1
|
Dorsch A, Förschner F, Ravandeh M, da Silva Brito WA, Saadati F, Delcea M, Wende K, Bekeschus S. Nanoplastic Size and Surface Chemistry Dictate Decoration by Human Saliva Proteins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25977-25993. [PMID: 38741563 DOI: 10.1021/acsami.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Environmental pollution with plastic polymers has become a global problem, leaving no continent and habitat unaffected. Plastic waste is broken down into smaller parts by environmental factors, which generate micro- and nanoplastic particles (MNPPs), ultimately ending up in the human food chain. Before entering the human body, MNPPs make their first contact with saliva in the human mouth. However, it is unknown what proteins attach to plastic particles and whether such protein corona formation is affected by the particle's biophysical properties. To this end, we employed polystyrene MNPPs of two different sizes and three different charges and incubated them individually with saliva donated by healthy human volunteers. Particle zeta potential and size analyses were performed using dynamic light scattering complemented by nanoliquid chromatography high-resolution mass spectrometry (nLC/HRMS) to qualitatively and quantitatively reveal the protein soft and hard corona for each particle type. Notably, protein profiles and relative quantities were dictated by plastic particle size and charge, which in turn affected their hydrodynamic size, polydispersity, and zeta potential. Strikingly, we provide evidence of the latter to be dynamic processes depending on exposure times. Smaller particles seemed to be more reactive with the surrounding proteins, and cultures of the particles with five different cell lines (HeLa, HEK293, A549, HepG2, and HaCaT) indicated protein corona effects on cellular metabolic activity and genotoxicity. In summary, our data suggest nanoplastic size and surface chemistry dictate the decoration by human saliva proteins, with important implications for MNPP uptake in humans.
Collapse
Affiliation(s)
- Anna Dorsch
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Fritz Förschner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mehdi Ravandeh
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Walison Augusto da Silva Brito
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86057-970, Brazil
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Mihaela Delcea
- Biophysical Chemistry Department, University of Greifswald, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
2
|
Li Z, Huang Y, Zhong Y, Liang B, Yang X, Wang Q, Sui H, Huang Z. Impact of food matrices on the characteristics and cellular toxicities of ingested nanoplastics in a simulated digestive tract. Food Chem Toxicol 2023; 179:113984. [PMID: 37567356 DOI: 10.1016/j.fct.2023.113984] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Microplastic and nanoplastic (MNP) pollution has become a major global food safety concern. MNPs can interact with food matrices, and their passage through the gastrointestinal tract can modify their properties. To explore whether and how food matrices influence MNP toxicity, we investigated the interactions between polystyrene nanoplastics (PS-NPs) and food matrices, using an in vitro gastrointestinal digestion model. Then, we tested cell viability, particle uptake and cellular toxicities induced by PS-NPs with food matrices in Caco-2 cells. The results showed that PS-NPs were aggregated, both with and without food matrices, after in vitro gastrointestinal digestion. Glyceryl trioleate exerted greater ability to stabilize digestas and to disperse PS-NPs than starch and bovine serum albumin. The protein corona's protein composition on PS-NPs varied when it interacted with different food matrices. Moreover, when combined with food matrices, the PS-NPs' uptake was enhanced, thus aggravating cellular inflammation, stress, and apoptosis levels. Finally, through co-exposure to a mixture of food matrices, we found a combined negative effect of PS-NPs and cadmium on cellular inflammation, stress, and apoptosis levels. This is the first study to compare the impact of various food matrices on the characteristics and cellular toxicities of ingested NPs in a simulated digestive tract.
Collapse
Affiliation(s)
- Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Hardy E, Sarker H, Fernandez-Patron C. Could a Non-Cellular Molecular Interactome in the Blood Circulation Influence Pathogens' Infectivity? Cells 2023; 12:1699. [PMID: 37443732 PMCID: PMC10341357 DOI: 10.3390/cells12131699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
We advance the notion that much like artificial nanoparticles, relatively more complex biological entities with nanometric dimensions such as pathogens (viruses, bacteria, and other microorganisms) may also acquire a biomolecular corona upon entering the blood circulation of an organism. We view this biomolecular corona as a component of a much broader non-cellular blood interactome that can be highly specific to the organism, akin to components of the innate immune response to an invading pathogen. We review published supporting data and generalize these notions from artificial nanoparticles to viruses and bacteria. Characterization of the non-cellular blood interactome of an organism may help explain apparent differences in the susceptibility to pathogens among individuals. The non-cellular blood interactome is a candidate therapeutic target to treat infectious and non-infectious conditions.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center of Molecular Immunology, P.O. Box 16040, Havana 11600, Cuba
| | - Hassan Sarker
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
4
|
Pho T, Champion JA. Surface Engineering of Protein Nanoparticles Modulates Transport, Adsorption, and Uptake in Mucus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51697-51710. [PMID: 36354361 DOI: 10.1021/acsami.2c14670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein nanoparticles have been demonstrated as effective carriers for protein antigens and therapeutics due to properties endowed by their protein composition. They exhibit high protein to carrier yields, biocompatibility, and heterogeneous surface properties. While protein nanoparticles have been delivered via multiple routes, including intranasal, their interactions with mucosal barriers have not been well studied or modified. Biological barriers associated with intranasal delivery consist of viscoelastic mucus that hinders material transport through surface interactions and the underlying epithelium. Herein, we altered protein nanoparticle surface properties and characterized interactions with nasal mucus and the subsequent effects on diffusion, cellular uptake, and immune cell maturation. Ovalbumin protein nanoparticles were used, serving as a model vaccine nanoparticle. Unmodified ovalbumin protein nanoparticles were compared to cationic ovalbumin particles functionalized with amine groups, neutral particles functionalized with polyethylene glycol, and zwitterionic particles coated layer-by-layer (LBL) with chitosan and oligonucleotides. Transport analysis indicated rapid diffusion of polyethylene glycol and LBL-modified ovalbumin nanoparticles in porcine nasal mucus, while cationic particles were mucoadhesive. Cellular uptake in the presence of mucus by epithelial and dendritic cells was highest for particles containing positive charges, both LBL and amine-functionalized. These particles also exhibited the most diverse adsorbed protein corona from nasal fluids. The corona impacted both dendritic cell uptake and maturation, with polyethylene glycol and LBL modifications improving CD86 expression. Altogether, surface modifications on protein-based nanocarriers are shown to facilitate distinctive physical and cellular behavior associated with mucosal delivery.
Collapse
Affiliation(s)
- Thomas Pho
- School of Chemical and Biomolecular Engineering, BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia30332-2000, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia30332-2000, United States
| |
Collapse
|
5
|
Scheurer T, Steffens J, Markert A, Du Marchie Sarvaas M, Roderburg C, Rink L, Tacke F, Luedde T, Kraus T, Baumann R. The human long noncoding RNAs CoroMarker, MALAT1, CDR1as, and LINC00460 in whole blood of individuals after controlled short-term exposure with ultrafine metal fume particles at workplace conditions, and in human macrophages in vitro. J Occup Med Toxicol 2022; 17:15. [PMID: 35915466 PMCID: PMC9344619 DOI: 10.1186/s12995-022-00356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background Short-term inhalation of occupationally relevant ultrafine zinc/copper (Zn/Cu) containing welding fumes has been shown to induce subclinical systemic inflammation, associated with an elevated risk for cardiovascular diseases. The involvement of noncoding RNAs (lncRNAs) in this setting is currently unknown. However, lncRNAs have been reported to fulfill essential roles in, e.g., cardiovascular diseases, inflammation, infectious diseases, and pollution-related lung disorders. Methods In this study, the specific lncRNAs levels of the 4 lncRNAs CoroMarker, MALAT1, CDR1as and LINC00460 were determined by RT-qPCR in THP-1 macrophages exposed to Zn/Cu metal fume suspensions for 1, 2, and 4 hours in vitro. Furthermore, 14 subjects were exposed to Zn/Cu containing welding fumes (at 2.5 mg/m3) for 6 hours. Before, 6, 10, and 29 hours after exposure start, whole blood cell lncRNAs levels were determined by RT-qPCR. Results In THP-1 macrophages, we observed a 2.3-fold increase of CDR1as at 1 h (Wilcoxon p = 0.03), a non-significant increase of CoroMarker at 1 h, and an increase of LINC00460 at 2 h (p = 0.03) and at 4 h (p = 0.06). In whole blood cells, we determined a non-significant upregulation of CDR1as at 6 h (p = 0.2), a significant downregulation of CoroMarker at 6 h (p = 0.04), and a significant upregulation of LINC00460 levels at 10 h (p = 0.04) and 29 h (p = 0.04). MALAT-1 remained unchanged in both settings. Conclusion The orientation of regulation of the lncRNAs is (except for CoroMarker) similar in the in vitro and in vivo experiments and in line with their described functions. Therefore, these results, e.g. the upregulation of the potential risk marker for cardiovascular diseases, CDR1as, contribute to understanding the underlying mechanisms of Zn/Cu-induced subclinical inflammation in metal workers.
Collapse
Affiliation(s)
- Theresa Scheurer
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Steffens
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany. .,Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Agnieszka Markert
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Miriam Du Marchie Sarvaas
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.,Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tom Luedde
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.,Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ralf Baumann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.,Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany
| |
Collapse
|
6
|
Markova E, Taneska L, Kostovska M, Shalabalija D, Mihailova L, Glavas Dodov M, Makreski P, Geskovski N, Petrushevska M, N Taravari A, Simonoska Crcarevska M. Design and evaluation of nanostructured lipid carriers loaded with Salvia officinalis extract for Alzheimer's disease treatment. J Biomed Mater Res B Appl Biomater 2022; 110:1368-1390. [PMID: 35019231 DOI: 10.1002/jbm.b.35006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
Considering the potential of Salvia officinalis in prevention and treatment of Alzheimer's disease (AD), as well as the ability of nanostructured lipid carriers (NLC) to successfully deliver drug molecules across blood-brain barrier (BBB), the objective of this study was design, development, optimization and characterization of freeze-dried salvia officinalis extract (FSE) loaded NLC intended for intranasal administration. NLC were prepared by solvent evaporation method and the optimization was carried out using central composite design (CCD) of experiments. Further, the optimized formulation (NLCo) was coated either with chitosan (NLCc) or poloxamer (NLCp). Surface characterization of the particles demonstrated a spherical shape with smooth exterior. Particle size of optimal formulations after 0.45 μm pore size filtration ranged from 127 ± 0.68 nm to 140 ± 0.74 nm. The zeta potential was -25.6 ± 0.404 mV; 22.4 ± 1.106 mV and - 6.74 ± 0.609 mV for NLCo, NLCc, and NLCp, respectively. Differential scanning calorimetry (DSC) confirmed the formation of NLC whereas Fourier-transform infrared spectroscopy confirmed the FSE encapsulation into particles. All formulations showcased relatively high drug loading (>86.74 mcg FSE/mg solid lipid) and were characterized by prolonged and controlled release that followed Peppas-Sahlin in vitro release kinetic model. Protein adsorption studies revealed the lowest adsorption of the proteins onto NLCp (43.53 ± 0.07%) and highest protein adsorption onto NLCc (55.97 ± 0.75%) surface. The modified ORAC assay demonstrated higher antioxidative activity for NLCo (95.31 ± 1.86%) and NLCc (97.76 ± 4.00%) as compared to FSE (90.30 ± 1.53%). Results obtained from cell cultures tests pointed to the potential of prepared NLCs for FSE brain targeting and controlled release.
Collapse
Affiliation(s)
- Elena Markova
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Lea Taneska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Monika Kostovska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Dushko Shalabalija
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Ljubica Mihailova
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Marija Glavas Dodov
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Marija Petrushevska
- Institute of Pharmacology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Arben N Taravari
- University Clinic for Neurology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Maja Simonoska Crcarevska
- Institute of Pharmaceutical Technology, Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| |
Collapse
|
7
|
Wang J, Yu X, Zheng X. Influence of zinc doping on the molecular biocompatibility of cadmium-based quantum dots: Insights from the interaction with trypsin. Chem Biol Interact 2021; 351:109716. [PMID: 34688612 DOI: 10.1016/j.cbi.2021.109716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Doping quantum dots (QDs) with extra element presents a promising future for their applications in the fields of environmental monitoring, commercial products and biomedical sciences. However, it remains unknown for the influence of doping on the molecular biocompatibility of QDs and the underlying mechanisms of the interaction between doped-QDs and protein molecules. Using the "one-pot" method, we synthesized N-acetyl-l-cysteine capped CdTe: Zn2+ QDs with higher fluorescence quantum yield, improved stability and better molecular biocompatibility compared with undoped CdTe QDs. Using digestive enzyme trypsin (TRY) as the protein model, the interactions of undoped QDs and Zn-doped QDs with TRY as well as the underlying mechanisms were investigated using multi-spectroscopy, isothermal titration calorimetry and dialysis techniques. Van der Waals forces and hydrogen bonds are the major driving forces in the interaction of both QDs with TRY, which leading to the loosening of protein skeleton and tertiary structural changes. Compared with undoped QDs, Zn-doped QDs bind less amount of TRY with a higher affinity and then release higher amount of Cd. Zn-doped QDs have a less stimulating impact on TRY activity by decreasing TRY binding and reducing Cd binding to TRY. Taken all together, Zn-doped QDs offer a safer alternative for the applications of QDs by reducing unwanted interactions with proteins and improving biocompatibility at the molecular level.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China.
| | - Xinping Yu
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| | - Xiaolin Zheng
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, 264005, PR China
| |
Collapse
|
8
|
Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Mishra RK, Ahmad A, Vyawahare A, Alam P, Khan TH, Khan R. Biological effects of formation of protein corona onto nanoparticles. Int J Biol Macromol 2021; 175:1-18. [PMID: 33508360 DOI: 10.1016/j.ijbiomac.2021.01.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022]
Abstract
Administration of nanomaterials based medicinal and drug carrier systems into systemic circulation brings about interaction of blood components e.g. albumin and globulin proteins with these nanosystems. These blood or serum proteins either get loosely attached over these nanocarriers and form soft protein corona or are tightly adsorbed over nanoparticles and hard protein corona formation occurs. Formation of protein corona has significant implications over a wide array of physicochemical and medicinal attributes. Almost all pharmacological, toxicological and carrier characteristics of nanoparticles get prominently touched by the protein corona formation. It is this interaction of nanoparticle protein corona that decides and influences fate of nanomaterials-based systems. In this article, authors reviewed several diverse aspects of protein corona formation and its implications on various possible outcomes in vivo and in vitro. A brief description regarding formation and types of protein corona has been included along with mechanisms and pharmacokinetic, pharmacological behavior and toxicological profiles of nanoparticles has been described. Finally, significance of protein corona in context of its in vivo and in vitro behavior, involvement of biomolecules at nanoparticle plasma interface and other interfaces and effects of protein corona on biocompatibility characteristics have also been touched upon.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, PO box 173, Alkharj, 11942, Saudi Arabia
| | | | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
10
|
Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, Kulesza R, González-Maciel A, Reynoso-Robles R, Brito-Aguilar R, García-Arreola B, Revueltas-Ficachi P, Barrera-Velázquez JA, García-Alonso G, García-Rojas E, Mukherjee PS, Delgado-Chávez R. Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2020; 78:479-503. [PMID: 32955466 DOI: 10.3233/jad-200891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Franco-Lira
- Colegio de Bachilleres Militarizado, "General Mariano Escobedo", Monterrey, N.L., México
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | | | | | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
11
|
Moosavi SS, Abdi F, Abdollahi MR, Tahmasebi-Enferadi S, Maleki M. Phenological, morpho-physiological and proteomic responses of Triticum boeoticum to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:95-104. [PMID: 32920225 DOI: 10.1016/j.plaphy.2020.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Drought is the most important abiotic stress limiting wheat production worldwide. Triticum boeoticum, as wild wheat, is a rich gene pool for breeding for drought stress tolerance. In this study, to identify the most drought-tolerant and susceptible genotypes, ten T. boeoticum accessions were evaluated under non-stress and drought-stress conditions for two years. Among the studied traits, water-use efficiency (WUE) was suggested as the most important trait to identify drought-tolerant genotypes. According to the desirable and undesirable areas of the bi-plot, Tb5 and Tb6 genotypes were less and more affected by drought stress, respectively. Therefore, their flag-leaves proteins were used for two-dimensional gel electrophoresis. While, Tb5 contained a high amount of yield, yield components, and WUE, Tb6 had higher levels of water use, phenological related traits, and root related characters. Of the 235 spots found in the studied accessions, 14 spots (11 and 3 spots of Tb5 and Tb6, respectively) were selected for sequencing. Of these 14 spots, 9 and 5 spots were upregulated and downregulated, respectively. The identified proteins were grouped into six functional protein clusters, which were mainly involved in photosynthesis (36%), carbohydrate metabolism (29%), chaperone (7%), oxidation and reduction (7%), lipid metabolism and biological properties of the membrane (7%) and unknown function (14%). We report for the first time that MICP, in the group of lipid metabolism proteins, was significantly changed into wild wheat in response to drought stress. Maybe, the present-identified proteins could play an important role to understand the molecular pathways of wheat drought tolerance. We believe comparing and evaluating the similarity-identified proteins of T. boeoticum with the previously identified proteins of Aegilops tauschii, can provide a new direction to improve wheat tolerance to drought stress.
Collapse
Affiliation(s)
- Sayyed Saeed Moosavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Fatemeh Abdi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Sattar Tahmasebi-Enferadi
- Department of Molecular Plant Biotechnology, Faculty of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
12
|
Liu S, Jiang X, Tian X, Wang Z, Xing Z, Chen J, Zhang J, Wang C, Dong L. A method to measure the denatured proteins in the corona of nanoparticles based on the specific adsorption of Hsp90ab1. NANOSCALE 2020; 12:15857-15868. [PMID: 32696774 DOI: 10.1039/d0nr02297g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The protein corona influences and determines the biological function of nanoparticles (NPs) in vivo. Analysis and understanding of the activities of proteins in coronas are crucial for nanobiology and nanomedicine research. Misfolded proteins in the corona of NPs theoretically exist, and a protein denaturation-related cellular response might occur in this process as well as in related diseases. The exact evaluation of protein denaturation in the corona is valuable to assess the bioactivities of NPs. Here, we found that the level of adsorbed heat shock protein 90 kDa α class B member 1 (Hsp90ab1) by the denatured protein in iron-cobalt-nickel alloy NPs (FeCoNi NPs) and iron oxide NPs (Fe3O4 NPs) was correlated with circular dichroism (CD) analysis and 1-anilinonaphthalene-8-sulfonate (ANS) analysis. The content of Hsp90ab1 in the corona could be easily analysed by western blotting (WB). Further analysis suggested that the method could precisely show the time-dependent protein denaturation on Fe3O4 NPs, as well as the influence of the size and the surface modification. More importantly, this method could be applied to other proteins, like lysozyme, other than albumin. Based on the results and the correlation analysis, incubation and detection of Hsp90ab1 in the NP-corona complex can be used as a new and feasible method to evaluate protein denaturation induced by NPs.
Collapse
Affiliation(s)
- Shang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences & Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li Y, Lee JS. Insights into Characterization Methods and Biomedical Applications of Nanoparticle-Protein Corona. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3093. [PMID: 32664362 PMCID: PMC7412248 DOI: 10.3390/ma13143093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) exposed to a biological milieu will strongly interact with proteins, forming "coronas" on the surfaces of the NPs. The protein coronas (PCs) affect the properties of the NPs and provide a new biological identity to the particles in the biological environment. The characterization of NP-PC complexes has attracted enormous research attention, owing to the crucial effects of the properties of an NP-PC on its interactions with living systems, as well as the diverse applications of NP-PC complexes. The analysis of NP-PC complexes without a well-considered approach will inevitably lead to misunderstandings and inappropriate applications of NPs. This review introduces methods for the characterization of NP-PC complexes and investigates their recent applications in biomedicine. Furthermore, the review evaluates these characterization methods based on comprehensive critical views and provides future perspectives regarding the applications of NP-PC complexes.
Collapse
Affiliation(s)
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
14
|
Böhmert L, Voß L, Stock V, Braeuning A, Lampen A, Sieg H. Isolation methods for particle protein corona complexes from protein-rich matrices. NANOSCALE ADVANCES 2020; 2:563-582. [PMID: 36133244 PMCID: PMC9417621 DOI: 10.1039/c9na00537d] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Background: Nanoparticles become rapidly encased by a protein layer when they are in contact with biological fluids. This protein shell is called a corona. The composition of the corona has a strong influence on the surface properties of the nanoparticles. It can affect their cellular interactions, uptake and signaling properties. For this reason, protein coronae are investigated frequently as an important part of particle characterization. Main body of the abstract: The protein corona can be analyzed by different methods, which have their individual advantages and challenges. The separation techniques to isolate corona-bound particles from the surrounding matrices include centrifugation, magnetism and chromatographic methods. Different organic matrices, such as blood, blood serum, plasma or different complex protein mixtures, are used and the approaches vary in parameters such as time, concentration and temperature. Depending on the investigated particle type, the choice of separation method can be crucial for the subsequent results. In addition, it is important to include suitable controls to avoid misinterpretation and false-positive or false-negative results, thus allowing the achievement of a valuable protein corona analysis result. Conclusion: Protein corona studies are an important part of particle characterization in biological matrices. This review gives a comparative overview about separation techniques, experimental parameters and challenges which occur during the investigation of the protein coronae of different particle types.
Collapse
Affiliation(s)
- Linda Böhmert
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Linn Voß
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Valerie Stock
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| |
Collapse
|
15
|
Alijagic A, Benada O, Kofroňová O, Cigna D, Pinsino A. Sea Urchin Extracellular Proteins Design a Complex Protein Corona on Titanium Dioxide Nanoparticle Surface Influencing Immune Cell Behavior. Front Immunol 2019; 10:2261. [PMID: 31616433 PMCID: PMC6763604 DOI: 10.3389/fimmu.2019.02261] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023] Open
Abstract
Extensive exploitation of titanium dioxide nanoparticles (TiO2NPs) augments rapid release into the marine environment. When in contact with the body fluids of marine invertebrates, TiO2NPs undergo a transformation and adhere various organic molecules that shape a complex protein corona prior to contacting cells and tissues. To elucidate the potential extracellular signals that may be involved in the particle recognition by immune cells of the sea urchin Paracentrotus lividus, we investigated the behavior of TiO2NPs in contact with extracellular proteins in vitro. Our findings indicate that TiO2NPs are able to interact with sea urchin proteins in both cell-free and cell-conditioned media. The two-dimensional proteome analysis of the protein corona bound to TiO2NP revealed that negatively charged proteins bound preferentially to the particles. The main constituents shaping the sea urchin cell-conditioned TiO2NP protein corona were proteins involved in cellular adhesion (Pl-toposome, Pl-galectin-8, Pl-nectin) and cytoskeletal organization (actin and tubulin). Immune cells (phagocytes) aggregated TiO2NPs on the outer cell surface and within well-organized vesicles without eliciting harmful effects on the biological activities of the cells. Cells showed an active metabolism, no oxidative stress or caspase activation. These results provide a new level of understanding of the extracellular proteins involved in the immune-TiO2NP recognition and interaction in vitro, confirming that primary immune cell cultures from P. lividus can be an optional model for swift and efficient immune-toxicological investigations.
Collapse
Affiliation(s)
- Andi Alijagic
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Oldřich Benada
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofroňová
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Diego Cigna
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Annalisa Pinsino
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
16
|
Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. ENVIRONMENTAL RESEARCH 2019; 176:108574. [PMID: 31299618 DOI: 10.1016/j.envres.2019.108574] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Redox-active, strongly magnetic, combustion and friction-derived nanoparticles (CFDNPs) are abundant in particulate matter air pollution. Urban children and young adults with Alzheimer disease Continuum have higher numbers of brain CFDNPs versus clean air controls. CFDNPs surface charge, dynamic magnetic susceptibility, iron content and redox activity contribute to ROS generation, neurovascular unit (NVU), mitochondria, and endoplasmic reticulum (ER) damage, and are catalysts for protein misfolding, aggregation and fibrillation. CFDNPs respond to external magnetic fields and are involved in cell damage by agglomeration/clustering, magnetic rotation and/or hyperthermia. This review focus in the interaction of CFDNPs, nanomedicine and industrial NPs with biological systems and the impact of portals of entry, particle sizes, surface charge, biomolecular corona, biodistribution, mitochondrial dysfunction, cellular toxicity, anterograde and retrograde axonal transport, brain dysfunction and pathology. NPs toxicity information come from researchers synthetizing particles and improving their performance for drug delivery, drug targeting, magnetic resonance imaging and heat mediators for cancer therapy. Critical information includes how these NPs overcome all barriers, the NPs protein corona changes as they cross the NVU and the complexity of NPs interaction with soluble proteins and key organelles. Oxidative, ER and mitochondrial stress, and a faulty complex protein quality control are at the core of Alzheimer and Parkinson's diseases and NPs mechanisms of action and toxicity are strong candidates for early development and progression of both fatal diseases. Nanoparticle exposure regardless of sources carries a high risk for the developing brain homeostasis and ought to be included in the AD and PD research framework.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 04850, Mexico City, Mexico.
| | | | | |
Collapse
|
17
|
Wu G, Jiang C, Zhang T. FcγRIIB receptor-mediated apoptosis in macrophages through interplay of cadmium sulfide nanomaterials and protein corona. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:140-148. [PMID: 30107323 DOI: 10.1016/j.ecoenv.2018.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Humans are likely exposed to cadmium sulfide nanomaterials (CdS NMs) due to the increasing environmental release and in vivo application of these materials, which tend to accumulate and cause toxic effects in human lungs, particularly by interrupting the physiological functions of macrophage cells. Here, we showed that protein corona played an essential role in determining cellular uptake and cytotoxicity of CdS NMs in macrophages. Protein-coated CdS NMs enhanced the expression of FcγRIIB receptors on the cell surface, and the interaction between this receptors and proteins inhibited cellular uptake of CdS NMs while triggering cell apoptosis via the AKT/Caspase 3 signaling pathway. Cytotoxicity of CdS NMs was greatly alleviated by coating the nanomaterials with polyethylene glycol (PEG), because PEG decreased the adsorption of proteins that interact with the FcγRIIB receptors on cell surface. Overall, our research demonstrated that surface modification, particularly protein association, significantly affected cellular response to CdS NMs, and cellular uptake may not be an appropriate parameter for predicting the toxic effects of these nanomaterials in human lungs.
Collapse
Affiliation(s)
- Guizhu Wu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
18
|
Baumann R, Brand P, Chaker A, Markert A, Rack I, Davatgarbenam S, Joraslafsky S, Gerhards B, Kraus T, Gube M. Human nasal mucosal C-reactive protein responses after inhalation of ultrafine welding fume particles: positive correlation to systemic C-reactive protein responses. Nanotoxicology 2018; 12:1130-1147. [DOI: 10.1080/17435390.2018.1498930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- R. Baumann
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - P. Brand
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - A. Chaker
- Department of Otorhinolaryngology and Center of Allergy and Environment (ZAUM), Technical University Munich, Munich, Germany
| | - A. Markert
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - I. Rack
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - S. Davatgarbenam
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - S. Joraslafsky
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - B. Gerhards
- Welding and Joining Institute (ISF), Aachen University of Technology, Aachen, Germany
| | - T. Kraus
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
| | - M. Gube
- Institute for Occupational and Social Medicine, Aachen University of Technology, Aachen, Germany
- Health Office of the City and Area of Aachen, Aachen, Germany
| |
Collapse
|
19
|
Mao F, Shi P, Chen H, Song L, Wang Z, Wu C, Du M. Beneficial effects of polysaccharides on the solubility of Mytilus edulis enzymatic hydrolysates. Food Chem 2018; 254:103-108. [DOI: 10.1016/j.foodchem.2018.01.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
|
20
|
Ali N, Ljunggren S, Karlsson HM, Wierzbicka A, Pagels J, Isaxon C, Gudmundsson A, Rissler J, Nielsen J, Lindh CH, Kåredal M. Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix. Clin Proteomics 2018; 15:20. [PMID: 29760600 PMCID: PMC5946400 DOI: 10.1186/s12014-018-9196-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. METHODS In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. RESULTS The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. CONCLUSION Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The results suggested that the exposure causes an immediate effect on the proteome level involving acute phase proteins and mediators regulating lipid signaling. Proteases involved in maintaining the balance between the formation and degradation of extracellular matrix proteins are important key proteins in the induced effects.
Collapse
Affiliation(s)
- Neserin Ali
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Helen M. Karlsson
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Aneta Wierzbicka
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Joakim Pagels
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Christina Isaxon
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Anders Gudmundsson
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Jenny Rissler
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Jörn Nielsen
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Titma T. The effect of surface charge and pH on the physiological behaviour of cobalt, copper, manganese, antimony, zinc and titanium oxide nanoparticles in vitro. Toxicol In Vitro 2018; 50:11-21. [PMID: 29458085 DOI: 10.1016/j.tiv.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/23/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
The precise knowledge on various interactions of metal nanoparticles (NP) in a living organism is scarce. It is expected that metals can bind to nucleic acids, peptides and proteins (e.g. enzymes), and modify the functioning of vital cellular compartments after entering the organism. The predictive factors for quantitative nanostructure-activity relationship (QNAR) analysis could enhance efficient and harmless usage of nanoparticles (NPs) in the industry as well in the medicine. The studies value the composition of the NP corona determined by time, temperature and source of protein which has been found to implicate the physiological behaviour of NPs. One has largely been ignored: the NPs specific isoelectric point (IEP) and pH at the state of measurement. Herein, this study investigates the effect of pH and surface charge of six metal oxide (MeOx) NPs on time dependency of cytotoxicity. Several aspects of the characterization of ultrafine particles in the actual test system which is the most relevant for the interpretation of the toxicological data are referred: (i) the difference of pH in the room temperature and in the incubation conditions (ii) the difference of dispersions in MilliQ and complete cell media; (iii) the need to exemplify also the pH and isoelectric point when the hydrodynamic size is measured; (iv) the importance of time due to the time-dependent equilibration and changes of NPs corona. The surface charge determines the formation of corona and could be modified by pH. MeOx NPs without fully charge equilibrated corona might play the main role of MeOx NPs entering into the cell and consequently the time dependent manifestation of the cellular effect.
Collapse
Affiliation(s)
- Tiina Titma
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
22
|
Jiang Y, Fay JM, Poon CD, Vinod N, Zhao Y, Bullock K, Qin S, Manickam DS, Yi X, Banks WA, Kabanov AV. Nanoformulation of Brain-Derived Neurotrophic Factor with Target Receptor-Triggered-Release in the Central Nervous System. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1703982. [PMID: 29785179 PMCID: PMC5958903 DOI: 10.1002/adfm.201703982] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is identified as a potent neuroprotective and neuroregenerative agent for many neurological diseases. Regrettably, its delivery to the brain is hampered by poor serum stability and rapid brain clearance. Here, a novel nanoformulation is reported composed of a bio-compatible polymer, poly(ethylene glycol)-b-poly(L-glutamic acid) (PEG-PLE), that hosts the BDNF molecule in a nanoscale complex, termed here Nano-BDNF. Upon simple mixture, Nano-BDNF spontaneously forms uniform spherical particles with a core-shell structure. Molecular dynamics simulations suggest that binding between BDNF and PEG-PLE is mediated through electrostatic coupling as well as transient hydrogen bonding. The formation of Nano-BDNF complex stabilizes BDNF and protects it from nonspecific binding with common proteins in the body fluid, while allowing it to associate with its receptors. Following intranasal administration, the nanoformulation improves BDNF delivery throughout the brain and displays a more preferable regional distribution pattern than the native protein. Furthermore, intranasally delivered Nano-BDNF results in superior neuroprotective effects in the mouse brain with lipopolysaccharides-induced inflammation, indicating promise for further evaluation of this agent for the therapy of neurologic diseases.
Collapse
Affiliation(s)
| | - James M. Fay
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7362, USA
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Chi-Duen Poon
- Research Computer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natasha Vinod
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7362, USA
- Joint UNC/NC State Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599-7575, USA
| | - Yuling Zhao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7362, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7362, USA
| | - Kristin Bullock
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98108, USA
| | - Si Qin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7362, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7362, USA
| | | | - Xiang Yi
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7362, USA
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7362, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98108, USA
| | | |
Collapse
|
23
|
Zhang P, Xu XY, Chen YP, Xiao MQ, Feng B, Tian KX, Chen YH, Dai YZ. Protein corona between nanoparticles and bacterial proteins in activated sludge: Characterization and effect on nanoparticle aggregation. BIORESOURCE TECHNOLOGY 2018; 250:10-16. [PMID: 29153645 DOI: 10.1016/j.biortech.2017.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
In this work, the protein coronas of activated sludge proteins on TiO2 nanoparticles (TNPs) and ZnO nanoparticles (ZNPs) were characterized. The proteins with high affinity to TNPs and ZNPs were identified by shotgun proteomics, and their effects of on the distributions of TNPs and ZNPs in activated sludge were concluded. In addition, the effects of protein coronas on the aggregations of TNPs and ZNPs were evaluated. Thirty and nine proteins with high affinities to TNPs and ZNPs were identified, respectively. The proteomics and adsorption isotherms demonstrated that activated sludge had a higher affinity to TNPs than to ZNPs. The aggregation percentages of ZNPs at 35, 53, and 106 mg/L of proteins were 13%, 14%, and 18%, respectively, whereas those of TNPs were 21%, 30%, 41%, respectively. The proteins contributed to ZNPs aggregation by dissolved Zn ion-bridging, whereas the increasing protein concentrations enhanced the TNPs aggregation through macromolecule bridging flocculation.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Xiao-Yan Xu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Meng-Qian Xiao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Kai-Xun Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yue-Hui Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
24
|
Lundqvist M, Augustsson C, Lilja M, Lundkvist K, Dahlbäck B, Linse S, Cedervall T. The nanoparticle protein corona formed in human blood or human blood fractions. PLoS One 2017; 12:e0175871. [PMID: 28414772 PMCID: PMC5393619 DOI: 10.1371/journal.pone.0175871] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/31/2017] [Indexed: 02/04/2023] Open
Abstract
The protein corona formed around nanoparticles in protein-rich fluids plays an important role for nanoparticle biocompatibility, as found in several studies during the last decade. Biological fluids have complex compositions and the molecular components interact and function together in intricate networks. Therefore, the process to isolate blood or the preparation of blood derivatives may lead to differences in the composition of the identified protein corona around nanoparticles. Here, we show distinct differences in the protein corona formed in whole blood, whole blood with EDTA, plasma, or serum. Furthermore, the ratio between particle surface area to protein concentration influences the detected corona. We also show that the nanoparticle size per se influences the formed protein corona due to curvature effects. These results emphasize the need of investigating the formation and biological importance of the protein corona in the same environment as the nanoparticles are intended for or released into.
Collapse
Affiliation(s)
- Martin Lundqvist
- Center for Molecular Protein Science, Biochemistry, Lund University, Lund, Sweden
- * E-mail:
| | - Cecilia Augustsson
- Department of Translational medicine, Lund University, University Hospital SUS, Malmö, Sweden
| | | | | | - Björn Dahlbäck
- Department of Translational medicine, Lund University, University Hospital SUS, Malmö, Sweden
| | - Sara Linse
- Center for Molecular Protein Science, Biochemistry, Lund University, Lund, Sweden
| | - Tommy Cedervall
- Center for Molecular Protein Science, Biochemistry, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| |
Collapse
|