1
|
Shafaq-Zadah M, Dransart E, Mani SK, Sampaio JL, Bouidghaghen L, Nilsson UJ, Leffler H, Johannes L. Exploration into Galectin-3 Driven Endocytosis and Lattices. Biomolecules 2024; 14:1169. [PMID: 39334935 PMCID: PMC11430376 DOI: 10.3390/biom14091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Essentially all plasma membrane proteins are glycosylated, and their activity is regulated by tuning their cell surface dynamics. This is achieved by glycan-binding proteins of the galectin family that either retain glycoproteins within lattices or drive their endocytic uptake via the clathrin-independent glycolipid-lectin (GL-Lect) mechanism. Here, we have used immunofluorescence-based assays to analyze how lattice and GL-Lect mechanisms affect the internalization of the cell adhesion and migration glycoprotein α5β1 integrin. In retinal pigment epithelial (RPE-1) cells, internalized α5β1 integrin is found in small peripheral endosomes under unperturbed conditions. Pharmacological compounds were used to competitively inhibit one of the galectin family members, galectin-3 (Gal3), or to inhibit the expression of glycosphingolipids, both of which are the fabric of the GL-Lect mechanism. We found that under acute inhibition conditions, endocytic uptake of α5β1 integrin was strongly reduced, in agreement with previous studies on the GL-Lect driven internalization of the protein. In contrast, upon prolonged inhibitor treatment, the uptake of α5β1 integrin was increased, and the protein was now internalized by alternative pathways into large perinuclear endosomes. Our findings suggest that under these prolonged inhibitor treatment conditions, α5β1 integrin containing galectin lattices are dissociated, leading to an altered endocytic compartmentalization.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Satish Kailasam Mani
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Julio Lopes Sampaio
- CurieCoreTech–Metabolomics and Lipidomics Platform, Institute Curie, 75248 Paris, France; (J.L.S.); (L.B.)
| | - Lydia Bouidghaghen
- CurieCoreTech–Metabolomics and Lipidomics Platform, Institute Curie, 75248 Paris, France; (J.L.S.); (L.B.)
| | - Ulf J. Nilsson
- Department of Chemistry, Lund University, 221 00 Lund, Sweden;
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden;
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| |
Collapse
|
2
|
GC S, Bellis SL, Hjelmeland AB. ST6Gal1: Oncogenic signaling pathways and targets. Front Mol Biosci 2022; 9:962908. [PMID: 36106023 PMCID: PMC9465715 DOI: 10.3389/fmolb.2022.962908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi-sialyltransferase ST6Gal1 (βgalactosidase α2,6 sialyltransferase 1), adds the negatively charged sugar, sialic acid, to the terminal galactose of N-glycosylated proteins. Upregulation of ST6Gal1 is observed in many malignancies, and a large body of research has determined that ST6Gal1-mediated α2,6 sialylation impacts cancer hallmarks. ST6Gal1 affects oncogenic behaviors including sustained proliferation, enhanced self-renewal, epithelial-to-mesenchymal transition, invasion, and chemoresistance. However, there are relatively few ST6GaL1 related signaling pathways that are well-established to mediate these biologies: greater delineation of specific targets and signaling mechanisms that are orchestrated by ST6Gal1 is needed. The aim of this review is to provide a summary of our current understanding of select oncogenic signaling pathways and targets affected by ST6Gal1.
Collapse
Affiliation(s)
| | | | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Hyun SW, Feng C, Liu A, Lillehoj EP, Trotta R, Kingsbury TJ, Passaniti A, Lugkey KN, Chauhan S, Cipollo JF, Luzina IG, Atamas SP, Cross AS, Goldblum SE. Altered sialidase expression in human myeloid cells undergoing apoptosis and differentiation. Sci Rep 2022; 12:14173. [PMID: 35986080 PMCID: PMC9390117 DOI: 10.1038/s41598-022-18448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
To gain insight into sialic acid biology and sialidase/neuraminidase (NEU) expression in mature human neutrophil (PMN)s, we studied NEU activity and expression in PMNs and the HL60 promyelocytic leukemic cell line, and changes that might occur in PMNs undergoing apoptosis and HL60 cells during their differentiation into PMN-like cells. Mature human PMNs contained NEU activity and expressed NEU2, but not NEU1, the NEU1 chaperone, protective protein/cathepsin A(PPCA), NEU3, and NEU4 proteins. In proapoptotic PMNs, NEU2 protein expression increased > 30.0-fold. Granulocyte colony-stimulating factor protected against NEU2 protein upregulation, PMN surface desialylation and apoptosis. In response to 3 distinct differentiating agents, dimethylformamide, dimethylsulfoxide, and retinoic acid, total NEU activity in differentiated HL60 (dHL60) cells was dramatically reduced compared to that of nondifferentiated cells. With differentiation, NEU1 protein levels decreased > 85%, PPCA and NEU2 proteins increased > 12.0-fold, and 3.0-fold, respectively, NEU3 remained unchanged, and NEU4 increased 1.7-fold by day 3, and then returned to baseline. In dHL60 cells, lectin blotting revealed decreased α2,3-linked and increased α2,6-linked sialylation. dHL60 cells displayed increased adhesion to and migration across human bone marrow-derived endothelium and increased bacterial phagocytosis. Therefore, myeloid apoptosis and differentiation provoke changes in NEU catalytic activity and protein expression, surface sialylation, and functional responsiveness.
Collapse
|
4
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
5
|
Klaus C, Liao H, Allendorf DH, Brown GC, Neumann H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia 2020; 69:1619-1636. [PMID: 33340149 DOI: 10.1002/glia.23945] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Sialic acids are monosaccharides that normally terminate the glycan chains of cell surface glyco-proteins and -lipids in mammals, and are highly enriched in the central nervous tissue. Sialic acids are conjugated to proteins and lipids (termed "sialylation") by specific sialyltransferases, and are removed ("desialylation") by neuraminidases. Cell surface sialic acids are sensed by complement factor H (FH) to inhibit complement activation or by sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors to inhibit microglial activation, phagocytosis, and oxidative burst. In contrast, desialylation of cells enables binding of the opsonins C1, calreticulin, galectin-3, and collectins, stimulating phagocytosis of such cells. Hypersialylation is used by bacteria and cancers as camouflage to escape immune recognition, while polysialylation of neurons protects synapses and neurogenesis. Insufficient lysosomal cleavage of sialylated molecules can lead to lysosomal accumulation of lipids and aggregated proteins, which if excessive may be expelled into the extracellular space. On the other hand, desialylation of immune receptors can activate them or trigger removal of proteins. Loss of inhibitory SIGLECs or FH triggers reduced clearance of aggregates, oxidative brain damage and complement-mediated retinal damage. Thus, cell surface sialylation recognized by FH, SIGLEC, and other immune-related receptors acts as a major checkpoint inhibitor of innate immune responses in the central nervous system, while excessive cleavage of sialic acid residues and consequently removing this checkpoint inhibitor may trigger lipid accumulation, protein aggregation, inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Christine Klaus
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Huan Liao
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | | | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Kolasińska E, Janik ME, Lityńska A, Przybyło M. Contribution of sialic acids to integrin α5β1 functioning in melanoma cells. Adv Med Sci 2019; 64:267-273. [PMID: 30844664 DOI: 10.1016/j.advms.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/13/2018] [Accepted: 02/19/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To establish the relationship between sialylation of integrin α5β1 and possible alteration in the function of α5β1 receptor in melanoma cells. MATERIALS AND METHODS Integrin α5β1 was isolated from primary WM115 (RGP/VGP-like phenotype) and metastatic WM266-4 (lymph node metastasis) cells via affinity chromatography. Integrin α5β1 sialylation and the shift in relative masses of the enzymatically desialylated subunits were confirmed by confocal microscopy and SDS-PAGE, respectively. The ELISA assay was performed to evaluate sialic acid (SA) influence on integrin α5β1 binding to fibronectin (FN). Cell invasion was investigated by the Transwell invasion assay. The effect of neuraminidases treatment on melanoma cells was assessed by flow cytometry using Maackia amurensis and Sambucus nigra lectins. RESULTS Both subunits of integrin α5β1 were found to be more abundantly sialylated in primary than in metastatic cells. The removal of SA had no effect on the purified integrin α5β1 binding to FN. Although metastatic cells underwent more pronounced desialylation than primary cells, invasion of primary WM115 cells was more dependent on the presence of α2-3 linked SA than it was in the case of metastatic WM266-4 cells. In both melanoma cell lines not only integrin α5β1 was involved in invasion, however simultaneous desialylation and usage of anti-integrin α5β1 antibodies resulted in lower invasion abilities of primary WM115 cells. CONCLUSIONS Our data suggest that in primary melanoma cells integrin α5β1 action is more likely dependent on its glycosylation profile, i.e. the presence of SA residues, which influence (decreased) their invasion properties and may facilitate malignant melanoma progression.
Collapse
Affiliation(s)
- Ewa Kolasińska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Marcelina E Janik
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Li Q, Xie Y, Wong M, Lebrilla CB. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells 2019; 8:E882. [PMID: 31412618 PMCID: PMC6721671 DOI: 10.3390/cells8080882] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
The cell membrane plays an important role in protecting the cell from its extracellular environment. As such, extensive work has been devoted to studying its structure and function. Crucial intercellular processes, such as signal transduction and immune protection, are mediated by cell surface glycosylation, which is comprised of large biomolecules, including glycoproteins and glycosphingolipids. Because perturbations in glycosylation could result in dysfunction of cells and are related to diseases, the analysis of surface glycosylation is critical for understanding pathogenic mechanisms and can further lead to biomarker discovery. Different mass spectrometry-based techniques have been developed for glycan analysis, ranging from highly specific, targeted approaches to more comprehensive profiling studies. In this review, we summarized the work conducted for extensive analysis of cell membrane glycosylation, particularly those employing liquid chromatography with mass spectrometry (LC-MS) in combination with various sample preparation techniques.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA.
- Department of Biochemistry, University of California, Davis, CA 95616, USA.
| |
Collapse
|
8
|
Bauer J, Cohly HHP, Sahana J, Grimm D. Preparative enrichment of human tissue cells capable to change a site of growth in vitro or in vivo - Recent developments. Prep Biochem Biotechnol 2018; 48:954-960. [PMID: 30395783 DOI: 10.1080/10826068.2018.1525567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human cells are heterogeneous in regard to their biochemical features and functions. Detailed knowledge about each single cell type is important to understand the whole organism. In order to get a deeper insight in the concert of life, it has to be considered that cell populations such as thyroid cells, epithelial breast cells, endothelial cells, or chondrocytes are heterogeneous in regard to function, RNA expression patterns and protein content. This is true for normal cells and even more relevant for cancer cells. A number of sophisticated methods were developed to enrich cohorts of cells generally belonging to a defined type but outstanding by distinct characteristics, which can be detected by microscopic, proteomic or genomic methods. There is a great interest to investigate human cells, which are able to change their site of growth within the human body leaving an original site, migrating through vessels and reentering another site. In this review experiments are summarized showing that the application of microgravity-exposure of human cells and cell electrophoresis enable a characterization of cells, which leave a site of growth to enter another one. Biochemical features of separated subpopulations are described and their usefulness for deeper investigation is highlighted.
Collapse
Affiliation(s)
| | - Hari H P Cohly
- b Department of Biology, Jackson State University , Jackson , MI , USA
| | - Jayashree Sahana
- c Department of Biomedicine , Aarhus University , Aarhus , Denmark
| | - Daniela Grimm
- c Department of Biomedicine , Aarhus University , Aarhus , Denmark
| |
Collapse
|
9
|
McArthur JB, Yu H, Tasnima N, Lee CM, Fisher AJ, Chen X. α2-6-Neosialidase: A Sialyltransferase Mutant as a Sialyl Linkage-Specific Sialidase. ACS Chem Biol 2018. [PMID: 29543427 DOI: 10.1021/acschembio.8b00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lack of α2-6-linkage specific sialidases limits the structural and functional studies of sialic-acid-containing molecules. Photobacterium damselae α2-6-sialyltransferase (Pd2,6ST) was shown previously to have α2-6-specific, but weak, sialidase activity. Here, we develop a high-throughput blue-white colony screening method to identify Pd2,6ST mutants with improved α2-6-sialidase activity from mutant libraries generated by sequential saturation mutagenesis. A triple mutant (Pd2,6ST S232L/T356S/W361F) has been identified with 100-fold improved activity, high α2-6-sialyl linkage selectivity, and ability to cleave two common sialic acid forms, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). It is a valuable tool for sialoglycan structural analysis and functional characterization. The sequential saturation mutagenesis and screening strategy developed here can be explored to evolve other linkage-specific neoglycosidases from the corresponding glycosyltransferases.
Collapse
Affiliation(s)
- John B. McArthur
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Nova Tasnima
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Christie M. Lee
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Andrew J. Fisher
- Department of Chemistry, University of California, Davis, California 95616, United States
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
10
|
Kang T, Jensen P, Huang H, Lund Christensen G, Billestrup N, Larsen MR. Characterization of the Molecular Mechanisms Underlying Glucose Stimulated Insulin Secretion from Isolated Pancreatic β-cells Using Post-translational Modification Specific Proteomics (PTMomics). Mol Cell Proteomics 2017; 17:95-110. [PMID: 29113996 DOI: 10.1074/mcp.ra117.000217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Indexed: 01/01/2023] Open
Abstract
Normal pancreatic islet β-cells (PBCs) abundantly secrete insulin in response to elevated blood glucose levels, in order to maintain an adequate control of energy balance and glucose homeostasis. However, the molecular mechanisms underlying the insulin secretion are unclear. Improving our understanding of glucose-stimulated insulin secretion (GSIS) mechanisms under normal conditions is a prerequisite for developing better interventions against diabetes. Here, we aimed at identifying novel signaling pathways involved in the initial release of insulin from PBCs after glucose stimulation using quantitative strategies for the assessment of phosphorylated proteins and sialylated N-linked (SA) glycoproteins.Islets of Langerhans derived from newborn rats with a subsequent 9-10 days of maturation in vitro were stimulated with 20 mm glucose for 0 min (control), 5 min, 10 min, and 15 min. The isolated islets were subjected to time-resolved quantitative phosphoproteomics and sialiomics using iTRAQ-labeling combined with enrichment of phosphorylated peptides and formerly SA glycopeptides and high-accuracy LC-MS/MS. Using bioinformatics we analyzed the functional signaling pathways during GSIS, including well-known insulin secretion pathways. Furthermore, we identified six novel activated signaling pathways (e.g. agrin interactions and prolactin signaling) at 15 min GSIS, which may increase our understanding of the molecular mechanism underlying GSIS. Moreover, we validated some of the regulated phosphosites by parallel reaction monitoring, which resulted in the validation of eleven new phosphosites significantly regulated on GSIS. Besides protein phosphorylation, alteration in SA glycosylation was observed on several surface proteins on brief GSIS. Interestingly, proteins important for cell-cell interaction, cell movement, cell-ECM interaction and Focal Adhesion (e.g. integrins, semaphorins, and plexins) were found regulated at the level of sialylation, but not in protein expression. Collectively, we believe that this comprehensive Proteomics and PTMomics survey of signaling pathways taking place during brief GSIS of primary PBCs is contributing to understanding the complex signaling underlying GSIS.
Collapse
Affiliation(s)
- Taewook Kang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Pia Jensen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Honggang Huang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Gitte Lund Christensen
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nils Billestrup
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin R Larsen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
11
|
Yamamoto M, Ikezaki M, Toujima S, Iwahashi N, Mizoguchi M, Nanjo S, Minami S, Ihara Y, Ino K. Calreticulin Is Involved in Invasion of Human Extravillous Trophoblasts Through Functional Regulation of Integrin β1. Endocrinology 2017; 158:3874-3889. [PMID: 28938427 DOI: 10.1210/en.2016-1966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/23/2017] [Indexed: 01/06/2023]
Abstract
Calreticulin (CRT), a molecular chaperone in the endoplasmic reticulum (ER), plays a variety of roles in cell growth, differentiation, apoptosis, immunity, and cancer biology. It has been reported that CRT is expressed in the human placenta, although its function in placental development is poorly understood. Appropriate invasion of extravillous trophoblasts (EVTs) into the maternal decidua is necessary for successful pregnancy. The objective of the present study was to investigate the expression and functional role of CRT in EVTs using the human EVT cell line HTR8/SVneo, in which CRT gene expression was knocked down. We found that CRT was highly expressed in the human placenta in the early stage of pregnancy and localized to the EVTs. CRT knockdown markedly suppressed the invasion ability of HTR8/SVneo cells. Furthermore, the adhesion to fibronectin was suppressed in the CRT-knockdown cells via the dysfunction of integrin α5β1. In the CRT-knockdown cells, terminal sialylation and fucosylation were decreased, and the core galactose-containing structure was increased in the N-glycans of integrin β1. In addition, the expression levels of several critical glycosyltransferases were changed in the CRT-knockdown cells, consistent with the changes in the N-glycans. These results showed that CRT regulates the function of integrin β1 by affecting the synthesis of N-glycans in HTR8/SVneo cells. Collectively, the results of the present study demonstrate that the ER chaperone CRT plays a regulatory role in the invasion of EVTs, suggesting the importance of CRT expression in placental development during early pregnancy.
Collapse
Affiliation(s)
- Madoka Yamamoto
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Saori Toujima
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Naoyuki Iwahashi
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Mika Mizoguchi
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Sakiko Nanjo
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Sawako Minami
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Kazuhiko Ino
- Department of Obstetrics and Gynecology, Wakayama Medical University, Wakayama 641-0012, Japan
| |
Collapse
|
12
|
Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 2017; 147:149-174. [PMID: 27975143 PMCID: PMC7088086 DOI: 10.1007/s00418-016-1520-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Sialylated N-glycans play essential roles in the immune system, pathogen recognition and cancer. This review approaches the sialylation of N-glycans from three perspectives. The first section focuses on the sialyltransferases that add sialic acid to N-glycans. Included in the discussion is a description of these enzymes' glycan acceptors, conserved domain organization and sequences, molecular structure and catalytic mechanism. In addition, we discuss the protein interactions underlying the polysialylation of a select group of adhesion and signaling molecules. In the second section, the biosynthesis of sialic acid, CMP-sialic acid and sialylated N-glycans is discussed, with a special emphasis on the compartmentalization of these processes in the mammalian cell. The sequences and mechanisms maintaining the sialyltransferases and other glycosylation enzymes in the Golgi are also reviewed. In the final section, we have chosen to discuss processes in which sialylated glycans, both N- and O-linked, play a role. The first part of this section focuses on sialic acid-binding proteins including viral hemagglutinins, Siglecs and selectins. In the second half of this section, we comment on the role of sialylated N-glycans in cancer, including the roles of β1-integrin and Fas receptor N-glycan sialylation in cancer cell survival and drug resistance, and the role of these sialylated proteins and polysialic acid in cancer metastasis.
Collapse
Affiliation(s)
- Gaurang P Bhide
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA
| | - Karen J Colley
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA.
| |
Collapse
|
13
|
Hoja-Łukowicz D, Przybyło M, Duda M, Pocheć E, Bubka M. On the trail of the glycan codes stored in cancer-related cell adhesion proteins. Biochim Biophys Acta Gen Subj 2016; 1861:3237-3257. [PMID: 27565356 DOI: 10.1016/j.bbagen.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/22/2016] [Accepted: 08/14/2016] [Indexed: 12/14/2022]
Abstract
Changes in the profile of protein glycosylation are a hallmark of ongoing neoplastic transformation. A unique set of tumor-associated carbohydrate antigens expressed on the surface of malignant cells may serve as powerful diagnostic and therapeutic targets. Cell-surface proteins with altered glycosylation affect the growth, proliferation and survival of those cells, and contribute to their acquisition of the ability to migrate and invade. They may also facilitate tumor-induced immunosuppression and the formation of distant metastases. Deciphering the information encoded in these particular glycan portions of glycoconjugates may shed light on the mechanisms of cancer progression and metastasis. A majority of the related review papers have focused on overall changes in the patterns of cell-surface glycans in various cancers, without pinpointing the molecular carriers of these glycan structures. The present review highlights the ways in which particular tumor-associated glycan(s) coupled with a given membrane-bound protein influence neoplastic cell behavior during the development and progression of cancer. We focus on altered glycosylated cell-adhesion molecules belonging to the cadherin, integrin and immunoglobulin-like superfamilies, examined in the context of molecular interactions.
Collapse
Affiliation(s)
- Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Małgorzata Duda
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| | - Monika Bubka
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland.
| |
Collapse
|
14
|
Yuan Y, Wu L, Shen S, Wu S, Burdick MM. Effect of alpha 2,6 sialylation on integrin-mediated adhesion of breast cancer cells to fibronectin and collagen IV. Life Sci 2016; 149:138-45. [PMID: 26903292 DOI: 10.1016/j.lfs.2016.02.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
AIMS To determine the role of sialylation on α5β1 and α2β1 integrins in the regulation of adhesion between breast cancer cells and extracellular matrix (ECM). MAIN METHODS Static cell adhesion assays were performed to quantify avidity of breast cancer cells to ECM. The effects of sialidases on α2,6 sialylation was assessed by flow cytometry using biotin conjugated Sambucus nigra lectin. Lectin affinity assays were used to determine expression of α2,6 sialylated integrins. Cell migration and invasion were investigated by wound healing and transwell invasion assays. KEY FINDINGS α2, α5 and β1 integrins had considerable α2,6 sialylation on MDA-MB-231 cells, whereas signals from MCF-7 cells were undetectable. Cleavage of α2,6 sialylation increased adhesion of MDA-MB-231 cells to ECM, while adhesion of MCF-7 cells was unaffected, consistent with the latter's lack of endogenous α2,6 sialylated surface integrins. Neither surface expression of α2β1 and α5β1 integrins, nor activated β1 integrin, changed in MDA-MB-231 cells after sialidase treatment. However, sialidase treatment did not have significant impact on migration or invasion of MDA-MB-231 cells. SIGNIFICANCE Cell adhesion is an important early step of cancer metastasis, yet the roles of sialylation in regulating integrin-mediated breast cancer cell adhesion in comparison to migration and invasion are not well-understood. Our data suggest desialylation of α2,6-sialylated integrins increases adhesion, but not migration or invasion, of MDA-MB-231 cells to ECM without altering integrin expression. It should be considered that α2,6 sialylation may play different roles in regulating cell adhesion of different cancer cells when developing potential therapeutics targeting α2,6 sialylation.
Collapse
Affiliation(s)
- Ye Yuan
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Larry Wu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, United States
| | - Siqi Shen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States.
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, United States.
| |
Collapse
|
15
|
Carbohydrate-to-carbohydrate interactions between α2,3-linked sialic acids on α2 integrin subunits and asialo-GM1 underlie the bone metastatic behaviour of LNCAP-derivative C4-2B prostate cancer cells. Biosci Rep 2014; 34:BSR20140096. [PMID: 25137483 PMCID: PMC4166120 DOI: 10.1042/bsr20140096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Complex interplays among proteins, lipids and carbohydrates can alter the phenotype and are suggested to have a crucial role in tumour metastasis. Our previous studies indicated that a complex of the GSLs (glycosphingolipids), AsGM1 (asialo-GM1), which lacks α2,3-linked sialic acid, and α2β1 integrin receptors is responsible for the metastatic behaviour of C4-2B prostate cancer cells. Herein, we identified and addressed the functional significance of changes in sialylation during prostate cancer progression. We observed an increase in α2,3-linked sialic acid residues on α2 subunits of α2β1 integrin receptors, correlating with increased gene expression of α2,3-STs (sialyltransferases), particularly ST3GAL3. Cell surface α2,3-sialylation of α2 subunits was required for the integrin α2β1-dependent cell adhesion to collagen type I and the same α2,3-linked sialic acid residues on the integrin receptor were responsible for the interaction with the carbohydrate moiety of AsGM1, explaining the complex formation between AsGM1 and α2β1 integrin receptors. These results provide novel insights into the role of sialic acids in the organization and function of important membrane components in invasion and metastatic processes.
Collapse
|
16
|
Grover S, Arya R. Role of UDP-N-acetylglucosamine2-epimerase/N-acetylmannosamine kinase (GNE) in β1-integrin-mediated cell adhesion. Mol Neurobiol 2014; 50:257-73. [PMID: 24474513 DOI: 10.1007/s12035-013-8604-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022]
Abstract
Hereditary inclusion body myopathy (GNE myopathy) is a neuromuscular disorder due to mutation in key sialic acid biosynthetic enzyme, GNE. The pathomechanism of the disease is poorly understood as GNE is involved in other cellular functions beside sialic acid synthesis. In the present study, a HEK293 cell-based model system has been established where GNE is either knocked down or over-expressed along with pathologically relevant GNE mutants (D176V and V572L). The subcellular distribution of recombinant GNE and its mutant showed differential localization in the cell. The effect of mutation on GNE function was investigated by studying hyposialylation of cell membrane receptor, β1-integrin. Hyposialylated β1-integrin localized to internal vesicles that was restored upon supplementation with sialic acid. Fibronectin stimulation caused migration of hyposialylated β1-integrin to the cell membrane and co-localization with focal adhesion kinase (FAK) leading to increased focal adhesion formation. This further activated FAK and Src, downstream signaling molecules and led to increased cell adhesion. This is the first report to show that mutation in GNE affects β1-integrin-mediated cell adhesion process in GNE mutant cells.
Collapse
Affiliation(s)
- Sonam Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
17
|
Cell surface sialic acid modulates extracellular matrix adhesion and migration in pancreatic adenocarcinoma cells. Pancreas 2014; 43:109-17. [PMID: 23921962 DOI: 10.1097/mpa.0b013e31829d9090] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Tumor cells modulate their extracellular matrix (ECM) adhesion and migration to become more metastatic. Moreover, they show an increase in sialic acid, which could have an effect on their ECM adhesion and migration. This work describes the influence of pancreatic adenocarcinoma cell surface α2,3- and α2,6-sialic acid determinants on the aforementioned processes. METHODS We have characterized the cell surface α2,3- and α2,6-sialic acids, and sialyl-Lewis x levels and the integrin levels of 2 pancreatic adenocarcinoma cell lines, Capan-1 and MDAPanc-28, grown at different cell densities, and also of the ST3Gal III overexpressing Capan-1 cells, C31. We have measured their adhesion to several ECM proteins and their migration through collagen with and without blocking their sialic acid determinants. RESULTS Adhesion to ECM proteins of Capan-1 and MDAPanc-28 grown at different cell densities, and of C31, depended on their cell surface sialic acid determinants repertoire, correlating the higher α2,6-sialic acid levels with their increased ECM adhesion. Cell migration also depended on their sialic acid determinants expression; and in this case, higher α2,3-sialic acid levels correlated with a more migratory phenotype. CONCLUSION This study shows how the intrinsic heterogeneity of cell membrane sialylation regulates the adhesive and migratory potential of pancreatic adenocarcinoma cells.
Collapse
|
18
|
Abstract
Tumor cells exhibit striking changes in cell surface glycosylation as a consequence of dysregulated glycosyltransferases and glycosidases. In particular, an increase in the expression of certain sialylated glycans is a prominent feature of many transformed cells. Altered sialylation has long been associated with metastatic cell behaviors including invasion and enhanced cell survival; however, there is limited information regarding the molecular details of how distinct sialylated structures or sialylated carrier proteins regulate cell signaling to control responses such as adhesion/migration or resistance to specific apoptotic pathways. The goal of this review is to highlight selected examples of sialylated glycans for which there is some knowledge of molecular mechanisms linking aberrant sialylation to critical processes involved in metastasis.
Collapse
Affiliation(s)
- Matthew J Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 982A 1918 University Boulevard, Birmingham, AL 35294-0005, USA
| | | | | |
Collapse
|
19
|
Sano K, Miyamoto Y, Kawasaki N, Hashii N, Itoh S, Murase M, Date K, Yokoyama M, Sato C, Kitajima K, Ogawa H. Survival signals of hepatic stellate cells in liver regeneration are regulated by glycosylation changes in rat vitronectin, especially decreased sialylation. J Biol Chem 2010; 285:17301-9. [PMID: 20335177 DOI: 10.1074/jbc.m109.077016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular matrix (ECM) molecules play important roles in many biological and pathological processes. During tissue remodeling, the ECM molecules that are glycosylated are different from those of normal tissue owing to changes in the expression of many proteins that are responsible for glycan synthesis. Vitronectin (VN) is a major ECM molecule that recognizes integrin on hepatic stellate cells (HSCs). The present study attempted to elucidate how changes in VN glycans modulate the survival of HSCs, which play a critical role in liver regeneration. Plasma VN was purified from partially hepatectomized (PH) and sham-operated (SH) rats at 24 h after operation and non-operated (NO) rats. Adhesion of rat HSCs (rHSCs), together with phosphorylation of focal adhesion kinase, in PH-VN was decreased to one-half of that in NO- or SH-VN. Spreading of rHSCs on desialylated NO-VN was decreased to one-half of that of control VN, indicating the importance of sialylation of VN for activation of HSCs. Liquid chromatography/multiple-stage mass spectrometry analysis of Glu-C glycopeptides of each VN determined the site-specific glycosylation. In addition to the major biantennary complex-type N-glycans, hybrid-type N-glycans were site-specifically present at Asn(167). Highly sialylated O-glycans were found to be present in the Thr(110)-Thr(124) region. In PH-VN, the disialyl O-glycans and complex-type N-glycans were decreased while core-fucosylated N-glycans were increased. In addition, immunodetection after two-dimensional PAGE indicated the presence of hyper- and hyposialylated molecules in each VN and showed that hypersialylation was markedly attenuated in PH-VN. This study proposes that the alteration of VN glycosylation modulates the substrate adhesion to rat HSCs, which is responsible for matrix restructuring.
Collapse
Affiliation(s)
- Kotone Sano
- Graduate School of Humanities and Sciences and The Glycoscience Institute, Ochanomizu University, Tokyo 112-8610, Ochanomizu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sato Y, Isaji T, Tajiri M, Yoshida-Yamamoto S, Yoshinaka T, Somehara T, Fukuda T, Wada Y, Gu J. An N-glycosylation site on the beta-propeller domain of the integrin alpha5 subunit plays key roles in both its function and site-specific modification by beta1,4-N-acetylglucosaminyltransferase III. J Biol Chem 2009; 284:11873-81. [PMID: 19276077 DOI: 10.1074/jbc.m807660200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently we reported that N-glycans on the beta-propeller domain of the integrin alpha5 subunit (S-3,4,5) are essential for alpha5beta1 heterodimerization, expression, and cell adhesion. Herein to further investigate which N-glycosylation site is the most important for the biological function and regulation, we characterized the S-3,4,5 mutants in detail. We found that site-4 is a key site that can be specifically modified by N-acetylglucosaminyltransferase III (GnT-III). The introduction of bisecting GlcNAc into the S-3,4,5 mutant catalyzed by GnT-III decreased cell adhesion and migration on fibronectin, whereas overexpression of N-acetylglucosaminyltransferase V (GnT-V) promoted cell migration. The phenomenon is similar to previous observations that the functions of the wild-type alpha5 subunit were positively and negatively regulated by GnT-V and GnT-III, respectively, suggesting that the alpha5 subunit could be duplicated by the S-3,4,5 mutant. Interestingly GnT-III specifically modified the S-4,5 mutant but not the S-3,5 mutant. This result was confirmed by erythroagglutinating phytohemagglutinin lectin blot analysis. The reduction in cell adhesion was consistently observed in the S-4,5 mutant but not in the S-3,5 mutant cells. Furthermore mutation of site-4 alone resulted in a substantial decrease in erythroagglutinating phytohemagglutinin lectin staining and suppression of cell spread induced by GnT-III compared with that of either the site-3 single mutant or wild-type alpha5. These results, taken together, strongly suggest that N-glycosylation of site-4 on the alpha5 subunit is the most important site for its biological functions. To our knowledge, this is the first demonstration that site-specific modification of N-glycans by a glycosyltransferase results in functional regulation.
Collapse
Affiliation(s)
- Yuya Sato
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gu J, Taniguchi N. Potential of N-glycan in cell adhesion and migration as either a positive or negative regulator. Cell Adh Migr 2008; 2:243-5. [PMID: 19262156 DOI: 10.4161/cam.2.4.6748] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glycosylation is one of the most abundant posttranslational modification reactions, and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharide structure (glycan) are associated with many physiological and pathological events, including cell adhesion, migration, cell growth, cell differentiation and tumor invasion. Glycosylation reactions are catalyzed by the action of glycosyltransferases, which add sugar chains to various complex carbohydrates such as glycoproteins, glycolipids and proteoglycans. Functional glycomics, which uses sugar remodeling by glycosyltransferases, is a promising tool for the characterization of glycan functions. Here, we will focus on the positive and negative regulation of biological functions of integrins by the remodeling of N-glycans with N-acetylglucosaminyltransferase III (GnT-III) and N-acetylglucosaminyltransferase V (GnT-V), which catalyze branched N-glycan formations, bisecting GlcNAc and beta1,6 GlcNAc, respectively. Typically, integrins are modified by GnT-III, which inhibits cell migration and cancer metastasis. In contrast, integrins modified by GnT-V promote cell migration and cancer invasion.
Collapse
Affiliation(s)
- Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan.
| | | |
Collapse
|
22
|
Woodard-Grice AV, McBrayer AC, Wakefield JK, Zhuo Y, Bellis SL. Proteolytic shedding of ST6Gal-I by BACE1 regulates the glycosylation and function of alpha4beta1 integrins. J Biol Chem 2008; 283:26364-73. [PMID: 18650447 PMCID: PMC2546544 DOI: 10.1074/jbc.m800836200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/21/2008] [Indexed: 12/11/2022] Open
Abstract
Differentiation of monocytes into macrophages is accompanied by increased cell adhesiveness, due in part to the activation of alpha4beta1 integrins. Here we report that the sustained alpha4beta1 activation associated with macrophage differentiation results from expression of beta1 integrin subunits that lack alpha2-6-linked sialic acids, a carbohydrate modification added by the ST6Gal-I sialyltransferase. During differentiation of U937 monocytic cells and primary human CD14(+) monocytes, ST6Gal-I is down-regulated, leading to beta1 hyposialylation and enhanced alpha4beta1-dependent VCAM-1 binding. Importantly, ST6Gal-I down-regulation results from cleavage by the BACE1 secretase, which we show is dramatically up-regulated during macrophage differentiation. BACE1 up-regulation, ST6Gal-I shedding, beta1 hyposialylation, and alpha4beta1-dependent VCAM-1 binding are all temporally correlated and share the same signaling mechanism (protein kinase C/Ras/ERK). Preventing ST6Gal-I down-regulation (and therefore integrin hyposialylation), through BACE1 inhibition or ST6Gal-I constitutive overexpression, eliminates VCAM-1 binding. Similarly, preventing integrin hyposialylation inhibits a differentiation-induced increase in the expression of an activation-dependent conformational epitope on the beta1 subunit. Collectively, these results describe a novel mechanism for alpha4beta1 regulation and further suggest an unanticipated role for BACE1 in macrophage function.
Collapse
Affiliation(s)
- Alencia V. Woodard-Grice
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - Alexis C. McBrayer
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - John K. Wakefield
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - Ya Zhuo
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| | - Susan L. Bellis
- Department of Physiology and Biophysics
and Department of Surgery, University of Alabama
at Birmingham, Birmingham, Alabama 35294 and
Tranzyme Pharma, Birmingham, Alabama 35294
| |
Collapse
|
23
|
Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, Taniguchi N. Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 2008; 99:1304-10. [PMID: 18492092 PMCID: PMC11158068 DOI: 10.1111/j.1349-7006.2008.00839.x] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 03/25/2008] [Indexed: 01/27/2023] Open
Abstract
Glycosylation is one of the most common post-translational modification reactions and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharide structures are associated with many physiological and pathological events, including cell growth, migration, differentiation, tumor invasion, host-pathogen interactions, cell trafficking, and transmembrane signaling. Emerging roles of glycan functions have been highly attractive to scientists in various fields of life science as they open a field, "Functional Glycomics", that is a comprehensive study of the glycan structures in relation to functions. In particular, the N-glycans of signaling molecules including receptors or adhesion molecules are considered to be involved in cellular functions. This review will focus on the roles of glycosyltransferases involved in the biosynthesis of N-glycan branching and identification of cell surface receptors as their target proteins. We also suggest that the modulation of N-glycans of those receptors alters their important functions such as cell signaling and cell adhesion which are implicated in cancer invasion and metastasis.
Collapse
Affiliation(s)
- Yan-Yang Zhao
- Department of Disease Glycomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Sano K, Asanuma-Date K, Arisaka F, Hattori S, Ogawa H. Changes in glycosylation of vitronectin modulate multimerization and collagen binding during liver regeneration. Glycobiology 2007; 17:784-94. [PMID: 17369286 DOI: 10.1093/glycob/cwm031] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Elucidating the mechanisms and factors regulating multimerization is biologically important in order to modulate the biological activities of functional proteins, especially adhesive proteins in the extracellular matrix (ECM). Vitronectin (VN) is a multifunctional glycoprotein present in plasma and ECM. Linkage of cellular adhesion and fibrinolysis by VN plays an essential role during tissue remodeling. Our previous study determined that the collagen-binding activity of VN was markedly enhanced with the decreased glycosylation during liver regeneration. This study demonstrated how alternations of glycans modulate the biological activity of VN. Human and rat VNs were used because of their similarities in structure and activities. The binding affinity of human VN to immobilized collagen was shown to be higher at pH 4.5 than at 7.5, at 37 degrees C than at 4 degrees C. Sedimentation velocity studies indicated that the greater the multimerization of human VN, the better it bound to collagen. The results indicate that the collagen binding of VN was modulated through its multimerization. Stepwise trimming of glycan with various exoglycosidases increased both the multimer size and the collagen binding of human VN, indicating that they are modulated by changes in glycosylation. The multimer sizes of VN purified from plasma of partially hepatectomized (PH) rats and sham-operated (SH) rats increased by about 45 and 31%, respectively, compared with those of nonoperated (NO) rats. In accordance with this, PH-VN exhibited remarkably enhanced collagen binding than SH-VN and NO-VN on surface plasmon resonance. In the PH rat sera, the multimer VN was increased in both amount and size compared with those in SH- and NO-sera. The results demonstrate that glycan alterations during tissue remodeling induce increased multimerization state to enhance the biological activity of VN.
Collapse
Affiliation(s)
- Kotone Sano
- Graduate school of Humanities and Sciences and The Glycoscience Institute, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | | | | | | | | |
Collapse
|
25
|
Litynska A, Przybylo M, Pochec E, Kremser E, Hoja-Lukowicz D, Sulowska U. Does glycosylation of melanoma cells influence their interactions with fibronectin? Biochimie 2006; 88:527-34. [PMID: 16380202 DOI: 10.1016/j.biochi.2005.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 10/26/2005] [Accepted: 10/28/2005] [Indexed: 01/07/2023]
Abstract
Cell surface integrins, especially those binding to fibronectin (FN), participate in processes of tumor cell invasion and metastasis. Changes in glycosylation of cell surface adhesion proteins are often associated with malignant transformation of cells. In this study we examined the influence of swainsonine (SW) on adhesion, wound healing and haptotactic migration on FN, comparing the responses of different human melanoma cell lines: primary WM35 and metastatic WM9, WM239 and A375. We also examined the role of alpha subunits in adhesion to FN. All of the antibodies inhibited adhesion to FN but with different efficiencies depending on the cell line. Adhesion was mediated mainly by integrin alpha(5)beta(1) (WM9, A375), alpha(3)beta(1) (WM35, A375, WM239). Scratch wound repair was significantly faster on FN-coated wells than on plastic for all cells except for WM9. A375 and WM9 had the greatest migration ability, both expressing the highest level of alpha(5)beta(1) integrin. It seems very likely that adhesion to FN can be accomplished by many different integrins, but for effective migration alpha(5)beta(1) integrin is responsible. Only A375 and WM239 cell lines reacted to SW treatment. In the presence of SW WM239 and A375 cells had 70% and 40% increased adhesion to FN, and their migration was decreased 40% and 50%, respectively. Interestingly, although most of the cell lines share a common profile of integrins, each line interacted with FN differently. They differed mainly in the repertoire of integrins used for adhesion, and in the manner in which glycosylation affected these processes. The influence of SW was observed in two metastatic cell lines indicating the contribution of glycosylation status to the progression of melanoma. The lack of reaction to SW in WM9 cells may suggest that there is a threshold in the expression level of the highly branched N-glycans that may influence the adhesion and migration properties of the cell.
Collapse
Affiliation(s)
- A Litynska
- Department of Animal Physiology, Institute of Zoology, 6 Ingardena Street, 30-060 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
26
|
Eguchi H, Ikeda Y, Ookawara T, Koyota S, Fujiwara N, Honke K, Wang PG, Taniguchi N, Suzuki K. Modification of oligosaccharides by reactive oxygen species decreases sialyl lewis x-mediated cell adhesion. Glycobiology 2005; 15:1094-101. [PMID: 16000697 DOI: 10.1093/glycob/cwj003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Modification of cell surface oligosaccharides by reactive oxygen species (ROS) and the biological effect of such modifications on cell adhesion were investigated. Treatment of HL60, a human promyelocyte leukemia cell line, with ROS, generated by a combination of hypoxanthine and xanthine oxidase (HX/XO), decreased the sialic acid content on the cell surface, as indicated by a flow cytometric analysis involving sialic acid-specific lectins, and a concomitant increase of free sialic acid was observed in the supernatant. A cell adhesion assay showed that the HX/XO treatment of HL60 cells decreases their capability of binding to human umbilical vein endothelial cells (HUVEC), probably because of an impairment of the interaction involving E-selectin, whereas the decrease in the binding was canceled by the addition of superoxide dismutase (SOD) and catalase. In fact, cell surface sialyl lewis x (sLe x), but not lewis x (Le x), was decreased by HX/XO treatment. Thus, it is more likely that the impaired interaction is based on diminished levels of the selectin ligand. Cleavage of sialic acid by ROS was further verified by the degradation of 4MU-Neu5Ac by HX/XO in the presence of hydrogen peroxide and iron ion. These results indicate that glycosidic linkage of sialic acid is a potential target for superoxide and other related ROS. It is well known that ROS cause cellular damages such as lipid peroxidation and protein oxidation, but, as suggested by the findings reported in the literature, ROS may also regulate cell adhesion via the structural alteration of sialylated oligosaccharides on the cell surface.
Collapse
Affiliation(s)
- Hironobu Eguchi
- Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Integrins are cell surface transmembrane glycoproteins that function as adhesion receptors in cell-ECM interactions and link matrix proteins to the cytoskeleton. Integrins play an important role in cytoskeleton organization and in the transduction of intracellular signals, regulating various processes such as proliferation, differentiation, apoptosis, and cell migration. Although integrin-mediated adhesion is based on the binding of alpha and beta subunits to a defined peptide sequence, the strength of this binding is modulated by various factors including the status of glycosylation of integrin. Glycosylation reactions are catalyzed by the catalytic action of glycosyltransferases, such as N-acetylglucosaminyltransferase III, V and alpha1, 6 fucosyltransferase, etc., which catalyze the formation of glycosidic bonds. This review summarizes effects of the posttranslational modification of N-glycans of alpha3beta1 and alpha5beta1 integrins on their association, activation and biological functions, by using biochemical and genetic approaches.
Collapse
Affiliation(s)
- Jianguo Gu
- Department of Biochemistry, Osaka University Graduate School of Medicine, B1, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
28
|
Bellis SL. Variant glycosylation: an underappreciated regulatory mechanism for β1 integrins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:52-60. [PMID: 15157607 DOI: 10.1016/j.bbamem.2004.03.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 03/24/2004] [Accepted: 03/31/2004] [Indexed: 01/07/2023]
Abstract
Although it has been known for many years that beta1 integrins undergo differential glycosylation in accordance with changes in cell phenotype, the potential role of N-glycosylation as a modulator of integrin function has received little attention. One reason for the relatively limited interest in this topic likely relates to the fact that much of the prior research was correlative in nature. However, new results now bolster the hypothesis that there is a causal relationship between variant glycosylation and altered integrin activity. In this review, the evidence for variant glycosylation as a regulatory mechanism for beta1 integrins are summarized, with particular emphasis on: (1). outlining the instances in which cell phenotypic variation is associated with differential beta1 glycosylation, (2). describing the specific alterations in glycan structure that accompany phenotypic changes and (3). presenting potential mechanisms by which variant glycosylation might regulate integrin function.
Collapse
Affiliation(s)
- Susan L Bellis
- Department of Physiology and Biophysics, University of Alabama at Birmingham, MCLM 982A, 1918 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
29
|
Pocheć E, Lityńska A, Amoresano A, Casbarra A. Glycosylation profile of integrin α3β1 changes with melanoma progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2003; 1643:113-23. [PMID: 14654234 DOI: 10.1016/j.bbamcr.2003.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosylation of integrins has been implicated in the modulation of their function. Characterisation of carbohydrate moieties of alpha(3) and beta(1) subunits from non-metastatic (WM35) and metastatic (A375) human melanoma cell lines was carried out on peptide-N-glycosidase F-released glycans using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). beta(1) integrin subunit from both cell lines displayed tri- and tetraantennary oligosaccharides complex type glycans, but only in A375 cell line was the sialylated tetraantennary complex type glycan (Hex(7)HexNAc(6)FucSia(4)) present. In contrast, only alpha(3) subunit from metastatic cells possessed beta1-6 branched structures. Our data indicate that the beta(1) and alpha(3) subunits expressed by the metastatic A375 cell line carry beta1-6 branched structures, suggesting that these cancer-associated glycan chains may modulate tumor cell adhesion by affecting the ligand binding properties of alpha(3)beta(1) integrin. In direct ligand binding assays, alpha(3)beta(1) integrin from both cell lines binds strongly to fibronectin and to much lesser degree to placental laminin. No binding to collagen IV was observed. Enzymatic removal of sialic acid residues from purified alpha(3)beta(1) integrin stimulates its adhesion to all examined ECM proteins. Our data suggest that the glycosylation profile of alpha(3)beta(1) integrin in human melanoma cells correlates with the acquisition of invasive capacity during melanoma progression.
Collapse
Affiliation(s)
- Ewa Pocheć
- Institute of Zoology, Jagiellonian University, R. Ingardena 6, 30-060 Cracow, Poland
| | | | | | | |
Collapse
|
30
|
Caruso M, Cavaldesi M, Gentile M, Sthandier O, Amati P, Garcia MI. Role of sialic acid-containing molecules and the α4β1 integrin receptor in the early steps of polyomavirus infection. J Gen Virol 2003; 84:2927-2936. [PMID: 14573797 DOI: 10.1099/vir.0.19369-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Murine polyomavirus (MPyV) infection occurs through recognition of sialic acid (SA) residues present on the host cell membrane, but the nature of the molecules involved and the exact role of this interaction in virus cell entry still need to be clarified. In this work, mutations at residues R(77) or H(298) of the MPyV VP1 protein were shown to lead to a complete loss of virus infectivity, which, however, could be restored by lipofection of virus particles into the cytoplasm of the host cells. Using virus-like particles (VLPs), it was demonstrated that the non-infectivity of these mutants was due to impaired cell entry caused by total abrogation of SA-dependent cell binding. This indicates that SA residues are essential primary cell receptors for MPyV. As the alpha4beta1 integrin has been identified recently as a cell receptor for MPyV, the relationship, if any, was investigated between SA-containing and alpha4beta1 integrin receptors. The ability of mutants R(77)Q and H(298)Q and wt VLPs to bind to cells overexpressing the alpha4beta1 integrin was studied in SA-positive (BALB/c 3T3 cells and Pro-5 cells) and SA-deficient (Pro5-derived Lec-2 cells) backgrounds. Overexpression of alpha4beta1 integrin did not restore binding of mutant VLPs in any of these cell lines or, indeed, that of wt VLPs in a SA-deficient background. Moreover, evidence is provided that overexpression of the sialylated alpha4beta1 integrin enhances wt VLP cell binding, suggesting that, in addition to its function at a post-attachment level, alpha4beta1 integrin acts also as one of the SA-containing receptors for initial cell binding.
Collapse
Affiliation(s)
- Maddalena Caruso
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Michaela Cavaldesi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Massimo Gentile
- e Dipartimento di Medicina Sperimentale e Patologia, Sezione di Virologia, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Olga Sthandier
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Paolo Amati
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Marie-Isabelle Garcia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
31
|
Seales EC, Jurado GA, Singhal A, Bellis SL. Ras oncogene directs expression of a differentially sialylated, functionally altered β1 integrin. Oncogene 2003; 22:7137-45. [PMID: 14562042 DOI: 10.1038/sj.onc.1206834] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intense investigation has centered on understanding the regulation of integrin cell adhesion receptors. In the present study, we propose that variant N-glycosylation represents an important mechanism for regulation of beta1, but not beta3 or beta5 integrins. We find that expression of oncogenic ras in HD3 colonocytes causes increased alpha2-6 sialylation of beta1 integrins, whereas expression of dominant-negative ras induces decreased alpha2-6 sialylation, relative to cells with wild-type ras. In contrast, neither beta3 nor beta5 integrins are alpha2-6 sialylated, regardless of the state of ras activation. Results from RT-PCR analyses suggest that differential integrin sialylation is due to a ras-dependent alteration in the expression of ST6Gal I, the enzyme that adds alpha2-6-linked sialic acids. Cells that express differentially sialylated beta1 integrins exhibit altered adhesion to collagen I (a beta1 ligand), but not to vitronectin (a beta3 or beta5 ligand). Similarly, the enzymatic removal of cell surface sialic acids from control cells alters binding to collagen, but not to vitronectin. Finally, using a cell-free receptor/ligand-binding assay, we show that purified, desialylated alpha1beta1 integrins have diminished collagen-binding capability, providing strong evidence that sialic acids play a causal role in regulating beta1 integrin function.
Collapse
Affiliation(s)
- Eric Clinton Seales
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Sialylation is essential for development and regeneration in mammals. Using N-propanoylmannosamine, a novel precursor of sialic acid, we were able to incorporate unnatural sialic acids with a prolonged N-acyl side chain (e.g., N-propanoylneuraminic acid) into cell surface glycoconjugates. Here we report that this biochemical engineering of sialic acid leads to a stimulation of neuronal cells. Both PC12 cells and cerebellar neurons showed a significant increase in neurite outgrowth after treatment with this novel sialic acid precursor. Furthermore, also the reestablishment of the perforant pathway was stimulated in brain slices. In addition, we surprisingly identified several cytosolic proteins with regulatory functions, which are differentially expressed after treatment with N-propanoylmannosamine. Because sialic acid is the only monosaccharide that is activated in the nucleus, we hypothesize that transcription could be modulated by the unnatural CMP-N-propanoylneuraminic acid and that sialic acid activation might be a general tool to regulate cellular functions, such as neurite outgrowth.
Collapse
|
33
|
Semel AC, Seales EC, Singhal A, Eklund EA, Colley KJ, Bellis SL. Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors. J Biol Chem 2002; 277:32830-6. [PMID: 12091385 DOI: 10.1074/jbc.m202493200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite numerous reports suggesting that beta(1) integrin receptors undergo differential glycosylation, the potential role of N-linked carbohydrates in modulating integrin function has been largely ignored. In the present study, we find that beta(1) integrins are differentially glycosylated during phorbol ester (PMA)-stimulated differentiation of myeloid cells along the monocyte/macrophage lineage. PMA treatment of two myeloid cell lines, U937 and THP-1, induces a down-regulation in expression of the ST6Gal I sialyltransferase. Correspondingly, the beta(1) integrin subunit becomes hyposialylated, suggesting that the beta(1) integrin is a substrate for this enzyme. The expression of hyposialylated beta(1) integrin isoforms is temporally correlated with enhanced binding of myeloid cells to fibronectin, and, importantly, fibronectin binding is inhibited when the Golgi disrupter, brefeldin A, is used to block the expression of the hyposialylated form. Consistent with the observation that cells with hyposialylated integrins are more adhesive to fibronectin, we demonstrate that the enzymatic removal of sialic acid residues from purified alpha(5)beta(1) integrins stimulates fibronectin binding by these integrins. These data support the hypothesis that unsialylated beta(1) integrins are more adhesive to fibronectin, although desialylation of alpha(5) subunits could also contribute to increased fibronectin binding. Collectively our results suggest a novel mechanism for regulation of the beta(1) integrin family of cell adhesion receptors.
Collapse
Affiliation(s)
- Alexis C Semel
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | | | | | | | | | | |
Collapse
|
34
|
Praetorius J, Spring KR. Specific lectins map the distribution of fibronectin and beta 1-integrin on living MDCK cells. Exp Cell Res 2002; 276:52-62. [PMID: 11978008 DOI: 10.1006/excr.2002.5516] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The expression and dynamics of bound fibronectin and the sialylated integral membrane protein, beta 1-integrin, were analyzed on the apical membrane of living MDCK cells. Fibronectin was identified by its specific binding of fluorescent peanut agglutinin and sialylated beta 1-integrin by its binding of Sambucus nigra agglutinin. Confocal epifluorescence microscopy and laser scanning cytometry determined the distribution and abundance of binding sites of the two fluorescently labeled lectins. Both fibronectin and beta 1-integrin were restricted to specific regions uniformly distributed over the entire apical surface. Apical-surface fibronectin binding varied much more between cells than did the expression of beta 1-integrin. Sialylated beta 1-integrin colocalized >92% with membrane microplicae while fibronectin was unrelated to these surface structures. This lack of colocalization of the proteins was confirmed by double-labeling experiments. From the maturation dependence of the fibronectin-binding capacity and the differences in protein turnover times, it was evident that fibronectin did not bind to sialylated beta 1-integrin. Furthermore, desialylation of beta 1-integrin uncovered additional fibronectin receptors on the apical membrane. We conclude that these lectins permit tracking of two membrane-associated glycoproteins in living cells and that fibronectin binds only to desialylated beta 1-integrin on MDCK cells.
Collapse
Affiliation(s)
- Jeppe Praetorius
- Section of Transport Physiology, Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, The National Institutes of Health, 10 Center Drive, Bldg. 10, Room 6N260, Bethesda, Maryland 20892-1603, USA
| | | |
Collapse
|
35
|
Ko FCF, Chow KL. A novel thioredoxin-like protein encoded by the C. elegans dpy-11 gene is required for body and sensory organ morphogenesis. Development 2002; 129:1185-94. [PMID: 11874914 DOI: 10.1242/dev.129.5.1185] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensory ray morphogenesis in C. elegans requires active cellular interaction regulated by multiple genetic activities. We report here the cloning of one of these genes, dpy-11, which encodes a membrane-associated thioredoxin-like protein. The DPY-11 protein is made exclusively in the hypodermis and resides in the cytoplasmic compartment. Whereas the TRX domain of DPY-11 displays a catalytic activity in vitro, mapping of lesions in different mutant alleles and functional analysis of deletion transgenes reveal that both this enzymatic activity and transmembrane topology are essential for determining body shape and ray morphology. Based on the abnormal features in both the expressing and non-expressing ray cells, we propose that the DPY-11 is required in the hypodermis for modification of its substrates. In turn, ray cell interaction and the whole morphogenetic process can be modulated by these substrate molecules.
Collapse
Affiliation(s)
- Frankie C F Ko
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|