1
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025; 16:6160-6187. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
2
|
Zeng X, Luo D, Zhang S, Cui Z, Wang Y, Chen J, Zhang S, Teng L, Hu Z, Liu L, Zhou S, Zeng Z, Long J. High-dose radiation-induced immunogenic cell death of bladder cancer cells leads to dendritic cell activation. PLoS One 2024; 19:e0307024. [PMID: 39231199 PMCID: PMC11373825 DOI: 10.1371/journal.pone.0307024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/27/2024] [Indexed: 09/06/2024] Open
Abstract
Radiotherapy is a commonly used method in the treatment of bladder cancers (BC). Radiation-induced immunogenic cell death (ICD) is related to the immune response against cancers and their prognoses. Even though dendritic cells (DC) act as powerful antigen-presenting cells in the body, their precise role in this ICD process remains unclear. Accordingly, an in vitro study was undertaken to ascertain whether high-dose radiation-induced ICD of BC cells could regulate the immune response of DC. The results indicated that high-dose radiation treatments of BC cells significantly increased their levels of apoptosis, blocked their cell cycle in the G2/M phase, increased their expression of ICD-related proteins, and upregulated their secretion of CCL5 and CCL21 which control the directed migration of DC. It was also noted that expression of CD80, CD86, CCR5, and CCR7 on DC was upregulated in the medium containing the irradiated cells. In conclusion, the present findings illustrate that high-dose radiation can induce the occurrence of ICD within BC cells, concomitantly resulting in the activation of DC. Such findings could be of great significance in increasing the understanding how radiotherapy of BC may work to bring about reductions in cell activity and how these processes in turn lead to immunoregulation of the function of DC.
Collapse
Affiliation(s)
- Xianlin Zeng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Daiqin Luo
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Shuai Zhang
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhonghui Cui
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Yun Wang
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Jin Chen
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Shichao Zhang
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Lijing Teng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Zuquan Hu
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Lina Liu
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
| | - Shi Zhou
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guiyang, China
- Key Laboratory of Infectious Immunity and Antibody Engineering of Guizhou Province, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jinhua Long
- Department of Head and Neck, Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Romero Fernandez J, Cordoba Largo S, Benlloch Rodriguez R, Gil Haro B. The Effects of Gynecological Tumor Irradiation on the Immune System. Cancers (Basel) 2024; 16:2804. [PMID: 39199577 PMCID: PMC11352652 DOI: 10.3390/cancers16162804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Radiobiology has evolved from a mechanistic model based on DNA damage and response factors into a more complex model that includes effects on the immune system and the tumor microenvironment (TME). Irradiation has an immunomodulatory effect that can manifest as increased anti-tumor immunity or immunosuppression. Irradiation promotes an inflammatory microenvironment through the release of pro-inflammatory cytokines and endothelial damage, which recruit immune system cells to the irradiated area. Radiation-induced immunogenic cell death (ICD), characterized by the release of damage-associated molecular patterns (DAMPs) and tumor antigens, triggers an anti-tumor immune response of both innate and adaptive immunity. Anti-tumor immunity can manifest at a distance from the irradiated area, a phenomenon known as the abscopal effect (AE), which involves dendritic cells and CD8+ T cells. Irradiation also produces an immunosuppressive effect mediated by tumor-associated macrophages (TAMs) and regulatory T lymphocytes (Tregs), which counterbalances the immunostimulatory effect. In this work, we review the mechanisms involved in the radiation-induced immune response, which support the combined treatment of RT and immunotherapy, focusing, where possible, on gynecologic cancer.
Collapse
Affiliation(s)
- Jesus Romero Fernandez
- Radiation Oncology Department, Hospital Universitario Puerta de Hierro, C. Joaquín Rodrigo 1, 28222 Majadahonda, Spain; (S.C.L.); (R.B.R.); (B.G.H.)
| | | | | | | |
Collapse
|
4
|
Yang L, Cui X, Wu F, Chi Z, Xiao L, Wang X, Liang Z, Li X, Yu Q, Lin X, Gao C. The efficacy and safety of neoadjuvant chemoradiotherapy combined with immunotherapy for locally advanced rectal cancer patients: a systematic review. Front Immunol 2024; 15:1392499. [PMID: 38846948 PMCID: PMC11154111 DOI: 10.3389/fimmu.2024.1392499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Several studies have explored the effectiveness of PD-1/PD-L1 inhibitors combined with neoadjuvant chemoradiotherapy (nCRT) in the treatment of locally advanced rectal cancer(LARC), particularly in microsatellite stable(MSS) or mismatch repair proficient(pMMR) LARC patients. We undertook a single-arm systematic review to comprehensively evaluate the advantages and potential risks associated with the use of PD-1/PD-L1 inhibitors in conjunction with nCRT for patients diagnosed with locally advanced rectal cancer. Methods The PubMed, Embase, Cochrane Library, ClinicalTrials.gov, ASCO and ESMO were searched for related studies. The main outcomes were pathologic complete response (pCR), major pathological response (MPR), anal preservation, and adverse effects (AEs). Results Fourteen articles including 533 locally advanced rectal cancer (LARC) patients were analyzed. The pooled pCR, MPR, and anal preservation rates were 36%, 66% and 86%. Grade ≥3 adverse events occurred in 20%. Subgroup analysis showed that; dMMR/MSI-H had a pooled pCR (100%) and MPR (100%), pMMR/MSS had a pooled pCR (38%) and MPR (60%); the short-course radiotherapy and long-course radiotherapy had pooled pCR rates of 51% and 30%, respectively. The rates of pCR for the concurrent and sequential immuno-chemoradiotherapy subgroups at 30% and 40%, mirroring pCR rates for the PD-L1 and PD-1 inhibitor subgroups were 32% and 40%, respectively. Conclusion In cases of locally advanced rectal cancer, PD-1/PD-L1 inhibitors combined with neoadjuvant chemoradiotherapy have shown promising response rates and acceptable toxicity profiles. PD-1/PD-L1 inhibitors combined with neoadjuvant chemoradiotherapy hence has a positive outcome even in MSS LARC patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero/#myprospero, identifier CRD42023465380.
Collapse
Affiliation(s)
- Lei Yang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiujing Cui
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fengpeng Wu
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zifeng Chi
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Xiao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan Wang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zezheng Liang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoning Li
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiyao Yu
- Department of Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xueqin Lin
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Gao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Liu Z, Wang F, Zhang Y, Lu J, Yang Y. Combination treatment with anti-HER2 therapeutic antibody RC48, PD-1 inhibitor, radiotherapy, and granulocyte macrophage-colony stimulating factor (GM-CSF) in patient with metastatic gastric cancer: a case report. Front Immunol 2024; 15:1321946. [PMID: 38361930 PMCID: PMC10867122 DOI: 10.3389/fimmu.2024.1321946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
HER2 overexpression/amplification is a prevalent driver in various types of cancer, including gastric cancer (GC). Limited options are available for patients with HER2-positive metastatic gastric cancer, particularly those who do not respond to the standard therapy of HER2 antibody trastuzumab combined with chemotherapy. Previous research suggests that combining a PD-1 inhibitor with radiotherapy and granulocyte macrophage-colony stimulating factor (PRaG regimen) may enhance the antitumor effects in patients with chemotherapy-resistant metastatic solid tumors. In this case study, we presented a potential treatment strategy of a patient having HER2-positive and PD-L1-negative gastric adenocarcinoma. The patient showed rapid tumor progression even after surgery and multiple trastuzumab plus chemotherapy treatments. To address this, we employed a novel anti-HER2 antibody called RC48 in combination with PRaG regimen therapy (PRaG3.0). The patient demonstrated a positive response after two treatment cycles and achieved a progression-free survival time of 6.5 months. This case highlights the potential of four-combination therapies for treating refractory, multiorgan, HER2-positive, PD-L1-negative metastatic gastric cancer. Additionally, varying radiation doses in targeting dual foci is critical to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Zhuixing Liu
- Department of Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| | - Fang Wang
- Department of Radiotherapy & Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| | - Yingqi Zhang
- Department of Radiotherapy & Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| | - Jun Lu
- Department of Radiotherapy & Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| | - Yang Yang
- Department of Radiotherapy & Oncology, Xi‘an International Medical Center Hospital, Xi‘an, China
| |
Collapse
|
6
|
Lu Q, Yan W, Zhu A, Tubin S, Mourad WF, Yang J. Combining spatially fractionated radiation therapy (SFRT) and immunotherapy opens new rays of hope for enhancing therapeutic ratio. Clin Transl Radiat Oncol 2024; 44:100691. [PMID: 38033759 PMCID: PMC10684810 DOI: 10.1016/j.ctro.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 12/02/2023] Open
Abstract
Spatially Fractionated Radiation Therapy (SFRT) is a form of radiotherapy that delivers a single large dose of radiation within the target volume in a heterogeneous pattern with regions of peak dosage and regions of under dosage. SFRT types can be defined by how the heterogeneous pattern of radiation is obtained. Immune checkpoint inhibitors (ICIs) have been approved for various malignant tumors and are widely used to treat patients with metastatic cancer. The efficacy of ICI monotherapy is limited due to the "cold" tumor microenvironment. Fractionated radiotherapy can achieve higher doses per fraction to the target tumor, and induce immune activation (immodulate tumor immunogenicity and microenvironment). Therefore, coupling ICI therapy and fractionated radiation therapy could significantly improve the outcome of metastatic cancer. This review focuses on both preclinical and clinical studies that use a combination of radiotherapy and ICI therapy in cancer.
Collapse
Affiliation(s)
- Qiuxia Lu
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| | - Weisi Yan
- Baptist Health System, Lexington, KY, United States
- Junxin Precision Oncology Group, P.R. China
| | - Alan Zhu
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Slavisa Tubin
- Albert Einstein Collage of Medicine New York, Center for Ion Therapy, Medaustron, Austria
| | - Waleed F. Mourad
- Department of Radiation Medicine Markey Cancer Center, University of Kentucky - College of Medicine, United States
| | - Jun Yang
- Foshan Fosun Chancheng Hospital, P.R. China
- Junxin Precision Oncology Group, P.R. China
| |
Collapse
|
7
|
Buonaguro L, Tagliamonte M. Peptide-based vaccine for cancer therapies. Front Immunol 2023; 14:1210044. [PMID: 37654484 PMCID: PMC10467431 DOI: 10.3389/fimmu.2023.1210044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Different strategies based on peptides are available for cancer treatment, in particular to counter-act the progression of tumor growth and disease relapse. In the last decade, in the context of therapeutic strategies against cancer, peptide-based vaccines have been evaluated in different tumor models. The peptides selected for cancer vaccine development can be classified in two main type: tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), which are captured, internalized, processed and presented by antigen-presenting cells (APCs) to cell-mediated immunity. Peptides loaded onto MHC class I are recognized by a specific TCR of CD8+ T cells, which are activated to exert their cytotoxic activity against tumor cells presenting the same peptide-MHC-I complex. This process is defined as active immunotherapy as the host's immune system is either de novo activated or restimulated to mount an effective, tumor-specific immune reaction that may ultimately lead to tu-mor regression. However, while the preclinical data have frequently shown encouraging results, therapeutic cancer vaccines clinical trials, including those based on peptides have not provided satisfactory data to date. The limited efficacy of peptide-based cancer vaccines is the consequence of several factors, including the identification of specific target tumor antigens, the limited immunogenicity of peptides and the highly immunosuppressive tumor microenvironment (TME). An effective cancer vaccine can be developed only by addressing all such different aspects. The present review describes the state of the art for each of such factors.
Collapse
Affiliation(s)
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - “Fond G. Pascale”, Naples, Italy
| |
Collapse
|
8
|
Zhong L, Li Y, Muluh TA, Wang Y. Combination of CAR‑T cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncol Lett 2023; 26:281. [PMID: 37274466 PMCID: PMC10236127 DOI: 10.3892/ol.2023.13867] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a new and breakthrough cancer immunotherapy. Although CAR-T cell therapy has made significant progress clinically in patients with refractory or drug-resistant hematological malignancies, there are numerous challenges in its application to solid tumor therapy, including antigen escape, severe toxic reactions, abnormal vascularization, tumor hypoxia, insufficient infiltration of CAR-T cells and immunosuppression. As a conventional mode of anti-tumor therapy, radiotherapy has shown promising effects in combination with CAR-T cell therapy by enhancing the specific immunity of endogenous target antigens, which promoted the infiltration and expansion of CAR-T cells and improved the hypoxic tumor microenvironment. This review focuses on the obstacles to the application of CAR-T technology in solid tumor therapy, the potential opportunities and challenges of combined radiotherapy and CAR-T cell therapy, and the review of recent literature to evaluate the best combination for the treatment of solid tumors.
Collapse
Affiliation(s)
- Liqiang Zhong
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Yi Li
- Department of Oncology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
9
|
Yang J, Xing P, Kong Y, Xu M, Zhang L. PD-1 inhibitor combined with radiotherapy and GM-CSF in MSS/pMMR metastatic colon cancer: a case report. Front Oncol 2023; 13:1078915. [PMID: 37188188 PMCID: PMC10176449 DOI: 10.3389/fonc.2023.1078915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Patients with chemo-refractory metastatic colorectal cancer (mCRC) have poor prognoses. The application of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) inhibitors encouragingly improved the survival of mCRC patients with microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR). Unfortunately, it was ineffective for mCRC with microsatellite-stable (MSS)/proficient mismatch repair (pMMR), which accounted for 95% of mCRC. Radiotherapy can promote local control by directly killing tumor cells and inducing positive immune activities, which might help synergistically with immunotherapy. We present the report of an advanced MSS/pMMR mCRC patient who had progressive disease (PD) after first-line chemotherapy, palliative surgery and second-line chemotherapy combined with targeted therapy. Then the patient received the therapy of PD-1 inhibitor combined with radiotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF). According to Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST1.1), the patient showed a complete response (CR) after triple-combined therapy with progression-free survival (PFS) for more than 2 years so far. The patient had no other significant adverse reactions except for fatigue (Grade 1). The triple-combination therapy provided a promising strategy for metastatic chemo-refractory MSS/pMMR mCRC patients.
Collapse
Affiliation(s)
- Jiabao Yang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Xing
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuehong Kong
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meiling Xu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liyuan Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institution of Radiotherapy & Oncology, Soochow University, Suzhou, China
- Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Liyuan Zhang,
| |
Collapse
|
10
|
Shi M, Chen Y, Ji D. The implications from the interplay of neoadjuvant chemoradiotherapy and the immune microenvironment in rectal cancer. Future Oncol 2022; 18:3229-3244. [PMID: 36017694 DOI: 10.2217/fon-2022-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neoadjuvant chemoradiotherapy (nCRT) is recommended for the treatment of locally advanced rectal cancer. Even though the combination of nCRT and immune checkpoint inhibitors (ICIs) has received much attention, the specific combination modes and dose fractions in radiotherapy (RT) are still indistinct. This review focuses on the immunological mechanism involved in nCRT, the clinical efficacy, the immunological effect of different combined strategies, concurrent or sequential nCRT plus ICIs, long-course RT and short-course RT. This review discusses the impact of nCRT on tumor immunity and summarizes the availability of different dose fractions in RT and distinct combined strategies, aiming at providing clues for optimal neoadjuvant therapy options that maximize efficacy and minimize side effects.
Collapse
Affiliation(s)
- Mengyuan Shi
- Key laboratory of Carcinogenesis & Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Yongkang Chen
- Key laboratory of Carcinogenesis & Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Dengbo Ji
- Key laboratory of Carcinogenesis & Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| |
Collapse
|
11
|
Ji H, Zhou Z. A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy. Cancers (Basel) 2022; 14:cancers14143505. [PMID: 35884565 PMCID: PMC9319172 DOI: 10.3390/cancers14143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Radiotherapy is an important cancer treatment. Aside from its direct killing effect, it also affects anti-tumor immunity. However, radiotherapy’s immune effect is not clear; it depends on the dose and fraction, cancer type, combined immunotherapy, and many other factors. Studies have focused on the optimal radiotherapy regimen to stimulate anti-tumor immunity, but conflicts exist, especially regarding the best radiation dose and fractions. Interestingly, high-dose radiotherapy and low-dose radiotherapy have complementary effects on stimulating anti-tumor immunity. Preclinical studies supporting this finding have accumulated, but gaps between theory and clinical practice still exist. This review summarizes the evidence supporting the use of this ‘hybrid’ radiotherapy approach to effectively stimulate anti-tumor immunity, explains the immune mechanisms of this combination, raises questions that must be addressed in clinical practice, and provides ideas for designing individualized treatment to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy. Abstract Radiotherapy (RT) affects anti-tumor immunity. However, the exact impact of RT on anti-tumor immune response differs among cancer types, RT dose and fractions, patients’ innate immunity, and many other factors. There are conflicting findings on the optimal radiation dose and fractions to stimulate effective anti-tumor immunity. High-dose radiotherapy (HDRT) acts in the same way as a double-edged sword in stimulating anti-tumor immunity, while low-dose radiotherapy (LDRT) seems to play a vital role in modulating the tumor immune microenvironment. Recent preclinical data suggest that a ‘hybrid’ radiotherapy regimen, which refers to combining HDRT with LDRT, can reap the advantages of both. Clinical data have also indicated a promising potential. However, there are still questions to be addressed in order to put this novel combination therapy into clinical practice. For example, the selection of treatment site, treatment volume, the sequencing of high-dose radiotherapy and low-dose radiotherapy, combined immunotherapy, and so on. This review summarizes the current evidence supporting the use of HDRT + LDRT, explains possible immune biology mechanisms of this ‘hybrid’ radiotherapy, raises questions to be considered when working out individualized treatment plans, and lists possible avenues to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy.
Collapse
|
12
|
Wen L, Tong F, Zhang R, Chen L, Huang Y, Dong X. The Research Progress of PD-1/PD-L1 Inhibitors Enhancing Radiotherapy Efficacy. Front Oncol 2021; 11:799957. [PMID: 34956911 PMCID: PMC8695847 DOI: 10.3389/fonc.2021.799957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Approximately 60%–70% of patients with malignant tumours require radiotherapy. The clinical application of immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1, has revolutionized cancer treatment and greatly improved the outcome of a variety of cancers by boosting host immunity.However, radiotherapy is a double-edged sword for PD-1/PD-L immunotherapy. Research on how to improve radiotherapy efficacy using PD-1/PD-L1 inhibitor is gaining momentum. Various studies have reported the survival benefits of the combined application of radiotherapy and PD-1/PD-L1 inhibitor. To fully exerts the immune activation effect of radiotherapy, while avoiding the immunosuppressive effect of radiotherapy as much as possible, the dose selection, segmentation mode, treatment timing and the number of treatment sites of radiotherapy play a role. Therefore, we aim to review the effect of radiotherapy combined with anti-PD-1/PD-L1 on the immune system and its optimization.
Collapse
Affiliation(s)
- Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Appleton E, Hassan J, Chan Wah Hak C, Sivamanoharan N, Wilkins A, Samson A, Ono M, Harrington KJ, Melcher A, Wennerberg E. Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade. Front Immunol 2021; 12:754436. [PMID: 34733287 PMCID: PMC8558396 DOI: 10.3389/fimmu.2021.754436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer patients with low or absent pre-existing anti-tumour immunity ("cold" tumours) respond poorly to treatment with immune checkpoint inhibitors (ICPI). In order to render these patients susceptible to ICPI, initiation of de novo tumour-targeted immune responses is required. This involves triggering of inflammatory signalling, innate immune activation including recruitment and stimulation of dendritic cells (DCs), and ultimately priming of tumour-specific T cells. The ability of tumour localised therapies to trigger these pathways and act as in situ tumour vaccines is being increasingly explored, with the aspiration of developing combination strategies with ICPI that could generate long-lasting responses. In this effort, it is crucial to consider how therapy-induced changes in the tumour microenvironment (TME) act both as immune stimulants but also, in some cases, exacerbate immune resistance mechanisms. Increasingly refined immune monitoring in pre-clinical studies and analysis of on-treatment biopsies from clinical trials have provided insight into therapy-induced biomarkers of response, as well as actionable targets for optimal synergy between localised therapies and ICB. Here, we review studies on the immunomodulatory effects of novel and experimental localised therapies, as well as the re-evaluation of established therapies, such as radiotherapy, as immune adjuvants with a focus on ICPI combinations.
Collapse
Affiliation(s)
- Elizabeth Appleton
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jehanne Hassan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charleen Chan Wah Hak
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Nanna Sivamanoharan
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Anna Wilkins
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research at St. James, University of Leeds, Leeds, United Kingdom
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kevin J. Harrington
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Alan Melcher
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| | - Erik Wennerberg
- Department of Radiotherapy and Imaging, Institute of Cancer Research (ICR), London, United Kingdom
| |
Collapse
|
14
|
Abstract
The anti-tumor activity of interferons (IFNs) was first appreciated about half a century ago, and IFN-α2 was the first cancer immunotherapy approved by the US Food and Drug Administration. Radiation therapy (RT), one of the pillars of cancer treatment, directly causes DNA damage, which can lead to senescence and cell death in tumor cells. In recent years, however, RT-induced immunomodulatory effects have been recognized to play an indispensable role in achieving the optimum therapeutic effect of RT. Increasing evidence indicates that RT enhances adaptive anti-tumor immunity by augmenting the innate immune sensing of tumors in a type I IFN-dependent matter. This review briefly introduces the role of type I interferon in cancer and the available evidence on the overall effects of RT on tumor immunity mediated via type I IFN. Recent advances in deciphering the molecular mechanisms underlying the induction of type I IFNs triggered by RT, their clinical implications, and therapeutic opportunities will be highlighted.
Collapse
|
15
|
In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy. Cells 2021; 10:cells10061436. [PMID: 34201238 PMCID: PMC8230049 DOI: 10.3390/cells10061436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5–15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.
Collapse
|
16
|
Kong Y, Ma Y, Zhao X, Pan J, Xu Z, Zhang L. Optimizing the Treatment Schedule of Radiotherapy Combined With Anti-PD-1/PD-L1 Immunotherapy in Metastatic Cancers. Front Oncol 2021; 11:638873. [PMID: 33859942 PMCID: PMC8042160 DOI: 10.3389/fonc.2021.638873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein-1 (PD-1), and programmed cell death ligand-1 (PD-L1) have been approved for a variety of malignant tumors and are widely used to treat patients with metastatic disease. However, the efficacy of PD-1 inhibitors is limited due to tumor heterogeneity, high tumor burden, and "cold" tumor microenvironment. Radiotherapy can improve the anti-tumor effects of PD-1/PD-L1 inhibitors in various ways. As a new radiotherapy method, stereotactic body radiotherapy (SBRT) or hypofractionated radiotherapy (HFRT) provides higher doses per fraction to the target lesions, thus achieving immune activation effects and overcoming tumor resistance to anti-PD-1/PD-L1 treatment, which significantly improves the local and distant control of tumors. However, for different metastatic situations, radiotherapy plays different roles in the combination therapy. In oligometastatic status, radiotherapy can be used as a local radical treatment aiming to eliminate cancers in cooperation with systemic PD-1 inhibitors. In other circumstances, like bulky metastasis or multiple metastatic tumors, radiotherapy can be used as adjuvant to systemic immunotherapy. This review focuses on the underlying mechanisms and optimization strategies for the combination of radiotherapy and anti-PD-1/PD-L1 therapy in metastatic disease.
Collapse
Affiliation(s)
- Yuehong Kong
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, Suzhou, China
| | - Yifu Ma
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, Suzhou, China
| | - Xiangrong Zhao
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi Xu
- Department of Medical Affairs, ICON Plc, Beijing, China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institution of Radiotherapy and Oncology, Soochow University, Suzhou, China.,Suzhou Key Laboratory for Combined Radiotherapy and Immunotherapy of Cancer, Suzhou, China
| |
Collapse
|
17
|
Lin RA, Lin JK, Lin S. Mechanisms of immunogenic cell death and immune checkpoint blockade therapy. Kaohsiung J Med Sci 2021; 37:448-458. [DOI: 10.1002/kjm2.12375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Richard A. Lin
- Department of Bioengineering Rice University Houston Texas USA
| | - Jessica K. Lin
- Department of Systems Biology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Shiaw‐Yih Lin
- Department of Systems Biology The University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
18
|
Heeran AB, Dunne MR, Morrissey ME, Buckley CE, Clarke N, Cannon A, Donlon NE, Nugent TS, Durand M, Dunne C, Larkin JO, Mehigan B, McCormick P, Lynam-Lennon N, O’Sullivan J. The Protein Secretome Is Altered in Rectal Cancer Tissue Compared to Normal Rectal Tissue, and Alterations in the Secretome Induce Enhanced Innate Immune Responses. Cancers (Basel) 2021; 13:cancers13030571. [PMID: 33540635 PMCID: PMC7867296 DOI: 10.3390/cancers13030571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Rectal cancer occurs in the lower part of the bowel, and approximately half of all rectal cancer patients receive chemoradiotherapy before surgery. In ~22% of cases the tumour is eradicated, but the reasons for different response rates between patients are largely unknown. Inflammation and the immune system are important players in the response to cancer treatment, but we do not fully understand the role they play in this clinical setting. We examined the levels of 54 inflammatory markers in normal (non-cancerous) rectal tissue and rectal cancer tissue, and we found that rectal cancer tissue was more inflammatory, and the levels of inflammatory markers correlated with obesity status. We found that irradiating rectal cancer tissue enhanced the ability of immune cells to induce an anti-tumour immune response. Abstract Locally advanced rectal cancer is treated with neoadjuvant-chemoradiotherapy; however, only ~22% of patients achieve a complete response, and resistance mechanisms are poorly understood. The role of inflammation and immune cell biology in this setting is under-investigated. In this study, we profiled the inflammatory protein secretome of normal (non-cancer) (n = 8) and malignant rectal tissue (n = 12) pre- and post-radiation in human ex vivo explant models and examined the influence of these untreated and treated secretomes on dendritic cell biology (n = 8 for cancer and normal). These resultant profiles were correlated with patient clinical characteristics. Nineteen factors were secreted at significantly higher levels from the rectal cancer secretome when compared to the normal rectal secretome; Flt-1, P1GF, IFN-γ, IL-6, IL-10, CCL20, CCL26, CCL22, CCL3, CCL4, CCL17, GM-CSF, IL-12/IL-23p40, IL-17A, IL-1α, IL-17A/F, IL-1RA, TSLP and CXCL10 (p < 0.05). Radiation was found to have differential effects on normal rectal tissue and rectal cancer tissue with increased IL-15 and CCL22 secretion following radiation from normal rectal tissue explants (p < 0.05), while no significant alterations were observed in the irradiated rectal cancer tissue. Interestingly, however, the irradiated rectal cancer secretome induced the most potent effect on dendritic cell maturation via upregulation of CD80 and PD-L1. Patient’s visceral fat area correlated with secreted factors including CCL20, suggesting that obesity status may alter the tumour microenvironment (TME). These results suggest that radiation does not have a negative effect on the ability of the rectal cancer TME to induce an immune response. Understanding these responses may unveil potential therapeutic targets to enhance radiation response and mitigate normal tissue injury. Tumour irradiation in this cohort enhances innate immune responses, which may be harnessed to improve patient treatment outcome.
Collapse
Affiliation(s)
- Aisling B. Heeran
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Margaret R. Dunne
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Maria E. Morrissey
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Croí E. Buckley
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Niamh Clarke
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Aoife Cannon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Noel E. Donlon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Timothy S. Nugent
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Michael Durand
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - Cara Dunne
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - John O. Larkin
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - Brian Mehigan
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - Paul McCormick
- GEMS, St. James’s Hospital, D08 NHY1 Dublin 8, Ireland; (M.D.); (C.D.); (J.O.L.); (B.M.); (P.M.)
| | - Niamh Lynam-Lennon
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
| | - Jacintha O’Sullivan
- Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James’s Hospital, D08 W9RT Dublin 8, Ireland; (A.B.H.); (M.R.D.); (M.E.M.); (C.E.B.); (N.C.); (A.C.); (N.E.D.); (T.S.N.); (N.L.-L.)
- Correspondence: ; Fax: +353-(0)18964122
| |
Collapse
|
19
|
Role of nano-sensitizers in radiation therapy of metastatic tumors. Cancer Treat Res Commun 2021; 26:100303. [PMID: 33454575 DOI: 10.1016/j.ctarc.2021.100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Cancer metastasis remains the major cause of global cancer deaths. Radiation therapy remains one of the golden standards for cancer treatment. Nanomedicine based strategies have been designed and developed in order to improve the clinical outcomes of cancer therapy and diagnosis at molecular levels. Over the years, several researchers have shown their interest in using radiosensitizers made of high Z elements. Metal-based nanosystems also play a dual role by enhancing the synergistic effect of cell killing via various biological immune responses. This review summarizes the role of Nano-sensitizers in boosting radiation (ionizing/non-ionizing radiations) induced biological responses in treatment of metastatic cancer models.
Collapse
|
20
|
A review of radiation induced abscopal effect: combining radiotherapy and immunotherapy to treat the untreated distant metastatic tumours. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackground:Radiotherapy is an effective and significant mode of definitive cancer treatment with well-established local tumour control success, especially in the treatment of localised tumours. Although, for metastatic disease, the role of radiotherapy has generally been limited to palliation of symptoms. In the treatment of metastatic diseases settings, the radiation therapy technique has always been confronted with the challenge of the simultaneous treatment of all of the various distant metastatic tumour sites, however, some recent evidence suggests that radiotherapy can potentially induce anticancer immune responses whose effectors potentially migrate to distant metastatic tumours to provoke their regression in cancer patients. Thus, unirradiated distant metastatic tumour sites can exhibit a delayed therapeutic response termed the abscopal effect.Materials and methods:This paper reports on a review of the abscopal effect, including its biological mechanism, the effect of radiation dose and fractionation regime and the timing of immunotherapy administration on radiotherapy-induced abscopal effect, the enhancement of radiotherapy-induced abscopal effects with immunotherapy, the effect of the location of the irradiated tumour and the radiotherapy of multiple tumour sites on the likelihood and effectiveness of inducing abscopal responses in the preclinical and clinical settings and also reports on some evidence of clinical observations in patients.Conclusions:Although abscopal effects of radiotherapy are still relatively rare in patients, it has gained a lot of interest due to recent development and use of immunotherapy strategies incorporating combinations of targeted immunomodulators and immune checkpoint blockade with radiation therapy. The enhancement of cancer immunotherapy could potentially enable the translation of the concept of abscopal effect into the clinics as a new strategy to induce therapeutically effective anti-tumour immune responses in cancer patients. The combination of radiotherapy and immunotherapy has the potential to expand the role of radiotherapy from a purely local tumour control treatment to play a significant role in advanced and metastatic tumour control and this could likely lead to a paradigm shift in the treatment of patients with metastatic cancer.
Collapse
|
21
|
Ernst A, Hennel R, Krombach J, Kapfhammer H, Brix N, Zuchtriegel G, Uhl B, Reichel CA, Frey B, Gaipl US, Winssinger N, Shirasawa S, Sasazuki T, Sperandio M, Belka C, Lauber K. Priming of Anti-tumor Immune Mechanisms by Radiotherapy Is Augmented by Inhibition of Heat Shock Protein 90. Front Oncol 2020; 10:1668. [PMID: 32984042 PMCID: PMC7481363 DOI: 10.3389/fonc.2020.01668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy is an essential part of multi-modal cancer therapy. Nevertheless, for certain cancer entities such as colorectal cancer (CRC) the indications of radiotherapy are limited due to anatomical peculiarities and high radiosensitivity of the surrounding normal tissue. The development of molecularly targeted, combined modality approaches may help to overcome these limitations. Preferably, such strategies should not only enhance radiation-induced tumor cell killing and the abrogation of tumor cell clonogenicity, but should also support the stimulation of anti-tumor immune mechanisms – a phenomenon which moved into the center of interest of preclinical and clinical research in radiation oncology within the last decade. The present study focuses on inhibition of heat shock protein 90 (HSP90) whose combination with radiotherapy has previously been reported to exhibit convincing therapeutic synergism in different preclinical cancer models. By employing in vitro and in vivo analyses, we examined if this therapeutic synergism also applies to the priming of anti-tumor immune mechanisms in model systems of CRC. Our results indicate that the combination of HSP90 inhibitor treatment and ionizing irradiation induced apoptosis in colorectal cancer cells with accelerated transit into secondary necrosis in a hyperactive Kras-dependent manner. During secondary necrosis, dying cancer cells released different classes of damage-associated molecular patterns (DAMPs) that stimulated migration and recruitment of monocytic cells in vitro and in vivo. Additionally, these dying cancer cell-derived DAMPs enforced the differentiation of a monocyte-derived antigen presenting cell (APC) phenotype which potently triggered the priming of allogeneic T cell responses in vitro. In summary, HSP90 inhibition – apart from its radiosensitizing potential – obviously enables and supports the initial steps of anti-tumor immune priming upon radiotherapy and thus represents a promising partner for combined modality approaches. The therapeutic performance of such strategies requires further in-depth analyses, especially for but not only limited to CRC.
Collapse
Affiliation(s)
- Anne Ernst
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Roman Hennel
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julia Krombach
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Heidi Kapfhammer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Bernd Uhl
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany.,Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine Fukuoka University, Fukuoka, Japan
| | | | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany
| |
Collapse
|
22
|
Zhou Z, Zhao J, Hu K, Hou X, Sun X, Pan X, Wang X, Li N, Yang Z, Zhang F, Zhou Q, Zhan L. Single High-Dose Radiation Enhances Dendritic Cell Homing and T Cell Priming by Promoting Reactive Oxygen Species-Induced Cytoskeletal Reorganization. Int J Radiat Oncol Biol Phys 2020; 109:95-108. [PMID: 32763455 DOI: 10.1016/j.ijrobp.2020.07.2321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Radiation therapy (RT) affects tumor-infiltrating immune cells, cooperatively driving tumor growth inhibition. However, there is still no absolute consensus on whether the homing ability of dendritic cells (DCs) is affected by direct x-ray irradiation. Most importantly, the underlying mechanisms are poorly understood. METHODS AND MATERIALS Using noninvasive imaging, we systematically examined the dose effect of RT on the in vivo homing and distribution of bone marrow-derived DCs and elucidated the detailed mechanisms underlying these events. After exposure to 2, 5, 10, 15, and 20 Gy, DCs were analyzed for maturation, in vivo homing ability, and T cell priming. RESULTS At ranges of 2 to 20 Gy, irradiation did not cause direct cellular apoptosis or necrosis, but it induced mitochondrial damage in DCs independent of dose. In addition, upregulation of CD40, CD80, CD86, CXCR4, and CCR7 were detected on irradiated DCs. Secretion of IL-1β and IL-12p70 remained unchanged, whereas decreased secretion of IL-6 and promotion of tumor necrosis factor α secretion were observed. In particular, the homing ability of both the local residual and blood circulating DCs to lymphoid tissues was significantly higher in groups that received ≥5 Gy radiation than in the group that received 2 Gy. Furthermore, improved homing ability was associated with rearrangement of the cytoskeleton, which was regulated by reactive oxygen species accumulation through the RhoA/ROCK1 signaling pathway. Finally, more robust T cell activation was observed in mice inoculated with 20 Gy-treated DCs than in those inoculated with 2 Gy-irradiated DCs, and T cell activation also correlated with reactive oxygen species production. CONCLUSIONS An RT dose ≥5 Gy has distinct advantages over 2 Gy in facilitating DC homing to lymph nodes and cross-priming T cells.
Collapse
Affiliation(s)
- Ziqi Zhou
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaorong Hou
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiansong Sun
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoli Pan
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, People's Republic of China
| | - Xiaohui Wang
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, People's Republic of China
| | - Nan Li
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiwei Yang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Qianqian Zhou
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, People's Republic of China
| | - Linsheng Zhan
- Beijing Institute of Transfusion Medicine, Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, People's Republic of China
| |
Collapse
|
23
|
Deciphering the Intricate Roles of Radiation Therapy and Complement Activation in Cancer. Int J Radiat Oncol Biol Phys 2020; 108:46-55. [PMID: 32629082 DOI: 10.1016/j.ijrobp.2020.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The complement system consists of a collection of serum proteins that act as the main frontline effector arm of the innate immune system. Activation of complement can occur through 3 individual induction pathways: the classical, mannose-binding lectin, and alternative pathways. Activation results in opsonization, recruitment of effector cells through potent immune mediators known as anaphylatoxins, and cell lysis via the formation of the membrane attack complex. Stringent regulation of complement is required to protect against inappropriate activation of the complement cascade. Complement activation within the tumor microenvironment does not increase antitumoral action; instead, it enhances tumor growth and disease progression. Radiation therapy (RT) is a staple in the treatment of malignancies and controls tumor growth through direct DNA damage and the influx of immune cells, reshaping the makeup of the tumor microenvironment. The relationship between RT and complement activity in the tumor microenvironment is uncertain at best. The following review will focus on the complex interaction of complement activation and the immune-modulating effects of RT and the overall effect on tumor progression. The clinical implications of complement activation in cancer and the use of therapeutics and potential biomarkers will also be covered.
Collapse
|
24
|
Tubin S, Yan W, Mourad WF, Fossati P, Khan MK. The future of radiation-induced abscopal response: beyond conventional radiotherapy approaches. Future Oncol 2020; 16:1137-1151. [PMID: 32338046 DOI: 10.2217/fon-2020-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in the immunological pharmaceuticals, such as checkpoint inhibitors and agonists, have positive implications for the future of the radiotherapy abscopal response. A once rare phenomenon, whereby distant nonirradiated tumor sites regressed after radiotherapy alone, may become more common when combined with the immune modulating agents. Radiotherapy can increase neoantigen expression, increased tumor PD-L1 expression, increase MHC class I expression, reverse exhausted CD8 T cells and increase tumor-infiltrating tumors within the tumor microenvironment. These changes in the tumor and the tumor microenvironment after radiotherapy could potentiate responses to anti-CTL-4, anti-PD-L1/PD-1 and other immunotherapy agents. Thus, advances in checkpoint inhibitors have increased interest in re-evaluation of the role of conventional radiotherapy approaches on the immune system. We reviewed newer nonconventional approaches such as SBRT-PATHY, GRID, FLASH, carbon ion and proton therapy and their role in eliciting immune responses. We believe that combining these novel radiation methods may enhance the outcome with the newly US FDA approved immune modulating agents.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Center for Ion Therapy and Research, Marie Curie Strasse 5, A-2700 Wiener Neustadt, Austria
| | - Weisi Yan
- Department of Radiation Oncology, Thomas Jefferson University, 11th St, Philadelphia, PA 19107, USA
| | - Waleed F Mourad
- Department of Radiation Medicine, Markey Cancer Center, University of Kentucky, Medical Center, MN 150 - Lexington, KY 40536-0298, USA
| | - Piero Fossati
- MedAustron Center for Ion Therapy and Research, Marie Curie Strasse 5, A-2700 Wiener Neustadt, Austria
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365-C Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, Draganov D, Edelson RL, Formenti SC, Fucikova J, Gabriele L, Gaipl US, Gameiro SR, Garg AD, Golden E, Han J, Harrington KJ, Hemminki A, Hodge JW, Hossain DMS, Illidge T, Karin M, Kaufman HL, Kepp O, Kroemer G, Lasarte JJ, Loi S, Lotze MT, Manic G, Merghoub T, Melcher AA, Mossman KL, Prosper F, Rekdal Ø, Rescigno M, Riganti C, Sistigu A, Smyth MJ, Spisek R, Stagg J, Strauss BE, Tang D, Tatsuno K, van Gool SW, Vandenabeele P, Yamazaki T, Zamarin D, Zitvogel L, Cesano A, Marincola FM. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer 2020; 8:e000337. [PMID: 32209603 PMCID: PMC7064135 DOI: 10.1136/jitc-2019-000337] [Citation(s) in RCA: 645] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York City, New York, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Université de Paris, Paris, France
| | - Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Sarah Warren
- NanoString Technologies, Seattle, Washington, USA
| | - Sandy Adjemian
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Cancer Biology, KU Leuevn, Leuven, Belgium
| | - Aitziber Buqué Martinez
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - George Coukos
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM "Molecular Radiotherapy and therapeutic innovation", U1030 Molecular Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
- SIRIC SOCRATES, DHU Torino, Faculté de Medecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | | | - Richard L Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
| | - Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Udo S Gaipl
- Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, National Cancer Institute/Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
| | - Jian Han
- iRepertoire, Inc, Huntsville, Alabama, USA
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital/Institute of Cancer Research National Institute for Health Biomedical Research Centre, London, UK
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, National Cancer Institute/Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Tim Illidge
- University of Manchester, NIHR Manchester Biomedical Research Centre, Christie Hospital, Manchester, UK
| | - Michael Karin
- Department of Pharmacology and Pathology, University of California at San Diego (UCSD) School of Medicine, La Jolla, California, USA
| | - Howard L Kaufman
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Replimune, Inc, Woburn, Massachusetts, USA
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Guido Kroemer
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1138, Paris, France
- Sorbonne Université, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Juan Jose Lasarte
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Sherene Loi
- Division of Research and Clinical Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, MSKCC, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
- Parker Institute for Cancer Immunotherapy, MSKCC, New York City, New York, USA
| | | | | | - Felipe Prosper
- Hematology and Cell Therapy, Clinica Universidad de Navarra, Pamplona, Spain
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Maria Rescigno
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
- Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy
| | - Antonella Sistigu
- UOSD Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec City, Canada
- Institut du Cancer de Montréal, Montréal, Quebec City, Canada
- Faculté de Pharmacie de l'Université de Montréal, Montréal, Quebec City, Canada
| | - Bryan E Strauss
- Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kazuki Tatsuno
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Methusalem program, Ghent University, Ghent, Belgium
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Dmitriy Zamarin
- Department of Medicine, Weill Cornell Medical College, New York City, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe labellisée par la Ligue contre le cancer, Gustave Roussy, Villejuif, France
- Faculty of Medicine, University of Paris Sud/Paris Saclay, Le Kremlin-Bicêtre, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | | | | |
Collapse
|
26
|
Kranjc Brezar S, Prevc A, Niksic Zakelj M, Brozic A, Cemazar M, Strojan P, Sersa G. Synergistic effect of cisplatin chemotherapy combined with fractionated radiotherapy regimen in HPV-positive and HPV-negative experimental pharyngeal squamous cell carcinoma. Sci Rep 2020; 10:1563. [PMID: 32005919 PMCID: PMC6994509 DOI: 10.1038/s41598-020-58502-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
HPV infection renders oropharyngeal squamous cell carcinomas more radiosensitive, which results in a favorable prognosis for HPV-positive patients treated with radiation alone or with concurrent platinum-based chemotherapy. The degree of radiosensitivity in fractionated regimens has not yet been fully explored; therefore, in this study, the radiosensitivity of HPV-negative tumors (FaDu) was compared to that of HPV-positive tumors (2A3) subjected to concurrent cisplatin chemotherapy and fractionated versus isoeffective single-dose tumor irradiation in immunodeficient mice. HPV-positive tumors were approximately 5 times more radiosensitive than HPV-negative tumors, irrespective of the irradiation regimen. In both tumor models, concurrent cisplatin chemotherapy and the fractionated regimen induced significant tumor radiosensitization, with a 3- to 4-fold increase in the tumor growth delay compared to that of single-dose irradiation. Furthermore, the degree of radiosensitization induced by cisplatin chemotherapy concurrent with the fractionated irradiation regimen was much higher in HPV-positive tumors, where a synergistic antitumor effect was observed. Specifically, after combined therapy, a 26% higher survival rate was observed in mice with HPV-positive tumors than in mice with HPV-negative tumors. These data suggest that HPV-positive tumors are more radiosensitive to fractionated regimen than to single-dose irradiation with concurrent cisplatin chemotherapy acting synergistically to irradiation.
Collapse
Affiliation(s)
- Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Ajda Prevc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Niksic Zakelj
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andreja Brozic
- Department of Cytology and Pathology, Institute of Oncology Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, SI-6310, Izola, Slovenia
| | - Primoz Strojan
- Department of Radiation Oncology, Institute of Oncology Ljubljana, SI-1000, Ljubljana, Slovenia.
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000, Ljubljana, Slovenia. .,Faculty of Health Sciences, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
27
|
Immune biological rationales for the design of combined radio- and immunotherapies. Cancer Immunol Immunother 2020; 69:293-306. [PMID: 31953578 PMCID: PMC7000501 DOI: 10.1007/s00262-019-02460-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapies are promising treatments for many forms of cancer. Nevertheless, the response rates to, e.g., immune checkpoint inhibitors (ICI), are still in low double-digit percentage. This calls for further therapy optimization that should take into account combination of immunotherapies with classical tumor therapies such as radiotherapy. By designing multimodal approaches, immune modulatory properties of certain radiation schemes, additional immune modulation by immunotherapy with ICI and hyperthermia, as well as patient stratification based on genetic and immune constitutions have to be considered. In this context, both the tumor and its microenvironment including cells of the innate and adaptive immune system have to be viewed in synopsis. Knowledge of immune activation and immune suppression by radiation is the basis for well-elaborated addition of certain immunotherapies. In this review, the focus is set on additional immune stimulation by hyperthermia and restoration of an immune response by ICI. The impact of radiation dose and fractionation on immune modulation in multimodal settings has to be considered, as the dynamics of the immune response and the timing between radiotherapy and immunotherapy. Another big challenge is the patient stratification that should be based on matrices of biomarkers, taking into account genetics, proteomics, radiomics, and “immunomics”. One key aim is to turn immunological “cold” tumors into “hot” tumors, and to eliminate barriers of immune-suppressed or immune-excluded tumors. Comprehensive knowledge of immune alterations induced by radiation and immunotherapy when being applied together should be utilized for patient-adapted treatment planning and testing of innovative tumor therapies within clinical trials.
Collapse
|
28
|
Heeran AB, Berrigan HP, O'Sullivan J. The Radiation-Induced Bystander Effect (RIBE) and its Connections with the Hallmarks of Cancer. Radiat Res 2019; 192:668-679. [PMID: 31618121 DOI: 10.1667/rr15489.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Radiation therapy is one of the pillars of cancer treatment, with approximately one half of all cancer patients receiving it as part of their standard of care. Emerging evidence indicates that the biological effects of radiation are not limited to targeted cells. The radiation-induced bystander effect (RIBE) refers to the plethora of biological phenomena occurring in nonirradiated cells as a result of signal transmission from an irradiated cell. Experimental evidence has linked RIBE to numerous hallmarks of cancer including resisting cell death, tumor immune evasion, genomic instability, deregulated cellular energetics, tumor-promoting inflammation and sustained proliferative signaling as well as enhanced radioresistance, thus highlighting the potential role of RIBE events in patient treatment response. The mechanisms underlying RIBE events in vivo are poorly understood. However, elucidating the molecular mechanisms involved in their manifestation may reveal novel therapeutic targets to improve radiation response in cancer patients.
Collapse
Affiliation(s)
- Aisling B Heeran
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Helen P Berrigan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
29
|
Lippitz BE, Harris RA. A translational concept of immuno-radiobiology. Radiother Oncol 2019; 140:116-124. [PMID: 31271996 DOI: 10.1016/j.radonc.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traditional concepts of radiobiology model the direct radiation-induced cellular cytotoxicity but are not focused on late and sustained effects of radiation. Recent experimental data show the close involvement of immunological processes. METHODS Based on systematic PubMed searches, experimental data on immunological radiation effects are summarized and analyzed in a non-quantitative descriptive manner to provide a translational perspective on the immuno-modulatory impact of radiation in cancer. RESULTS Novel experimental findings document that sustained radiation effects are ultimately mediated through systemic factors such as cytotoxic CD8+ T cells and involve a local immuno-stimulation. Increased tumor infiltration of CD8+ T cell is a prerequisite for long-term radiation effects. CD8+ T cell depletion induces radio-resistance in experimental tumors. The proposed sequence of events involves radiation-damaged cells that release HMGB1, which activates macrophages via TLR4 to a local immuno-stimulation via TNF, which contributes to maturation of DCs. The mature DCs migrate to lymph nodes where they trigger effective CD8+ T cell responses. Radiation effects are boosted, when the physiological self-terminating negative feedback of immune reactions is antagonised via blocking of TGF-β or via checkpoint inhibition with involvement of CD8+ T cells as common denominator. CONCLUSION The concept of immuno-radiobiology emphasizes the necessity for a functional integrity of APCs and T cells for the long-term effects of radiotherapy. Local irradiation at higher doses induces tumor infiltration of CD8+ T cells, which can be boosted by immunotherapy. More systematic research is warranted to better understand the immunological effects of escalating radiation doses.
Collapse
Affiliation(s)
- Bodo E Lippitz
- Dept. of Clinical Neuroscience, Karolinska Institute, Centre for Molecular Medicine L8:04, Karolinska University Hospital, Stockholm, Sweden; Interdisciplinary Centre for Radiosurgery (ICERA), Hamburg, Germany.
| | - Robert A Harris
- Dept. of Clinical Neuroscience, Karolinska Institute, Centre for Molecular Medicine L8:04, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The advent of immunotherapy significantly improved clinical outcomes in cancer patients, although immune checkpoint blockade (ICB) still lack of efficacy in a consistent proportion of treated patients. The purpose of this article is to review the most innovative and clinically promising ICB-based combinations designed to improve the efficacy of cancer immunotherapy. RECENT FINDINGS First-line combinatorial treatment with ipilimumab and nivolumab has recently shown to be superior to the standard of care in a subset of metastatic nonsmall cell lung cancer (NSCLC) and renal cell carcinoma (RCC). The combination of programmed cell death protein 1 (PD-1)/PD-L1 blockade with antiangiogenics has demonstrated a consistent clinical efficacy, especially for the combination of bevacizumab and atezolizumab as first-line therapy in metastatic RCC. The sequential combination of definitive chemoradiotherapy followed by durvalumab maintenance in advanced, unresectable NSCLC became the new standard of care, while the addition of pembrolizumab to first-line chemotherapy in metastatic NSCLC significantly improves overall survival. Despite promising results for the combination of ICBs with v-raf murine sarcoma viral oncogene homolog B/MAPK/ERK kinase inhibitors or epidermal growth factor receptor inhibitors, especially in melanoma and NSCLC, safety concerns slowed down the development of such strategies. SUMMARY Immunotherapy-based combinations are becoming the standard of care for cancer treatment, in particularly for advanced melanoma, NSCLC and RCC.
Collapse
|
31
|
Administration of Dendritic Cells and Anti-PD-1 Antibody Converts X-ray Irradiated Tumors Into Effective In situ Vaccines. Int J Radiat Oncol Biol Phys 2019; 103:958-969. [DOI: 10.1016/j.ijrobp.2018.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
|
32
|
Dahl O, Dale JE, Brydøy M. Rationale for combination of radiation therapy and immune checkpoint blockers to improve cancer treatment. Acta Oncol 2019; 58:9-20. [PMID: 30632870 DOI: 10.1080/0284186x.2018.1554259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radiation therapy for cancer is considered to be immunosuppressive. However, the cellular response after radiation therapy may stimulate or suppress an immune response. The effect may vary with the tumor type and occasionally tumor regressions have been observed outside the irradiated volume, both in animal studies and in the clinic. A renewed interest in the role of immunity for the observed effect of radiation came with the current recognized role of immune checkpoint blockers (ICBs) for control of selected cancer types. We therefore here review preclinical studies and clinical reports on the interaction of ICBs and radiation as a basis for further clinical trials. Some tumor types where the combination of these modalities seems especially promising are also proposed.
Collapse
Affiliation(s)
- Olav Dahl
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Jon Espen Dale
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Marianne Brydøy
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
33
|
Eckert F, Schilbach K, Klumpp L, Bardoscia L, Sezgin EC, Schwab M, Zips D, Huber SM. Potential Role of CXCR4 Targeting in the Context of Radiotherapy and Immunotherapy of Cancer. Front Immunol 2018; 9:3018. [PMID: 30622535 PMCID: PMC6308162 DOI: 10.3389/fimmu.2018.03018] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer immunotherapy has been established as standard of care in different tumor entities. After the first reports on synergistic effects with radiotherapy and the induction of abscopal effects-tumor shrinkage outside the irradiated volume attributed to immunological effects of radiotherapy-several treatment combinations have been evaluated. Different immunotherapy strategies (e.g., immune checkpoint inhibition, vaccination, cytokine based therapies) have been combined with local tumor irradiation in preclinical models. Clinical trials are ongoing in different cancer entities with a broad range of immunotherapeutics and radiation schedules. SDF-1 (CXCL12)/CXCR4 signaling has been described to play a major role in tumor biology, especially in hypoxia adaptation, metastasis and migration. Local tumor irradiation is a known inducer of SDF-1 expression and release. CXCR4 also plays a major role in immunological processes. CXCR4 antagonists have been approved for the use of hematopoietic stem cell mobilization from the bone marrow. In addition, several groups reported an influence of the SDF-1/CXCR4 axis on intratumoral immune cell subsets and anti-tumor immune response. The aim of this review is to merge the knowledge on the role of SDF-1/CXCR4 in tumor biology, radiotherapy and immunotherapy of cancer and in combinatorial approaches.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics/Pediatric Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Lilia Bardoscia
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Department of Radiation Oncology, University of Brescia, Brescia, Italy
| | - Efe Cumhur Sezgin
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Hospital and University Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
34
|
Buchwald ZS, Wynne J, Nasti TH, Zhu S, Mourad WF, Yan W, Gupta S, Khleif SN, Khan MK. Radiation, Immune Checkpoint Blockade and the Abscopal Effect: A Critical Review on Timing, Dose and Fractionation. Front Oncol 2018; 8:612. [PMID: 30619752 PMCID: PMC6306034 DOI: 10.3389/fonc.2018.00612] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
The combination of radiation and immunotherapy is currently an exciting avenue of pre-clinical and clinical investigation. The synergy between these two treatment modalities has the potential to expand the role of radiation from a purely local therapy, to a role in advanced and metastatic disease. Tumor regression outside of the irradiated field, known as the abscopal effect, is a recognized phenomenon mediated by lymphocytes and enhanced by checkpoint blockade. In this review, we summarize the known mechanistic data behind the immunostimulatory effects of radiation and how this is enhanced by immunotherapy. We also provide pre-clinical data supporting specific radiation timing and optimal dose/fractionation for induction of a robust anti-tumor immune response with or without checkpoint blockade. Importantly, these data are placed in a larger context of understanding T-cell exhaustion and the impact of immunotherapy on this phenotype. We also include relevant pre-clinical studies done in non-tumor systems. We discuss the published clinical trials and briefly summarize salient case reports evaluating the abscopal effect. Much of the data discussed here remains at the preliminary stage, and a number of interesting avenues of research remain under investigation.
Collapse
Affiliation(s)
- Zachary S Buchwald
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Jacob Wynne
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Tahseen H Nasti
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Simeng Zhu
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Waleed F Mourad
- Erlanger UT Radiation Oncology, Chattanooga, TN, United States
| | - Weisi Yan
- Mitchell Cancer Institute, University of Southern Alabama, Mobile, AL, United States
| | - Seema Gupta
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Samir N Khleif
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| |
Collapse
|
35
|
Choi SH, Seong J. Stereotactic Body Radiotherapy: Does It Have a Role in Management of Hepatocellular Carcinoma? Yonsei Med J 2018; 59:912-922. [PMID: 30187697 PMCID: PMC6127430 DOI: 10.3349/ymj.2018.59.8.912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is a form of radiotherapy that delivers high doses of irradiation with high precision in a small number of fractions. However, it has not frequently been performed for the liver due to the risk of radiation-induced liver toxicity. Furthermore, liver SBRT is cumbersome because it requires accurate patient repositioning, target localization, control of breathing-related motion, and confers a toxicity risk to the small bowel. Recently, with the advancement of modern technologies including intensity-modulated RT and image-guided RT, SBRT has been shown to significantly improve local control and survival outcomes for hepatocellular carcinoma (HCC), specifically those unfit for other local therapies. While it can be used as a stand-alone treatment for those patients, it can also be applied either as an alternative or as an adjunct to other HCC therapies (e.g., transarterial chemoembolization, and radiofrequency ablation). SBRT might be an effective and safe bridging therapy for patients awaiting liver transplantation. Furthermore, in recent studies, SBRT has been shown to have a potential role as an immunostimulator, supporting the novel combination strategy of immunoradiotherapy for HCC. In this review, the role of SBRT with some technical issues is discussed. In addition, future implications of SBRT as an immunostimulator are considered.
Collapse
Affiliation(s)
- Seo Hee Choi
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
36
|
Liang X, Zheng S, Cui J, Yu D, Yang G, Zhou L, Wang B, Cai L, Li W. Alterations of MicroRNA Expression in the Liver, Heart, and Testis of Mice Upon Exposure to Repeated Low-Dose Radiation. Dose Response 2018; 16:1559325818799561. [PMID: 30263020 PMCID: PMC6153535 DOI: 10.1177/1559325818799561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRs), which regulate target gene expression at the
post-transcriptional level, play a crucial role in inducing biological effects
upon high-dose ionizing radiation. Yet, the miR expression profiles in response
to repeated low-dose radiation (LDR) in vivo have not been elucidated. This
study investigated the response profiles of 11 miRs with functions involved in
metabolism, DNA damage and repair, inflammation, and fibrosis in mouse liver,
heart, and testis upon repeated LDR exposure for 4 months. The expression
profiles were evaluated using stem-loop quantitative reverse transcription
polymerase chain reaction immediately and at 2 months after LDR exposure. The
expression profiles varied significantly at both time points. At the organ
level, the heart was the most affected, followed by the liver and testis, in
which significant miR upregulation related to DNA damage response was found.
Metabolism-related miRs decreased in the liver and increased in the testis. The
current results showed immediate and long-lasting alterations in the miR
expression profiles in response to repeated LDR in different organs.
Collapse
Affiliation(s)
- Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China.,Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, KY, USA
| | - Shirong Zheng
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, KY, USA
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Brain Wang
- Department of Radiation Oncology, The University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics of the University of Louisville, Louisville, KY, USA.,Department of Radiation Oncology, The University of Louisville, Louisville, KY, USA
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
37
|
Combining radiation therapy and cancer immune therapies: From preclinical findings to clinical applications. Cancer Radiother 2018; 22:567-580. [PMID: 30197026 DOI: 10.1016/j.canrad.2018.07.136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
Besides its direct cytotoxic effect on the tumor cells, radiation therapy is also able to elicit an immune-mediated systemic anti-tumor response, resulting in tumor regression in irradiated sites but also within distant out of field secondary lesions and providing a long-term anti-tumor response. It is now clear that associating ionizing radiation with immune therapies can enhance radio-induced anti-tumor immune responses. Over the last decade, such a combination aroused considerable interest among the scientific community, with many preclinical models and clinical trials, using many types of immune therapies and radiation regimens. In this article, we summarize the main mechanisms underlying radio-induced anti-tumor responses. We will then present an extended overview of the recent preclinical and clinical research built on this background of combined radiation and immune therapy, shedding light on what we know so far about such a promising strategy.
Collapse
|
38
|
Maund I, Bowzyk Al-Naeeb A, Welsh SJ, Eisen T, Fife K. Intensity Modulated Radiotherapy is a Well-Tolerated and Effective Treatment for the Long-Term Control of Intra-Abdominal and Retroperitoneal Oligometastatic Renal Cell Cancer. KIDNEY CANCER 2018. [DOI: 10.3233/kca-170025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Isabella Maund
- Cambridge University Hospitals NHS Trust, Addenbrooke’s Hospital, Cambridge, UK
| | | | - Sarah J. Welsh
- Cambridge University Hospitals NHS Trust, Addenbrooke’s Hospital, Cambridge, UK
| | - Tim Eisen
- Cambridge University Hospitals NHS Trust, Addenbrooke’s Hospital, Cambridge, UK
| | - Kate Fife
- Cambridge University Hospitals NHS Trust, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
39
|
Morisada M, Chamberlin M, Allen C. Exploring the rationale for combining ionizing radiation and immune checkpoint blockade in head and neck cancer. Head Neck 2018; 40:1321-1334. [PMID: 29461655 PMCID: PMC5980679 DOI: 10.1002/hed.25101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/18/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The ability of radiation to enhance antitumor immunity under specific experimental conditions is well established. Here, we explore preclinical data and the rationale for combining different radiation doses and fractions with immune checkpoint blockade immunotherapy. METHODS We conducted a review of the literature. RESULTS The ability of high-dose or hypofractionated radiation to enhance antitumor immunity resulting in additive or synergistic tumor control when combined with checkpoint blockade is well studied. Whether low-dose daily fractionated radiation does the same is less well studied and available data suggests it may be immunosuppressive. CONCLUSION Although daily fractionated radiation is well established as the standard of care for the treatment of patients with head and neck cancer, how this radiation schema alters antitumor immunity needs further study. If the radiation doses and fractions alter antitumor immunity differently can have profound implications in the rational design of clinical trials investigating whether radiation can enhance response rates to immune checkpoint blockade.
Collapse
Affiliation(s)
- Megan Morisada
- Translation Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Michael Chamberlin
- Department of Radiation Oncology, Walter Reed National Military Medical Center, Bethesda, MD
| | - Clint Allen
- Translation Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
40
|
Frey B, Rückert M, Deloch L, Rühle PF, Derer A, Fietkau R, Gaipl US. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev 2018; 280:231-248. [PMID: 29027224 DOI: 10.1111/imr.12572] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ionizing radiation is often regarded as an element of danger. But, danger responses on the cellular and molecular level are often beneficial with regard to the induction of anti-tumor immunity and for amelioration of inflammation. We outline how in dependence of radiation dose and fraction, radiation itself-and especially in combination with immune modulators-impacts on the innate and adaptive immune system. Focus is set on radiation-induced changes of the tumor cell phenotype and the cellular microenvironment including immunogenic cancer cell death. Mechanisms how anti-tumor immune responses are triggered by radiotherapy in combination with hyperthermia, inhibition of apoptosis, the adjuvant AnnexinA5, or vaccination with high hydrostatic pressure-killed autologous tumor cells are discussed. Building on this, feasible multimodal radio-immunotherapy concepts are reviewed including overcoming immune suppression by immune checkpoint inhibitors and by targeting TGF-β. Since radiation-induced tissue damage, inflammation, and anti-tumor immune responses are interconnected, the impact of lower doses of radiation on amelioration of inflammation is outlined. Closely meshed immune monitoring concepts based on the liquid biopsy blood are suggested for prognosis and prediction of cancer and non-cancer inflammatory diseases. Finally, challenges and visions for the design of cancer radio-immunotherapies and for treatment of benign inflammatory diseases are given.
Collapse
Affiliation(s)
- Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul F Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
41
|
Chishti AA, Baumstark-Khan C, Koch K, Kolanus W, Feles S, Konda B, Azhar A, Spitta LF, Henschenmacher B, Diegeler S, Schmitz C, Hellweg CE. Linear Energy Transfer Modulates Radiation-Induced NF-kappa B Activation and Expression of its Downstream Target Genes. Radiat Res 2018; 189:354-370. [PMID: 29369006 DOI: 10.1667/rr14905.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Nuclear factor kappaB (NF-κB) is a central transcription factor in the immune system and modulates cell survival in response to radiotherapy. Activation of NF-κB was shown to be an early step in the cellular response to ultraviolet A (UVA) and ionizing radiation exposure in human cells. NF-κB activation by the genotoxic stress-dependent sub-pathway after exposure to different radiation qualities had been evaluated to a very limited extent. In addition, the resulting gene expression profile, which shapes the cellular and tissue response, is unknown. Therefore, in this study the activation of NF-κB after exposure to low- and high-linear energy transfer (LET) radiation and the expression of its target genes were analyzed in human embryonic kidney (HEK) cells. The activation of NF-κB via canonical and genotoxic stress-induced pathways was visualized by the cell line HEK-pNF-κB-d2EGFP/Neo L2 carrying the destabilized enhanced green fluorescent protein (d2EGFP) as reporter. The NF-κB-dependent d2EGFP expression after irradiation with X rays and heavy ions was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after irradiation with X rays (significant NF-κB activation for doses >4 Gy) and heavy ions (significant NF-κB activation at doses as low as 1 Gy), it was expected that radiation quality (LET) played an important role in the cellular radiation response. In addition, the relative biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival were compared for heavy ions having a broad LET range (∼0.3-9,674 keV/μm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real-time reverse transcriptase quantitative PCR (RT-qPCR). The maximal RBE for NF-κB activation and cell killing occurred at an LET value of 80 and 175 keV/μm, respectively. There was a dose-dependent increase in expression of NF-κB target genes NF-κB1A and CXCL8. A qPCR array of 84 NF-κB target genes revealed that TNF and a set of CXCL genes (CXCL1, CXCL2, CXCL8, CXCL10), CCL2, VCAM1, CD83, NF-κB1, NF-κB2 and NF-κBIA were strongly upregulated after exposure to X rays and neon ions (LET 92 keV/μm). After heavy-ion irradiations, it was noted that the expression of NF-κB target genes such as chemokines and CD83 was highest at an LET value that coincided with the LET resulting in maximal NF-κB activation, whereas expression of the NF-κB inhibitory gene NFKBIA was induced transiently by all radiation qualities investigated. Taken together, these findings clearly demonstrate that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ∼50-200 keV/μm. The upregulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, CXCL8/IL-8 and TNF) could be important for cell-cell communication among hit as well as nonhit cells (bystander effect).
Collapse
Affiliation(s)
- Arif Ali Chishti
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christa Baumstark-Khan
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Kristina Koch
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Waldemar Kolanus
- b Life and Medical Sciences (LIMES) Institute, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Sebastian Feles
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bikash Konda
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Abid Azhar
- c The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi-75270, Pakistan
| | - Luis F Spitta
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Bernd Henschenmacher
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Sebastian Diegeler
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Claudia Schmitz
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| | - Christine E Hellweg
- a German Aerospace Centre (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, D-51147 Köln, Germany
| |
Collapse
|
42
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
43
|
Selecting patients for hyperthermia combined with preoperative chemoradiotherapy for locally advanced rectal cancer. Int J Clin Oncol 2017; 23:287-297. [PMID: 29134362 DOI: 10.1007/s10147-017-1213-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/05/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND This study investigated the role of hyperthermia combined with preoperative concurrent chemoradiotherapy (CCRT) for locally advanced rectal cancer (LARC) according to hypoxic marker expression. METHODS One hundred and nine LARC patients with tissue blocks available for immunohistochemical assessment of carbonic anhydrase 9 (CA9) expression were reviewed. CA9 expression was considered positive when the staining percentage of tumor cells was >25% (n = 31). Pelvic radiotherapy with a total dose of 39.6-45 Gy was delivered concurrently with fluorouracil-based chemotherapy. Hyperthermia was administered to 52 patients twice a week during CCRT. Treatment response and outcomes were compared between hyperthermochemoradiotherapy (HCRT) and CCRT groups. RESULTS In patients with positive CA9 expression, the rates of downstaging (p = 0.060) and pathologic complete response (p = 0.064) tended to be higher in the HCRT group than in the CCRT group. Distant metastasis-free survival (p = 0.029) and cancer-specific survival (p = 0.020) were significantly worse in tumors with both positive CA9 expression and poor tumor response. Negative CA9 expression, presence of major tumor response, and the use of hyperthermia were significant favorable prognostic factors for cancer-specific survival after the first recurrence in multivariate analysis. CONCLUSIONS Hyperthermia might selectively enhance the preoperative treatment response in LARC with positive CA9 expression and offset the negative effect of hypoxia on prognosis. Pretreatment evaluation of hypoxia could aid in the selection of patients who might benefit from hyperthermia.
Collapse
|
44
|
Cancer Cell Death-Inducing Radiotherapy: Impact on Local Tumour Control, Tumour Cell Proliferation and Induction of Systemic Anti-tumour Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:151-72. [PMID: 27558821 DOI: 10.1007/978-3-319-39406-0_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Radiotherapy (RT) predominantly is aimed to induce DNA damage in tumour cells that results in reduction of their clonogenicity and finally in tumour cell death. Adaptation of RT with higher single doses has become necessary and led to a more detailed view on what kind of tumour cell death is induced and which immunological consequences result from it. RT is capable of rendering tumour cells immunogenic by modifying the tumour cell phenotype and the microenvironment. Danger signals are released as well as the senescence-associated secretory phenotype. This results in maturation of dendritic cells and priming of cytotoxic T cells as well as in activation of natural killer cells. However, RT on the other hand can also result in immune suppressive events including apoptosis induction and foster tumour cell proliferation. That's why RT is nowadays increasingly combined with selected immunotherapies.
Collapse
|
45
|
Diegeler S, Hellweg CE. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities. Front Immunol 2017. [PMID: 28638385 PMCID: PMC5461334 DOI: 10.3389/fimmu.2017.00664] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.
Collapse
Affiliation(s)
- Sebastian Diegeler
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | - Christine E Hellweg
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| |
Collapse
|
46
|
Nesseler J, Peiffert D, Vogin G, Nickers P. Cancer, radiothérapie et système immunitaire. Cancer Radiother 2017; 21:307-315. [DOI: 10.1016/j.canrad.2017.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/05/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022]
|
47
|
Wu Q, Allouch A, Martins I, Brenner C, Modjtahedi N, Deutsch E, Perfettini JL. Modulating Both Tumor Cell Death and Innate Immunity Is Essential for Improving Radiation Therapy Effectiveness. Front Immunol 2017; 8:613. [PMID: 28603525 PMCID: PMC5445662 DOI: 10.3389/fimmu.2017.00613] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy is one of the cornerstones of cancer treatment. In tumor cells, exposure to ionizing radiation (IR) provokes DNA damages that trigger various forms of cell death such as apoptosis, necrosis, autophagic cell death, and mitotic catastrophe. IR can also induce cellular senescence that could serve as an additional antitumor barrier in a context-dependent manner. Moreover, accumulating evidence has demonstrated that IR interacts profoundly with tumor-infiltrating immune cells, which cooperatively drive treatment outcomes. Recent preclinical and clinical successes due to the combination of radiation therapy and immune checkpoint blockade have underscored the need for a better understanding of the interplay between radiation therapy and the immune system. In this review, we will present an overview of cell death modalities induced by IR, summarize the immunogenic properties of irradiated cancer cells, and discuss the biological consequences of IR on innate immune cell functions, with a particular attention on dendritic cells, macrophages, and NK cells. Finally, we will discuss their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Qiuji Wu
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Awatef Allouch
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| | - Isabelle Martins
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| | - Catherine Brenner
- Laboratory of Signaling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Nazanine Modjtahedi
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| |
Collapse
|
48
|
Stankevicius V, Kuodyte K, Schveigert D, Bulotiene D, Paulauskas T, Daniunaite K, Suziedelis K. Gene and miRNA expression profiles of mouse Lewis lung carcinoma LLC1 cells following single or fractionated dose irradiation. Oncol Lett 2017; 13:4190-4200. [PMID: 28599420 PMCID: PMC5453008 DOI: 10.3892/ol.2017.5877] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/16/2016] [Indexed: 01/30/2023] Open
Abstract
In clinical practice ionizing radiation (IR) is primarily applied to cancer treatment in the form of fractionated dose (FD) irradiation. Despite this fact, a substantially higher amount of current knowledge in the field of radiobiology comes from in vitro studies based on the cellular response to single dose (SD) irradiation. In addition, intrinsic and acquired resistance to IR remains an issue in clinical practice, leading to radiotherapy treatment failure. Numerous previous studies suggest that an improved understanding of the molecular processes involved in the radiation-induced DNA damage response to FD irradiation could improve the effectiveness of radiotherapy. Therefore, the present study examined the differential expression of genes and microRNA (miRNA) in murine Lewis lung cancer (LLC)1 cells exposed to SD or FD irradiation. The results of the present study indicated that the gene and miRNA expression profiles of LLC1 cells exposed to irradiation were dose delivery type-dependent. Data analysis also revealed that mRNAs may be regulated by miRNAs in a radiation-dependent manner, suggesting that these mRNAs and miRNAs are the potential targets in the cellular response to SD or FD irradiation. However, LLC1 tumors after FD irradiation exhibited no significant changes in the expression of selected genes and miRNAs observed in the irradiated cells in vitro, suggesting that experimental in vitro conditions, particularly the tumor microenvironment, should be considered in detail to promote the development of efficient radiotherapy approaches. Nevertheless, the present study highlights the primary signaling pathways involved in the response of murine cancer cells to irradiation. Data presented in the present study can be applied to improve the outcome and development of radiotherapy in preclinical animal model settings.
Collapse
Affiliation(s)
- Vaidotas Stankevicius
- Laboratory of Molecular Oncology, National Cancer Institute, LT-08660 Vilnius, Lithuania.,Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10224 Vilnius, Lithuania
| | - Karolina Kuodyte
- Laboratory of Molecular Oncology, National Cancer Institute, LT-08660 Vilnius, Lithuania.,Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10224 Vilnius, Lithuania
| | - Diana Schveigert
- Laboratory of Molecular Oncology, National Cancer Institute, LT-08660 Vilnius, Lithuania
| | - Danute Bulotiene
- Laboratory of Biomedical Physics, National Cancer Institute, LT-08660 Vilnius, Lithuania
| | - Tomas Paulauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10224 Vilnius, Lithuania
| | - Kristina Daniunaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10224 Vilnius, Lithuania
| | - Kestutis Suziedelis
- Laboratory of Molecular Oncology, National Cancer Institute, LT-08660 Vilnius, Lithuania.,Institute of Biosciences, Life Sciences Center, Vilnius University, LT-10224 Vilnius, Lithuania
| |
Collapse
|
49
|
Wennerberg E, Lhuillier C, Vanpouille-Box C, Pilones KA, García-Martínez E, Rudqvist NP, Formenti SC, Demaria S. Barriers to Radiation-Induced In Situ Tumor Vaccination. Front Immunol 2017; 8:229. [PMID: 28348554 PMCID: PMC5346586 DOI: 10.3389/fimmu.2017.00229] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
The immunostimulatory properties of radiation therapy (RT) have recently generated widespread interest due to preclinical and clinical evidence that tumor-localized RT can sometimes induce antitumor immune responses mediating regression of non-irradiated metastases (abscopal effect). The ability of RT to activate antitumor T cells explains the synergy of RT with immune checkpoint inhibitors, which has been well documented in mouse tumor models and is supported by observations of more frequent abscopal responses in patients refractory to immunotherapy who receive RT during immunotherapy. However, abscopal responses following RT remain relatively rare in the clinic, and antitumor immune responses are not effectively induced by RT against poorly immunogenic mouse tumors. This suggests that in order to improve the pro-immunogenic effects of RT, it is necessary to identify and overcome the barriers that pre-exist and/or are induced by RT in the tumor microenvironment. On the one hand, RT induces an immunogenic death of cancer cells associated with release of powerful danger signals that are essential to recruit and activate dendritic cells (DCs) and initiate antitumor immune responses. On the other hand, RT can promote the generation of immunosuppressive mediators that hinder DCs activation and impair the function of effector T cells. In this review, we discuss current evidence that several inhibitory pathways are induced and modulated in irradiated tumors. In particular, we will focus on factors that regulate and limit radiation-induced immunogenicity and emphasize current research on actionable targets that could increase the effectiveness of radiation-induced in situ tumor vaccination.
Collapse
Affiliation(s)
- Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medicine , New York, NY , USA
| | - Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medicine , New York, NY , USA
| | | | - Karsten A Pilones
- Department of Radiation Oncology, Weill Cornell Medicine , New York, NY , USA
| | - Elena García-Martínez
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Department of Hematology and Medical Oncology, University Hospital Morales Meseguer, Murcia, Spain
| | | | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine , New York, NY , USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine , New York, NY , USA
| |
Collapse
|
50
|
Ishihara D, Pop L, Takeshima T, Iyengar P, Hannan R. Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment. Cancer Immunol Immunother 2017; 66:281-298. [PMID: 27743027 PMCID: PMC11029249 DOI: 10.1007/s00262-016-1914-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Cancer immunotherapy exploits the immune system's ability to differentiate between tumor target cells and host cells. Except for limited success against a few tumor types, most immunotherapies have not achieved the desired clinical efficacy until recently. The field of cancer immunotherapy has flourished with a variety of new agents for clinical use, and remarkable progress has been made in the design of effective immunotherapeutic regimens. Furthermore, the therapeutic outcome of these novel agents is enhanced when combined with conventional cancer treatment modalities including radiotherapy (RT). An increasing number of studies have demonstrated the abscopal effect, an immunologic response occurring in cancer sites distant from irradiated areas. The present work reviews studies on the combination between RT and immunotherapy to induce synergistic and abscopal effects involved in cancer immunomodulation. Further insight into the complex interactions between the immune system and cancer cells in the tumor microenvironment, and their modulation by RT, may reveal the abscopal effect as a clinically relevant and reproducible event leading to improved cancer outcome.
Collapse
Affiliation(s)
- Dan Ishihara
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurentiu Pop
- Departments of Immunology and Microbiology, UT Southwestern Medical Center, Dallas, TX, 75204, USA
| | - Tsuguhide Takeshima
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Raquibul Hannan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|