and biochemical mechanisms of action of propolis are also discussed. Propolis inhibits the development and manifestation of MetS and its chronic diseases by inhibiting of the expression and interaction of advanced glycation end products (AGEs) and their receptors (RAGEs), inhibiting pro-inflammatory signaling cascades, and promoting the cellular antioxidant systems.
Collapse
|
19
|
Ozdemir B, Gulhan MF, Sahna E, Selamoglu Z. The investigation of antioxidant and anti-inflammatory potentials of apitherapeutic agents on heart tissues in nitric oxide synthase inhibited rats via Nω-nitro-L-arginine methyl ester. Clin Exp Hypertens 2021; 43:69-76. [PMID: 32799699 DOI: 10.1080/10641963.2020.1806294] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND High blood pressure effects heart and vessels. Development of pathogenesis is the result of oxidative stress. We aimed to investigate the antioxidant effects of propolis, caffeic acid phenethyl ester (CAPE), and pollen on the hearts of rats which chronic nitric oxide synthase (NOS) inhibited through Nω-nitro-L-arginine methyl ester (L-NAME). Paraoxonase 1 (PON1), total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), asymmetric dimethylarginine (ADMA), and nuclear factor-κB (NF-κB) were analyzed on the heart. MATERIAL AND METHODS Sprague-Dawley rats were divided five groups of seven rats in every group; Group I: Control, Group II: L-NAME, Group III: L-NAME+propolis, Group IV: L-NAME+CAPE and Group V: L-NAME+pollen. L-NAME become dissolved in regular saline (0.9% NaCl w/v). The ethanolic extract of propolis (200 mg/kg/days, gavage), pollen (100 mg/kg/days, by gavage), CAPE (50 µM/kg/days, intraperitoneally), and the NOS inhibitor L-NAME (40 mg/kg, intraperitoneally) had been administered. RESULTS Blood pressure (BP) of rats treated with propolis, CAP,E and pollen statistically significant decreased. Decreasing in BP of the rats of pollen group was more than CAPE and propolis groups (P < .05). PON1 and TAS levels decreased in L-NAME-treated groups (P < .05), but ranges have been better in propolis, CAPE and pollen groups. TOS, ADMA and NF-κB levels increased (P < .05) in L-NAME group; however, these parameters were lower (P < .05) in propolis and CAPE groups (P < .05). CONCLUSIONS Vasorelaxant properties and free radical scavenging actions of propolis, CAPE, and pollen may reduce the oxidative stress and blood pressure in the rats chronic NOS inhibited through L-NAME.
Collapse
Affiliation(s)
- Betul Ozdemir
- Department of Cardiology, Faculty of Medicine, Nigde Ömer Halisdemir University , Nigde, Turkey
| | - Mehmet Fuat Gulhan
- Department of Medicinal and Aromatic Plants, Vocational School of Technical Sciences, Aksaray University , Aksaray, Turkey
| | - Engin Sahna
- Department of Pharmacology, Faculty of Medicine, Firat University , Elazig, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus , Nigde, Turkey
| |
Collapse
|
20
|
Wu X, Wang Y, Ren Z, Li L, Qian W, Chen Y, Ren W. Association between Growth Differentiation Factor-15 and Risk of Cardiovascular Diseases in Patients with Adult Growth Hormone Deficiency. Int J Endocrinol 2021; 2021:5921863. [PMID: 34394348 PMCID: PMC8363436 DOI: 10.1155/2021/5921863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Patients with adult growth hormone deficiency (AGHD) confer a heightened risk of cardiovascular disease and increased mortality because of metabolic disorders. Growth differentiation factor-15 (GDF-15) plays an important role in predicting metabolic abnormalities. We sought to investigate the correlation between GDF-15 and cardiovascular risk in AGHD patients. METHODS The study enrolled 80 AGHD patients and 80 healthy subjects. We analyzed the association between GDF-15 and some major biochemical indicators. The potential association between GDF-15 and cardiovascular disease risk was analyzed. RESULTS The AGHD group exhibited increased waist-hip ratio and high-sensitivity C-reactive protein (hs-CRP) and lipid levels compared with the healthy control group. Serum GDF-15 levels in AGHD group were elevated significantly compared with the control group (P < 0.001). GDF-15 levels were negatively associated with insulin-like growth factor-1 in AGHD group (P=0.006) and positively correlated with waist-to-hip ratio (P=0.018), triglycerides (P=0.007), and hs-CRP (P=0.046). In addition, GDF-15 was positively correlated with Framingham risk score significantly after adjustment for other factors (r = 0.497, P < 0.001). Moreover, GDF-15 was an independent risk factor for cardiovascular disease in AGHD patients after adjusting for traditional cardiovascular risk factors. CONCLUSION Elevated GDF-15 levels were significantly associated with cardiovascular risk factors and can be considered as a predictive biomarker of cardiovascular risk in AGHD patients.
Collapse
Affiliation(s)
- Xun Wu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunting Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyu Ren
- Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linman Li
- Department of Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjie Qian
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- General Practice, The 958 Hospital of the People's Liberation Army, Chongqing, China
| | - Wei Ren
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Tata CM, Sewani-Rusike CR, Oyedeji OO, Mahlakata F, Shauli M, Nkeh-Chungag BN. Senecio serratuloides extract prevents the development of hypertension, oxidative stress and dyslipidemia in nitric oxide-deficient rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:/j/jcim.ahead-of-print/jcim-2018-0073/jcim-2018-0073.xml. [PMID: 32045353 DOI: 10.1515/jcim-2018-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Background Hypertension is a silent killer with no obvious signs and symptoms; thus, it is crucial to prevent its development. Oxidative stress and hyperlipidemia are associated risk factors for developing hypertension. This study aimed at investigating the role of a crude extract of Senecio serratuloides in preventing the development of hypertension, oxidative stress and hyperlipidemia in a rat model of nitric oxide deficiency. Methods Female Wistar rats were co-treated with Nω-Nitro L-arginine methyl ester (L-NAME) (40 mg/kg) and the hydroethanolic extract of S. Serratuloides (HESS150 or HESS300 mg/kg) for 4 weeks. Twenty-hour urine samples were collected weekly during the study. At the end of the study serum, heart and kidneys were harvested for biochemical and histopathological analysis. Results The higher dose (300 mg/kg) of the extract was more effective in preventing increase in systolic (p<0.001) and diastolic (p<0.05) blood pressure. At the end of the treatment period HESS300 treated rats had significantly (p<0.01) higher concentration of creatinine (91.24 ± 6 mg/dL) in urine and significantly (6.36 ± 0.4 mg/24 h; 0.001) lower proteinuria compared to L-NAME control rats (55.75 ± 8 mg/dL and 18.92 ± 2 mg/24 h, respectively). Creatinine clearance and glomerular filtration rate were lower in the L-NAME control group compared to all treatment groups. HESS300 prevented L-NAME-induced decrease in serum angiotensin II concentration, significantly decreased malondialdehyde concentration in serum (p<0.05) and kidneys (p<0.001). It also significantly (p<0.001) decreased low-density lipoprotein concentration while increasing the concentration of high-density lipoprotein cholesterol. It showed cardio- and reno-protective effects and significantly (p<0.01) prevented collagen deposition in these target organs. Conclusion These findings demonstrate the potential of S. Serratuloides in protecting rats from developing hypertension, hyperlipidemia and oxidative stress.
Collapse
Affiliation(s)
- Charlotte Mungho Tata
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, p/bag x1,NMD Campus, Mthatha 5117, South Africa
| | - Constance Rufaro Sewani-Rusike
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, p/bag x1,NMD Campus, Mthatha 5117, South Africa
| | - Opeopluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice, 5700, South Africa
| | | | - Mathulo Shauli
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, p/bag x1,NMD Campus, Mthatha 5117, South Africa
| | | |
Collapse
|
22
|
Aluko EO, Adejumobi OA, Fasanmade AA. Peristrophe roxburghiana leaf extracts exhibited anti-hypertensive and anti-lipidemic properties in L-NAME hypertensive rats. Life Sci 2019; 234:116753. [PMID: 31419445 DOI: 10.1016/j.lfs.2019.116753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/06/2019] [Accepted: 08/11/2019] [Indexed: 01/11/2023]
Abstract
AIMS Hypertension is a global disease that has been combating the world health for ages. Peristrophe roxburghiana (PR) is used in traditional medicine to treat hypertension and other ailments. The present study examined phytochemical constituents, antioxidant activities and GC-MS analysis of extracts of PR leaf and also evaluated their anti-hypertensive and anti-lipidemic effects in NG-nitro-L-arginine methyl ester (L-NAME) hypertensive rats. METHODS Wistar rats were grouped into two groups: control and hypertensive. Hypertension was induced in the hypertensive group by oral gavage of 60 mg/kg b.w of L-NAME for 3 weeks. After induction, the hypertensive group was randomly sub-grouped into hypertensive, hypertensive treated and hypertensive untreated groups. These were orally gavaged respectively with 60 mg/kg b.w of L-NAME, 60 mg/kg b.w/day of L-NAME +200 mg/kg b.w of different extracts of PR (aqueous, ethanolic and methanolic extracts) and 60 mg/kg b.w of L-NAME +20 mg/kg b.w ramipril for 3 weeks. The blood pressure was measured by tail-cuff method at the third and sixth weeks. KEY FINDINGS The results showed that the extracts of PR significantly decrease blood pressure, pro-atherogenic lipids and atherogenic ratios in L-NAME hypertensive rats. White blood cells count, neutrophil count and creatinine level were also effectively decreased by the extracts. Furthermore, the extracts increase serum nitric oxide (NO) level, anti-atherogenic lipid, glutathione level, lymphocyte and platelet count in the rats. SIGNIFICANCE Extracts of PR leaf decrease blood pressure and increase NO level in L-NAME hypertensive rats and also corrected the hyperlipidemia and inflammatory response arising from the reduction in NO bioavailability.
Collapse
Affiliation(s)
- Esther Oluwasola Aluko
- Physiology Department, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Akwa-Ibom State, Nigeria.
| | | | | |
Collapse
|
23
|
Tata CM, Sewani-Rusike CR, Oyedeji OO, Gwebu ET, Mahlakata F, Nkeh-Chungag BN. Antihypertensive effects of the hydro-ethanol extract of Senecio serratuloides DC in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:52. [PMID: 30819180 PMCID: PMC6394053 DOI: 10.1186/s12906-019-2463-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/21/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Senecio serratuloides DC is used in folk medicine for treating hypertension, skin disorders, internal and external sores, rashes, burns and wounds. This study aimed at investigating the antihypertensive effects of the hydroethanol extract of S. serratuloides (HESS) in N-Nitro-L-arginine methyl ester (L-NAME) induced hypertension in rats. METHODS Acute toxicity of HESS was first determined to provide guidance on doses to be used in this study. Lorke's method was used to determine safety of the extract in mice. Female Wistar rats were treated orally once daily with L-NAME (40 mg/kg) for 4 weeks and then concomitantly with L-NAME (20 mg/kg) and plant extract (150 and 300 mg/kg), captopril (20 mg/kg) or saline as per assigned group for 2 weeks followed by a 2-week period of assigned treatments only. Blood pressure was monitored weekly. Lipid profile, nitric oxide, renin and angiotensin II concentrations were determined in serum while mineralocorticoid receptor concentration was quantified in the kidney homogenate. Nitric oxide (NO) concentration was determined in serum and cardiac histology performed. RESULTS HESS was found to be non-toxic, having a LD50 greater than 5000 mg/kg. Blood pressure increased progressively in all animals from the second week of L-NAME treatment. HESS treatment significantly and dose-dependently lowered systolic blood pressure (p < 0.001), diastolic blood pressure (p < 0.01), low density lipoprotein cholesterol (p < 0.01) and triglycerides (p < 0.01). It significantly prevented L-NAME induced decrease in serum angiotensin II (p < 0.01), high density lipoprotein cholesterol (p < 0.001) and serum nitric oxide concentrations (p < 0.001). HESS also significantly (p < 0.01) prevented collagen deposition in cardiac tissue. CONCLUSION The hydro-ethanol extract of Senecio serratuloides showed antihypertensive, antihyperlipidemic and cardioprotective effects in rats thus confirming its usefulness in traditional antihypertensive therapy and potential for antihypertensive drug development.
Collapse
Affiliation(s)
- Charlotte Mungho Tata
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Mthatha, 5117 South Africa
| | | | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, PBX1314, Alice, Eastern Cape Province 5700 South Africa
| | - Ephraim Tobela Gwebu
- Department of Chemistry, Faculty of Science and Technology, Rusangu University, Monze, Zambia
| | | | | |
Collapse
|
24
|
Flavonoid Extract from Propolis Inhibits Cardiac Fibrosis Triggered by Myocardial Infarction through Upregulation of SIRT1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4957573. [PMID: 30050588 PMCID: PMC6040284 DOI: 10.1155/2018/4957573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/15/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022]
Abstract
The flavonoid extract from propolis (FP) has been shown to protect against heart injury induced by isoproterenol. However, the effect of FP on cardiac fibrosis after myocardial infarction (MI) as well as the underlying mechanisms is not known. In the present study, we used biochemical and histological approaches to examine the effects of FP on MI-induced cardiac fibrosis and the related mechanisms in a rat MI model and in angiotensin II- (Ang II-) treated rat cardiac fibroblasts (CFs). In vivo, MI was generated by ligation of the left anterior descending coronary artery of rats, which remained for 4 weeks. Rats were randomly divided into the sham, MI, FP (12.5 mg/kg/d), and MI+FP groups. We found that FP treatment improved heart function, reduced cardiac fibrosis, and downregulated the expression of fibrosis-related factors including collagen I, collagen III, matrix metalloproteinase-2 (MMP-2), MMP-9, transforming growth factor-β1 (TGF-β1), and p-Smad2/3, which coincided with the upregulated expression of silent information regulator 1 (SIRT1) in the hearts of MI rats. Our in vitro experiments showed that FP inhibited the proliferation and migration of primary cultured rat CFs and downregulated the expression of the above-mentioned fibrosis-related factors in Ang II-stimulated CFs. In addition, FP can decrease ROS production induced by MI and Ang II in vivo and vitro. Notably, silencing SIRT1 counteracted the FP-induced effects on CFs treated with Ang II. We conclude that FP inhibits MI-induced cardiac fibrosis through SIRT1 activation and that FP represents a potential promising drug for the treatment of MI patients in the clinic.
Collapse
|
25
|
Ekhteiari Salmas R, Durdagi S, Gulhan MF, Duruyurek M, Abdullah HI, Selamoglu Z. The effects of pollen, propolis, and caffeic acid phenethyl ester on tyrosine hydroxylase activity and total RNA levels in hypertensive rats caused by nitric oxide synthase inhibition: experimental, docking and molecular dynamic studies. J Biomol Struct Dyn 2017; 36:609-620. [PMID: 28132600 DOI: 10.1080/07391102.2017.1288660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mehmet Fuat Gulhan
- Department of Medicinal and Aromatic Plants, Vocational School of Technical Sciences, Aksaray, Turkey
| | - Merve Duruyurek
- Faculty of Arts and Science, Department of Biotechnology, Omer Halisdemir University, Nigde 51240, Turkey
| | - Huda I. Abdullah
- Department of Pharmacology, New York Medical College, Valhalla 10595, NY, USA
| | - Zeliha Selamoglu
- Faculty of Arts and Science, Department of Biotechnology, Omer Halisdemir University, Nigde 51240, Turkey
| |
Collapse
|
26
|
El-Anwar MW, Abdelmonem S, Abdelsameea AA, AlShawadfy M, El-Kashishy K. The Effect of Propolis in Healing Injured Nasal Mucosa: An Experimental Study. Int Arch Otorhinolaryngol 2016; 20:222-5. [PMID: 27413403 PMCID: PMC4942295 DOI: 10.1055/s-0036-1579664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023] Open
Abstract
Introduction
Mechanical trauma to the nasal mucosa increases the risk of synechia formation, especially after chronic rhinosinusitis and nasal surgeries. Objective
This study was carried to assess the effect of propolis administration in healing injured nasal mucosa in rats. Methods
We randomly divided eighteen rats into three equal experimental groups: (1) non-treated group; (2) gum tragacanth (suspending agent for propolis) treated group; and (3) propolis treated group. The non-treated group received no treatment for 15 days. The second group received gum tragacanth administration (5 ml/kg, orally) once daily for 15 days. The third group received propolis suspension orally at a dose of 100 mg/kg once daily for 15 days. At the beginning of this study, we induced unilateral mechanical nasal trauma on the right nasal mucosa of all rats in the three groups using a brushing technique. A pathologist stained tissue samples using hematoxylin and examined eosin by using a light microscope. Results
The severity of inflammation was milder with the absence of ulcerations in the propolis treated group compared with the non-treated and gum tragacanth groups. Goblet cell and ciliated cell loss was substantially lower in patients treated with propolis compared with groups without treatment and those treated with gum tragacanth. Conclusion
Propolis decreased inflammation and enhanced healing of wounds of the nasal mucosa in rats.
Collapse
Affiliation(s)
- Mohammad Waheed El-Anwar
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Said Abdelmonem
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Abdelsameea
- Department of Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed AlShawadfy
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Kamal El-Kashishy
- Department of Pathology, School of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
27
|
Henshaw FR, Bolton T, Nube V, Hood A, Veldhoen D, Pfrunder L, McKew GL, Macleod C, McLennan SV, Twigg SM. Topical application of the bee hive protectant propolis is well tolerated and improves human diabetic foot ulcer healing in a prospective feasibility study. J Diabetes Complications 2014; 28:850-7. [PMID: 25239451 DOI: 10.1016/j.jdiacomp.2014.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/07/2014] [Accepted: 07/30/2014] [Indexed: 01/13/2023]
Abstract
AIMS Propolis is a naturally occurring anti-inflammatory bee derived protectant resin. We have previously reported that topically applied propolis reduces inflammation and improves cutaneous ulcer healing in diabetic rodents. The aim of this study was to determine if propolis shows efficacy in a pilot study of human diabetic foot ulcer (DFU) healing and if it is well tolerated. MATERIALS Serial consenting subjects (n=24) with DFU ≥4 weeks' duration had topical propolis applied at each clinic review for 6 weeks. Post-debridement wound fluid was analyzed for viable bacterial count and pro-inflammatory MMP-9 activity. Ulcer healing data were compared with a matched control cohort of n=84 with comparable DFU treated recently at the same center. RESULTS Ulcer area was reduced by a mean 41% in the propolis group compared with 16% in the control group at week 1 (P<0.001), and by 63 vs. 44% at week 3, respectively (P<0.05). In addition, 10 vs. 2% (P<0.001), then 19 vs. 12% (P<0.05) of propolis treated vs. control ulcers had fully healed by weeks 3 and 7, respectively. Post-debridement wound fluid active MMP-9 was significantly reduced, by 18.1 vs. 2.8% week 3 from baseline in propolis treated ulcers vs. controls (P<0.001), as were bacterial counts (P<0.001). No adverse effects from propolis were reported. CONCLUSIONS Topical propolis is a well-tolerated therapy for wound healing and this pilot in human DFU indicates for the first time that it may enhance wound closure in this setting when applied weekly. A multi-site randomized controlled of topical propolis now appears to be warranted in diabetic foot ulcers.
Collapse
Affiliation(s)
- Frances R Henshaw
- Sydney Medical School, University of Sydney, Sydney, Australia; Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Thyra Bolton
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Vanessa Nube
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Anita Hood
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Danielle Veldhoen
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Louise Pfrunder
- Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Genevieve L McKew
- Sydney Medical School, University of Sydney, Sydney, Australia; Department of Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Colin Macleod
- Sydney Medical School, University of Sydney, Sydney, Australia; Department of Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Susan V McLennan
- Sydney Medical School, University of Sydney, Sydney, Australia; Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stephen M Twigg
- Sydney Medical School, University of Sydney, Sydney, Australia; Diabetes Centre, Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
28
|
Moosavi SJ, Habibian M, Peeri M, Azarbayjani MA, Nabavi SM, Nabavi SF, Sureda A. Protective effect ofFerula gummosahydroalcoholic extract against nitric oxide deficiency-induced oxidative stress and inflammation in rats renal tissues. Clin Exp Hypertens 2014; 37:136-41. [PMID: 24786685 DOI: 10.3109/10641963.2014.913609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|