1
|
Wang Z, Song S, Zhang H, Liu X, A Siegel R, Calvin Sun C, Wang C. Impact of solid content on the bulk properties of lyophilized powders. Int J Pharm 2025; 670:125081. [PMID: 39710308 DOI: 10.1016/j.ijpharm.2024.125081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Interest in oral delivery of biological drug products, commonly prepared through lyophilization, is surging. Typically, low solid content solutions are employed for lyophilization to enhance mass transfer and minimize drying time. Yet, this approach often results in lyophilized powders with low bulk density and poor flowability, challenging downstream processing steps that are required for oral product development. Increasing solid content in a starting solution can, in theory, increase the density of lyophilized cakes and powders post-milling. However, the effectiveness of improving powder density and flowability using a higher solid content has not been experimentally verified. In addition, the impact of using a higher solid content on other physicochemical properties of lyophilized materials remains uncertain. To address the knowledge gaps, we lyophilized three common bulk cryoprotectants at two different solid contents (5% and 10%) and systematically evaluated their solid-state properties, bulk density, flowability, compaction characteristics, and physical stability. We found that powders prepared at a higher solid content (10%) exhibited higher bulk density, but they still failed to meet the requirements for easy oral product development. A change in solid content also leads todistinct solid-state properties, compaction behaviors, and stability, highlighting the importance of thorough characterization of lyophilized materials when solid content is changed in the course of oral solid dosage formulation development.
Collapse
Affiliation(s)
- Zijian Wang
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sichen Song
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Xiaohong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ronald A Siegel
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Changquan Calvin Sun
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
2
|
Lura V, Lura A, Breitkreutz J, Klingmann V. The revival of the mini-tablets: Recent advancements, classifications and expectations for the future. Eur J Pharm Biopharm 2025:114655. [PMID: 39922507 DOI: 10.1016/j.ejpb.2025.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Mini-tablets have recently raised huge interest in pharmaceutical industry. The present review aims to identify the rational, the opportunities and challenges of this emerging small solid drug dosage form by a structured literature review following the PRISMA algorithm. In total, more than 5,000 literature and patent sources have been found starting with the very first in the 60 s of the past century, followed by the first multiparticular products using mini-tablets with pancreatin (Panzytrat® by the former BASF subsidiary Knoll/Nordmark) authorized in 1985. There seems to be a second boost of common interest in the 2000 s when clinical studies demonstrated that one or more mini-tablets could enable superior drug administration even in very young patients including neonates over the former gold standard, a liquid drug preparation. Several pharmaceutical companies immediately started clinical development programs using the mini-tablet concept and the first products have been recently authorized by the competent authorities. Superiority was given as the mini-tablets ease the swallowing procedure compared to conventional tablets, enable various modified drug release opportunities including taste-masking by film-coating technology and provide excellent drug stability compared to liquid oral dosage forms. Due to these product attributes they are particularly beneficial to children and their caregivers. Furthermore, there is potential for precise individual drug dosing by counting adequate amounts of the multiple drug carriers. Most recently, two novel products with different concepts were authorized by the EMA and entered the market which are highlighted in this review: the first orodispersible mini-tablet with enalapril maleate for congenital heart failure (Aqumeldi® from Proveca Pharma) and the first single unit mini-tablet with matrix-type controlled melatonin release for insomnia (Slenyto® from Neurim Pharmaceuticals). Our review reveals, that the majority of the published scientific papers use co-processed, ready-to-use excipients for the orodispersible mini-tablet formulations. However, traditional fillers such as microcrystalline cellulose or lactose have also been used for immediate release mini-tablets after adding a (super)disintegrant and a lubricant. The manufacturing of mini-tablets is conducted on conventional rotary tablet presses, predominantly equipped with multi-tip toolings to improve the yield or production speed. Scaling-up has been successfully realized from compaction simulators to pilot and production scale. Film-coatings enabling gastric resistance, taste masking or sustained-release properties have been realized in both fluid-bed and drum coaters using the same polymers as for conventional tablets. There is still a significant lack in regulatory guidance despite the recent success of the mini-tablet concept, starting from suitable characterization methods in the pharmacopoeias up to the design and conduct of clinical studies on mini-tablets.
Collapse
Affiliation(s)
- Valentinë Lura
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 140225 Düsseldorf, Germany
| | - Ard Lura
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 140225 Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 140225 Düsseldorf, Germany
| | - Viviane Klingmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstrasse 540225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Marcozzi T, Baviriseaty S, Yawman P, Zhang S, Vervaet C, Vanhoorne V, Andersen SK. Synchrotron computed tomography combined with AI-based image analysis for the advanced characterization of spray dried amorphous solid dispersion particles. J Pharm Sci 2025; 114:530-543. [PMID: 39549833 DOI: 10.1016/j.xphs.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Particle engineering aims to design particles with specific properties. A deeper understanding of how particle formation relates to material attributes and process conditions are critical to strengthen knowledge on powder properties and enhance modeling capabilities. New, alternative powder characterization techniques can offer novel and more accurate measures for particle properties, giving more advanced characterization information. In this context, a case study is presented in which spray dried amorphous solid dispersion powders produced by modifying process conditions were characterized by both well-established compendial methods (i.e., laser light diffraction, SEM image analysis, bulk and tapped density, and gas adsorption), as well as a new method combining synchrotron computed tomography (SyncCT) with AI-based image analysis. SyncCT was used to classify and quantify the spray dried particles as hollow spheres and solid particles, giving a more detailed quality measure of the particle shape, as they impact downstream processing differently. Moreover, hollow particle wall thicknesses, as well as internal and external particle surface areas were measured by SyncCT. Altogether, powder characterization data from SyncCT show similar trends to that obtained from compendial techniques and giving additional quality measure regarding particle shape, showing promise of this new and advanced characterization method.
Collapse
Affiliation(s)
- Tatiana Marcozzi
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium; Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Sruthika Baviriseaty
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Phillip Yawman
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Shawn Zhang
- DigiM Solution LLC., 500 West Cummings Park, Suite 3650, Woburn, MA 01801, United States
| | - Chris Vervaet
- Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Valérie Vanhoorne
- Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | | |
Collapse
|
4
|
Piccione PM, Lang MN, Amado Becker F, Hofstetter A, Marchal S, Ly K, Legras V, Ewert A, Kohler D, Maurer R, Willecke N, Burwood R, Kroll P. Computer-Aided formulation design for pharmaceutical drug product development, part 01: Materials exploration through a visualization tool. Int J Pharm 2024; 667:124891. [PMID: 39481812 DOI: 10.1016/j.ijpharm.2024.124891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
An interactive tool has been developed to help design oral solid dosage form formulations. The tool enables quantitative explorations and comparisons of physical, bulk, and mechanical properties, and takes into account functional characteristics as well. In this manner, comparisons and clustering of both excipients and APIs can be carried out. These comparisons enable the generation of alternatives as well as surrogate identification, so as to spare resources and material. Multiple data sources were merged to create a "joint" data table with all relevant properties. Four main workflow activities are supported: Explore Materials, Search Similar APIs, Search Similar Excipients and Search Material Clusters. Multi-dimensional filtering can be superimposed to each functionality. Suggested visualizations are made particularly accessible by providing them as "standard plots". The underlying philosophy is to empower formulation scientists to explore options, rather than prescribe decisions on exclusively mathematical grounds. The tool described here is the first step towards a holistic optimization incorporating predictions of mixture properties. Methodology of use is illustrated through three material selection application examples.
Collapse
Affiliation(s)
- Patrick M Piccione
- F. Hoffmann-La Roche AG, 4070 Basel, Switzerland; dsm-firmenich, Route de la Plaine 125, 1283 La Plaine, Switzerland.
| | - Moritz N Lang
- F. Hoffmann-La Roche AG, 4070 Basel, Switzerland; Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | | | | | | | - Kevin Ly
- F. Hoffmann-La Roche AG, 4070 Basel, Switzerland; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | - David Kohler
- F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Reto Maurer
- F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | | | - Ryan Burwood
- F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Paul Kroll
- F. Hoffmann-La Roche AG, 4070 Basel, Switzerland; Muvon Therapeutics AG, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Beccaro L, Facco P, Dhenge RM, Khala MJ, Cenci F, Bezzo F, Barolo M. Accelerating pharmaceutical tablet development by transfer of powder compaction equipment across types and scales. Int J Pharm 2024; 667:124904. [PMID: 39491653 DOI: 10.1016/j.ijpharm.2024.124904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Roller compaction is a key unit operation in a dry granulation line for pharmaceutical tablet manufacturing. During product development, one would like to find the roller compactor (RC) settings that are required to achieve a desired ribbon solid fraction. These settings can be determined from the compression profile of the powder mixture being compacted and a mathematical model that interprets it. However, establishing compression profiles in an RC requires relatively large amounts of powder, which are expensive and may not be available during drug development. As a cost-effective alternative to an RC, a compactor simulator (CS) can be used, which is a small-scale equipment that uses minimal amounts of powder to build the compression profile. However, since the working principles of a CS and an RC are different, the compression profiles obtained from the two devices for a given powder are also different. In this study, we propose a transfer learning approach that allows the RC compression profile of a given powder to be easily predicted from the compression profile obtained in a CS for the same powder. Based on the well-known Johanson model and on the mass correction factor theory, we examine the compaction behavior of six formulations, two of which including active ingredients, and we find that the mass correction factor does not depend significantly on the powder being compacted. We develop a simple, generalized correlation (transfer model) that allows the mass correction factor to be predicted solely as a function of the pressure at which the compaction is carried out. By using the proposed transfer model, the prediction of the RC compression profiles for the validation powders is significantly improved over the case where a constant value of the mass correction factor is used.
Collapse
Affiliation(s)
- Luca Beccaro
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova PD, 35131, Italy
| | - Pierantonio Facco
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova PD, 35131, Italy
| | | | - Marv J Khala
- GSK Ware Research and Development, Harris's Lane SG12 0GX, Ware, UK
| | - Francesca Cenci
- GSK Ware Research and Development, Harris's Lane SG12 0GX, Ware, UK
| | - Fabrizio Bezzo
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova PD, 35131, Italy
| | - Massimiliano Barolo
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova PD, 35131, Italy.
| |
Collapse
|
6
|
Kossor C, Bhat R, Davé RN. Assessing processability of milled HME extrudates: Consolidating the effect of extrusion temperature, drug loading, and particle size via Non-dimensional cohesion. Int J Pharm 2024; 666:124833. [PMID: 39414188 DOI: 10.1016/j.ijpharm.2024.124833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
The downstream processability of Hot Melt Extrusion (HME) Amorphous Solid Dispersions (ASD), an underexplored topic of importance, was assessed through a multi-faceted particle engineering approach. Extrudates, comprised of griseofulvin (GF), a model poorly water-soluble drug, and hydroxypropyl cellulose (HPC), were prepared at four drug concentrations and three HME temperature profiles to yield cases with and without residual crystallinity and subsequently milled to five sieve cuts ranging from < 45 μm to 355 - 500 μm. Solid state characterization was performed with XRPD, FT-IR, and TGA. Particle scale properties of the milled extrudates were evaluated including particle size, density, surface energy, and morphologies imaged via SEM. It was observed that regardless of sieve cut size, drug concentration and HME conditions impacted the flowability trends, quantified via Flow Function Coefficient (FFC) and bulk density. As a novelty, the effects of various process parameters and drug loadings were consolidated into a dimensionless interparticle cohesion measure, granular Bond Number (Bog), to better correlate them with bulk powder properties. The significant contrast in particle morphologies, particle size, and densities among selected cases demonstrated that particle size alone should not be the sole consideration when correlating particle scale to bulk powder scale properties of milled extrudates. Instead, the HME temperature profile and ASD drug loading may be more suitable parameters affecting the bulk powder properties of the milled extrudates.
Collapse
Affiliation(s)
- Christopher Kossor
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Roopal Bhat
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
7
|
Salehian M, Moores J, Goldie J, Ibrahim I, Torrecillas CM, Wale I, Abbas F, Maclean N, Robertson J, Florence A, Markl D. A hybrid system of mixture models for the prediction of particle size and shape, density, and flowability of pharmaceutical powder blends. Int J Pharm X 2024; 8:100298. [PMID: 39582930 PMCID: PMC11584682 DOI: 10.1016/j.ijpx.2024.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
This paper presents a system of hybrid models that combine both mechanistic and data-driven approaches to predict physical powder blend properties from their raw component properties. Mechanistic, probabilistic models were developed to predict the particle size and shape, represented by aspect ratio, distributions of pharmaceutical blends using those of the raw components. Additionally, the accuracy of existing mixture rules for predicting the blend's true density and bulk density was assessed. Two data-driven models were developed to estimate the mixture's tapped density and flowability (represented by the flow function coefficient, FFC) using data from 86 mixtures, which utilized the principal components of predicted particle size and shape distributions in combination with the true density, and bulk density as input data, saving time and material by removing the need for resource-intensive shear testing for raw components. A model-based uncertainty quantification technique was designed to analyse the precision of model-predicted FFCs. The proposed particle size and shape mixture models outperformed the existing approach (weighted average of distribution percentiles) in terms of prediction accuracy while providing insights into the full distribution of the mixture. The presented hybrid system of models accurately predicts the mixture properties of different formulations and components with often R 2 > 0.8 , utilising raw material properties to reduce time and material resources on preparing and characterising blends.
Collapse
Affiliation(s)
- Mohammad Salehian
- Digital Medicines Manufacturing (DM) Research Centre, Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jonathan Moores
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jonathan Goldie
- Digital Medicines Manufacturing (DM) Research Centre, Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Isra' Ibrahim
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Carlota Mendez Torrecillas
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ishwari Wale
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Faisal Abbas
- Digital Medicines Manufacturing (DM) Research Centre, Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Natalie Maclean
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John Robertson
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Alastair Florence
- Digital Medicines Manufacturing (DM) Research Centre, Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Daniel Markl
- Digital Medicines Manufacturing (DM) Research Centre, Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
8
|
Zakowiecki D, Edinger P, Papaioannou M, Wagner M, Hess T, Paszkowska J, Staniszewska M, Myslitska D, Smolenski M, Dobosz J, Garbacz G, Haznar Garbacz D. Development and Evaluation of Lactose-Free Single-Unit and Multiple-Unit Preparations of a BCS Class II Drug, Rivaroxaban. Pharmaceutics 2024; 16:1485. [PMID: 39598607 PMCID: PMC11597082 DOI: 10.3390/pharmaceutics16111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The aim of the present study was to develop lactose-free formulations of rivaroxaban, a novel oral anticoagulant used for the treatment and prevention of blood clotting. As a BCS Class II drug, rivaroxaban is characterized by poor solubility in aqueous media, posing a significant formulation challenge. Methods: To address this, phosphate-based excipients were employed to prepare both traditional single-unit dosage forms (tablets) and modern multiple-unit pellet systems (MUPS). These formulations were successfully developed and thoroughly evaluated for their physical properties and performance. Results: The resulting formulations demonstrated very good mechanical strength, including appropriate hardness and friability, alongside strong chemical stability. Their dissolution profiles met the requirements of the compendial monograph for Rivaroxaban Tablets and were comparable to those of the reference product, Xarelto® film-coated tablets. Conclusions: This study shows the potential for producing effective, stable, and patient-friendly medications that meet the needs of contemporary society, where an increasing number of individuals suffer from lactose intolerance or seek vegan-friendly alternatives.
Collapse
Affiliation(s)
- Daniel Zakowiecki
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany (T.H.)
| | - Peter Edinger
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany (T.H.)
| | - Markos Papaioannou
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany (T.H.)
| | - Michael Wagner
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany (T.H.)
| | - Tobias Hess
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany (T.H.)
| | - Jadwiga Paszkowska
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland (G.G.)
| | | | - Daria Myslitska
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland (G.G.)
| | - Michal Smolenski
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland (G.G.)
| | - Justyna Dobosz
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland (G.G.)
| | - Grzegorz Garbacz
- Physiolution Polska sp. z o.o., Skarbowcow 81/7, 53-025 Wroclaw, Poland (G.G.)
- Physiolution GmbH, Walther-Rathenau-Strasse 49a, 17489 Greifswald, Germany
| | - Dorota Haznar Garbacz
- Department of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Gamble JF, Al-Obaidi H. Past, Current, and Future: Application of Image Analysis in Small Molecule Pharmaceutical Development. J Pharm Sci 2024; 113:3012-3027. [PMID: 39153662 DOI: 10.1016/j.xphs.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The often-perceived limitations of image analysis have for many years impeded the widespread application of such systems as first line characterisation tools. Image analysis has, however, undergone a notable resurgence in the pharmaceutical industry fuelled by developments system capabilities and the desire of scientists to characterize the morphological nature of their particles more adequately. The importance of particle shape as well as size is now widely acknowledged. With the increasing use of modelling and simulations, and ongoing developments though the integration of machine learning and artificial intelligence, the utility of image analysis is increasing significantly driven by the richness of the data obtained. Such datasets provide means to circumvent the requirement to rely on less informative descriptors and enable the move towards the use of whole distributions. Combining the improved particle size and shape measurement and description with advances in modelling and simulations is enabling improved means to elucidate the link between particle and bulk powder properties. In addition to improved capabilities to describe input materials, approaches to characterize single components within multicomponent systems are providing scientists means to understand how their material may change during manufacture thus providing a means to link the behaviour of final dosage forms with the particle properties at the point of action. The aim is to provide an overview of image analysis and update readers with innovations and capabilities to other methods in the small molecule arena. We will also describe the use of AI for the improved analysis using image analysis.
Collapse
Affiliation(s)
- John F Gamble
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK; Department of Pharmacy, University of Reading, Reading RG6 6AH, UK.
| | - Hisham Al-Obaidi
- Department of Pharmacy, University of Reading, Reading RG6 6AH, UK
| |
Collapse
|
10
|
Zhou S, Wang Y, Li Z, Wu F, Hong Y, Shen L, Lin X. Fingerprinting of physical manufacturing properties of different acids for effervescent systems. Pharm Dev Technol 2024; 29:649-662. [PMID: 38864367 DOI: 10.1080/10837450.2024.2367519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
The study aimed to fingerprint the physical manufacturing properties of five commonly used acid sources in effervescent systems for designing the formulation and process of such systems. The hygroscopicity, texture properties, rheological torque, compressibility, tabletability, etc., were investigated to inspect 'powder direct compression (DC)' and 'wet granulation and compression' properties of citric (CA), tartaric (TA), malic (MA), fumaric (FA), and adipic acid (AA). The DC ability was evaluated by the SeDeM expert system. The results indicated that all acid powders failed to meet flowability requirements for DC, and plastic deformation dominated during compression. Furthermore, CA exhibited strong hygroscopicity and punch sticking, while MA demonstrated the best tabletability. TA had a large wet granulation space and was relatively the most suitable for DC. AA was extremely hygroscopic, and its flowability improved significantly as particle size increased. Finally, FA displayed the lowest hygroscopicity and ejection force as well as great compressibility and wet granulation space, and did not exhibit punch sticking, while the granule fragments dissolved slowly during disintegration. Generally speaking, the formulation or granulation affected the tabletability, indicating that pairing with other acids or suitable fillers could potentially improve its disadvantages. These multidimensional assessments effectively reduce the pre-exploration and enhance the efficiency of the development of effervescent systems.
Collapse
Affiliation(s)
- Shiyi Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yiting Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yanlong Hong
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
11
|
Mareczek L, Riehl C, Harms M, Reichl S. Analysis of the impact of material properties on tabletability by principal component analysis and partial least squares regression. Eur J Pharm Sci 2024; 200:106836. [PMID: 38901784 DOI: 10.1016/j.ejps.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Principal component analysis (PCA) and partial least squares regression (PLS) were combined in this study to identify key material descriptors determining tabletability in direct compression and roller compaction. An extensive material library including 119 material descriptors and tablet tensile strengths of 44 powders and roller compacted materials with varying drug loads was generated to systematically elucidate the impact of different material descriptors, raw API and filler properties as well as process route on tabletability. A PCA model was created which highlighted correlations between different powder descriptors and respective characterization methods and, thus, can enable reduction of analyses to save resources to a certain extent. Subsequently, PLS models were established to identify key material attributes for tabletability such as density and particle size but also surface energy, work of cohesion and wall friction, which were for the first time demonstrated by PLS as highly relevant for tabletability in roller compaction and direct compression. Further, PLS based on extensive material characterization enabled the prediction of tabletability of materials unknown to the model. Thus, this study highlighted how PCA and PLS are useful tools to elucidate the correlations between powder and tabletability, which will enable more robust prediction of manufacturability in formulation development.
Collapse
Affiliation(s)
- Lena Mareczek
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig 38106, Germany; Department of Orals Development, Merck Healthcare KGaA, Darmstadt 64293, Germany
| | - Carolin Riehl
- Department of Orals Development, Merck Healthcare KGaA, Darmstadt 64293, Germany.
| | - Meike Harms
- Department of Orals Development, Merck Healthcare KGaA, Darmstadt 64293, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig 38106, Germany.
| |
Collapse
|
12
|
Mohylyuk V. Dwell time on tableting: dwell time according to force versus geometric dwell time. Pharm Dev Technol 2024; 29:719-726. [PMID: 39046222 DOI: 10.1080/10837450.2024.2384446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Dwell time is an important parameter responsible for the material deformation and the mechanical and biopharmaceutical properties of the tablet. Thus, it is widely used for scale-up purposes. The geometric dwell time (GDT) can be assumed based on the shape of the punch head and the diameter and speed of the turret. This research is aimed to compare compaction simulator-recorded dwell time according to force (DTF) and the GDT calculated for the simulated rotary tablet press using the microcrystalline cellulose and calcium phosphate mixtures (CEOLUS™ UF-711 and DI-CAFOS® A60) in different proportions. Tablets were prepared, and DTF was analyzed with a compaction simulator (STYL'One Nano and Alix software) upon simulating a small rotary press at 70 rpm and a compression pressure of 10-50 kN (100-500 MPa). While GDT comprised of 14.4 ms, DTF was compression force and formulation dependent. The differences between the DTF values of the formulations decreased as the compression force increased, which was most pronounced at compression forces of 10 and 15 kN.
Collapse
Affiliation(s)
- Valentyn Mohylyuk
- Leading Research Group, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| |
Collapse
|
13
|
Leane M. Manufacturing classification system (MCS): enabling better understanding of oral solid dosage formulation design. Pharm Dev Technol 2024; 29:393-394. [PMID: 38738506 DOI: 10.1080/10837450.2024.2354416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Affiliation(s)
- Michael Leane
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| |
Collapse
|
14
|
Leane M, Pitt K, Reynolds G, Tantuccio A, Moreton C, Crean A, Kleinebudde P, Carlin B, Gamble J, Gamlen M, Stone E, Kuentz M, Gururajan B, Khimyak YZ, Van Snick B, Andersen S, Misic Z, Peter S, Sheehan S. Ten years of the manufacturing classification system: a review of literature applications and an extension of the framework to continuous manufacture. Pharm Dev Technol 2024; 29:395-414. [PMID: 38618690 DOI: 10.1080/10837450.2024.2342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The MCS initiative was first introduced in 2013. Since then, two MCS papers have been published: the first proposing a structured approach to consider the impact of drug substance physical properties on manufacturability and the second outlining real world examples of MCS principles. By 2023, both publications had been extensively cited by over 240 publications. This article firstly reviews this citing work and considers how the MCS concepts have been received and are being applied. Secondly, we will extend the MCS framework to continuous manufacture. The review structure follows the flow of drug product development focussing first on optimisation of API properties. The exploitation of links between API particle properties and manufacturability using large datasets seems particularly promising. Subsequently, applications of the MCS for formulation design include a detailed look at the impact of percolation threshold, the role of excipients and how other classification systems can be of assistance. The final review section focusses on manufacturing process development, covering the impact of strain rate sensitivity and modelling applications. The second part of the paper focuses on continuous processing proposing a parallel MCS framework alongside the existing batch manufacturing guidance. Specifically, we propose that continuous direct compression can accommodate a wider range of API properties compared to its batch equivalent.
Collapse
Affiliation(s)
- Michael Leane
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Gavin Reynolds
- Oral Product Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Anthony Tantuccio
- Technology Intensification, Hovione LLC, East Windsor, New Jersey, USA
| | | | - Abina Crean
- SSPC, the SFI Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Peter Kleinebudde
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brian Carlin
- Owner, Carlin Pharma Consulting, Lawrenceville, New Jersey, USA
| | - John Gamble
- Drug Product Development, Bristol Myers Squibb, Moreton, UK
| | - Michael Gamlen
- Chief Scientific Officer, Gamlen Tableting Ltd, Heanor, UK
| | - Elaine Stone
- Consultant, Stonepharma Ltd. ATIC, Loughborough, UK
| | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Muttenz, Switzerland
| | - Bindhu Gururajan
- Pharmaceutical Development, Novartis Pharma AG, Basel, Switzerland
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Sune Andersen
- Oral Solids Development, Drug Product Development, JnJ Innovative Medicine, Beerse, Belgium
| | - Zdravka Misic
- Innovation Research and Development, dsm-firmenich, Kaiseraugst, Switzerland
| | - Stefanie Peter
- Research and Development Division, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Stephen Sheehan
- External Development and Manufacturing, Alkermes Pharma Ireland Limited, Dublin 4, Ireland
| |
Collapse
|
15
|
Moldovan AA, Maloney AGP. Surface Analysis-From Crystal Structures to Particle Properties. CRYSTAL GROWTH & DESIGN 2024; 24:4160-4169. [PMID: 38766640 PMCID: PMC11099916 DOI: 10.1021/acs.cgd.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Understanding the surface properties of particles is crucial for optimizing the performance of formulated products in various industries. However, acquiring this understanding often requires expensive trial-and-error studies. Here, we present advanced surface analysis tools that enable the visualization and quantification of chemical and topological information derived from crystallographic data. By employing functional group analysis, roughness calculations, and statistical interaction data, we facilitate direct comparisons of surfaces. We further demonstrate the practicality of our approach by correlating the sticking propensity of distinct ibuprofen morphologies with surface and particle descriptors calculated from a single crystal structure. Our findings support and expand upon previous work, demonstrating that the presence of a carboxylic acid group on the {011} facet leads to significant differences in particle properties and explains the higher electrostatic potential observed in the block-like morphology. While our surface analysis tools are not intended to replace the importance of chemical intuition and expertise, they provide valuable insights for formulators and particle engineers, facilitating informed, data-driven decisions to mitigate formulation risks. This research represents a significant step toward a comprehensive understanding of particle surfaces and their impact on products.
Collapse
Affiliation(s)
| | - Andrew G. P. Maloney
- The Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.
| |
Collapse
|
16
|
Polak P, Sinka IC, Reynolds GK, Roberts RJ. Successful Formulation Window for the design of pharmaceutical tablets with required mechanical properties. Int J Pharm 2024; 650:123705. [PMID: 38110016 DOI: 10.1016/j.ijpharm.2023.123705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Pharmaceutical tablet formulations combine the active ingredient with processing aids and functional components. This paper evaluates compressibility based predictive models for binary and ternary formulations to establish an acceptable range of tablet compression parameters that satisfy prescribed quality target criteria for tablets including minimum tablet strength and processing constraints such as maximum ejection stress and maximum compaction pressure. The concept of Successful Formulation Window (SFW) is introduced. A methodology is proposed to determine the SFW for a given formulation based on compaction simulator data collected for individual formulation components. The methodology is validated for binary and ternary mixtures and lubricated formulations. The SFW analysis was developed to support tablet formulation design to meet mechanical requirements.
Collapse
Affiliation(s)
- P Polak
- School of Engineering, University of Leicester, UK
| | - I C Sinka
- School of Engineering, University of Leicester, UK.
| | - G K Reynolds
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| | - R J Roberts
- Oral Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
17
|
Clarke J, Gamble JF, Jones JW, Tobyn M, Ingram A, Greenwood R. Determining the Impact of Roller Compaction Processing Conditions on Granulate and API Properties: Impact of Formulation API Load. AAPS PharmSciTech 2024; 25:24. [PMID: 38267745 DOI: 10.1208/s12249-024-02744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Previous work demonstrated that roller compaction of a 40%w/w theophylline-loaded formulation resulted in granulate consisting of un-compacted fractions which were shown to constitute between 34 and 48%v/v of the granulate dependent on processing conditions. The active pharmaceutical ingredient (API) primary particle size within the un-compacted fraction was also shown to have undergone notable size reduction. The aim of the current work was to test the hypothesis that the observations may be more indicative of the relative compactability of the API due to the formulation being above the percolation threshold. This was done by assessing the impact of varied API loads in the formulation on the non-granulated fraction of the final granulate and the extent of attrition of API particles within the non-granulated fraction. The influence of processing conditions for all formulations was also investigated. The results verify that the observations, both of this study and the previous work, are not a consequence of exceeding the percolation threshold. The volume of un-compacted material within the granulate samples was observed to range between 34.7 and 65.5% depending on the API load and roll pressure, whilst the API attrition was equivalent across all conditions.
Collapse
Affiliation(s)
- James Clarke
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - John F Gamble
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK.
| | - John W Jones
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK
| | - Mike Tobyn
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, UK
| | - Andrew Ingram
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Greenwood
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
18
|
Mareczek L, Riehl C, Harms M, Reichl S. Elucidating the Impact of Material Properties on Tablet Manufacturability for Binary Paracetamol Blends. Pharm Res 2024; 41:185-197. [PMID: 37978101 DOI: 10.1007/s11095-023-03626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Although the mechanical properties of paracetamol and MCC are extensively described in literature, there still is a need for a better understanding of the material properties impacting them. Thus, this study systematically analyzed material properties of paracetamol-MCC blends to elucidate their influence on the mechanical tablet properties in roller compaction and direct compression with special focus on surface properties. METHODS Multiple material characteristics of binary mixtures of paracetamol and MCC with varying drug loads were analyzed, with particular emphasis on specific surface area and surface energy. Subsequently, mechanical tablet properties of the materials in direct compression and after roller compaction were examined. RESULTS It was demonstrated that the impact of the initial material properties on mechanical tablet properties prevailed over the impact of processing route for paracetamol-MCC blends, underlining the importance of material characterization for tabletability of oral solid dosage forms. By applying bivariate as well as multivariate analysis, key material properties influencing the tabletability of paracetamol, MCC and its mixtures such as surface area, surface energy, effective angle of internal friction and density descriptors were identified. CONCLUSIONS This study highlighted the importance of comprehensive assessment of different material characteristics leading to a deeper understanding of underlying factors impacting mechanical tablet properties in direct compression and after roller compaction by the example of paracetamol-MCC mixtures with varying drug loads. Furthermore, it was shown that multivariate analysis could be a valuable extension to common bivariate analysis to reveal underlying correlations of material properties.
Collapse
Affiliation(s)
- Lena Mareczek
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
- The Healthcare Business of Merck KGaA, 64293, Darmstadt, Germany
| | - Carolin Riehl
- The Healthcare Business of Merck KGaA, 64293, Darmstadt, Germany.
| | - Meike Harms
- The Healthcare Business of Merck KGaA, 64293, Darmstadt, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
19
|
Holmfred E, Hirschberg C, Rantanen J. Compaction Properties of Particulate Proteins in Binary Powder Mixtures with Common Excipients. Pharmaceutics 2023; 16:19. [PMID: 38258030 PMCID: PMC10819481 DOI: 10.3390/pharmaceutics16010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing interest in protein- and peptide-based oral pharmaceuticals has culminated in the first protein-based products for oral delivery becoming commercially available. This study investigates the compaction properties of proteins in binary mixtures with common excipients up to 30% (w/w) of particulate protein. Two model proteins, lysozyme and bovine serum albumin, were compacted with either microcrystalline cellulose, spray-dried lactose monohydrate, or calcium hydrogen phosphate dihydrate at two different compaction pressures. Compared to the compacted pure materials, a significant increase in the tensile strength of the compacts was observed for the binary blends containing lysozyme together with the brittle excipients. This could be attributed to the increased bonding forces between the particles in the blend compared to the pure materials. The use of bovine serum albumin with a larger particle size resulted in a decrease in tensile strength for all the compacts. The change in the tensile strength with an increasing protein content was non-linear for both proteins. This work highlights the importance of considering the particulate properties of protein powders and that protein-based compacts can be designed with similar principles as small-molecules in terms of their mechanical tablet properties.
Collapse
Affiliation(s)
| | | | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Su J, Zhang K, Qi F, Cao J, Miao Y, Zhang Z, Qiao Y, Xu B. A tabletability change classification system in supporting the tablet formulation design via the roll compaction and dry granulation process. Int J Pharm X 2023; 6:100204. [PMID: 37560487 PMCID: PMC10407897 DOI: 10.1016/j.ijpx.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
In this paper, the material library approach was used to uncover the pattern of tabletability change and related risk for tablet formulation design under the roll compaction and dry granulation (RCDG) process. 31 materials were fully characterized using 18 physical parameters and 9 compression behavior classification system (CBCS) parameters. Then, each material was dry granulated and sieved into small granules (125-250 μm) and large granules (630-850 μm), respectively. The compression behavior of granules was characterized by the CBCS descriptors, and were compared with that of ungranulated powders. The relative change of tabletability (CoTr) index was used to establish the tabletability change classification system (TCCS), and all materials were classified into three types, i.e. loss of tabletability (LoT, Type I), unchanged tabletability (Type II) and increase of tabletability (Type III). Results showed that approximately 65% of materials presented LoT, and as the granules size increased, 84% of the materials exhibited LoT. A risk decision tree was innovatively proposed by joint application of the CBCS tabletability categories and the TCCS tabletability change types. It was found that the LoT posed little risk to the tensile strength of the final tablet, when Category 1 or 2A materials, or Category 2B materials with Type II or Type III change of tabletability were used. Formulation risk happened to Category 2C or 3 materials, or Category 2B materials with Type I change of tabletability, particularly when high proportions of these materials were involved in tablet formulation. In addition, the risk assessment results were verified in the material property design space developed from a latent variable model in prediction of tablet tensile strength. Overall, results suggested that a combinational use of CBCS and TCCS could aid the decision making in selecting materials for tablet formulation design via RCDG.
Collapse
Affiliation(s)
- Junhui Su
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, PR China
| | - Kunfeng Zhang
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Feiyu Qi
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Junjie Cao
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yuhua Miao
- The International Department, No. 8 Middle School of Beijing, Beijing 100045, PR China
| | - Zhiqiang Zhang
- Beijing Tcmages Pharmceutical Co. LTD, Beijing 101301, PR China
| | - Yanjiang Qiao
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, PR China
| | - Bing Xu
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, PR China
| |
Collapse
|
21
|
Sousa AS, Serra J, Estevens C, Costa R, Ribeiro AJ. Leveraging a multivariate approach towards enhanced development of direct compression extended release tablets. Int J Pharm 2023; 646:123432. [PMID: 37739095 DOI: 10.1016/j.ijpharm.2023.123432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Extended release formulations play a crucial role in the pharmaceutical industry by maintaining steady plasma levels, reducing side effects, and improving therapeutic efficiency and compliance. One commonly used method to develop extended release formulations is direct compression, which offers several advantages, such as simplicity, time savings, and cost-effectiveness. However, successful direct compression-based extended release formulations require careful assessment and an understanding of the excipients' attributes. The scope of this work is the characterization of the compaction behavior of some matrix-forming agents and diluents for the development of extended release tablets. Fifteen excipients commonly used in extended release formulations were evaluated for physical, compaction and tablet properties. Powder properties (e.g., particle size, flow properties, bulk density) were evaluated and linked to the tablet's mechanical properties in a fully integrated approach, and data were analyzed by constructing a principal component analysis (PCA). Significant variability was observed among the various excipients. The present work successfully demonstrates the applicability of PCA as an effective tool for comparative analysis, pattern and clustering recognition and correlations between excipients and their properties, facilitating the development and manufacturing of direct compressible extended release formulations.
Collapse
Affiliation(s)
- A S Sousa
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal; Grupo Tecnimede, Quinta da Cerca, Caixaria, 2565-187 Dois Portos, Portugal
| | - J Serra
- Grupo Tecnimede, Quinta da Cerca, Caixaria, 2565-187 Dois Portos, Portugal
| | - C Estevens
- Grupo Tecnimede, Quinta da Cerca, Caixaria, 2565-187 Dois Portos, Portugal
| | - R Costa
- Grupo Tecnimede, Quinta da Cerca, Caixaria, 2565-187 Dois Portos, Portugal
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, 3000-148 Coimbra, Portugal; i3S, IBMC, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
22
|
Lura V, Klinken S, Breitkreutz J. Challenges in the transfer and scale-up of mini-tableting: Case study with losartan potassium. Eur J Pharm Biopharm 2023; 192:161-173. [PMID: 37820883 DOI: 10.1016/j.ejpb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Mini-tablets (MTs) with losartan potassium were developed to treat the rare disease Epidermolysis Bullosa. The focus was placed on transfer and scale-up of a direct compressible formulation from the compaction simulator STYL'One Evo (CS) to the rotary tablet press Korsch XM 12 (RP). Transfer of tabletability and compactibility profiles from CS to RP did not show good agreement, e.g. at a tableting pressure of 125 MPa mean tensile strengths (TS) of 4 MPa on CS and 1-1.5 MPa on RP were reached. These results highlight the impact of the feed frame on final product qualities depending on process and material factors. In the scale-up studies the critical quality attributes (CQAs) mass variation, content uniformity, TS and disintegration time were investigated. After an appropriate run-up time, most CQAs reached a plateau, after reaching a balance between influx, efflux and distribution of lubricant in the feed frame. TS values of 1-2 MPa, disintegration times of max. 50 s, mass variation of 0.9-2.2 % (CV) and acceptance values below 15.0 were reached depending on chosen process parameters.
Collapse
Affiliation(s)
- Valentinë Lura
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stefan Klinken
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Ohashi R, Koide T, Fukami T. Effects of wet granulation process variables on the quantitative assay model of transmission Raman spectroscopy for pharmaceutical tablets. Eur J Pharm Biopharm 2023; 191:276-289. [PMID: 37714414 DOI: 10.1016/j.ejpb.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Transmission Raman spectroscopy (TRS) is a process analytical technology tool for nondestructive analysis of drug content in tablets. Although wet granulation is the most used tablet manufacturing method, most TRS studies have focused on tablets manufactured via direct compression. The effects of upstream process parameter variations, such as granulation, on the prediction performance of TRS quantitative models are unknown. We evaluated the effects of process parameter variations during granulation on the prediction performance of the TRS quantitative model. Tablets with a drug concentration of 1%w/w were used. We developed PLS calibration models for the drug concentration range of 70-130% label claims. Subsequently, we predicted the drug content of the tablets with different granulation parameters. The results of our study demonstrate that the variation in the predicted recovery due to the variation in granulation parameters was practically acceptable. The calibration model showed a good prediction performance for tablets manufactured at different granulation scales and thicknesses. Therefore, we conclude that TRS quantitative models are robust to variations in upstream processes, such as granulation and downstream variations in tableting parameters. These results suggest that TRS is a versatile non-destructive quantitative analysis method that can be applied in tablet manufacturing.
Collapse
Affiliation(s)
- Ryo Ohashi
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan; Formulation R&D Laboratory, R&D Division, SHIONOGI & CO., LTD., Hyogo 660-0813, Japan.
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 Japan
| |
Collapse
|
24
|
Anuschek M, Skelbæk-Pedersen AL, Kvistgaard Vilhelmsen T, Skibsted E, Zeitler JA, Rantanen J. Terahertz time-domain spectroscopy for the investigation of tablets prepared from roller compacted granules. Int J Pharm 2023; 642:123165. [PMID: 37356510 DOI: 10.1016/j.ijpharm.2023.123165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Roller compaction before tableting is a common unit operation to increase the processability of powders. Terahertz time-domain spectroscopy (THz-TDS) has recently been introduced as a potential process analytical technology (PAT) for measuring tablet porosity based on the refractive index of the tablet. Tablet porosity is a governing parameter for tablet disintegration and dissolution. The first aim of this study was to investigate tablets prepared from roller-compacted materials with THz-TDS to explore its usefulness for particle size evaluation of granules in tablets. Secondly, the impact of roller compaction and granule size before tablet compression on the established THz-TDS based measurement of tablet porosity was investigated. Microcrystalline cellulose and α-lactose monohydrate were roller compacted separately at five specific compaction forces (2, 4, 8, 12, and 16 kN cm-1) and fractionated into three size fractions. Tablets were prepared from the fractionated and unfractionated granules at twelve tableting pressures and subjected to THz-TDS transmission measurements. It was possible to use the scattering behaviour of the tablets at terahertz frequencies to describe the granulated materials' particle size changes during tableting. At the same time, prediction of porosity was impaired due to the deviation of the refractive index in strongly scattering samples. A correction method was introduced in which the porosity error was corrected based on the tablet's scattering behaviour, resulting in an improved prediction of tablet porosity. In conclusion, THz-TDS is considered a promising technique for the process monitoring of tableting based on its sensitivity to porosity and particle size changes within the tablet non-destructively, with a possible application as part of an in-process control strategy of the tableting of granulated or non-granulated materials.
Collapse
Affiliation(s)
- Moritz Anuschek
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; ET Oral Product Development, Novo Nordisk A/S, Måløv, Denmark.
| | | | | | - Erik Skibsted
- ET Oral Product Development, Novo Nordisk A/S, Måløv, Denmark
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Mohylyuk V, Bandere D. High-Speed Tableting of High Drug-Loaded Tablets Prepared from Fluid-Bed Granulated Isoniazid. Pharmaceutics 2023; 15:pharmaceutics15041236. [PMID: 37111721 PMCID: PMC10144080 DOI: 10.3390/pharmaceutics15041236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this feasibility study was to investigate the possibility of producing industrial-scale relevant, robust, high drug-loaded (90.9%, w/w) 100 mg dose immediate-release tablets of isoniazid and simultaneously meet the biowaiver requirements. With an understanding of the real-life constrictions on formulation scientists during product development for the generic industry, this study was done considering a common set of excipients and manufacturing operations, as well as paying special attention to the industrial-scale high-speed tableting process as one of the most critical manufacturing operations. The isoniazid substance was not applicable for the direct compression method. Thus, the selection of granulation method was logically justified, and it was fluid-bed granulated with an aqueous solution of Kollidon® 25, mixed with excipients, and tableted with a rotary tablet press (Korsch XL 100) at 80 rpm (80% of the maximum speed) in the compaction pressure range 170-549 MPa monitoring of ejection/removal forces, tablet weight uniformity, thickness, and hardness. Adjusting the main compression force, the Heckel plot, manufacturability, tabletability, compactability, and compressibility profiles were analysed to choose the main compression force that resulted in the desirable tensile strength, friability, disintegration, and dissolution profile. The study showed that highly robust drug-loaded isoniazid tablets with biowaiver requirements compliance can be prepared with a common set of excipients and manufacturing equipment/operations incl. the industrial-scale high-speed tableting process.
Collapse
Affiliation(s)
- Valentyn Mohylyuk
- Laboratory of Finished Dosage Forms, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
26
|
Gamble JF, Akseli I, Ferreira AP, Leane M, Thomas S, Tobyn M, Wadams RC. Morphological distribution mapping: Utilisation of modelling to integrate particle size and shape distributions. Int J Pharm 2023; 635:122743. [PMID: 36804520 DOI: 10.1016/j.ijpharm.2023.122743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The aim of this work was to develop approaches to utilize whole particle distributions for both particle size and particle shape parameters to map the full range of particle properties in a curated dataset. It is hoped that such an approach may enable a more complete understanding of the particle landscape as a step towards improving the link between particle properties and processing behaviour. A 1-dimensional principal component analysis (PCA) approach was applied to create a 'morphological distribution landscape'. A dataset of imaged APIs, intermediates and excipients encompassing particle size, particle shape (elongation, length and width) and distribution shape was curated between 2008 and 2022. The curated dataset encompassed over 200 different materials, which included over 150 different APIs, and approximately 3500 unique samples. For the purposes of the current work, only API samples were included. The morphological landscape enables differentiation of materials of equivalent size but varying shape and vice versa. It is hoped that this type of approach can be utilised to better understand the influence of particle properties on pharmaceutical processing behaviour and thereby enable scientists to leverage historical knowledge to highlight and mitigate risks associated to materials of similar morphological nature.
Collapse
Affiliation(s)
- John F Gamble
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK.
| | | | - Ana P Ferreira
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK
| | - Michael Leane
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK
| | | | - Mike Tobyn
- Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, UK
| | | |
Collapse
|
27
|
Becker A. API co-crystals - Trends in CMC-related aspects of pharmaceutical development beyond solubility. Drug Discov Today 2023; 28:103527. [PMID: 36792006 DOI: 10.1016/j.drudis.2023.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Whereas pharmaceutical co-crystals are widely described as tool to improve solubility and dissolution behavior of poorly soluble drugs, so far less focus has been on their potential role to facilitate pharmaceutical manufacturability. This review summarizes recent developments in co-crystal research regarding new trends in co-crystal preparation routes and control of solid-state material attributes. Also, recent literature was reviewed to assess risks for co-crystals in formulation processes. A growing number of publications suggest that co-crystals show potential to specifically improve mechanical properties such as tabletability and compressibility, which can often be linked to intrinsic features of crystal structure properties. However, such trends must be treated with care, as molecular structures in reported co-crystal studies are not representative in some structural parameters governing also solid-state behavior (smaller molecular weight, more balanced hydrogen bond donor versus acceptor counts) compared to recent market approved small molecule drugs.
Collapse
|
28
|
Formulation of taste-masked orodispersible famotidine tablets by sequential spray drying and direct compression – Bitterness evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
29
|
Kokott M, Klinken S, Breitkreutz J, Wiedey R. Downstream processing of amorphous solid dispersions into orodispersible tablets. Int J Pharm 2023; 631:122493. [PMID: 36528189 DOI: 10.1016/j.ijpharm.2022.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The formulation development of amorphous solid dispersions (ASDs) towards a patient-friendly oral solid dosage form is proving to be still challenging. To increase patient's compliance orodispersible tablets (ODTs) can be seen as promising alternative. Two different ASDs were prepared via hot melt extrusion (HME), using PVPVA as polymer for ritonavir (RTV) and HPMCAS for lopinavir (LPV). The extrudates were milled, sieved, and blended with Hisorad® (HRD) or Ludiflash® (LF), two established co-processed excipients (CPE) prior to tableting. Interestingly, the selected ASD particle size was pointed out to be a key parameter for a fast disintegration and high mechanical strength. In terms of PVPVA based ASDs, larger particle sizes > 500 µm enabled a rapid disintegration even under 30 s for 50 % ASD loaded ODTs, whereas the use of smaller particles went along with significant higher disintegration times. However, the influence of the CPE was immense for PVPVA based ASDs, since it was only possible to prepare well performing ODTs, when Hisorad® was chosen. In contrast for HPMCAS based ASDs the selection of smaller particle sizes 180-500 µm was beneficial for overcoming the poor compressibility of the ASD matrix polymer. ODTs with LPV could be produced using both CPEs even with higher ASD loads up to 75 %, while still showing remarkably fast disintegration.
Collapse
Affiliation(s)
- Marcel Kokott
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany
| | - Stefan Klinken
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany.
| | - Raphael Wiedey
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr, 1, 40225 Duesseldorf, Germany
| |
Collapse
|
30
|
Pedersen MD, Megarry A, Naelapää K, Rades T, Pessi J. Enhancing tabletability of high-dose tablets by tailoring properties of spray-dried insulin particles. Int J Pharm 2023; 631:122526. [PMID: 36565770 DOI: 10.1016/j.ijpharm.2022.122526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The oral delivery of proteins and peptides provides an attractive dosing option due to its high patient compliance. However, as oral formulations of such macromolecules require the addition of typically poorly compactable permeation enhancers, the compression behaviour in tableting processes can become challenging. In this study, we show that poor compression behaviour can be overcome by tailoring the properties of peptide or protein particles, especially in high-dose tablet formulations. Spray-dried particles with varying particle size and morphology were produced and characterized. The particles were then evaluated for tabletability in well- and poorly tabletable formulations. Tabletability was found to be enhanced most with small and non-hollow spray-dried insulin particles in both formulations. The enhancement was more pronounced in the poorly tabletable formulation than in the well-tabletable one. Thus, the API particle properties play a key role, when evaluating manufacturability of poorly tabletable formulations.
Collapse
Affiliation(s)
| | | | | | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
31
|
Almotairy A, Almutairi M, Althobaiti A, Alyahya M, Sarabu S, Zhang F, Bandari S, Ashour E, Repka MA. Investigation of hot melt extrusion process parameters on solubility and tabletability of atorvastatin calcium in presence of Neusilin ® US2. J Drug Deliv Sci Technol 2023; 79:104075. [PMID: 37811318 PMCID: PMC10557465 DOI: 10.1016/j.jddst.2022.104075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reports in the literature indicate that hot-melt extrusion (HME) processing techniques could alter the mechanical properties of the pharmaceutical physical blend, which may alter successful processing during tableting. The aim of this study was to evaluate whether HME processing conditions have an impact on the tabletability of Atorvastatin calcium trihydrate (ATR) in the presence of Neusilin® US2 (NUS2). ATR drug load of 25% was mixed with 75% of NUS2 and extruded using two screw configurations, screw speeds, and feed rates. Solid-state thermal analysis showed that ATR transformed to an amorphous form which led to improved solubility. ATR tabletability was affected positively by screw configuration that had no shearing and mixing force. SEM analysis indicated that a conveying screw configuration preserved the spherical nature of NUS2, thus improving ATR tabletability. This novel study demonstrates the significance of changing and monitoring the HME process parameters, which impact the materials' mechanical properties and may prevent adverse outcomes during tableting.
Collapse
Affiliation(s)
- Ahmed Almotairy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy Taibah University, Al Madinah AlMunawarah 30001, Saudi Arabia
| | - Mashan Almutairi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Abdulmajeed Althobaiti
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Mohammed Alyahya
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, TX, 78712, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Eman Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A. Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
32
|
Drop-on-powder 3D printing of amorphous high dose oral dosage forms: Process development, opportunities and printing limitations. Int J Pharm X 2022; 5:100151. [PMID: 36687376 PMCID: PMC9850179 DOI: 10.1016/j.ijpx.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Drop-on-powder 3D printing is able to produce highly drug loaded solid oral dosage forms. However, this technique is mainly limited to well soluble drugs. The majority of pipeline compounds is poorly soluble, though, and requires solubility enhancement, e.g., via formation of amorphous solid dispersions. This study presents a detailed and systematic development approach for the production of tablets containing high amounts of a poorly soluble, amorphized drug via drop-on-powder 3D printing (also known as binder jetting). Amorphization of the compound was achieved via hot-melt extrusion using the exemplary system of the model compound ketoconazole and copovidone as matrix polymer at drug loadings of 20% and 40%. The milled extrudate was used as powder for printing and the influence of inks and different ink-to-powder ratios on recrystallization of ketoconazole was investigated in a material-saving small-scale screening. Crystallinity assessment was performed using differential scanning calorimetry and polarized light microscopy to identify even small traces of crystallinity. Printing of tablets showed that the performed small-scale screening was capable to identify printing parameters for the development of amorphous and mechanically stable tablets via drop-on-powder printing. A stability study demonstrated physically stable tablets over twelve weeks at accelerated storage conditions.
Collapse
Key Words
- 3D Printing
- 3D, three-dimensional
- 3DP, three-dimensional printing
- AM, additive manufacturing
- API, active pharmaceutical ingredient
- ASD, amorphous solid dispersion
- Additive manufacturing
- Amorphous solid dispersion
- BCS, Biopharmaceutics Classification System
- Binder jetting
- DSC, differential scanning calorimetry
- DoP, drop-on-powder
- Drop-on-powder printing
- FDA, U.S. Food and Drug Administration
- FDM, fused deposition modeling
- HME, hot-melt extrusion
- KTZ, ketoconazole
- Process development
- SODF, solid oral dosage form
- Solubility enhancement
- dpmm, dots per millimeter
Collapse
|
33
|
Using a Material Library to Understand the Change of Tabletability by High Shear Wet Granulation. Pharmaceutics 2022; 14:pharmaceutics14122631. [PMID: 36559125 PMCID: PMC9783360 DOI: 10.3390/pharmaceutics14122631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Understanding the tabletability change of materials after granulation is critical for the formulation and process design in tablet development. In this paper, a material library consisting of 30 pharmaceutical materials was used to summarize the pattern of change of tabletability during high shear wet granulation and tableting (HSWGT). Each powdered material and the corresponding granules were characterized by 19 physical properties and nine compression behavior classification system (CBCS) parameters. Principal component analysis (PCA) was used to compare the physical properties and compression behaviors of ungranulated powders and granules. A new index, namely the relative change of tabletability (CoTr), was proposed to quantify the tabletability change, and its advantages over the reworking potential were demonstrated. On the basis of CoTr values, the tabletability change classification system (TCCS) was established. It was found that approximately 40% of materials in the material library presented a loss of tabletability (i.e., Type I), 50% of materials had nearly unchanged tabletability (i.e., Type II), and 10% of materials suffered from increased tabletability (i.e., Type III). With the help of tensile strength (TS) vs. compression pressure curves implemented on both powders and granules, a data fusion method and the PLS2 algorithm were further applied to identify the differences in material properties requirements for direct compression (DC) and HSWGT. Results indicated that increasing the plasticity or porosity of the starting materials was beneficial to acquiring high TS of tablets made by HSWGT. In conclusion, the presented TCCS provided a means for the initial risk assessment of materials in tablet formulation design and the data modeling method helped to predict the impact of formulation ingredients on the strength of compacts.
Collapse
|
34
|
Triboandas H, Pitt K, Bezerra M, Ach-Hubert D, Schlindwein W. Itraconazole Amorphous Solid Dispersion Tablets: Formulation and Compaction Process Optimization Using Quality by Design Principles and Tools. Pharmaceutics 2022; 14:pharmaceutics14112398. [PMID: 36365216 PMCID: PMC9693276 DOI: 10.3390/pharmaceutics14112398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
BCS Class II drugs, such as itraconazole (ITZ), exhibit poor solubility (1–4 ng/mL) and so require solubility enhancement. Therefore, ITZ and Kollidon® VA64 (KOL) amorphous solid dispersions (ASDs) were produced using hot-melt extrusion (HME) to improve ITZ’s poor solubility. A novel strategy for tablet formulations using five inorganic salts was investigated (KCl, NaCl, KBr, KHCO3 and KH2PO4). These kosmotopric salts are thought to compete for water hydration near the polymer chain, hence, preventing polymer gelation and, therefore, facilitating disintegration and dissolution. Out of all the formulations, the KCl containing one demonstrated acceptable tensile strength (above 1.7 MPa), whilst providing a quick disintegration time (less than 15 min) and so was selected for further formulation development through a design of the experiment approach. Seven ITZ-KOL-ASD formulations with KCl were compacted using round and oblong punches. Round tablets were found to disintegrate under 20 min, whereas oblong tablets disintegrated within 10 min. The round tablets achieved over 80% ITZ release within 15 min, with six out of seven formulations achieving 100% ITZ release by 30 min. It was found that tablets comprising high levels of Avicel® pH 102 (30%) and low levels of KCl (5%) tend to fail the disintegration target due to the strong bonding capacity of Avicel® pH 102. The disintegration time and tensile strength responses were modeled to obtain design spaces (DSs) relevant to both round and oblong tablets. Within the DS, several formulations can be chosen, which meet the Quality Target Product Profile (QTPP) requirements for immediate-release round and oblong tablets and allow for flexibility to compact in different tablet shape to accommodate patients’ needs. It was concluded that the use of inorganic salts, such as KCl, is the key to producing tablets of ITZ ASDs with fast disintegration and enhanced dissolution. Overall, ITZ-KOL-ASD tablet formulations, which meet the QTPP, were achieved in this study with the aid of Quality by Design (QbD) principles for formulation and compaction process development and optimization.
Collapse
Affiliation(s)
- Hetvi Triboandas
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kendal Pitt
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Mariana Bezerra
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Delphine Ach-Hubert
- Medelpharm, 615 rue du Chat Botté, ZAC des Malettes, F-01700 Beynost, France
| | - Walkiria Schlindwein
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
- Correspondence:
| |
Collapse
|
35
|
Jin C, Zhao L, Feng Y, Hong Y, Shen L, Lin X. Simultaneous modeling prediction of three key quality attributes of tablets by powder physical properties. Int J Pharm 2022; 628:122344. [DOI: 10.1016/j.ijpharm.2022.122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
36
|
Zhang W, Sluga KK, Yost E, Phan J, Nagapudi K, Helen Hou H. Impact of Drug Loading on the Compaction Properties of Itraconazole-PVPVA Amorphous Solid Dispersions. Int J Pharm 2022; 629:122366. [DOI: 10.1016/j.ijpharm.2022.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
37
|
Anuar N, Yusop SN, Roberts KJ. Crystallisation of organic materials from the solution phase: a molecular, synthonic and crystallographic perspective. CRYSTALLOGR REV 2022. [DOI: 10.1080/0889311x.2022.2123916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Nornizar Anuar
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Siti Nurul’ain Yusop
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia
| | - Kevin J. Roberts
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
38
|
Mareczek L, Riehl C, Harms M, Reichl S. Understanding the Multidimensional Effects of Polymorphism, Particle Size and Processing for D-Mannitol Powders. Pharmaceutics 2022; 14:pharmaceutics14102128. [PMID: 36297563 PMCID: PMC9611586 DOI: 10.3390/pharmaceutics14102128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
The relevance of the polymorphic form, particle size, and processing of mannitol for the mechanical properties of solid oral dosage forms was examined. Thus, particle and powder properties of spray granulated β D-mannitol, β D-mannitol, and δ D-mannitol were assessed in this study with regards to their manufacturability. D-mannitol is a commonly used excipient in pharmaceutical formulations, especially in oral solid dosage forms, and can be crystallized as three polymorphic forms, of which β is the thermodynamically most stable form and δ is a kinetically stabilized polymorph. A systematic analysis of the powders as starting materials and their respective roller compacted granules is presented to elucidate the multidimensional effects of powder and granules characteristics such as polymorphic form, particle size, and preprocessing on the resulting tablets’ mechanical properties. In direct compression and after roller compaction, δ polymorph displayed superior tableting properties over β mannitol, but was outperformed by spray granulated β mannitol. This could be primarily correlated to the higher specific surface area, leading to higher bonding area and more interparticle bonds within the tablet. Hence, it was shown that surface characteristics and preprocessing can prevail over the impact of polymorphism on manufacturability for oral solid dosage forms.
Collapse
Affiliation(s)
- Lena Mareczek
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Department of Pharmaceutical Technologies, Merck KGaA, 64293 Darmstadt, Germany
| | - Carolin Riehl
- Department of Pharmaceutical Technologies, Merck KGaA, 64293 Darmstadt, Germany
| | - Meike Harms
- Department of Pharmaceutical Technologies, Merck KGaA, 64293 Darmstadt, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
39
|
Vasiljević I, Turković E, Piller M, Mirković M, Zimmer A, Aleksić I, Ibrić S, Parojčić J. Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach. Int J Pharm 2022; 629:122337. [DOI: 10.1016/j.ijpharm.2022.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
40
|
Development of a multiparticulate drug delivery system for in situ amorphisation. Eur J Pharm Biopharm 2022; 180:170-180. [PMID: 36191869 DOI: 10.1016/j.ejpb.2022.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022]
Abstract
In the current study, the concept of multiparticulate drug delivery systems (MDDS) was applied to tablets intended for the amorphisation of supersaturated granular ASDs in situ, i.e. amorphisation by microwave irradiation within the final dosage form. The MDDS concept was hypothesised to ensure geometric and structural stability of the dosage form and to improve the in vitro disintegration and dissolution characteristics. Granules were prepared in two sizes (small and large) containing the crystalline drug celecoxib (CCX) and polyvinylpyrrolidone/vinyl acetate copolymer (PVP/VA) at a 50 % w/w drug load as well as sodium dihydrogen phosphate monohydrate as the microwave absorbing excipient. The granules were subsequently embedded in an extra-granular tablet phase composed of either the filler microcrystalline cellulose (MCC) or mannitol (MAN), as well as the disintegrant crospovidone and the lubricant magnesium stearate. The tensile strength and disintegration time were investigated prior to and after 10 min of microwave irradiation (800 and 1000 W) and the formed ASDs were characterised by X-ray powder diffraction and modulated differential scanning calorimetry. Additionally, the internal structure was elucidated by X-ray micro-Computed Tomography (XµCT) and, finally, the dissolution performance of selected tablets was investigated. The MDDS tablets displayed no geometrical changes after microwave irradiation, however, the tensile strength and disintegration time increased. Complete amorphisation of CCX was achieved only for the MCC-based tablets at a power input of 1000 W, while MAN-based tablets displayed partial amorphisation independent of power input. The complete amorphisation of CCX was associated with the fusion of individual ASD granules within the tablets, which impacted the subsequent disintegration and dissolution performance. For these tablets, supersaturation was only observed after 60 min. On the other hand, the partially amorphised MDDS tablets displayed complete disintegration during the dissolution experiments, resulting in a fast onset of supersaturation within 5 min and an approx. 3.5-fold degree of supersaturation within the experimental timeframe (3 h). Overall, the MDDS concept was shown to potentially be a feasible dosage form for in situ amorphisation, however, there is still room for improvement to obtain a fully amorphous and disintegrating system.
Collapse
|
41
|
Jolliffe HG, Ojo E, Mendez C, Houson I, Elkes R, Reynolds G, Kong A, Meehan E, Amado Becker F, Piccione PM, Verma S, Singaraju A, Halbert G, Robertson J. Linked experimental and modelling approaches for tablet property predictions. Int J Pharm 2022; 626:122116. [PMID: 35987318 DOI: 10.1016/j.ijpharm.2022.122116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Recent years have seen the advent of Quality-by-Design (QbD) as a philosophy to ensure the quality, safety, and efficiency of pharmaceutical production. The key pharmaceutical processing methodology of Direct Compression to produce tablets is also the focus of some research. The traditional Design-of-Experiments and purely experimental approach to achieve such quality and process development goals can have significant time and resource requirements. The present work evaluates potential for using combined modelling and experimental approach, which may reduce this burden by predicting the properties of multicomponent tablets from pure component compression and compaction model parameters. Additionally, it evaluates the use of extrapolation from binary tablet data to determine theoretical pure component model parameters for materials that cannot be compacted in the pure form. It was found that extrapolation using binary tablet data - where one known component can be compacted in pure form and the other is a challenging material which cannot be - is possible. Various mixing rules have been evaluated to assess which are suitable for multicomponent tablet property prediction, and in the present work linear averaging using pre-compression volume fractions has been found to be the most suitable for compression model parameters, while for compaction it has been found that averaging using a power law equation form produced the best agreement with experimental data. Different approaches for estimating component volume fractions have also been evaluated, and using estimations based on theoretical relative rates of compression of the pure components has been found to perform slightly better than using constant volume fractions (that assume a fully compressed mixture). The approach presented in this work (extrapolation of, where necessary, binary tablet data combined with mixing rules using volume fractions) provides a framework and path for predictions for multicomponent tablets without the need for any additional fitting based on the multicomponent formulation composition. It allows the knowledge space of the tablet to be rapidly evaluated, and key regions of interest to be identified for follow-up, targeted experiments that that could lead to an establishment of a design and control space and forgo a laborious initial Design-of-Experiments.
Collapse
Affiliation(s)
- Hikaru G Jolliffe
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Ebenezer Ojo
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Carlota Mendez
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Ian Houson
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - Richard Elkes
- GlaxoSmithKline R&D, Park Road, Ware, Herts SG12 0DP, UK
| | - Gavin Reynolds
- Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Angela Kong
- Pfizer Worldwide Research and Development, Groton, CT 0634, U.S.A
| | - Elizabeth Meehan
- Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Felipe Amado Becker
- Pharmaceutical R&D, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Patrick M Piccione
- Pharmaceutical R&D, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sudhir Verma
- Drug Product Development, Takeda Pharmaceuticals International Co., 35 Landsdowne St., Cambridge, Massachusetts, 02139, USA
| | - Aditya Singaraju
- Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | - Gavin Halbert
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK
| | - John Robertson
- EPSRC CMAC Future Manufacturing Research Hub, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK; Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, G4 0RE, UK.
| |
Collapse
|
42
|
Jaspers M, Roelofs TP, Janssen PH, Meier R, Dickhoff BH. A novel approach to minimize loss of compactibility in a dry granulation process using superdisintegrants. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
43
|
Zakowiecki D, Edinger P, Papaioannou M, Hess T, Kubiak B, Terlecka A. Exploiting synergistic effects of brittle and plastic excipients in directly compressible formulations of Sitagliptin phosphate and Sitagliptin hydrochloride. Pharm Dev Technol 2022; 27:702-713. [PMID: 35913021 DOI: 10.1080/10837450.2022.2107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Direct compression (DC) is the simplest and most economical way to produce pharmaceutical tablets. Ideally, it consists of only two steps: dry blending of a drug substance(s) with excipients followed by compressing the powder mixture into tablets. In this study, immediate-release film-coated tablets containing either Sitagliptin phosphate or Sitagliptin hydrochloride were developed using DC technique.After establishing the optimum ratio of ductile and brittle excipients, five formulations were compressed into tablets using a rotary press and finally film coated. Both powders and tablets were examined by standard pharmacopoeial methods. It has been shown that the simultaneous use of excipients with different physical properties, i.e., ductile microcrystalline cellulose and brittle anhydrous dibasic calcium phosphate, produces a synergistic effect, allowing preparation of Sitagliptin DC tablets with good mechanical strength (tensile strength over 2 N/mm2), rapid disintegration (shorter than 2 min), and fast release of the drug substance (85% of the drug is dissolved within 15 minutes). It was found that the type of calcium phosphate excipient used had a large effect on the properties of the sitagliptin tablets. All formulations developed showed good chemical stability, even when stored under stress conditions (50 °C/80% RH).
Collapse
Affiliation(s)
- Daniel Zakowiecki
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Peter Edinger
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Markos Papaioannou
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Tobias Hess
- Chemische Fabrik Budenheim KG, Rheinstrasse 27, 55257 Budenheim, Germany
| | - Bartlomiej Kubiak
- Adamed Pharma S.A., Pienkow, ul. Mariana Adamkiewicza 6A, 05-152 Czosnow, Poland
| | - Anna Terlecka
- Adamed Pharma S.A., Pienkow, ul. Mariana Adamkiewicza 6A, 05-152 Czosnow, Poland
| |
Collapse
|
44
|
Vicente Martin C, Stocker S, Bautista M, Rogue V, Steib-Lauer C, Häcker HG, Spickermann D, Hirsch S, Dhareshwar SS. Commercial scale transfer of a twin-screw melt granulation process for high drug load fevipiprant tablets. Drug Dev Ind Pharm 2022; 48:211-225. [PMID: 35861393 DOI: 10.1080/03639045.2022.2104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This work summarizes select methodology of twin-screw melt granulation and process analytical technology that were used in the successful scaling-up and commercial transfer of high drug load (80.5% w/w) immediate release fevipiprant tablets. SIGNIFICANCE The unique and compelling learnings from this industry work are (1) insights into Novartis AG's commercial scale transfer using twin-screw melt granulation (2) rapid, non-destructive NIR methodology as a PAT tool for RTR testing. No prior literature combines these two aspects at the level of detail we present/disclose. METHODS Scaling up of twin-screw melt granulation (TSMG) was guided by specific energy values obtained for the 27 mm (pilot scale) and 50 mm (commercial scale) twin-screw extruders (TSE). Proven acceptable ranges (PAR) were confirmed by varying the critical process parameters (CPPs) for granulation (screw speed) and tableting (dwell time, crushing strength) at three process levels (upper, target, lower). An at-line NIR method was developed and validated for real-time release testing. RESULTS The combination of CPPs were selected to have the same effect on critical quality attributes (CQAs) i.e., lower (-) and upper (+) process level challenged tablet aspect/appearance and dissolution, respectively. TSMG was performed using a 50 mm extruder at constant feed rate. Compression of the six final blends (∼300 kg) showed no impact of varied granulation and compression process conditions on both CQAs. A near-infrared spectroscopy method was validated to determine content uniformity, assay, identity, and to predict CQAs on uncoated tablets in preparation for a real time release testing (RTRT) of future batches.
Collapse
Affiliation(s)
- Claudia Vicente Martin
- Pharmaceutical Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Stephan Stocker
- Novartis Technical Operations, Novartis Pharma Produktions GmbH, Oeflingerstrasse 44, D-79664 Wehr, Germany
| | - Manel Bautista
- Pharmaceutical Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Vincent Rogue
- Pharmaceutical Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Caroline Steib-Lauer
- Analytical Research and Development, Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Hans-Georg Häcker
- Novartis Technical Operations, Novartis Pharma Produktions GmbH, Oeflingerstrasse 44, D-79664 Wehr, Germany
| | - Dirk Spickermann
- Regulatory Affairs CMC, Global Drug Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Stefan Hirsch
- Technical Research and Development, Novartis AG, CH-4056, Basel, Switzerland
| | - Sundeep S Dhareshwar
- Global Program Management, Portfolio Strategy and Management, Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| |
Collapse
|
45
|
Downstream Processing of Itraconazole:HPMCAS Amorphous Solid Dispersion: From Hot-Melt Extrudate to Tablet Using a Quality by Design Approach. Pharmaceutics 2022; 14:pharmaceutics14071429. [PMID: 35890324 PMCID: PMC9323274 DOI: 10.3390/pharmaceutics14071429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The downstream processing of hot-melt extruded amorphous solid dispersions (ASDs) into tablets is challenging due to the low tabletability of milled ASDs. Typically, the extrudate strand is sized before milling, as the strand cannot be fed directly into the milling system. At the lab scale, the strand can be sized by hand-cutting before milling. For scaling up, pelletizers or chill roll and flaker systems can be used to break strands. Due to the different techniques used, differences in milling and tablet compaction are to be expected. We present a systematic study of the milling and tableting of an extruded ASD of itraconazole with hypromellose acetate succinate (HPMCAS) as a carrier polymer. The strand was sized using different techniques at the end of the extruder barrel (hand-cutting, pelletizer, or chill roll and flaker) before being milled at varying milling speeds with varying screen sizes. The effects of these variables (sizing technology, milling speed, and screen size) on the critical quality attributes (CQAs) of the milled ASD, such as yield, mean particle size (D50), tablet compaction characteristics, and tablet dissolution, were established using response surface methodology. It was found that the CQAs varied according to sizing technology, with chill roll flakes showing the highest percentage yield, the lowest D50, and the highest tabletability and dissolution rate for itraconazole. Pearson correlation coefficient tests indicated D50 as the most important CQA related to tabletability and dissolution. For certain milling conditions, the milling of hand-cut filaments results in similar particle size distributions (PSDs) to the milling of pellets or chill roll flakes.
Collapse
|
46
|
Dhondt J, Bertels J, Kumar A, Van Hauwermeiren D, Ryckaert A, Van Snick B, Klingeleers D, Vervaet C, De Beer T. A Multivariate Formulation and Process Development Platform for Direct Compression. Int J Pharm 2022; 623:121962. [PMID: 35764260 DOI: 10.1016/j.ijpharm.2022.121962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
The efficient development of robust tableting processes is challenging due to the lack of mechanistic understanding on the impact of raw material properties and process parameters on tablet quality. The experimental determination of the effect of process and formulation parameters on tablet properties and subsequent optimization is labor-intensive, expensive and time-consuming. The combined use of an extensive raw material property database, process simulation tools and multivariate modeling allows more efficient and more optimized development of the direct compression (DC) process. In this study, key material attributes and in-process mechanical properties with a potential effect on tablet processability and tablet properties were identified. In a first step, an extensive characterization of 55 raw materials (over 100 material descriptors) (Van Snick et al., 2018) and 26 formulation blends (31 material descriptors) (Dhondt et al., 2022) was performed. These blends were subsequently compacted on a compaction simulator under multiple process conditions through a design of experiments (DoE) approach. A T-shaped partial least squares (T-PLS) model was established which correlates tablet quality attributes with process settings, raw material properties and blend ratios. During future development of the DC formulation and process for a new active pharmaceutical ingredient (API), this model can then be used to provide a preliminary formulation and compaction process settings as starting point to be further optimized during development trials based on well-defined raw material characteristics and compaction tests. This study hence contributes to a better understanding on the impact of raw material properties and process settings on a DC process and final properties of the produced tablets; and provides a platform allowing a more efficient and more optimized development of a robust tableting process.
Collapse
Affiliation(s)
- Jens Dhondt
- Oral Solids Development, Drug Product Development, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium; Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Johny Bertels
- Oral Solids Development, Drug Product Development, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ashish Kumar
- Laboratory of Pharmaceutical Engineering, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Daan Van Hauwermeiren
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; BIOMATH, Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Alexander Ryckaert
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Bernd Van Snick
- Oral Solids Development, Drug Product Development, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Didier Klingeleers
- Pharmaceutical & Material Sciences, Pharmaceutical Product Development & Supply, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Johnson & Johnson, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
47
|
ten Kate AJB, Piccione PM, Westbye P, Amado Becker AF. An industrial and chemical engineering perspective on the formulation of active ingredients in pharmaceuticals and agrochemicals. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Lura A, Breitkreutz J. Manufacturing of mini-tablets. Focus and impact of the tooling systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Zhang Y, Li J, Gao Y, Wu F, Hong Y, Shen L, Lin X. Improvements on multiple direct compaction properties of three powders prepared from Puerariae Lobatae Radix using surface and texture modification: comparison of microcrystalline cellulose and two nano-silicas. Int J Pharm 2022; 622:121837. [PMID: 35597395 DOI: 10.1016/j.ijpharm.2022.121837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 05/14/2022] [Indexed: 01/01/2023]
Abstract
It has been reported that hydrophilic nano-silica (N) markedly improved direct compaction (DC) properties of Zingiberis Rhizoma alcoholic extract. This study aims to examine the broader scope and generality of the previous work by investigating (i) three powders, i.e., the directly pulverized product, ethanol extract, and water extract prepared from the same medicinal herb-Puerariae Lobatae Radix (named DP, EE, and WE) and (ii) the effects on their DC properties of co-processing with N, hydrophobic nano-silica (BN), or microcrystalline cellulose (C). Unexpectedly, C provided the best improvement on tabletability for WE, while N for both DP and EE. More importantly, only N could move all parent powders to a regime suitable for DC, and BN rather than C enabled parent WE to be directly compressed. Typically, 6/9 N-modified powders simultaneously met the requirements of DC on bulk density, flowability, and tablet tensile strength (σt). Principal component analysis indicated that DC properties were mainly governed by flowability and texture properties. The partial least-squares regression model revealed that flowability, texture parameters, and deformation behavior of powders were dominating factors impacting tablet σt and solid fraction. Overall, the findings are promising for the manufacture of high drug loading tablets of herbs by DC.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jinzhi Li
- College of Chinese Materia Medica, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Yating Gao
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yanlong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
50
|
Wang C, Wang Z, Friedrich A, Calvin Sun C. Effect of deaeration on processability of poorly flowing powders by roller compaction. Int J Pharm 2022; 621:121803. [DOI: 10.1016/j.ijpharm.2022.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
|