1
|
Nicola MA, Attaai AH, Abdel-Raheem MH, Mohammed AF, Abu-Elhassan YF. Neuroprotective effects of rutin against cuprizone-induced multiple sclerosis in mice. Inflammopharmacology 2024; 32:1295-1315. [PMID: 38512652 PMCID: PMC11006763 DOI: 10.1007/s10787-024-01442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system that injures the myelin sheath, provoking progressive axonal degeneration and functional impairments. No efficient therapy is available at present to combat such insults, and hence, novel safe and effective alternatives for MS therapy are extremely required. Rutin (RUT) is a flavonoid that exhibits antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. The present study evaluated the potential beneficial effects of two doses of RUT in a model of pattern-III lesion of MS, in comparison to the conventional standard drug; dimethyl fumarate (DMF). Demyelination was induced in in male adult C57BL/6 mice by dietary 0.2% (w/w) cuprizone (CPZ) feeding for 6 consecutive weeks. Treated groups received either oral RUT (50 or 100 mg/kg) or DMF (15 mg/kg), along with CPZ feeding, for 6 consecutive weeks. Mice were then tested for behavioral changes, followed by biochemical analyses and histological examinations of the corpus callosum (CC). Results revealed that CPZ caused motor dysfunction, demyelination, and glial activation in demyelinated lesions, as well as significant oxidative stress, and proinflammatory cytokine elevation. Six weeks of RUT treatment significantly improved locomotor activity and motor coordination. Moreover, RUT considerably improved remyelination in the CC of CPZ + RUT-treated mice, as revealed by luxol fast blue staining and transmission electron microscopy. Rutin also significantly attenuated CPZ-induced oxidative stress and inflammation in the CC of tested animals. The effect of RUT100 was obviously more marked than either that of DMF, regarding most of the tested parameters, or even its smaller tested dose. In silico docking revealed that RUT binds tightly within NF-κB at the binding site of the protein-DNA complex, with a good negative score of -6.79 kcal/mol. Also, RUT-Kelch-like ECH-associated protein 1 (Keap1) model clarifies the possible inhibition of Keap1-Nrf2 protein-protein interaction. Findings of the current study provide evidence for the protective effect of RUT in CPZ-induced demyelination and behavioral dysfunction in mice, possibly by modulating NF-κB and Nrf2 signaling pathways. The present study may be one of the first to indicate a pro-remyelinating effect for RUT, which might represent a potential additive benefit in treating MS.
Collapse
Affiliation(s)
- Mariam A Nicola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Asyût, 71526, Egypt.
| | - Abdelraheim H Attaai
- Department of Anatomy and Histology, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, West of Assiut, Asyût, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Asyût, 71526, Egypt
| | | | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Asyût, 71526, Egypt
| | - Yasmin F Abu-Elhassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Asyût, 71526, Egypt
| |
Collapse
|
2
|
Gakare SG, Bhatt JM, Narasimhan KKS, Dravid SM. Glutamate delta-1 receptor regulates oligodendrocyte progenitor cell differentiation and myelination in normal and demyelinating conditions. PLoS One 2023; 18:e0294583. [PMID: 37983226 PMCID: PMC10659214 DOI: 10.1371/journal.pone.0294583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
In this study, we investigated the role of glutamate delta 1 receptor (GluD1) in oligodendrocyte progenitor cell (OPC)-mediated myelination during basal (development) and pathophysiological (cuprizone-induced demyelination) conditions. Initially, we sought to determine the expression pattern of GluD1 in OPCs and found a significant colocalization of GluD1 puncta with neuron-glial antigen 2 (NG2, OPC marker) in the motor cortex and dorsal striatum. Importantly, we found that the ablation of GluD1 led to an increase in the number of myelin-associated glycoprotein (MAG+) cells in the corpus callosum and motor cortex at P40 without affecting the number of NG2+ OPCs, suggesting that GluD1 loss selectively facilitates OPC differentiation rather than proliferation. Further, deletion of GluD1 enhanced myelination in the corpus callosum and motor cortex, as indicated by increased myelin basic protein (MBP) staining at P40, suggesting that GluD1 may play an essential role in the developmental regulation of myelination during the critical window period. In contrast, in cuprizone-induced demyelination, we observed reduced MBP staining in the corpus callosum of GluD1 KO mice. Furthermore, cuprizone-fed GluD1 KO mice showed more robust motor deficits. Collectively, our results demonstrate that GluD1 plays a critical role in OPC regulation and myelination in normal and demyelinating conditions.
Collapse
Affiliation(s)
- Sukanya G. Gakare
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Jay M. Bhatt
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Kishore Kumar S. Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States of America
| |
Collapse
|
3
|
Sun X, Qian M, Li H, Wang L, Zhao Y, Yin M, Dai L, Bao H. FKBP5 activates mitophagy by ablating PPAR-γ to shape a benign remyelination environment. Cell Death Dis 2023; 14:736. [PMID: 37952053 PMCID: PMC10640650 DOI: 10.1038/s41419-023-06260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of the central nervous system (CNS) that is characterized by myelin damage, followed by axonal and ultimately neuronal loss, which has been found to be associated with mitophagy. The etiology and pathology of MS remain elusive. However, the role of FK506 binding protein 5 (FKBP5, also called FKBP51), a newly identified gene associated with MS, in the progression of the disease has not been well defined. Here, we observed that the progress of myelin loss and regeneration in Fkbp5ko mice treated with demyelination for the same amount of time was significantly slower than that in wild-type mice, and that mitophagy plays an important regulatory role in this process. To investigate the mechanism, we discovered that the levels of FKBP5 protein were greatly enhanced in the CNS of cuprizone (CPZ) mice and the myelin-denuded environment stimulates significant activation of the PINK1/Parkin-mediated mitophagy, in which the important regulator, PPAR-γ, is critically regulated by FKBP5. This study reveals the role of FKBP5 in regulating a dynamic pathway of natural restorative regulation of mitophagy through PPAR-γ in pathological demyelinating settings, which may provide potential targets for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Xingzong Sun
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Menghan Qian
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Hongliang Li
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Lei Wang
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Yunjie Zhao
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, China.
| | - Lili Dai
- School of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
| | - Hongkun Bao
- School of Medicine, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
4
|
Atkinson KC, Osunde M, Tiwari-Woodruff SK. The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS. Front Neurosci 2023; 17:1144896. [PMID: 37559701 PMCID: PMC10409489 DOI: 10.3389/fnins.2023.1144896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, degenerating disorder of the central nervous system (CNS) that is accompanied by mitochondria energy production failure. A loss of myelin paired with a deficit in energy production can contribute to further neurodegeneration and disability in patients in MS. Mitochondria are essential organelles that produce adenosine triphosphate (ATP) via oxidative phosphorylation in all cells in the CNS, including neurons, oligodendrocytes, astrocytes, and immune cells. In the context of demyelinating diseases, mitochondria have been shown to alter their morphology and undergo an initial increase in metabolic demand. This is followed by mitochondrial respiratory chain deficiency and abnormalities in mitochondrial transport that contribute to progressive neurodegeneration and irreversible disability. The current methodologies to study mitochondria are limiting and are capable of providing only a partial snapshot of the true mitochondria activity at a particular timepoint during disease. Mitochondrial functional studies are mostly performed in cell culture or whole brain tissue, which prevents understanding of mitochondrial pathology in distinct cell types in vivo. A true understanding of cell-specific mitochondrial pathophysiology of MS in mouse models is required. Cell-specific mitochondria morphology, mitochondria motility, and ATP production studies in animal models of MS will help us understand the role of mitochondria in the normal and diseased CNS. In this review, we present currently used methods to investigate mitochondria function in MS mouse models and discuss the current advantages and caveats with using each technique. In addition, we present recently developed mitochondria transgenic mouse lines expressing Cre under the control of CNS specific promoters to relate mitochondria to disease in vivo.
Collapse
Affiliation(s)
| | | | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Ibrahim Fouad G, Ahmed KA. Remyelinating activities of Carvedilol or alpha lipoic acid in the Cuprizone-Induced rat model of demyelination. Int Immunopharmacol 2023; 118:110125. [PMID: 37028277 DOI: 10.1016/j.intimp.2023.110125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis (MS) is a complex and multifactorial neurodegenerative disease with unknown etiology, MS is featured by multifocal demyelinated lesions distributed throughout the brain. It is assumed to result from an interaction between genetic and environmental factors, including nutrition. Therefore, different therapeutic approaches are aiming to stimulate remyelination which could be defined as an endogenous regeneration and repair of myelin in the central nervous system. Carvedilol is an adrenergic receptor antagonist. Alpha lipoic acid (ALA) is a well-known antioxidant. Herein, we investigated the remyelination potential of Carvedilol or ALA post-Cuprizone (CPZ) intoxication. Carvedilol or ALA (20 mg/kg/d) was administrated orally for two weeks at the end of the five weeks of CPZ (0.6%) administration. CPZ provoked demyelination, enhanced oxidative stress, and stimulated neuroinflammation. Histological investigation of CPZ-induced brains showed obvious demyelination in the corpus callosum (CC). Both Carvedilol and ALA demonstrated remyelinating activities, with corresponding upregulation of the expression of MBP and PLP, the major myelin proteins, downregulation of the expression of TNF-α and MMP-9, and decrement of serum IFN-γ levels. Moreover, both Carvedilol and ALA alleviated oxidative stress, and ameliorated muscle fatigue. This study highlights the neurotherapeutic potential of Carvedilol or ALA in CPZ-induced demyelination, and offers a better model for the exploring of neuroregenerative strategies. The current study is the first to demonstrate a pro-remyelinating activity for Carvedilol, as compared to ALA, which might represent a potential additive benefit in halting demyelination and alleviating neurotoxicity. However, we could declare that Carvedilol showed a lower neuroprotective potential than ALA.
Collapse
|
6
|
Yuan T, Jiao H, Ai L, Chen Y, Hu D, Lu P. Characterization of Sulfoxaflor and Its Metabolites on Survival, Growth, Reproduction, Biochemical Markers, and Transcription of Genes of Daphnia magna. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6424-6433. [PMID: 37070642 DOI: 10.1021/acs.jafc.2c08748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sulfoxaflor is a promising neonicotinoid. However, the negative implications of sulfoxaflor on nontarget aquatic organisms have been rarely studied. In this study, the risks of sulfoxaflor and its main metabolites X11719474 and X11519540 on Daphnia magna were characterized, including acute toxicity, reproduction, swimming behavior, biochemical markers, and gene transcription. Acute toxicity measurements indicated that X11719474 and X11519540 have high toxicity than the parent compound sulfoxaflor. Chronic exposure reduced reproduction and delayed the birth of the firstborn D. magna. Swimming behavior monitoring showed that exposure to three compounds stimulated swimming behavior. The induction of catalase, superoxide dismutase, and acetylcholinesterase activities was observed with oxidative stress, whereas malondialdehyde content was remarkably increased with exposure to sulfoxaflor, X11719474, and X11519540. Moreover, transcriptomics profiles showed that sulfoxaflor, X11719474, and X11519540 induced KEGG pathways related to cellular processes, organismal systems, and metabolisms. The findings present valuable insights into the prospective hazards of these pesticides and emphasize the critical importance of conducting a systematic evaluation of combining antecedents and their metabolites.
Collapse
Affiliation(s)
- Tingting Yuan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Jiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lina Ai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yafang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Huitong, Hunan 418300, China
| |
Collapse
|
7
|
Kwon OW, Kim D, Koh E, Yang HJ. Korean Red Ginseng and Rb1 facilitate remyelination after cuprizone diet-induced demyelination. J Ginseng Res 2023; 47:319-328. [PMID: 36926609 PMCID: PMC10014189 DOI: 10.1016/j.jgr.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 03/18/2023] Open
Abstract
Background Demyelination has been observed in neurological disorders, motivating researchers to search for components for enhancing remyelination. Previously we found that Rb1, a major ginsenoside in Korean Red Ginseng (KRG), enhances myelin formation. However, it has not been studied whether Rb1 or KRG function in remyelination after demyelination in vivo. Methods Mice were fed 0.2% cuprizone-containing chow for 5 weeks and returned to normal chow with daily oral injection of vehicle, KRG, or Rb1 for 3 weeks. Brain sections were stained with luxol fast blue (LFB) staining or immunohistochemistry. Primary oligodendrocyte or astrocyte cultures were subject to normal or stress condition with KRG or Rb1 treatment to measure gene expressions of myelin, endoplasmic reticulum (ER) stress, antioxidants and leukemia inhibitory factor (LIF). Results Compared to the vehicle, KRG or Rb1 increased myelin levels at week 6.5 but not 8, when measured by the LFB+ or GST-pi+ area within the corpus callosum. The levels of oligodendrocyte precursor cells, astrocytes, and microglia were high at week 5, and reduced afterwards but not changed by KRG or Rb1. In primary oligodendrocyte cultures, KRG or Rb1 increased expression of myelin genes, ER stress markers, and antioxidants. Interestingly, under cuprizone treatment, elevated ER stress markers were counteracted by KRG or Rb1. Under rotenone treatment, reduced myelin gene expressions were recovered by Rb1. In primary astrocyte cultures, KRG or Rb1 decreased LIF expression. Conclusion KRG and Rb1 may improve myelin regeneration during the remyelination phase in vivo, potentially by directly promoting myelin gene expression.
Collapse
Affiliation(s)
- Oh Wook Kwon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Dalnim Kim
- Korea Institute of Brain Science, Seoul, Republic of Korea
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
- Corresponding author. Department of Integrative Biosciences, University of Brain Education, 284-31, Gyochonjisan-gil, Mokcheon-eup, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31228, Republic of Korea.
| |
Collapse
|
8
|
Ibrahim Fouad G, Mabrouk M, El-Sayed SAM, Rizk MZ, Beherei HH. Neurotherapeutic efficacy of loaded sulforaphane on iron oxide nanoparticles against cuprizone-induced neurotoxicity: role of MMP-9 and S100β. Toxicol Mech Methods 2023:1-17. [PMID: 36775846 DOI: 10.1080/15376516.2023.2177219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cuprizone (CUP) induces neurotoxicity and demyelination in animal models by provoking the activation of glial cells and the generation of reactive oxygen species (ROS). Sulforaphane (SF) is a phytochemical that exhibits a neuroprotective potential. In this study, we investigated the neurotherapeutic and pro-remyelinating activities of SF and SF-loaded within iron oxide nanoparticles (IONP-SF) in CUP-exposed rats. Magnetite iron oxide nanoparticles (IONPs) were prepared using the hydrothermal method that was further loaded with SF (IONP-SF). The loading of SF within the magnetite nanoparticles was assessed using FTIR, TEM, DLS, Zetasizer, and XPS. For the in vivo investigations, adult male Wistar rats (n = 40) were administrated either on a regular diet or a diet with CUP (0.2%) for 5 weeks. The rats were divided into four groups: negative control, CUP-induced, CUP + SF, and CUP + IONP-SF. CUP-exposed brains exhibited a marked elevation in lipid peroxidation, along with a significant decrease in the activities of glutathione peroxidase (GPx), and catalase (CAT). In addition, CUP intoxication downregulated the expression of myelin basic protein (MBP) and myelin proteolipid protein (PLP), upregulated the expression of Matrix metallopeptidase-9 (MMP-9) and S100β, and increased caspase-3 immunoexpression, these results were supported histopathologically in the cerebral cortexes. Treatment of CUP-rats with either SF or IONP-SF demonstrated remyelinating and neurotherapeutic activities. We could conclude that IONP-SF was more effective than free SF in mitigating the CUP-induced downregulation of MBP, upregulation of S100β, and caspase-3 immunoexpression.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Al-Otaibi KM, Alghamdi BS, Al-Ghamdi MA, Mansouri RA, Ashraf GM, Omar UM. Therapeutic effect of combination vitamin D3 and siponimod on remyelination and modulate microglia activation in cuprizone mouse model of multiple sclerosis. Front Behav Neurosci 2023; 16:1068736. [PMID: 36688131 PMCID: PMC9849768 DOI: 10.3389/fnbeh.2022.1068736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
Stimulation of remyelination is critical for the treatment of multiple sclerosis (MS) to alleviate symptoms and protect the myelin sheath from further damage. The current study aimed to investigate the possible therapeutic effects of combining vitamin D3 (Vit D3) and siponimod (Sipo) on enhancing remyelination and modulating microglia phenotypes in the cuprizone (CPZ) demyelination mouse model. The study was divided into two stages; demyelination (first 5 weeks) and remyelination (last 4 weeks). In the first 5 weeks, 85 mice were randomly divided into two groups, control (n = 20, standard rodent chow) and CPZ (n = 65, 0.3% CPZ mixed with chow for 6 weeks, followed by 3 weeks of standard rodent chow). At week 5, the CPZ group was re-divided into four groups (n = 14) for remyelination stages; untreated CPZ (0.2 ml of CMC orally), CPZ+Vit D3 (800 IU/kg Vit D3 orally), CPZ+Sipo (1.5 mg/kg Sipo orally), and CPZ+Vit D3 (800 IU/kg Vit D3) + Sipo (1.5 mg/kg Sipo orally). Various behavioral tasks were performed to evaluate motor performance. Luxol Fast Blue (LFB) staining, the expression level of myelin basic protein (MBP), and M1/M2 microglia phenotype genes were assessed in the corpus callosum (CC). The results showed that the combination of Vit D3 and Sipo improved behavioral deficits, significantly promoted remyelination, and modulated expression levels of microglia phenotype genes in the CC at early and late remyelination stages. These results demonstrate for the first time that a combination of Vit D3 and Sipo can improve the remyelination process in the cuprizone (CPZ) mouse model by attenuating the M1 microglia phenotype. This may help to improve the treatment of MS patients.
Collapse
Affiliation(s)
- Kholoud M. Al-Otaibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Maryam A. Al-Ghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah, Saudi Arabia,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Sex Differences in the Behavioural Aspects of the Cuprizone-Induced Demyelination Model in Mice. Brain Sci 2022; 12:brainsci12121687. [PMID: 36552147 PMCID: PMC9775311 DOI: 10.3390/brainsci12121687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease characterised by demyelination in the central nervous system. The cuprizone-induced demyelination model is often used in mice to test novel treatments for multiple sclerosis. However, despite significant demyelination, behavioural deficits may be subtle or have mixed results depending on the paradigm used. Furthermore, the sex differences within the model are not well understood. In the current study, we have sought to understand the behavioural deficits associated with the cuprizone-induced demyelination model in both male and female C57BL/6J mice. Using Black gold II stain, we found that cuprizone administration over 6 weeks caused significant demyelination in the corpus callosum that was consistent across both sexes. Cuprizone administration caused increased mechanical sensitivity when measured using an electronic von Frey aesthesiometer, with no sex differences observed. However, cuprizone administration decreased motor coordination, with more severe deficits seen in males in the horizontal bar and passive wire hang tests. In contrast, female mice showed more severe deficits in the motor skill sequence test. Cuprizone administration caused more anxiety-like behaviours in males compared to females in the elevated zero maze. Therefore, this study provides a better understanding of the sex differences involved in the behavioural aspects of cuprizone-induced demyelination, which could allow for a better translation of results from the laboratory to the clinic.
Collapse
|
11
|
Gharagozloo M, Mace JW, Calabresi PA. Animal models to investigate the effects of inflammation on remyelination in multiple sclerosis. Front Mol Neurosci 2022; 15:995477. [PMID: 36407761 PMCID: PMC9669474 DOI: 10.3389/fnmol.2022.995477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/22/2022] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS). In people with MS, impaired remyelination and axonal loss lead to debilitating long-term neurologic deficits. Current MS disease-modifying drugs mainly target peripheral immune cells and have demonstrated little efficacy for neuroprotection or promoting repair. To elucidate the pathological mechanisms and test therapeutic interventions, multiple animal models have been developed to recapitulate specific aspects of MS pathology, particularly the acute inflammatory stage. However, there are few animal models that facilitate the study of remyelination in the presence of inflammation, and none fully replicate the biology of chronic demyelination in MS. In this review, we describe the animal models that have provided insight into the mechanisms underlying demyelination, myelin repair, and potential therapeutic targets for remyelination. We highlight the limitations of studying remyelination in toxin-based demyelination models and discuss the combinatorial models that recapitulate the inflammatory microenvironment, which is now recognized to be a major inhibitor of remyelination mechanisms. These models may be useful in identifying novel therapeutics that promote CNS remyelination in inflammatory diseases such as MS.
Collapse
Affiliation(s)
- Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jackson W. Mace
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Motor Behavioral Deficits in the Cuprizone Model: Validity of the Rotarod Test Paradigm. Int J Mol Sci 2022; 23:ijms231911342. [PMID: 36232643 PMCID: PMC9570024 DOI: 10.3390/ijms231911342] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple Sclerosis (MS) is a neuroinflammatory disorder, which is histopathologically characterized by multifocal inflammatory demyelinating lesions affecting both the central nervous system’s white and grey matter. Especially during the progressive phases of the disease, immunomodulatory treatment strategies lose their effectiveness. To develop novel progressive MS treatment options, pre-clinical animal models are indispensable. Among the various different models, the cuprizone de- and remyelination model is frequently used. While most studies determine tissue damage and repair at the histological and ultrastructural level, functional readouts are less commonly applied. Among the various overt functional deficits, gait and coordination abnormalities are commonly observed in MS patients. Motor behavior is mediated by a complex neural network that originates in the cortex and terminates in the skeletal muscles. Several methods exist to determine gait abnormalities in small rodents, including the rotarod testing paradigm. In this review article, we provide an overview of the validity and characteristics of the rotarod test in cuprizone-intoxicated mice.
Collapse
|
13
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
14
|
Narine M, Colognato H. Current Insights Into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Front Cell Neurosci 2022; 16:892968. [PMID: 35573837 PMCID: PMC9097137 DOI: 10.3389/fncel.2022.892968] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Once believed to be part of the nervenkitt or "nerve glue" network in the central nervous system (CNS), oligodendroglial cells now have established roles in key neurological functions such as myelination, neuroprotection, and motor learning. More recently, oligodendroglia has become the subject of intense investigations aimed at understanding the contributions of its energetics to CNS physiology and pathology. In this review, we discuss the current understanding of oligodendroglial metabolism in regulating key stages of oligodendroglial development and health, its role in providing energy to neighboring cells such as neurons, as well as how alterations in oligodendroglial bioenergetics contribute to disease states. Importantly, we highlight how certain inputs can regulate oligodendroglial metabolism, including extrinsic and intrinsic mediators of cellular signaling, pharmacological compounds, and even dietary interventions. Lastly, we discuss emerging studies aimed at discovering the therapeutic potential of targeting components within oligodendroglial bioenergetic pathways.
Collapse
Affiliation(s)
- Mohanlall Narine
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
- Department of Neurobiology, & Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
15
|
Salimi A, Sabur M, Dadkhah M, Shabani M. Inhibition of scopolamine-induced memory and mitochondrial impairment by betanin. J Biochem Mol Toxicol 2022; 36:e23076. [PMID: 35411685 DOI: 10.1002/jbt.23076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are identified to contribute to the mechanisms responsible for the pathogenesis of Alzheimer's disease (AD). Scopolamine (SCO) as a potent drug for inducing memory and learning impairment is associated with mitochondrial dysfunction and oxidative stress. In AD clinical trials molecules with antioxidant properties have shown modest benefit. Betanin as a multifunctional molecule with powerful antioxidative properties may be effective in the treatment of neurodegenerative. Hence, this study was designed to investigate the possible therapeutic effect of betanin against SCO-induced AD on Wistar rats. SCO (1 mg/kg) was administrated intraperitoneally to induce the AD in Wistar rats. The rats were treated with betanin doses (25 mg/kg and 50 mg/kg) intraperitoneally for 9 consecutive days. At the end of the 9th day, the animals were subjected to behavioral examination such as novel object recognition and passive avoidance tests and killed to study the mitochondrial and histological parameters. The results showed attenuation of SCO-induced memory and learning impairment by betanin at 50 mg/kg dose. Also, mitochondrial toxicity parameters such as mitochondrial membrane potential collapse, mitochondrial swelling, decreased activity of succinate dehydrogenase, and reactive oxygen species (ROS) production were reversed by betanin (50 mg/kg) compared to the SCO group. In addition, the ameliorative effect of betanin against SCO was demonstrated in histopathological results of hippocampus. The present investigation established that the betanin ameliorates the SCO-induced memory impairments, tissue injuries, and mitochondrial dysfunction by reducing mitochondrial ROS, which may be due to the potent antioxidant action of betanin.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Meysam Sabur
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
16
|
Hashem M, Shafqat Q, Wu Y, Rho JM, Dunn JF. Abnormal Oxidative Metabolism in the Cuprizone Mouse Model of Demyelination: an in vivo NIRS-MRI Study. Neuroimage 2022; 250:118935. [PMID: 35091079 DOI: 10.1016/j.neuroimage.2022.118935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Disruptions in oxidative metabolism may occur in multiple sclerosis and other demyelinating neurological diseases. The impact of demyelination on metabolic rate is also not understood. It is possible that mitochondrial damage may be associated with many such neurological disorders. To study oxidative metabolism with one model of demyelination, we implemented a novel multimodal imaging technique combining Near-Infrared Spectroscopy (NIRS) and MRI to cuprizone mouse model. The cuprizone model is used to study demyelination and may be associated with inhibition of mitochondrial function. Cuprizone mice showed reduced oxygen extraction fraction (-39.1%, p≤0.001), increased tissue oxygenation (6.4%, p≤0.001), and reduced cerebral metabolic rate of oxygen in cortical gray matter (-62.1%, p≤0.001). These changes resolved after the cessation of cuprizone exposure and partial remyelination. A decrease in hemoglobin concentration (-34.4%, p≤0.001), but no change in cerebral blood flow were also observed during demyelination. The oxidized state of the mitochondrial enzyme, Cytochrome C Oxidase (CCO) increased (46.3%, p≤0.001) while the reduced state decreased (-34.4%, p≤0.05) significantly in cuprizone mice. The total amount of CCO did not change significantly during cuprizone exposure. Total CCO did decline after recovery both in control (-23.1%, p≤0.01) and cuprizone (-28.8%, p≤0.001) groups which may relate to age. A reduction in the magnetization transfer ratio, indicating demyelination, was found in the cuprizone group in the cerebral cortex (-3.2%, p≤0.01) and corpus callosum (-5.5%, p≤0.001). In summary, we were able to detect evidence of altered CCO metabolism during cuprizone exposure, consistent with a mitochondrial defect. We observed increased oxygenation and reduced metabolic rate associated with reduced myelination in the gray and white matter. The novel multimodal imaging technique applied here shows promise for noninvasively assessing parameters associated with oxidative metabolism in both mouse models of neurological disease and for translation to study oxidative metabolism in the human brain.
Collapse
Affiliation(s)
- Mada Hashem
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada, T2N 4N1; Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1
| | - Qandeel Shafqat
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada, T2N 4N1; Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1
| | - Ying Wu
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada, T2N 4N1; Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1
| | - Jeff F Dunn
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1; Hotchkiss Brain Institute, University of Calgary, Alberta, Canada, T2N 4N1; Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada, T2N 4N1.
| |
Collapse
|
17
|
Pourmohammadi S, Roghani M, Kiasalari Z, Khalili M. Paeonol Ameliorates Cuprizone-Induced Hippocampal Demyelination and Cognitive Deficits through Inhibition of Oxidative and Inflammatory Events. J Mol Neurosci 2022; 72:748-758. [PMID: 35001353 DOI: 10.1007/s12031-021-01951-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic and inflammatory disorder of the central nervous system with autoimmune nature that is typified by varying degrees of demyelination and axonal damage. Paeonol is an active ingredient in some medicinal plants with anti-inflammatory and neuroprotective property. This study was conducted to reveal whether paeonol can alleviate hippocampal demyelination and cognitive deficits in cuprizone-induced murine model of demyelination as a model of MS. C57BL/6 mice received oral cuprizone (400 mg/kg) for 6 weeks, and paeonol was administered p.o. at two doses of 25 or 100 mg/kg, starting from the second week post-cuprizone for 5 weeks. After assessment of learning and memory in different tasks, oxidative stress and inflammation were evaluated besides immunohistochemical assessment of hippocampal myelin basic protein (MBP). Paeonol (100 mg/kg) properly ameliorated cognitive deficits in Y maze, novel object discrimination (NOD) test, and Barnes maze with no significant improvement of performance in passive avoidance task. In addition, paeonol treatment at the higher dose was also associated with partial restoration of hippocampal level of oxidative stress and inflammatory markers including MDA, ROS, GSH, SOD, catalase, NF-kB, and TNF. Besides, paeonol improved MMP as an index of mitochondrial integrity and health and reduced MPO as a factor of neutrophil infiltration. Furthermore, paeonol treatment prevented hippocampal MBP immunoreactivity, indicating its prevention of demyelination. In conclusion, the current study showed the preventive effect of paeonol against cuprizone-induced demyelination and cognitive deficits through reversing most oxidative stress- and inflammation-related parameters in addition to its improvement of mitochondrial health.
Collapse
Affiliation(s)
- Soosan Pourmohammadi
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Mohsen Khalili
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
18
|
Jeffries MA, McLane LE, Khandker L, Mather ML, Evangelou AV, Kantak D, Bourne JN, Macklin WB, Wood TL. mTOR Signaling Regulates Metabolic Function in Oligodendrocyte Precursor Cells and Promotes Efficient Brain Remyelination in the Cuprizone Model. J Neurosci 2021; 41:8321-8337. [PMID: 34417330 PMCID: PMC8496195 DOI: 10.1523/jneurosci.1377-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023] Open
Abstract
In demyelinating diseases, such as multiple sclerosis, primary loss of myelin and subsequent neuronal degeneration throughout the CNS impair patient functionality. While the importance of mechanistic target of rapamycin (mTOR) signaling during developmental myelination is known, no studies have yet directly examined the function of mTOR signaling specifically in the oligodendrocyte (OL) lineage during remyelination. Here, we conditionally deleted Mtor from adult oligodendrocyte precursor cells (OPCs) using Ng2-CreERT in male adult mice to test its function in new OLs responsible for remyelination. During early remyelination after cuprizone-induced demyelination, mice lacking mTOR in adult OPCs had unchanged OL numbers but thinner myelin. Myelin thickness recovered by late-stage repair, suggesting a delay in myelin production when Mtor is deleted from adult OPCs. Surprisingly, loss of mTOR in OPCs had no effect on efficiency of remyelination after lysophosphatidylcholine lesions in either the spinal cord or corpus callosum, suggesting that mTOR signaling functions specifically in a pathway dysregulated by cuprizone to promote remyelination efficiency. We further determined that cuprizone and inhibition of mTOR cooperatively compromise metabolic function in primary rat OLs undergoing differentiation. Together, our results support the conclusion that mTOR signaling in OPCs is required to overcome the metabolic dysfunction in the cuprizone-demyelinated adult brain.SIGNIFICANCE STATEMENT Impaired remyelination by oligodendrocytes contributes to the progressive pathology in multiple sclerosis, so it is critical to identify mechanisms of improving remyelination. The goal of this study was to examine mechanistic target of rapamycin (mTOR) signaling in remyelination. Here, we provide evidence that mTOR signaling promotes efficient remyelination of the brain after cuprizone-mediated demyelination but has no effect on remyelination after lysophosphatidylcholine demyelination in the spinal cord or brain. We also present novel data revealing that mTOR inhibition and cuprizone treatment additively affect the metabolic profile of differentiating oligodendrocytes, supporting a mechanism for the observed remyelination delay. These data suggest that altered metabolic function may underlie failure of remyelination in multiple sclerosis lesions and that mTOR signaling may be of therapeutic potential for promoting remyelination.
Collapse
Affiliation(s)
- Marisa A Jeffries
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Lauren E McLane
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Luipa Khandker
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Marie L Mather
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Divyangi Kantak
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Teresa L Wood
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
19
|
Salimi A, Ghasempour M, Farzaneh S, Khodaparast F, Naserzadeh P, Zarghi A, Pourahmad J. Evaluation of Cytotoxic Potentials of Novel Synthesized Chalconeferrocenyl Derivative against Melanoma and Normal Fibroblast and Its Anticancer Effect through Mitochondrial Pathway. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:241-253. [PMID: 34567159 PMCID: PMC8457721 DOI: 10.22037/ijpr.2020.113949.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The treatment of melanoma is still challenging and therefore identification of novel agents is needed for its better management. Our previous study suggested that cyclooxygenase-2 (COX-2) would be a novel target for treatment of several cancers. In the present study, we searched selective cytotoxicity and mitochondria mediated apoptosis of novel synthesized chalconeferrocenyl derivative (1-Ferrocenyl-3-(dimethylamino)-3-(4-methylsulfonylphenyl) propan-1-one) (FDMPO) as a COX-2 inhibitor on normal and melanoma cells and their mitochondria. For this purpose, we evaluated the cellar parameters such as cytotoxicity, apoptosis% versus necrosis%, activation of caspase-3 and ATP content, and also mitochondrial parameters such as reactive oxygen species formation, mitochondrial swelling, mitochondrial membrane potential decline, mitochondrial membrane integrity, and cytochrome C release. Our results showed FDMPO could selectively induce cellular and mitochondrial toxicity (up to 50 µM) on melanoma cells and mitochondria without any toxic effects on normal fibroblast and their mitochondria. Taken together, the results of this study suggest that mitochondria are a potential target for the melanoma. Selective inhibition of mitochondrial COX-2 could be an attractive therapeutic option for the effective clinical management of therapy-resistant melanoma.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Ghasempour
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Farzaneh
- Department of Medicinal Chemistry and Nuclear Medicine, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Khodaparast
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parvaneh Naserzadeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry and Nuclear Medicine, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Rasoul AA, Khudhur ZO, Hamad MS, Ismaeal YS, Smail SW, Rasul MF, Mohammad KA, Bapir AA, Omar SA, Qadir MK, Rajab MF, Salihi A, Kaleem M, Rizwan MA, Qureshi AS, Iqbal ZM, Qudratullah. The role of oxidative stress and haematological parameters in relapsing-remitting multiple sclerosis in Kurdish population. Mult Scler Relat Disord 2021; 56:103228. [PMID: 34492630 DOI: 10.1016/j.msard.2021.103228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Multiple sclerosis (MS), as a neurodegenerative disorder, exhibits inflammation and oxidative stress hallmarks. OBJECTIVE The research aims to know any disturbances in haematological parameters and antioxidant system of relapsing-remitting multiple sclerosis (RRMS) patients in the Kurdish population. METHODS A case-control research meeting following the McDonald criterion was conducted on 100 RRMS patients and 100 controls. RESULTS Lipid peroxidation products of malondialdehyde (MDA), erythrocyte sedimentation rate (ESR), and total leucocyte counts (TLCs) were increased significantly, but copper (Cu+2) and superoxide dismutase (SOD) were decreased significantly while nitric oxide metabolites (NOx) and lymphocyte were not changed significantly if compared with that of controls. CONCLUSION Findings from our study revealed that some defects were detected in haematological profiles in the Kurdish population and disturbance of immunological parameters. In addition, the utilization of Cu+2 supplement as an effective modality for RRMS patients may be beneficial.
Collapse
Affiliation(s)
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Science, Tishk International University - Erbil, Kurdistan Region, Iraq
| | | | | | - Shukur Wasman Smail
- Biology Department, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq.
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University - Erbil, Kurdistan Region, Iraq
| | - Karzan Abdulmuhsin Mohammad
- General Directorate for Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | | | - Shwan Ali Omar
- Ministry of Health, Kurdistan Regional Government, Erbil, Iraq
| | - Mahdi Khaled Qadir
- Department of Physiotherapy, Erbil Technical Health College, Erbil Polytechnic University, Erbil, Iraq
| | - Mustafa Fahmi Rajab
- Biology Department, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Biology Department, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Muhammad Kaleem
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Anas Sarwar Qureshi
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Zeeshan Muhammad Iqbal
- Department of Livestock Management, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Qudratullah
- Department of Surgery, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan.
| |
Collapse
|
21
|
Rezaei M, Karimian L, Shafaghi B, Noubarani M, Salecheh M, Shafi Dehghani M, Eskandari MR, Pourahmad J. Evaluation of Molecular and Cellular Alterations Induced by Neuropathic Pain in Rat Brain Glial cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:359-370. [PMID: 34400965 PMCID: PMC8170759 DOI: 10.22037/ijpr.2020.113052.14089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuropathic pain originates from illness or damage of the nervous system and affects the somatosensory system. Recently, many efforts have been made to illuminate the influences of neuropathic pain in different parts of central nervous system (CNS). However, the toxic consequences of neuropathic pain in glial cells, which involve in the control of pain is poorly understood. Therefore, the present study aimed to assess the molecular and cellular effects of neuropathic pain in the glial cells of rat brain. Induction of neuropathic pain in rats was associated with oxidative stress as evident by elevated reactive oxygen species (ROS) formation as well as reversible glutathione (GSH) depletion in the glial cells. Moreover, neuropathic pain caused mitochondrial membrane potential collapse (∆Ψm%), lysosomal membrane rapture, and proteolysis, probably due to ROS-induced MPT pore opening. These toxic events could cause cytochrome c release from intermembrane space into the cytosole and trigger caspase activation pathway. Our finding confirmed that the activity of caspase-3 was significantly increased in the glial cells as a core component of the apoptotic machinery. In conclusion, the neuropathic pain induces ROS generation as the major cause of GSH depletion along with mutual mitochondrial/lysosomal potentiation (cross-talk) of oxidative stress in the glial cells. Subsequently, this toxic cross-talk can induce proteolysis and trigger apoptosis by caspase-3 activation in the glial cells of rat brain.
Collapse
Affiliation(s)
- Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Lida Karimian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bizhan Shafaghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noubarani
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Salecheh
- Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shafi Dehghani
- Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Eskandari
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Kim SA, Chai JH, Jang EH. Prenatal Trimethyltin Exposure Induces Long-Term DNA Methylation Changes in the Male Mouse Hippocampus. Int J Mol Sci 2021; 22:ijms22158009. [PMID: 34360774 PMCID: PMC8348768 DOI: 10.3390/ijms22158009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Trimethyltin (TMT) is an irreversible neurotoxicant. Because prenatal TMT exposure has been reported to induce behavioral changes, this study was conducted to observe gender differences and epigenetic changes using a mouse model. In behavioral testing of offspring at 5 weeks of age, the total times spent in the center, corner, or border zones in the male prenatal TMT-exposed mice were less than those of control unexposed mice in the open-field test. Female TMT-exposed mice scored lower on total numbers of arm entries and percentages of alternations than controls in the Y-maze test with lower body weight. We found that only TMT-exposed males had fewer copies of mtDNA in the hippocampus and prefrontal cortex region than controls. Additional epigenetic changes, including increased 5-methyl cytosine/5-hydroxymethyl cytosine levels in the male TMT hippocampus, were observed. After methylation binding domain (MBD) sequencing, multiple signaling pathways related to metabolism and neurodevelopment, including FoxO signaling, were identified by pathway analysis for differentially methylated regions (DMRs). Increased FOXO3 and decreased ASCL1 expression were also observed in male TMT hippocampi. This study suggests that sex differences and epigenetics should be more carefully considered in prenatal toxicology studies.
Collapse
Affiliation(s)
- Soon-Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Korea;
- Correspondence: ; Tel.: +82-42-259-1672
| | - Jung-Hoon Chai
- Center for Sport Science in Seoul, Seoul Sports Council, Seoul 02119, Korea;
| | - Eun-Hye Jang
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Korea;
| |
Collapse
|
23
|
Afrasiabi M, Seydi E, Rahimi S, Tahmasebi G, Jahanbani J, Pourahmad J. The selective toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) on oral squamous cell carcinoma (OSCC) by targeting their mitochondria. J Biochem Mol Toxicol 2021; 35:1-8. [PMID: 33704875 DOI: 10.1002/jbt.22769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 01/06/2023]
Abstract
In recent years, many researchers have made tremendous efforts into using nanotechnology in biomedical applications and science, such as magnetic resonance imaging, drug delivery, and in particular, oncological therapeutic via superparamagnetic iron oxide nanoparticles (SPIONs). Head and neck squamous cell carcinoma (HNSCC) and especially oral squamous cell carcinoma (OSCC) have been a serious and ongoing concern. There are many strong emphases on the importance of toxic mechanisms due to oxidative stress and specifically, the changed cellular response. Therefore, our study was designed to evaluate the effects of SPIONs on OSCC mitochondria because of the usefulness of the application of these nanoparticles in cancer treatment and diagnosis. An increased level of reactive oxygen species (ROS) is one of the substantial mechanisms found for SPIONs in this study, and initially originated from disruption of the electron transfer chain shown by a decrease in mitochondrial succinate dehydrogenase activity. Increased ROS formation subsequently followed a decline of mitochondrial membrane potential, the release of mitochondrial cytochrome complex, and mitochondrial swelling in the OSCC mitochondria compared with almost no effect in normal mitochondria. In addition, the SPIONs decreased cell viability and increased lipid peroxidation level and caspase-3 activity in OSCC cells. The results represented that the exposure to the SPIONs induced selective toxicity only on the OSCC but not normal mitochondria. Based on our findings, we finally concluded that the SPIONs may be considered as a potential therapeutic candidate for the treatment of OSCC.
Collapse
Affiliation(s)
- Mona Afrasiabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Shabnam Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Tahmasebi
- Department of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Jahanfar Jahanbani
- Department of Oral & Maxillofacial Pathology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Seydi E, Mehrpouya L, Sadeghi H, Rahimi S, Pourahmad J. Luteolin attenuates Fipronil-induced neurotoxicity through reduction of the ROS-mediated oxidative stress in rat brain mitochondria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104785. [PMID: 33771263 DOI: 10.1016/j.pestbp.2021.104785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/03/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Luteolin (LUT) as a natural compound found in vegetables and fruits has various pharmacological effects. Fipronil (FPN), as a pesticide, has been considered for its effect on the antioxidant system and induction of oxidative stress. This study was designed to investigate the protective effects of LUT against the oxidative stress and mitochondrial toxicity induced by FPN on the rat brain. Several parameters such as mitochondrial reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, cytochrome c release, mitochondrial glutathione (GSH), lipid peroxidation (LPO) and Adenosine triphosphate (ATP) levels were assessed. Results indicated that the administration of LUT (25 μM) significantly improved oxidative stress and mitochondrial damages induced via FPN (6, 12 and 24 μM) in isolated mitochondria from the brain. These results show that LUT exerted protective effects against FPN-induced neurotoxicity in vitro through improving oxidative stress and mitochondrial damages.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Leila Mehrpouya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadiseh Sadeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Rahimi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Salimi A, Kazemnezhad M, Mohammadzadeh Asl B, Jokar F, Jamali Z, Pourahmad J. Mephedrone as a new synthetic amphetamine induces abortion, morphological alterations and mitochondrial dysfunction in mouse embryos. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1803358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Kazemnezhad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baharak Mohammadzadeh Asl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Jokar
- Department of Forensic Toxicology, Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zhaleh Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Ogunlade B, Fidelis OP, Afolayan OO, Agie JA. Neurotherapeutic and antioxidant response of D-ribose-L-Cysteine nutritional dietary supplements on Alzheimer-type hippocampal neurodegeneration induced by cuprizone in adult male wistar rat model. Food Chem Toxicol 2020; 147:111862. [PMID: 33217524 DOI: 10.1016/j.fct.2020.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Cuprizone is a neurotoxicant causing neurodegeneration through enzymes inhibition and oxidative stress. D-Ribose-L-Cysteine (DRLC) is a powerful antioxidant with neuroprotective properties. This study explored the antioxidant response of DRLC against cuprizone-induced behavioral alterations, biochemical imbalance and hippocampal neuronal damage in adult wistar rats. MATERIALS AND METHODS Thirty two (32) adult male wistar rats (150-200g) were divided into four groups (n = 8). Group A received normal saline only as placebo; Group B received 0.5% cuprizone diet only; Group C received a combination of 0.5% cuprizone diet and 100 mg/kg bw of DRLC and Group D received 100 mg/kg bw of DRLC only. The administration was done through oral gavage once daily for 45 days. After the last treatment, neurobehavioral tests (Morris Water Maze and Y maze) was conducted; animals sacrificed and brain harvested for histological analysis and biochemical estimations of levels of antioxidants, oxidative stress markers, neurotransmitters and enzyme activitties. RESULTS The results showed significant memory decline, hippocampal alterations, decrease levels of antioxidant markers, enzyme and neurotransmitters activities with concomitant increase in norepinephrine and oxidative stress markers in cuprizone induced rats relative to normal but was attenuated with DRLC administration. CONCLUSION Cuprizone causes cognitive impairment and neurodegeneration through oxidative stress; however, administration of DRLC ameliorated neuropathological alteration induced by cuprizone.
Collapse
Affiliation(s)
- B Ogunlade
- Neurobehavioral and Aging Lab, Human Anatomy Department, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - O P Fidelis
- Department of Biomedical Technology, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - O O Afolayan
- Anatomy Department, College of Medicine, University of Lagos, Lagos State, Nigeria.
| | - J A Agie
- Neurobehavioral and Aging Lab, Human Anatomy Department, Federal University of Technology, Akure, Ondo State, Nigeria.
| |
Collapse
|
27
|
Sphingosine-1-Phosphate Receptor Modulators and Oligodendroglial Cells: Beyond Immunomodulation. Int J Mol Sci 2020; 21:ijms21207537. [PMID: 33066042 PMCID: PMC7588977 DOI: 10.3390/ijms21207537] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by demyelination, axonal loss, and synaptic impairment in the central nervous system (CNS). The available therapies aim to reduce the severity of the pathology during the early inflammatory stages, but they are not effective in the chronic stage of the disease. In this phase, failure in endogenous remyelination is associated with the impairment of oligodendrocytes progenitor cells (OPCs) to migrate and differentiate into mature myelinating oligodendrocytes. Therefore, stimulating differentiation of OPCs into myelinating oligodendrocytes has become one of the main goals of new therapeutic approaches for MS. Different disease-modifying therapies targeting sphingosine-1-phosphate receptors (S1PRs) have been approved or are being developed to treat MS. Besides their immunomodulatory effects, growing evidence suggests that targeting S1PRs modulates mechanisms beyond immunomodulation, such as remyelination. In this context, this review focuses on the current understanding of S1PR modulators and their direct effect on OPCs and oligodendrocytes.
Collapse
|
28
|
Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse? Front Immunol 2020; 11:572186. [PMID: 33117365 PMCID: PMC7553052 DOI: 10.3389/fimmu.2020.572186] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates. In contrast, the cuprizone (CPZ) model is used to model early stages of the disease during which oligodendrocytosis and demyelination predominate and are hypothesized to precede subsequent immune involvement in MS. Recent studies combining a boost, or protection, to the immune system with disruption of the blood brain barrier have shown CPZ-induced oligodendrocytosis with a subsequent immune response. In this Perspective, we review these recent advances and discuss the likelihood of an inside-out vs. an outside-in pathoetiology of MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, St. Catharines, ON, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
29
|
Omotoso GO, Arietarhire LO, Ukwubile II, Gbadamosi IT. The Protective Effect of Kolaviron on Molecular, Cellular, and Behavioral Characterization of Cerebellum in the Rat Model of Demyelinating Diseases. Basic Clin Neurosci 2020; 11:609-618. [PMID: 33643554 PMCID: PMC7878059 DOI: 10.32598/bcn.9.10.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION This study aimed at assessing the protective mechanisms of Kolaviron (KV) on the cerebellum in a rat model of demyelination. METHODS Twenty-eight male Wistar rats were used in the present study. They were randomly divided into 4 groups of 7 rats. Group A (control) received corn oil (0.5 mL/kg/d); group B received 0.2% Cuprizone (CPZ); group C was treated with 200 mg/kg/d of KV, and group D received 0.2% CPZ and 200 mg/kg/d KV for 6 weeks. CPZ powder was mixed with the regular diet while KV was dissolved in corn oil and administered orally. A behavioral test was conducted at the termination of the experiment. Thereafter, the animals were sacrificed and their brains were removed with the excision of the cerebellum. A part of the cerebelli underwent tissue processing with a series of 5 μm thick sections cut from paraffin blocks for histological and immunohistochemical assessment. Besides, the remaining cerebellar tissues were homogenized for the spectrophotometric assays of Oxidative Stress (OS) parameters. RESULTS The current research findings revealed minimal weight gain following CPZ treatment, but significant weight increase in KV-treated rats. CPZ treatment was associated with a reduction in the number of the line crossed, rearing frequency, rearing duration, center square entry, and center square duration; however, it increased the freezing time, i.e. significantly reversed in the KV-treated animals. Oxidative markers, such as Superoxide Dismutase (SOD) and GPx were reduced in CPZ-treated rats with elevated MDA levels. However, these data were significantly reversed by the co-administration of CPZ and KV. At the tissue level, the cerebellar cortex was characterized by poorly defined layers, cryptic granules, as well as chromatolysis and pyknotic Purkinje cells with the evidence of hypertrophic astrogliosis. CONCLUSION CPZ treatment significantly depressed locomotor and exploratory activities. Furthermore, it increased OS and cerebellar toxicity. However, KV intervention significantly enhanced behavioral functions and ameliorated CPZ-induced cerebellar degeneration. Moreover, it considerably regulated OS markers in the cerebellum of the rat model of demyelinating diseases.
Collapse
Affiliation(s)
- Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Ileje Inelo Ukwubile
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ismail Temitayo Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
30
|
Khodaei F, Khoshnoud MJ, Heidaryfar S, Heidari R, Karimpour Baseri MH, Azarpira N, Rashedinia M. The effect of ellagic acid on spinal cord and sciatica function in a mice model of multiple sclerosis. J Biochem Mol Toxicol 2020; 34:e22564. [PMID: 32640490 DOI: 10.1002/jbt.22564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is a well-known neurodegenerative disorder, causing toxicity in different organs, such as spinal cord tissue. The goal of this study was to investigate the protective effect of ellagic acid (EA) against spinal cord and sciatica function in cuprizone (Cup)-induced demyelination model. Animals were divided into six equal groups. The first group received tap water as the control. Cup group was treated with Cup (0.2% w/w in fed). EA 100 group was orally treated with EA (100 mg/kg). EA + Cup groups were orally treated with three doses of 5, 50, and 100 mg/kg of EA plus Cup (0.2% w/w). All groups received treatment for 42 days. Open field, rotarod, and gait tests were done to evaluate the behavioral changes following Cup and/or EA treatment. Also, lipid peroxidation, reactive oxygen species (ROS) content, antioxidant capacity, superoxide dismutase (SOD), and catalase enzymes activity in spinal cord was evaluated. Luxol fast blue (LFB) staining also the behavioral tests were performed to evaluate the model. Cup increased ROS levels and oxidative stress in their spinal cord tissues. Also, Cup reduced antioxidant capacity, SOD, and catalase activity. EA (especially at 100 mg/kg) prevented these abnormal changes. EA co-treatment dose-dependently was able to ameliorate behavioral impairments in mice that received Cup. EA might act as a protective agent in MS by modulating spinal cord function.
Collapse
Affiliation(s)
- Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Heidaryfar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad H Karimpour Baseri
- Department of Neuroscience and Addiction, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Cuprizone Affects Hypothermia-Induced Neuroprotection and Enhanced Neuroblast Differentiation in the Gerbil Hippocampus after Ischemia. Cells 2020; 9:cells9061438. [PMID: 32531881 PMCID: PMC7349804 DOI: 10.3390/cells9061438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, we investigated the effects of cuprizone on cell death, glial activation, and neuronal plasticity induced by hypothermia after ischemia in gerbils. Food was supplemented with cuprizone at 0.2% ad libitum for eight weeks. At six weeks after diet feeing, gerbils received transient forebrain ischemia with or without hypothermic preconditioning. Cuprizone treatment for 8 weeks increased the number of astrocytes, microglia, and pro-inflammatory cytokine levels in the hippocampus. In addition, cuprizone treatment significantly decreased the number of proliferating cells and neuroblasts in the dentate gyrus. Brain ischemia caused cell death, disruption of myelin basic proteins, and reactive gliosis in CA1. In addition, ischemia significantly increased pro-inflammatory cytokines and the number of proliferating cells and differentiating neuroblasts in the dentate gyrus. In contrast, hypothermic conditioning attenuated these changes in CA1 and the dentate gyrus. However, cuprizone treatment decreased cell survival induced by hypothermic preconditioning after ischemia and increased the number of reactive microglia and astrocytes in CA1 as well as that of macrophages in the subcallosal zone. These changes occurred because the protective effect of hypothermia in ischemic damage was disrupted by cuprizone administration. Furthermore, cuprizone decreased ischemia-induced proliferating cells and neuroblasts in the dentate gyrus.
Collapse
|
32
|
Shelestak J, Singhal N, Frankle L, Tomor R, Sternbach S, McDonough J, Freeman E, Clements R. Increased blood-brain barrier hyperpermeability coincides with mast cell activation early under cuprizone administration. PLoS One 2020; 15:e0234001. [PMID: 32511268 PMCID: PMC7279587 DOI: 10.1371/journal.pone.0234001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The cuprizone induced animal model of demyelination is characterized by demyelination in many regions of the brain with high levels of demyelination in the corpus callosum as well as changes in neuronal function by 4–6 weeks of exposure. The model is used as a tool to study demyelination and subsequent degeneration as well as therapeutic interventions on these effects. Historically, the cuprizone model has been shown to contain no alterations to blood-brain barrier integrity, a key feature in many diseases that affect the central nervous system. Cuprizone is generally administered for 4–6 weeks to obtain maximal demyelination and degeneration. However, emerging evidence has shown that the effects of cuprizone on the brain may occur earlier than measurable gross demyelination. This study sought to investigate changes to blood-brain barrier permeability early in cuprizone administration. Results showed an increase in blood-brain barrier permeability and changes in tight junction protein expression as early as 3 days after beginning cuprizone treatment. These changes preceded glial morphological activation and demyelination known to occur during cuprizone administration. Increases in mast cell presence and activity were measured alongside the increased permeability implicating mast cells as a potential source for the blood-brain barrier disruption. These results provide further evidence of blood-brain barrier alterations in the cuprizone model and a target of therapeutic intervention in the prevention of cuprizone-induced pathology. Understanding how mast cells become activated under cuprizone and if they contribute to blood-brain barrier alterations may give further insight into how and when the blood-brain barrier is affected in CNS diseases. In summary, cuprizone administration causes an increase in blood-brain barrier permeability and this permeability coincides with mast cell activation.
Collapse
Affiliation(s)
- John Shelestak
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail:
| | - Naveen Singhal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Lana Frankle
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Riely Tomor
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Sarah Sternbach
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Jennifer McDonough
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Ernest Freeman
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Robert Clements
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
33
|
Wellman SM, Guzman K, Stieger KC, Brink LE, Sridhar S, Dubaniewicz MT, Li L, Cambi F, Kozai TDY. Cuprizone-induced oligodendrocyte loss and demyelination impairs recording performance of chronically implanted neural interfaces. Biomaterials 2020; 239:119842. [PMID: 32065972 PMCID: PMC7540937 DOI: 10.1016/j.biomaterials.2020.119842] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Biological inflammation induced during penetrating cortical injury can disrupt functional neuronal and glial activity within the cortex, resulting in potential recording failure of chronically implanted neural interfaces. Oligodendrocytes provide critical support for neuronal health and function through direct contact with neuronal soma and axons within the cortex. Given their fundamental role to regulate neuronal activity via myelin, coupled with their heightened vulnerability to metabolic brain injury due to high energetic demands, oligodendrocytes are hypothesized as a possible source of biological failure in declining recording performances of intracortical microelectrode devices. To determine the extent of their contribution to neuronal activity and function, a cuprizone-inducible model of oligodendrocyte depletion and demyelination in mice was performed prior to microelectrode implantation. At 5 weeks of cuprizone exposure, mice demonstrated significantly reduced cortical oligodendrocyte density and myelin expression. Mice were then implanted with functional recording microelectrodes in the visual cortex and neuronal activity was evaluated up to 7 weeks alongside continued cuprizone administration. Cuprizone-induced oligodendrocyte loss and demyelination was associated with significantly reduced recording performances at the onset of implantation, which remained relatively stable over time. In contast, recording performances for mice on a normal diet were intially elevated before decreasing over time to the recording level of tcuprizone-treated mice. Further electrophysiological analysis revealed deficits in multi-unit firing rates, frequency-dependent disruptions in neuronal oscillations, and altered laminar communication within the cortex of cuprizone-treated mice. Post-mortem immunohistochemistry revealed robust depletion of oligodendrocytes around implanted microelectrode arrays alongside comparable neuronal densities to control mice, suggesting that oligodendrocyte loss was a possible contributor to chronically impaired device performances. This study highlights potentially significant contributions from the oligodendrocyte lineage population concerning the biological integration and long-term functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kelly Guzman
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | | | - Sadhana Sridhar
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lehong Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Almuslehi MSM, Sen MK, Shortland PJ, Mahns DA, Coorssen JR. CD8 T-cell Recruitment Into the Central Nervous System of Cuprizone-Fed Mice: Relevance to Modeling the Etiology of Multiple Sclerosis. Front Cell Neurosci 2020; 14:43. [PMID: 32210765 PMCID: PMC7076139 DOI: 10.3389/fncel.2020.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 11/24/2022] Open
Abstract
Cuprizone (CPZ)-feeding in mice induces atrophy of peripheral immune organs (thymus and spleen) and suppresses T-cell levels, thereby limiting its use as a model for studying the effects of the immune system in demyelinating diseases such as Multiple Sclerosis (MS). To investigate whether castration (Cx) can protect the peripheral immune organs from CPZ-induced atrophy and enable T-cell recruitment into the central nervous system (CNS) following a breach of the blood-brain barrier (BBB), three related studies were carried out. In Study 1, Cx prevented the dose-dependent reductions (0.1% < 0.2% CPZ) in thymic and splenic weight, size of the thymic medulla and splenic white pulp, and CD4 and CD8 (CD4/8) levels remained comparable to gonadally intact (Gi) control males. Importantly, 0.1% and 0.2% CPZ were equipotent at inducing central demyelination and glial activation. In Study 2, combining Cx with 0.1% CPZ-feeding and BBB disruption with pertussis toxin (PT) enhanced CD8+ T-cell recruitment into the CNS. The increased CD8+ T-cell level observed in the parenchyma of the cerebrum, cerebellum, brainstem and spinal cord were confirmed by flow cytometry and western blot analyses of CNS tissue. In Study 3, PT+0.1% CPZ-feeding to Gi female mice resulted in similar effects on the peripheral immune organs, CNS demyelination, and gliosis comparable to Gi males, indicating that testosterone levels alone were not responsible for the immune response seen in Study 2. The combination of Cx+0.1% CPZ-feeding+PT indicates that CPZ-induced demyelination can trigger an “inside-out” immune response when the peripheral immune system is spared and may provide a better model to study the initiating events in demyelinating conditions such as MS.
Collapse
Affiliation(s)
- Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, Diyala University, Diyala, Iraq
| | - Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences, St. Catharines, ON, Canada.,Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
35
|
Langley MR, Yoon H, Kim HN, Choi CI, Simon W, Kleppe L, Lanza IR, LeBrasseur NK, Matveyenko A, Scarisbrick IA. High fat diet consumption results in mitochondrial dysfunction, oxidative stress, and oligodendrocyte loss in the central nervous system. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165630. [PMID: 31816440 PMCID: PMC7982965 DOI: 10.1016/j.bbadis.2019.165630] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome is a key risk factor and co-morbidity in multiple sclerosis (MS) and other neurological conditions, such that a better understanding of how a high fat diet contributes to oligodendrocyte loss and the capacity for myelin regeneration has the potential to highlight new treatment targets. Results demonstrate that modeling metabolic dysfunction in mice with chronic high fat diet (HFD) consumption promotes loss of oligodendrocyte progenitors across the brain and spinal cord. A number of transcriptomic and metabolomic changes in ER stress, mitochondrial dysfunction, and oxidative stress pathways in HFD-fed mouse spinal cords were also identified. Moreover, deficits in TCA cycle intermediates and mitochondrial respiration were observed in the chronic HFD spinal cord tissue. Oligodendrocytes are known to be particularly vulnerable to oxidative damage, and we observed increased markers of oxidative stress in both the brain and spinal cord of HFD-fed mice. We additionally identified that increased apoptotic cell death signaling is underway in oligodendrocytes from mice chronically fed a HFD. When cultured under high saturated fat conditions, oligodendrocytes decreased both mitochondrial function and differentiation. Overall, our findings show that HFD-related changes in metabolic regulators, decreased mitochondrial function, and oxidative stress contribute to a loss of myelinating cells. These studies identify HFD consumption as a key modifiable lifestyle factor for improved myelin integrity in the adult central nervous system and in addition new tractable metabolic targets for myelin protection and repair strategies.
Collapse
Affiliation(s)
- Monica R Langley
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyesook Yoon
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Ha Neui Kim
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Chan-Il Choi
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Whitney Simon
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Laurel Kleppe
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian R Lanza
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine & Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Luo M, Deng M, Yu Z, Zhang Y, Xu S, Hu S, Xu H. Differential Susceptibility and Vulnerability of Brain Cells in C57BL/6 Mouse to Mitochondrial Dysfunction Induced by Short-Term Cuprizone Exposure. Front Neuroanat 2020; 14:30. [PMID: 32581731 PMCID: PMC7296101 DOI: 10.3389/fnana.2020.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/15/2020] [Indexed: 02/05/2023] Open
Abstract
Cuprizone (CPZ) is a chemical chelator toxic to mitochondria of cells. While inducing oligodendrocyte (OL) loss and demyelination, CPZ caused no fatal damage to the other brain cells (neurons, astrocytes, and microglia) in previous studies, suggesting differential susceptibility and vulnerability of brain cells to the CPZ intoxication. To demonstrate this interpretation, C57BL/6 mice were fed rodent chow without or with CPZ (0.2%, w/w) for 7 days. One day later, mitochondrial function of brain cells was assessed by proton magnetic resonance spectroscopy (1H-MRS) and biochemical analysis. Another batch of mice were processed to localize the CPZ-induced damage to mitochondrial DNA, label brain cells, and identify apoptotic cells. Compared to controls, CPZ-exposed mice showed significantly lower levels of N-acetyl-L-aspartate, phosphocreatine, and ATP detected by 1H-MRS, indicating mitochondrial dysfunction in brain cells. Susceptibility analysis showed an order of OLs, microglia, and astrocytes from high to low, in terms of the proportion of 8-OHdG labeled cells in each type of these cells in corpus callosum. Vulnerability analysis showed the highest proportion of caspase-3 positive cells in labeled OLs in cerebral cortex and hippocampus, where neurons showed no caspase-3 labeling, but the highest proportion of 8-OHdG labeling, indicating a lowest vulnerability but highest susceptibility to CPZ-induced mitochondrial dysfunction. Immature OLs, microglia, and astrocytes showed adaptive changes in proliferation and activation in response to CPZ-exposure. These data for the first time demonstrated the CPZ-induced mitochondria dysfunction in brain cells of living mouse and specified the differential susceptibility and vulnerability of brain cells to the CPZ intoxication.
Collapse
Affiliation(s)
- Mengyi Luo
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Maomao Deng
- Department of Forensic Medicine, Shantou University Medical College, Shantou, China
| | - Zijia Yu
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Yi Zhang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Shuqin Xu
- Department of Human Anatomy, Shantou University Medical College, Shantou, China
| | - Shengping Hu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, China
- *Correspondence: Shengping Hu,
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, China
- School of Psychiatry, Wenzhou Medical University, Wenzhou, China
- Haiyun Xu,
| |
Collapse
|
37
|
Abo Taleb HA, Alghamdi BS. Neuroprotective Effects of Melatonin during Demyelination and Remyelination Stages in a Mouse Model of Multiple Sclerosis. J Mol Neurosci 2019; 70:386-402. [DOI: 10.1007/s12031-019-01425-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
|
38
|
Nyamoya S, Steinle J, Chrzanowski U, Kaye J, Schmitz C, Beyer C, Kipp M. Laquinimod Supports Remyelination in Non-Supportive Environments. Cells 2019; 8:cells8111363. [PMID: 31683658 PMCID: PMC6912710 DOI: 10.3390/cells8111363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/20/2023] Open
Abstract
Inflammatory demyelination, which is a characteristic of multiple sclerosis lesions, leads to acute functional deficits and, in the long term, to progressive axonal degeneration. While remyelination is believed to protect axons, the endogenous-regenerative processes are often incomplete or even completely fail in many multiple sclerosis patients. Although it is currently unknown why remyelination fails, recurrent demyelination of previously demyelinated white matter areas is one contributing factor. In this study, we investigated whether laquinimod, which has demonstrated protective effects in active multiple sclerosis patients, protects against recurrent demyelination. To address this, male mice were intoxicated with cuprizone for up to eight weeks and treated with either a vehicle solution or laquinimod at the beginning of week 5, where remyelination was ongoing. The brains were harvested and analyzed by immunohistochemistry. At the time-point of laquinimod treatment initiation, oligodendrocyte progenitor cells proliferated and maturated despite ongoing demyelination activity. In the following weeks, myelination recovered in the laquinimod- but not vehicle-treated mice, despite continued cuprizone intoxication. Myelin recovery was paralleled by less severe microgliosis and acute axonal injury. In this study, we were able to demonstrate that laquinimod, which has previously been shown to protect against cuprizone-induced oligodendrocyte degeneration, exerts protective effects during oligodendrocyte progenitor differentiation as well. By this mechanism, laquinimod allows remyelination in non-supportive environments. These results should encourage further clinical studies in progressive multiple sclerosis patients.
Collapse
Affiliation(s)
- Stella Nyamoya
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany.
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Julia Steinle
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Uta Chrzanowski
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Joel Kaye
- AyalaPharma, VP Research & Nonclinical Development, Rehovot 7670104, Israel.
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| | - Cordian Beyer
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Markus Kipp
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany.
- Centre for Transdisciplinary Neurosciences, Rostock University Medical Center, 18057 Rostock, Germany.
| |
Collapse
|
39
|
Varhaug KN, Kråkenes T, Alme MN, Vedeler CA, Bindoff LA. Mitochondrial complex IV is lost in neurons in the cuprizone mouse model. Mitochondrion 2019; 50:58-62. [PMID: 31678601 DOI: 10.1016/j.mito.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cuprizone administration in mice leads to oligodendrocyte death and demyelination. The effect is thought to reflect copper-chelation that leads to inhibition of complex IV of the mitochondrial respiratory chain. The effects this drug has on neurons are less well known. OBJECTIVE To investigate the toxic effects of cuprizone on mitochondria in neurons. METHODS Male c57Bl/6 mice were fed 0.2% cuprizone for up to 5 weeks. Cuprizone-fed and control mice were examined at week 1, 3, 5 and 4 weeks after cessation of cuprizone exposure. The brain was examined for myelin, complex I, complex IV and for COX/SDH activities. Mitochondrial-DNA was investigated for deletions and copy number variation. RESULTS We found decreased levels of complex IV in the cerebellar Purkinje neurons of mice exposed to cuprizone. This decrease was not related to a general decrease in mitochondrial volume or mass, as there were no differences in the levels of complex I or TOMM20. CONCLUSION Neurons are affected by cuprizone-treatment. Whether this mitochondrial dysfunction acts as a subclinical trigger for demyelination and the long-term axonal degeneration that proceeds after cuprizone treatment stops remains unclear.
Collapse
Affiliation(s)
- Kristin N Varhaug
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway.
| | - Torbjørn Kråkenes
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Maria N Alme
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Norway
| | - Christian A Vedeler
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Laurence A Bindoff
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| |
Collapse
|
40
|
Suppression of the Peripheral Immune System Limits the Central Immune Response Following Cuprizone-Feeding: Relevance to Modelling Multiple Sclerosis. Cells 2019; 8:cells8111314. [PMID: 31653054 PMCID: PMC6912385 DOI: 10.3390/cells8111314] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cuprizone (CPZ) preferentially affects oligodendrocytes (OLG), resulting in demyelination. To investigate whether central oligodendrocytosis and gliosis triggered an adaptive immune response, the impact of combining a standard (0.2%) or low (0.1%) dose of ingested CPZ with disruption of the blood brain barrier (BBB), using pertussis toxin (PT), was assessed in mice. 0.2% CPZ(±PT) for 5 weeks produced oligodendrocytosis, demyelination and gliosis plus marked splenic atrophy (37%) and reduced levels of CD4 (44%) and CD8 (61%). Conversely, 0.1% CPZ(±PT) produced a similar oligodendrocytosis, demyelination and gliosis but a smaller reduction in splenic CD4 (11%) and CD8 (14%) levels and no splenic atrophy. Long-term feeding of 0.1% CPZ(±PT) for 12 weeks produced similar reductions in CD4 (27%) and CD8 (43%), as well as splenic atrophy (33%), as seen with 0.2% CPZ(±PT) for 5 weeks. Collectively, these results suggest that 0.1% CPZ for 5 weeks may be a more promising model to study the ‘inside-out’ theory of Multiple Sclerosis (MS). However, neither CD4 nor CD8 were detected in the brain in CPZ±PT groups, indicating that CPZ-mediated suppression of peripheral immune organs is a major impediment to studying the ‘inside-out’ role of the adaptive immune system in this model over long time periods. Notably, CPZ(±PT)-feeding induced changes in the brain proteome related to the suppression of immune function, cellular metabolism, synaptic function and cellular structure/organization, indicating that demyelinating conditions, such as MS, can be initiated in the absence of adaptive immune system involvement.
Collapse
|
41
|
Khodaei F, Rashedinia M, Heidari R, Rezaei M, Khoshnoud MJ. Ellagic acid improves muscle dysfunction in cuprizone-induced demyelinated mice via mitochondrial Sirt3 regulation. Life Sci 2019; 237:116954. [PMID: 31610192 DOI: 10.1016/j.lfs.2019.116954] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023]
Abstract
Sirt3 enzyme and mitochondrial abnormality can be related to excess fatigue or muscular dysfunction in multiple sclerosis (MS).Ellagic acid (EA) has a mitochondrial protector, iron chelator, antioxidant, and axon regenerator in neurons.In this study the effect of EAon muscle dysfunction, its mitochondria, and Sirt3 enzyme incuprizone-induced model of MSwas examined. Demyelination was induced by a diet containing 0.2% w/w cuprizone (Cup) for 42 days and EA administered daily (5, 50, and 100 mg/kg P.O) either with or without cuprizone in mice. Behavioral tests were assessed, and muscle tissue markers ofoxidative stress, mitochondrial parameters, mitochondrial respiratory chain activity, the Sirt3 protein level, and Sirt3 expression were also determined. Luxol fast blue staining and the behavioral tests were performed toassess the implemented model. In Cup group an increased oxidative stress in their muscle tissues was observed. Also, muscle mitochondria exhibited mitochondria dysfunction, lowered mitochondrial respiratory chain activity, Sirt3 protein level, and Sirt3 expression.EA prevented most of these anomalous alterations. Sub-chronicEA co-treatment dose-dependently ameliorated behavioral and muscular impairment in mice that received Cup.EA can effectively protect muscle tissue against cuprizone-induced demeylination via the mitochondrial protection, oxidative stress prevention and Sirt3 overexpression.
Collapse
Affiliation(s)
- Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
42
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
43
|
Salimi A, Nikoosiar Jahromi M, Pourahmad J. Maternal exposure causes mitochondrial dysfunction in brain, liver, and heart of mouse fetus: An explanation for perfluorooctanoic acid induced abortion and developmental toxicity. ENVIRONMENTAL TOXICOLOGY 2019; 34:878-885. [PMID: 31037826 DOI: 10.1002/tox.22760] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 05/23/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an octanoic acid and is found in wildlife and humans. We have investigated mitochondrial toxicity in isolated mitochondria from, placenta, brain, liver, and heart after oral exposure with PFOA in mice during gestational days (7-15). Histopathological examination and mitochondrial toxicity parameters were assayed. Results indicated that PFOA decreased the weight of the fetus and placenta, the length of the fetus and the diameter of the placenta, dead fetuses and dead macerated fetuses in treated mice with 25 mg/kg. Histopathological examination showed that PFOA induced pathological abnormalities in liver, brain, heart, and placenta. Also, PFOA induced mitochondria toxicity in brain, liver, heart of mouse fetus. Our results indicate that PFOA up to 20 mg/kg exposure adversely affect embryofetal/developmental because for mitochondria dysfunction. These results suggested that mitochondrial dysfunction induced by PFOA in liver, heart, and brain lead to developmental toxicity and abnormality in tissues.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahnia Nikoosiar Jahromi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Long lasting behavioural effects on cuprizone fed mice after neurotoxicant withdrawal. Behav Brain Res 2019; 363:38-44. [PMID: 30703396 DOI: 10.1016/j.bbr.2019.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
Destruction of the myelin sheath in the central nervous system (CNS) is prominent in many clinico-pathologic conditions. Among animal models that reproduce the pathological features of de- and remyelination processes, the mouse model of cuprizone administration is widely used. Both hyperactivity and motor impairment have been reported upon cuprizone exposure. The aim of the present study was to assess behaviour in mice after CPZ withdrawal.To summarize, animals showed hypo-activity and deficits in motor coordination when they were subjected to acute demyelinating insult while minor exploratory activity, impairment in motor coordination and lower anxiety levels emerged when remyelination was reached following cuprizone withdrawal. A recovery period of 6 weeks after removal of CPZ was not accompanied by a similar return of normal activity indicating long lasting behavioural effects caused by this neurotoxicant. Specifically, the recovery group showed impairments in neurological functions involved in sensorimotor, neuromuscular, motor coordination and the capacity to cope with a stress-inducing event.
Collapse
|
45
|
Yakimov V, Schweiger F, Zhan J, Behrangi N, Horn A, Schmitz C, Hochstrasser T, Kipp M. Continuous cuprizone intoxication allows active experimental autoimmune encephalomyelitis induction in C57BL/6 mice. Histochem Cell Biol 2019; 152:119-131. [DOI: 10.1007/s00418-019-01786-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2019] [Indexed: 12/13/2022]
|
46
|
Fischbach F, Nedelcu J, Leopold P, Zhan J, Clarner T, Nellessen L, Beißel C, van Heuvel Y, Goswami A, Weis J, Denecke B, Schmitz C, Hochstrasser T, Nyamoya S, Victor M, Beyer C, Kipp M. Cuprizone-induced graded oligodendrocyte vulnerability is regulated by the transcription factor DNA damage-inducible transcript 3. Glia 2018; 67:263-276. [PMID: 30511355 DOI: 10.1002/glia.23538] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Abstract
Oligodendrocytes are integral to efficient neuronal signaling. Loss of myelinating oligodendrocytes is a central feature of many neurological diseases, including multiple sclerosis (MS). The results of neuropathological studies suggest that oligodendrocytes react with differing sensitivity to toxic insults, with some cells dying early during lesion development and some cells being resistant for weeks. This proposed graded vulnerability has never been demonstrated but provides an attractive window for therapeutic interventions. Furthermore, the biochemical pathways associated with graded oligodendrocyte vulnerability have not been well explored. We used immunohistochemistry and serial block-face scanning electron microscopy (3D-SEM) to show that cuprizone-induced metabolic stress results in an "out of phase" degeneration of oligodendrocytes. Although expression induction of stress response transcription factors in oligodendrocytes occurs within days, subsequent oligodendrocyte apoptosis continues for weeks. In line with the idea of an out of phase degeneration of oligodendrocytes, detailed ultrastructural reconstructions of the axon-myelin unit demonstrate demyelination of single internodes. In parallel, genome wide array analyses revealed an active unfolded protein response early after initiation of the cuprizone intoxication. In addition to the cytoprotective pathways, the pro-apoptotic transcription factor DNA damage-inducible transcript 3 (DDIT3) was induced early in oligodendrocytes. In advanced lesions, DDIT3 was as well expressed by activated astrocytes. Toxin-induced oligodendrocyte apoptosis, demyelination, microgliosis, astrocytosis, and acute axonal damage were less intense in the Ddit3-null mutants. This study identifies DDIT3 as an important regulator of graded oligodendrocyte vulnerability in a MS animal model. Interference with this stress cascade might offer a promising therapeutic approach for demyelinating disorders.
Collapse
Affiliation(s)
- Felix Fischbach
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Julia Nedelcu
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Patrizia Leopold
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Jiangshan Zhan
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Tim Clarner
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Lara Nellessen
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Christian Beißel
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Yasemin van Heuvel
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Aachen, Germany
| | - Christoph Schmitz
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Tanja Hochstrasser
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Stella Nyamoya
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany.,Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Marion Victor
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Cordian Beyer
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Markus Kipp
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
47
|
Seydi E, Fatahi M, Naserzadeh P, Pourahmad J. The effects of para-phenylenediamine (PPD) on the skin fibroblast cells. Xenobiotica 2018; 49:1143-1148. [PMID: 30474463 DOI: 10.1080/00498254.2018.1541264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Para-phenylenediamine (PPD) is the commonest and most well-known component of hair dyes. PPD is found in more than 1000 hair dye formulations and is the most frequently used permanent hair dye component in Europe, North America and East Asia. PPD containing hair dyes have been associated with cancer and mutagenicity. Apart from that, PPD has potential toxicity which includes acute toxicity such as allergic contact dermatitis and subacute toxicity. 2. In this study, we examined the effects of the PPD composition on the skin-isolated fibroblast cells. Fibroblast cells were isolated from the skin and cell viability, reactive oxygen species (ROS) production, the collapse of mitochondrial membrane potential (MMP), lipid peroxidation (LPO), damage to the lysosome release of lactate dehydrogenase (LDH) and finally release of cytochrome c were examined following the exposure to various concentrations of PPD. 3. Our results showed that exposure to PPD increased ROS generation, LPO, the collapse of MMP, LDH release and cytochrome c release. Our results suggest that PPD can induce damage to the lysosomal membrane. 4. These results showed that PPD composition has a selective toxicity on skin fibroblasts cell and mitochondria are considered one of the goals of its toxicity.
Collapse
Affiliation(s)
- Enayatollah Seydi
- a Department of Occupational Health and Safety Engineering School of Health , Alborz University of Medical Sciences , Karaj , Iran
| | - Mohsen Fatahi
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parvaneh Naserzadeh
- c Pharmaceutical Sciences Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Jalal Pourahmad
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
48
|
Kozin MS, Kulakova OG, Favorova OO. Involvement of Mitochondria in Neurodegeneration in Multiple Sclerosis. BIOCHEMISTRY (MOSCOW) 2018; 83:813-830. [PMID: 30200866 DOI: 10.1134/s0006297918070052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Functional disruption and neuronal loss followed by progressive dysfunction of the nervous system underlies the pathogenesis of numerous disorders defined as "neurodegenerative diseases". Multiple sclerosis, a chronic inflammatory demyelinating disease of the central nervous system resulting in serious neurological dysfunctions and disability, is one of the most common neurodegenerative diseases. Recent studies suggest that disturbances in mitochondrial functioning are key factors leading to neurodegeneration. In this review, we consider data on mitochondrial dysfunctions in multiple sclerosis, which were obtained both with patients and with animal models. The contemporary data indicate that the axonal degeneration in multiple sclerosis largely results from the activation of Ca2+-dependent proteases and from misbalance of ion homeostasis caused by energy deficiency. The genetic studies analyzing association of mitochondrial DNA polymorphic variants in multiple sclerosis suggest the participation of mitochondrial genome variability in the development of this disease, although questions of the involvement of individual genomic variants are far from being resolved.
Collapse
Affiliation(s)
- M S Kozin
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - O G Kulakova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - O O Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
49
|
Zhang J, Yang L, Fang Z, Kong J, Huang Q, Xu H. Adenosine Promotes the Recovery of Mice from the Cuprizone-Induced Behavioral and Morphological Changes while Effecting on Microglia and Inflammatory Cytokines in the Brain. J Neuroimmune Pharmacol 2018; 13:412-425. [PMID: 30069711 DOI: 10.1007/s11481-018-9799-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/10/2018] [Indexed: 02/05/2023]
Abstract
Recent studies have shown that multiple sclerosis (MS) and schizophrenia share similarities in some respects, including white matter damage and neuroinflammation. On the other hand, adenosine was reported to promote oligodendrocyte precursor maturation and remyelinating while influencing microglia activation. The aim of the present study was to examine possible beneficial effects of adenosine on the recovery of cuprizone (CPZ)-exposed mouse which has been used as an animal model of MS and schizophrenia as the CPZ-exposed mouse presents demyelination, oligodendrocyte loss, microglia accumulation, as well as behavioral changes. As reported previously, C57BL/6 mice, after fed CPZ for 5 weeks, showed salient demyelination and oligodendrocyte loss in the cerebral cortex (CTX) and hippocampus, in addition to displaying anxiety-like behavior, spatial working memory deficit, and social interaction impairment. Administration of adenosine for 7 days during the recovery period after CPZ withdrawal promoted the behavioral recovery of CPZ-exposed mice and accelerated the remyelinating process in the brains of mice after CPZ withdrawal in a dose-dependent manner. In addition, the effective dose (10 mg/kg) of adenosine inhibited microglia activation and suppressed abnormal elevation of the pro-inflammatory cytokines IL-1β and TNF-α in CTX and hippocampus, but increased levels of the anti-inflammatory cytokines IL-4 or IL-10 in the same brain regions during the remyelinating process. These results provided an evidence-based rationale for the application of adenosine or its analogues as add-on therapy for schizophrenia.
Collapse
Affiliation(s)
- Jinling Zhang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Liu Yang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Zeman Fang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, Shantou, China.
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, China.
- Department of Anatomy, Shantou University Medical College, Shantou, China.
| |
Collapse
|
50
|
Jakovac H, Grubić Kezele T, Radošević-Stašić B. Expression Profiles of Metallothionein I/II and Megalin in Cuprizone Model of De- and Remyelination. Neuroscience 2018; 388:69-86. [PMID: 30025861 DOI: 10.1016/j.neuroscience.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/20/2018] [Accepted: 07/05/2018] [Indexed: 11/15/2022]
Abstract
Copper chelator cuprizone (CPZ) is neurotoxicant, which selectively disrupts oligodendroglial respiratory chain, leading to oxidative stress and subsequent apoptosis. Demyelination is, however, followed by spontaneous remyelination owing to the activation of intrinsic CNS repair mechanisms. To explore the participation of metallothioneins (MTs) in these processes, in this study we analyzed the expression profiles of MT-I/II and their receptor megalin (low-density lipoprotein receptor related protein-2) in the brain of mice subjected to different protocols of CPZ feeding. Experiments were performed in female C57BL/6 mice fed with 0.25% CPZ during 1, 3 and 5 weeks. They were sacrificed immediately after feeding with CPZ or 2 weeks after the withdrawal of CPZ. The data showed that CPZ-induced demyelination was followed by high astrogliosis and enhanced expression of MTs and megalin in white (corpus callosum and internal capsule) and gray matter of the brain (cortex, hippocampus, and cerebellum). Moreover, in numerous cortical neurons and progenitor cells the signs of MT/megalin interactions and Akt1 phosphorylation was found supporting the hypothesis that MTs secreted from the astrocytes might directly affect the neuronal differentiation and survival. Furthermore, in mice treated with CPZ for 5 weeks the prominent MTs and megalin immunoreactivities were found on several neural stem cells and oligodendrocyte progenitors in subgranular zone of dentate gyrus and subventricular zone of lateral ventricles pointing to high modulatory effect of MTs on adult neuro- and oligodendrogenesis. The data show that MT I/II perform important cytoprotective and growth-regulating functions in remyelinating processes activated after toxic demyelinating insults.
Collapse
Affiliation(s)
- Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia
| | - Tanja Grubić Kezele
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia
| | - Biserka Radošević-Stašić
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51 000 RIJEKA, Croatia.
| |
Collapse
|