1
|
Ren J, Ma K, Lu X, Peng H, Wang J, Nasser MI, Liu C. Occurrence and role of Tph cells in various renal diseases. Mol Med 2024; 30:174. [PMID: 39390361 PMCID: PMC11468416 DOI: 10.1186/s10020-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
A new population of peripheral helper T (Tph) cells has been identified and contributed to various autoimmune diseases. Tph cells can secrete interleukin-21 (IL-21), interferon (IFN) and C-X-C motif chemokine ligand 13 (CXCL13) to moderate renal disease. Moreover, Tph cells can congregate in huge numbers and immerse within inflamed tissue. Compared to Tfh cells, Tph cells express high programmed cell death protein 1 (PD-1), major histocompatibility complex II (MHC-II), C-C chemokine receptor 2 (CCR2) and C-C chemokine receptor 5 (CCR5) but often lack expression of the chemokine receptor C-X-C chemokine receptor 5 (CXCR5). They display features distinct from other T cells, which are uniquely poised to promote responses and antibody production of B cells within pathologically inflamed non-lymphoid tissues and a key feature of Tph cells. In this review, we summarize recent findings on the role of Tph cells in chronic kidney disease, acute kidney injury, kidney transplantation and various renal diseases.
Collapse
Affiliation(s)
- Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Provincial People's Hospital, Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
2
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
3
|
Martin J, Cheng Q, Laurent SA, Thaler FS, Beenken AE, Meinl E, Krönke G, Hiepe F, Alexander T. B-Cell Maturation Antigen (BCMA) as a Biomarker and Potential Treatment Target in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:10845. [PMID: 39409173 PMCID: PMC11476889 DOI: 10.3390/ijms251910845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The BAFF-APRIL system is crucial for the pathogenesis of systemic lupus erythematosus (SLE) by promoting B cell survival, differentiation and the maintenance of humoral autoimmunity. Here, we investigated the relationship of BCMA expression on B cell subsets with its ligands BAFF and APRIL, together with soluble BCMA, and with clinical and serologic variables in a cohort of 100 SLE patients (86 under conventional and 14 under belimumab therapy) and 30 healthy controls (HCs) using multicolor flow cytometry and ELISA. We found that BCMA expression in SLE patients was significantly increased on all B cell subsets compared to HCs, with all examined components of the BAFF-APRIL system being upregulated. BCMA expression was significantly increased on switched and unswitched memory B cells compared to naïve B cells, both in HCs and SLE. BCMA expression on B cells correlated with plasmablast frequencies, serum anti-dsDNA antibodies and complement consumption, while soluble BCMA correlated with plasmablast frequency, highlighting its potential as a clinical biomarker. Belimumab treatment significantly reduced BCMA expression on most B cell subsets and soluble TACI and contributed to the inhibition of almost the entire BAFF-APRIL system and restoration of B cell homeostasis. These results provide insights into the complex dysregulation of the BAFF-APRIL system in SLE and highlight the therapeutic potential of targeting its components, particularly BCMA, in addition to its use as a biomarker for disease activity.
Collapse
MESH Headings
- Humans
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/blood
- B-Cell Maturation Antigen/metabolism
- B-Cell Maturation Antigen/immunology
- Biomarkers/blood
- Female
- Adult
- Male
- B-Cell Activating Factor/blood
- B-Cell Activating Factor/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 13/blood
- Middle Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/immunology
- Case-Control Studies
Collapse
Affiliation(s)
- Jonas Martin
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Qingyu Cheng
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Sarah A. Laurent
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
| | - Franziska S. Thaler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Anne Elisabeth Beenken
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Gerhard Krönke
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| |
Collapse
|
4
|
Yolmo P, Rahimi S, Chenard S, Conseil G, Jenkins D, Sachdeva K, Emon I, Hamilton J, Xu M, Rangachari M, Michaud E, Mansure JJ, Kassouf W, Berman DM, Siemens DR, Koti M. Atypical B Cells Promote Cancer Progression and Poor Response to Bacillus Calmette-Guérin in Non-Muscle Invasive Bladder Cancer. Cancer Immunol Res 2024; 12:1320-1339. [PMID: 38916567 PMCID: PMC11443217 DOI: 10.1158/2326-6066.cir-23-1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Poor response to Bacillus Calmette-Guérin (BCG) immunotherapy remains a major barrier in the management of patients with non-muscle invasive bladder cancer (NMIBC). Multiple factors are associated with poor outcomes, including biological aging and female sex. More recently, it has emerged that a B-cell-infiltrated pretreatment immune microenvironment of NMIBC tumors can influence the response to intravesically administered BCG. The mechanisms underlying the roles of B cells in NMIBC are poorly understood. Here, we show that B-cell-dominant tertiary lymphoid structures (TLSs), a hallmark feature of the chronic mucosal immune response, are abundant and located close to the epithelial compartment in pretreatment tumors from BCG non-responders. Digital spatial proteomic profiling of whole tumor sections from male and female patients with NMIBC who underwent treatment with intravesical BCG, revealed higher expression of immune exhaustion-associated proteins within the tumor-adjacent TLSs in both responders and non-responders. Chronic local inflammation, induced by the N-butyl-N-(4-hydroxybutyl) nitrosamine carcinogen, led to TLS formation with recruitment and differentiation of the immunosuppressive atypical B-cell (ABC) subset within the bladder microenvironment, predominantly in aging female mice compared to their male counterparts. Depletion of ABCs simultaneous to BCG treatment delayed cancer progression in female mice. Our findings provide evidence indicating a role for ABCs in BCG response and will inform future development of therapies targeting the B-cell-exhaustion axis.
Collapse
Affiliation(s)
- Priyanka Yolmo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Sadaf Rahimi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Stephen Chenard
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Gwenaëlle Conseil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Danielle Jenkins
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Kartik Sachdeva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Isaac Emon
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Jake Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Minqi Xu
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Manu Rangachari
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Eva Michaud
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Jose J Mansure
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Wassim Kassouf
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - David M Berman
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - David R Siemens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| |
Collapse
|
5
|
Gómez Hernández G, Domínguez T, Galicia G, Morell M, Alarcón-Riquelme ME. Bank1 modulates the differentiation and molecular profile of key B cell populations in autoimmunity. JCI Insight 2024; 9:e179417. [PMID: 39163122 PMCID: PMC11466193 DOI: 10.1172/jci.insight.179417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
This study aimed at defining the role of the B cell adaptor protein BANK1 in the appearance of age-associated B cells (ABCs) in 2 SLE mouse models (TLR7.tg6 and imiquimod-induced mice), crossed with Bank1-/- mice. The absence of Bank1 led to a significant reduction in ABC levels, also affecting other B cell populations. To gain deeper insights into their differentiation pathway and the effect of Bank1 on B cell populations, a single-cell transcriptome assay was performed. In the TLR7.tg6 model, we identified 10 clusters within B cells, including an ABC-specific cluster that was decreased in Bank1-deficient mice. In its absence, ABCs exhibited an antiinflammatory gene expression profile, while being proinflammatory in Bank1-sufficient lupus-prone mice. Trajectory analyses revealed that ABCs originated from marginal zone and memory-like B cells, ultimately acquiring transcriptional characteristics associated with atypical memory cells and long-lived plasma cells. Also, Bank1 deficiency normalized the presence of naive B cells, which were nearly absent in lupus-prone mice. Interestingly, Bank1 deficiency significantly reduced a distinct cluster containing IFN-responsive genes. These findings underscore the critical role of Bank1 in ABC development, affecting early B cell stages toward ABC differentiation, and the presence of IFN-stimulated gene-containing B cells, both populations determinant for autoimmunity.
Collapse
Affiliation(s)
- Gonzalo Gómez Hernández
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
| | - Toro Domínguez
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
| | - Georgina Galicia
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
| | - María Morell
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
- Department of Physiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja, Granada, Spain
| | - Marta E. Alarcón-Riquelme
- Department of Functional Genomics, GENyO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Parque Tecnológico de la Salud, Granada, Spain
- Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Mahmud S, Pitcher LE, Torbenson E, Robbins PD, Zhang L, Dong X. Developing transcriptomic signatures as a biomarker of cellular senescence. Ageing Res Rev 2024; 99:102403. [PMID: 38964507 PMCID: PMC11338099 DOI: 10.1016/j.arr.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cellular senescence is a cell fate driven by different types of stress, where damaged cells exit from the cell cycle and, in many cases, develop an inflammatory senescence-associated secretory phenotype (SASP). Senescence has often been linked to driving aging and the onset of multiple diseases conferred by the harmful SASP, which disrupts tissue homeostasis and impairs the regular function of many tissues. This phenomenon was first observed in vitro when fibroblasts halted replication after approximately 50 population doublings. In addition to replication-induced senescence, factors such as DNA damage and oncogene activation can induce cellular senescence both in culture and in vivo. Despite their contribution to aging and disease, identifying senescent cells in vivo has been challenging due to their heterogeneity. Although senescent cells can express the cell cycle inhibitors p16Ink4a and/or p21Cip1 and exhibit SA-ß-gal activity and evidence of a DNA damage response, there is no universal biomarker for these cells, regardless of inducer or cell type. Recent studies have analyzed the transcriptomic characteristics of these cells, leading to the identification of signature gene sets like CellAge, SeneQuest, and SenMayo. Advancements in single-cell and spatial RNA sequencing now allow for analyzing senescent cell heterogeneity within the same tissue and the development of machine learning algorithms, e.g., SenPred, SenSig, and SenCID, to discover cellular senescence using RNA sequencing data. Such insights not only deepen our understanding of the genetic pathways driving cellular senescence, but also promote the development of its quantifiable biomarkers. This review summarizes the current knowledge of transcriptomic signatures of cellular senescence and their potential as in vivo biomarkers.
Collapse
Affiliation(s)
- Shamsed Mahmud
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Louise E Pitcher
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Elijah Torbenson
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Jang SH, Shim JS, Kim J, Shin EG, Yoon JH, Lee LE, Kwon HK, Song JJ. Mitochondria Activity and CXCR4 Collaboratively Promote the Differentiation of CD11c + B Cells Induced by TLR9 in Lupus. Immune Netw 2024; 24:e25. [PMID: 39246618 PMCID: PMC11377949 DOI: 10.4110/in.2024.24.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024] Open
Abstract
Lupus is characterized by the autoantibodies against nuclear Ags, underscoring the importance of identifying the B cell subsets driving autoimmunity. Our research focused on the mitochondrial activity and CXCR4 expression in CD11c+ B cells from lupus patients after ex vivo stimulation with a TLR9 agonist, CpG-oligodeoxyribonucleotide (ODN). We also evaluated the response of CD11c+ B cells in ODN-injected mice. Post-ex vivo ODN stimulation, we observed an increase in the proportion of CD11chi cells, with elevated mitochondrial activity and CXCR4 expression in CD11c+ B cells from lupus patients. In vivo experiments showed similar patterns, with TLR9 stimulation enhancing mitochondrial and CXCR4 activities in CD11chi B cells, leading to the generation of anti-dsDNA plasmablasts. The CXCR4 inhibitor AMD3100 and the mitochondrial complex I inhibitor IM156 significantly reduced the proportion of CD11c+ B cells and autoreactive plasmablasts. These results underscore the pivotal roles of mitochondria and CXCR4 in the production of autoreactive plasmablasts.
Collapse
Affiliation(s)
- Sung Hoon Jang
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joo Sung Shim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jieun Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eun Gyeol Shin
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jong Hwi Yoon
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Lucy Eunju Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ho-Keun Kwon
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
8
|
Sachinidis A, Lamprinou M, Dimitroulas T, Garyfallos A. Targeting T-bet expressing B cells for therapeutic interventions in autoimmunity. Clin Exp Immunol 2024; 217:159-166. [PMID: 38647337 PMCID: PMC11239558 DOI: 10.1093/cei/uxae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Apart from serving as a Th1 lineage commitment regulator, transcription factor T-bet is also expressed in other immune cell types and thus orchestrates their functions. In case of B cells, more specifically, T-bet is responsible for their isotype switching to specific IgG sub-classes (IgG2a/c in mice and IgG1/3 in humans). In various autoimmune disorders, such as systemic lupus erythematosus and/or rheumatoid arthritis, subsets of T-bet expressing B cells, known as age-associated B cells (CD19+CD11c+CD21-T-bet+) and/or double-negative B cells (CD19+IgD-CD27-T-bet+), display an expansion and seem to drive disease pathogenesis. According to data, mostly derived from mice models of autoimmunity, the targeting of these specific B-cell populations is capable of ameliorating the general health status of the autoimmune subjects. Here, in this review article, we present a variety of therapeutic approaches for both mice and humans, suffering from an autoimmune disease, and we discuss the effects of each approach on T-bet+ B cells. In general, we highlight the importance of specifically targeting T-bet+ B cells for therapeutic interventions in autoimmunity.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Malamatenia Lamprinou
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Dimitroulas
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Wei SJ, Xiong Q, Yao H, He QM, Yu PL. Is systemic lupus erythematosus linked to Immunoglobulin G4 Autoantibodies? Hum Immunol 2024; 85:110826. [PMID: 38954949 DOI: 10.1016/j.humimm.2024.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by a hyperactive immune system with multiple abnormalities in B-cell proliferation, antibody production, T-cell regulation, and immune complex (IC) formation. In humans, Immunoglobulin (Ig) G is found in four subclasses. IgG1-IgG4, which are distinguished by both structural and biological differences. Fab-arm Exchange (FAE), specific biases in the IgG4 response repertoire, and a decreased capacity to induce effector functions mediated by interactions in the fragment crystallizable (Fc) region are just a few of the distinctive characteristics of IgG4. The recent finding of the presence of double-stranded DNA (dsDNA) and antinuclear antibody (ANA)-IgG4 has raised attention to this IgG subclass and its possible role in SLE. IgG4 was previously believed to just have anti-inflammatory effects by inhibiting immune responses, but recent studies have shown that these antibodies can also play a role in the onset and development of some clinical disorders. To consider the clinical effects of IgG4 presence, it is necessary to discuss its characteristics, which could underlie the potential role it can play in SLE. Therefore, this study aimed to comprehensively review the role of IgG4 in SLE to elucidate the collective incidence of high IgG4 levels reported in some SLE patients.
Collapse
Affiliation(s)
- Shu-Jun Wei
- Sichuan Police College, Longtouguan Road, Jiangyang District, Luzhou City, Sichuan Province, China
| | - Qian Xiong
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, China
| | - Huan Yao
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Pengzhou 611930, China
| | - Qing-Man He
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng-Long Yu
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, China.
| |
Collapse
|
10
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
11
|
Wang Q, Feng D, Jia S, Lu Q, Zhao M. B-Cell Receptor Repertoire: Recent Advances in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:76-98. [PMID: 38459209 DOI: 10.1007/s12016-024-08984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
In the field of contemporary medicine, autoimmune diseases (AIDs) are a prevalent and debilitating group of illnesses. However, they present extensive and profound challenges in terms of etiology, pathogenesis, and treatment. A major reason for this is the elusive pathophysiological mechanisms driving disease onset. Increasing evidence suggests the indispensable role of B cells in the pathogenesis of autoimmune diseases. Interestingly, B-cell receptor (BCR) repertoires in autoimmune diseases display a distinct skewing that can provide insights into disease pathogenesis. Over the past few years, advances in high-throughput sequencing have provided powerful tools for analyzing B-cell repertoire to understand the mechanisms during the period of B-cell immune response. In this paper, we have provided an overview of the mechanisms and analytical methods for generating BCR repertoire diversity and summarize the latest research progress on BCR repertoire in autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), multiple sclerosis (MS), and type 1 diabetes (T1D). Overall, B-cell repertoire analysis is a potent tool to understand the involvement of B cells in autoimmune diseases, facilitating the creation of innovative therapeutic strategies targeting specific B-cell clones or subsets.
Collapse
Affiliation(s)
- Qian Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
12
|
Pandey SP, Bhaskar R, Han SS, Narayanan KB. Autoimmune Responses and Therapeutic Interventions for Systemic Lupus Erythematosus: A Comprehensive Review. Endocr Metab Immune Disord Drug Targets 2024; 24:499-518. [PMID: 37718519 DOI: 10.2174/1871530323666230915112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/05/2023] [Accepted: 07/22/2023] [Indexed: 09/19/2023]
Abstract
Systemic Lupus Erythematosus (SLE) or Lupus is a multifactorial autoimmune disease of multiorgan malfunctioning of extremely heterogeneous and unclear etiology that affects multiple organs and physiological systems. Some racial groups and women of childbearing age are more susceptible to SLE pathogenesis. Impressive progress has been made towards a better understanding of different immune components contributing to SLE pathogenesis. Recent investigations have uncovered the detailed mechanisms of inflammatory responses and organ damage. Various environmental factors, pathogens, and toxicants, including ultraviolet light, drugs, viral pathogens, gut microbiome metabolites, and sex hormones trigger the onset of SLE pathogenesis in genetically susceptible individuals and result in the disruption of immune homeostasis of cytokines, macrophages, T cells, and B cells. Diagnosis and clinical investigations of SLE remain challenging due to its clinical heterogeneity and hitherto only a few approved antimalarials, glucocorticoids, immunosuppressants, and some nonsteroidal anti-inflammatory drugs (NSAIDs) are available for treatment. However, the adverse effects of renal and neuropsychiatric lupus and late diagnosis make therapy challenging. Additionally, SLE is also linked to an increased risk of cardiovascular diseases due to inflammatory responses and the risk of infection from immunosuppressive treatment. Due to the diversity of symptoms and treatment-resistant diseases, SLE management remains a challenging issue. Nevertheless, the use of next-generation therapeutics with stem cell and gene therapy may bring better outcomes to SLE treatment in the future. This review highlights the autoimmune responses as well as potential therapeutic interventions for SLE particularly focusing on the recent therapeutic advancements and challenges.
Collapse
Affiliation(s)
- Surya Prakash Pandey
- Aarogya Institute of Healthcare and Research, Jaipur, Rajasthan, 302033, India
- Department of Zoology, School of Science, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| |
Collapse
|
13
|
Sachinidis A, Garyfallos A. Rho-kinase inhibitors to deplete age-associated B cells in systemic autoimmunity. Immunol Lett 2023; 262:36-38. [PMID: 37689314 DOI: 10.1016/j.imlet.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Moysidou E, Lioulios G, Christodoulou M, Xochelli A, Stai S, Iosifidou M, Iosifidou A, Briza S, Briza DI, Fylaktou A, Stangou M. Increase in Double Negative B Lymphocytes in Patients with Systemic Lupus Erythematosus in Remission and Their Correlation with Early Differentiated T Lymphocyte Subpopulations. Curr Issues Mol Biol 2023; 45:6667-6681. [PMID: 37623240 PMCID: PMC10453294 DOI: 10.3390/cimb45080421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
B and T lymphocytes demonstrate important alterations in patients with systemic lupus erythematous (SLE), with a significant upregulation of double negative (DN) B cells. The aim of this study was to evaluate the correlation of T cell immunity changes with the distinct B-cell-pattern SLE. In the present study, flow cytometry was performed in 30 patients in remission of SLE and 31 healthy controls to detect DN B cells (CD19+IgD-CD27-) and a wide range of T lymphocyte subpopulations based on the presence of CD45RA, CCR7, CD31, CD28, and CD57, defined as naive, memory, and advanced differentiated/senescent T cells. Both B and T lymphocytes were significantly reduced in SLE patients. However, the percentage of DN B cells were increased compared to HC (12.9 (2.3-74.2) vs. 8 (1.7-35), p = 0.04). The distribution of CD4 and CD8 lymphocytes demonstrated a shift to advanced differentiated subsets. The population of DN B cells had a significant positive correlation with most of the early differentiated T lymphocytes, CD4CD31+, CD4CD45RA+CD28+, CD4CD45RA+CD57-, CD4CD45RA-CD57-, CD4CD28+CD57-, CD4CD28+CD57+, CD4 CM, CD8 CD31+, CD8 NAÏVE, CD8CD45RA-CD57-, CD8CD28+CD57-, and CD8CD28+CD57+. Multiple regression analysis revealed CD4CD31+, CD8CD45RA-CD57-, and CD8CD28+CD57- cells as independent parameters contributing to DN B cells, with adjusted R2 = 0.534 and p < 0.0001. The predominance of DN B cells in patients with SLE is closely associated with early differentiated T lymphocyte subsets, indicating a potential causality role of DN B cells in T lymphocyte activation.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece; (E.M.); (G.L.); (M.C.); (S.S.); (M.I.); (A.I.)
- Department of Nephrology, General Hospital “Hippokration”, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece; (E.M.); (G.L.); (M.C.); (S.S.); (M.I.); (A.I.)
- Department of Nephrology, General Hospital “Hippokration”, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece; (E.M.); (G.L.); (M.C.); (S.S.); (M.I.); (A.I.)
- Department of Nephrology, General Hospital “Hippokration”, 54642 Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, General Hospital “Hippokration”, 54642 Thessaloniki, Greece; (A.X.); (A.F.)
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece; (E.M.); (G.L.); (M.C.); (S.S.); (M.I.); (A.I.)
- Department of Nephrology, General Hospital “Hippokration”, 54642 Thessaloniki, Greece
| | - Myrto Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece; (E.M.); (G.L.); (M.C.); (S.S.); (M.I.); (A.I.)
| | - Artemis Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece; (E.M.); (G.L.); (M.C.); (S.S.); (M.I.); (A.I.)
| | - Sophia Briza
- Department of Architecture, School of Engineering, University of Thessaly, 38334 Thessaly, Greece;
| | - Dimitria Ioanna Briza
- School of Informatics, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece;
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, General Hospital “Hippokration”, 54642 Thessaloniki, Greece; (A.X.); (A.F.)
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece; (E.M.); (G.L.); (M.C.); (S.S.); (M.I.); (A.I.)
- Department of Nephrology, General Hospital “Hippokration”, 54642 Thessaloniki, Greece
| |
Collapse
|
15
|
Pinto TNC, da Silva CCBM, Pinto RMC, Duarte AJDS, Benard G, Fernandes JR. Human peripheral blood age-associated (CD11c+Tbet+) B cells: No association with age. Cytometry A 2023; 103:619-623. [PMID: 37353962 DOI: 10.1002/cyto.a.24773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Thalyta Nery Carvalho Pinto
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | | | | | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | - Gil Benard
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | - Juliana Ruiz Fernandes
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| |
Collapse
|
16
|
Szukiewicz D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int J Mol Sci 2023; 24:9818. [PMID: 37372966 DOI: 10.3390/ijms24129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The comprehensive anabolic effects of insulin throughout the body, in addition to the control of glycemia, include ensuring lipid homeostasis and anti-inflammatory modulation, especially in adipose tissue (AT). The prevalence of obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has been increasing worldwide on a pandemic scale with accompanying syndemic health problems, including glucose intolerance, insulin resistance (IR), and diabetes. Impaired tissue sensitivity to insulin or IR paradoxically leads to diseases with an inflammatory component despite hyperinsulinemia. Therefore, an excess of visceral AT in obesity initiates chronic low-grade inflammatory conditions that interfere with insulin signaling via insulin receptors (INSRs). Moreover, in response to IR, hyperglycemia itself stimulates a primarily defensive inflammatory response associated with the subsequent release of numerous inflammatory cytokines and a real threat of organ function deterioration. In this review, all components of this vicious cycle are characterized with particular emphasis on the interplay between insulin signaling and both the innate and adaptive immune responses related to obesity. Increased visceral AT accumulation in obesity should be considered the main environmental factor responsible for the disruption in the epigenetic regulatory mechanisms in the immune system, resulting in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
17
|
Maheshwari S, Dwyer LJ, Sîrbulescu RF. Inflammation and immunomodulation in central nervous system injury - B cells as a novel therapeutic opportunity. Neurobiol Dis 2023; 180:106077. [PMID: 36914074 PMCID: PMC10758988 DOI: 10.1016/j.nbd.2023.106077] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Acute injury to the central nervous system (CNS) remains a complex and challenging clinical need. CNS injury initiates a dynamic neuroinflammatory response, mediated by both resident and infiltrating immune cells. Following the primary injury, dysregulated inflammatory cascades have been implicated in sustaining a pro-inflammatory microenvironment, driving secondary neurodegeneration and the development of lasting neurological dysfunction. Due to the multifaceted nature of CNS injury, clinically effective therapies for conditions such as traumatic brain injury (TBI), spinal cord injury (SCI), and stroke have proven challenging to develop. No therapeutics that adequately address the chronic inflammatory component of secondary CNS injury are currently available. Recently, B lymphocytes have gained increasing appreciation for their role in maintaining immune homeostasis and regulating inflammatory responses in the context of tissue injury. Here we review the neuroinflammatory response to CNS injury with particular focus on the underexplored role of B cells and summarize recent results on the use of purified B lymphocytes as a novel immunomodulatory therapeutic for tissue injury, particularly in the CNS.
Collapse
Affiliation(s)
- Saumya Maheshwari
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liam J Dwyer
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Jiang Y, Dai S, Jia L, Qin L, Zhang M, Liu H, Wang X, Pang R, Zhang J, Peng G, Li W. Single-cell transcriptomics reveals cell type-specific immune regulation associated with anti-NMDA receptor encephalitis in humans. Front Immunol 2022; 13:1075675. [PMID: 36544777 PMCID: PMC9762154 DOI: 10.3389/fimmu.2022.1075675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a rare autoimmune disease, and the peripheral immune characteristics associated with anti-NMDARE antibodies remain unclear. Methods Herein, we characterized peripheral blood mononuclear cells from patients with anti-NMDARE and healthy individuals by single-cell RNA sequencing (scRNA-seq). Results The transcriptional profiles of 129,217 cells were assessed, and 21 major cell clusters were identified. B-cell activation and differentiation, plasma cell expansion, and excessive inflammatory responses in innate immunity were all identified. Patients with anti-NMDARE showed higher expression levels of CXCL8, IL1B, IL6, TNF, TNFSF13, TNFSF13B, and NLRP3. We observed that anti-NMDARE patients in the acute phase expressed high levels of DC_CCR7 in human myeloid cells. Moreover, we observed that anti-NMDARE effects include oligoclonal expansions in response to immunizing agents. Strong humoral immunity and positive regulation of lymphocyte activation were observed in acute stage anti-NMDARE patients. Discussion This high-dimensional single-cell profiling of the peripheral immune microenvironment suggests that potential mechanisms are involved in the pathogenesis and recovery of anti-NMDAREs.
Collapse
Affiliation(s)
- Yushu Jiang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Wei Li, ; Yushu Jiang,
| | - Shuhua Dai
- Department of Neurology, Henan Provincial People’s Hospital, Xinxiang Medical University, Zhengzhou, Henan, China
| | - Linlin Jia
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingzhi Qin
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Milan Zhang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huiqin Liu
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojuan Wang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Pang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gongxin Peng
- China Center for Bioinformatics, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and School of Basic Medicine, Beijing, China
| | - Wei Li
- Department of Neurology, Henan Joint International Research Laboratory of Accurate Diagnosis, Treatment, Research and Development, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Wei Li, ; Yushu Jiang,
| |
Collapse
|
19
|
Dodd KC, Menon M. Sex bias in lymphocytes: Implications for autoimmune diseases. Front Immunol 2022; 13:945762. [PMID: 36505451 PMCID: PMC9730535 DOI: 10.3389/fimmu.2022.945762] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune diseases are characterized by a significant sex dimorphism, with women showing increased susceptibility to disease. This is, at least in part, due to sex-dependent differences in the immune system that are influenced by the complex interplay between sex hormones and sex chromosomes, with contribution from sociological factors, diet and gut microbiota. Sex differences are evident in the number and function of lymphocyte populations. Women mount a stronger pro-inflammatory response than males, with increased lymphocyte proliferation, activation and pro-inflammatory cytokine production, whereas men display expanded regulatory cell subsets. Ageing alters the immune landscape of men and women in differing ways, resulting in changes in autoimmune disease susceptibility. Here we review the current literature on sex differences in lymphocyte function, the factors that influence this, and the implications for autoimmune disease. We propose that improved understanding of sex bias in lymphocyte function can provide sex-specific tailoring of treatment strategies for better management of autoimmune diseases.
Collapse
Affiliation(s)
- Katherine C. Dodd
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Salford, United Kingdom
| | - Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom,*Correspondence: Madhvi Menon,
| |
Collapse
|
20
|
Sosa-Hernández VA, Romero-Ramírez S, Cervantes-Díaz R, Carrillo-Vázquez DA, Navarro-Hernandez IC, Whittall-García LP, Absalón-Aguilar A, Vargas-Castro AS, Reyes-Huerta RF, Juárez-Vega G, Meza-Sánchez DE, Ortiz-Navarrete V, Torres-Ruiz J, Mejía-Domínguez NR, Gómez-Martín D, Maravillas-Montero JL. CD11c + T-bet + CD21 hi B Cells Are Negatively Associated With Renal Impairment in Systemic Lupus Erythematosus and Act as a Marker for Nephritis Remission. Front Immunol 2022; 13:892241. [PMID: 35663936 PMCID: PMC9160198 DOI: 10.3389/fimmu.2022.892241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
Lupus nephritis (LN) is one of the most common manifestations of systemic lupus erythematosus (SLE), characterized by abnormal B cell activation and differentiation to memory or plasma effector cells. However, the role of these cells in the pathogenesis of LN is not fully understood, as well as the effect of induction therapy on B cell subsets, possibly associated with this manifestation, like aged-associated B cells (ABCs). Consequently, we analyzed the molecules defining the ABCs subpopulation (CD11c, T-bet, and CD21) through flow cytometry of blood samples from patients with lupus presenting or not LN, following up a small sub-cohort after six months of induction therapy. The frequency of ABCs resulted higher in LN patients compared to healthy subjects. Unexpectedly, we identified a robust reduction of a CD21hi subset that was almost specific to LN patients. Moreover, several clinical and laboratory lupus features showed strong and significant correlations with this undefined B cell subpopulation. Finally, it was observed that the induction therapy affected not only the frequencies of ABCs and CD21hi subsets but also the phenotype of the CD21hi subset that expressed a higher density of CXCR5. Collectively, our results suggest that ABCs, and more importantly the CD21hi subset, may work to assess therapeutic response since the reduced frequency of CD21hi cells could be associated with the onset of LN.
Collapse
Affiliation(s)
- Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel A Carrillo-Vázquez
- Departamento de Medicina Interna, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Laura P Whittall-García
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Abdiel Absalón-Aguilar
- Departamento de Medicina Interna, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ana S Vargas-Castro
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Raúl F Reyes-Huerta
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jiram Torres-Ruiz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
21
|
Sachinidis A, Garyfallos A. Involvement of age-associated B cells in EBV-triggered autoimmunity. Immunol Res 2022; 70:546-549. [PMID: 35575824 PMCID: PMC9109436 DOI: 10.1007/s12026-022-09291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022]
Abstract
Abstract EBV infection has long been suspected to play a role in the development of autoimmune diseases. Interestingly, a recently published study has provided the strongest evidence to date that EBV is truly a trigger for multiple sclerosis, a well known inflammatory and neurodegenerative autoimmune disorder. Taking into account the data derived from mice models of autoimmune diseases that were also infected with a murine analog of EBV, in this commentary, we highlight the involvement of age-associated B cells, a B cell population defined as CD19+CD11c+CD21−T-bet+, in the process of EBV-triggered autoimmunity. Of note, the aforementioned B cell subset expands continuously with age in healthy individuals, whereas displays a premature strong accumulation in cases of autoimmune diseases. These cells contribute to autoimmune disease pathogenesis via a variety of functions, such as the production of autoantibodies and/or the formation of spontaneous germinal centers. Latent form of EBV seems to modify these B cells, so as to function pathogenically in cases of autoimmunity. Targeting of ABCs, as well as the elimination of EBV, may both be potential treatments for autoimmunity. Highlights Latent form of EBV potentially triggers autoimmune diseases ABCs expand in autoimmunity and contribute to disease pathogenesis EBV modifies ABCs, so as to function pathogenically in autoimmune diseases Apart from EBV elimination, targeting of ABCs may also bring therapeutic benefits to autoimmune patients
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
22
|
Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022; 12:811518. [PMID: 35281989 PMCID: PMC8913495 DOI: 10.3389/fneur.2021.811518] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is characterized, amongst other features, by a complex process of cellular senescence involving both innate and adaptive immunity, called immunosenescence and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel each other and partially explain increasing incidence of cancers, infections, age-related autoimmunity, and vascular disease as well as a reduced response to vaccination. Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in disease-modifying therapies (DMTs) and management has improved long-term survival. However, disability progression, increasing with age and disease duration, remains. Neurologists are now involved in caring for elderly MS patients, with increasing comorbidities. Aging of the immune system therefore has relevant implications for MS pathogenesis, response to DMTs and the risks mediated by these treatments. We propose to review current evidence regarding markers and molecular mechanisms of immunosenescence and their relevance to understanding MS pathogenesis. We will focus on age-related changes in the innate and adaptive immune system in MS and other auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. The consequences of these immune changes on MS pathology, in interaction with the intrinsic aging process of central nervous system resident cells will be discussed. Finally, the impact of immunosenescence on disease evolution and on the safety and efficacy of current DMTs will be presented.
Collapse
Affiliation(s)
- Océane Perdaens
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- *Correspondence: Vincent van Pesch
| |
Collapse
|
23
|
Sachinidis A, Garyfallos A. Double Negative (DN) B cells: A connecting bridge between rheumatic diseases and COVID-19? Mediterr J Rheumatol 2021; 32:192-199. [PMID: 34964023 PMCID: PMC8693305 DOI: 10.31138/mjr.32.3.192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Double Negative (DN) B cells constitute a B cell population that lacks expression of immunoglobulin D and CD27 memory marker. These cells expand in elderly healthy individuals, but also accumulate prematurely in autoimmune and infectious diseases. COVID-19 is a pandemic infectious disease caused by SARS-CoV-2, a coronavirus that was first observed in Wuhan, China in December 2019. In its more severe cases, COVID-19 causes severe pneumonia and acute respiratory syndrome with high morbidity and mortality. Recent studies have revealed that the extrafollicular DN2 B cell subset, previously described in lupus patients, does also expand in severe and/or critical groups of COVID-19 patients. These DN2 cells correlate with disease severity and laboratory parameters of inflammation. However, their exact role and function in COVID-19 require to be further investigated. In this review, we highlight the DN immune responses in both rheumatic diseases and COVID-19, and we point out the importance of clarifying DN’s role in the immunopathology of the aforementioned infection, as it could probably enable better management of rheumatic diseases during the pandemic. Of note, the symptomatology of COVID-19, as well as the potential outcome of death, have given rise to a worldwide concern and scare of exposition to SARS-CoV-2, especially among the rheumatological patients who believe to be at higher risk due to their immunological background and the immunosuppressive therapies. Nevertheless, there is no convincing evidence so far that these patients are truly at higher risk than others.
Collapse
Affiliation(s)
- Athanasios Sachinidis
- 4 Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4 Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
24
|
Sachinidis A, Garyfallos A. COVID-19 vaccination can occasionally trigger autoimmune phenomena, probably via inducing age-associated B cells. Int J Rheum Dis 2021; 25:83-85. [PMID: 34766739 PMCID: PMC8652459 DOI: 10.1111/1756-185x.14238] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Athanasios Sachinidis
- 4th Department of Internal Medicine, School of Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Garyfallos
- 4th Department of Internal Medicine, School of Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
25
|
Ligotti ME, Pojero F, Accardi G, Aiello A, Caruso C, Duro G, Candore G. Immunopathology and Immunosenescence, the Immunological Key Words of Severe COVID-19. Is There a Role for Stem Cell Transplantation? Front Cell Dev Biol 2021; 9:725606. [PMID: 34595175 PMCID: PMC8477205 DOI: 10.3389/fcell.2021.725606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
The outcomes of Coronavirus disease-2019 (COVID-19) vary depending on the age, health status and sex of an individual, ranging from asymptomatic to lethal. From an immunologic viewpoint, the final severe lung damage observed in COVID-19 should be caused by cytokine storm, driven mainly by interleukin-6 and other pro-inflammatory cytokines. However, which immunopathogenic status precedes this "cytokine storm" and why the male older population is more severely affected, are currently unanswered questions. The aging of the immune system, i.e., immunosenescence, closely associated with a low-grade inflammatory status called "inflammageing," should play a key role. The remodeling of both innate and adaptive immune response observed with aging can partly explain the age gradient in severity and mortality of COVID-19. This review discusses how aging impacts the immune response to the virus, focusing on possible strategies to rejuvenate the immune system with stem cell-based therapies. Indeed, due to immunomodulatory and anti-inflammatory properties, multipotent mesenchymal stem cells (MSCs) are a worth-considering option against COVID-19 adverse outcomes.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- International Society on Aging and Disease, Fort Worth, TX, United States
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
26
|
Liu Y, Zhang H, Zhang TX, Yuan M, Du C, Zeng P, Huang Z, Jia D, Yang G, Shi FD, Zhang C. Effects of Tocilizumab Therapy on Circulating B Cells and T Helper Cells in Patients With Neuromyelitis Optica Spectrum Disorder. Front Immunol 2021; 12:703931. [PMID: 34394101 PMCID: PMC8360623 DOI: 10.3389/fimmu.2021.703931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Tocilizumab, a humanized anti-IL-6 receptor monoclonal antibody, showed its therapeutic efficacy on neuromyelitis optica spectrum disorder (NMOSD). To assess the immunological effects of this drug on B cells, follicular T helper (Tfh) cells, and peripheral T helper (Tph) cells in patients with NMOSD, peripheral B cell and Tfh cell phenotypes were evaluated in 26 patients with NMOSD before and after tocilizumab treatment by nine-color flow cytometry, as well as the expression of costimulatory and co-inhibitory molecules on B cells. Results showed that the frequency of CD27+IgD− switched memory B cells, CD27-IgD- double-negative B cells, and CD27highCD38high antibody-secreting cells was increased in patients with NMOSD. Tocilizumab treatment led to a significant shift of B cells to naïve B cells from memory B cells after 3 months. Three markers on B cells associated with T-cell activation (i.e., CD86 CD69, and HLA-DR) were downregulated after tocilizumab treatment. The frequencies of total Tfh and Tph cells were decreased, whereas that of follicular regulatory T cells tended to increase. Intrinsic increased PD-L1 and PD-L2 expression was characteristic of B cells in patients with NMOSD. Tocilizumab selectively restored PD-L1 on B-cell subsets. These results provided evidence that tocilizumab enhanced B- and T-cell homoeostasis by regulating B-cell differentiation and inhibiting lymphocyte activation in patients with NMOSD.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Huiming Zhang
- Department of Neurology, The Third People's Hospital of Datong, Datong, China
| | - Tian-Xiang Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Meng Yuan
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Chen Du
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Pei Zeng
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhenning Huang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dongmei Jia
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Guili Yang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Jing-Jin Center for Neuroinflammation, China National Clinical Research Center for Neurological Diseases, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Jing-Jin Center for Neuroinflammation, China National Clinical Research Center for Neurological Diseases, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Andryukov BG, Besednova NN. Older adults: panoramic view on the COVID-19 vaccination. AIMS Public Health 2021; 8:388-415. [PMID: 34395690 PMCID: PMC8334630 DOI: 10.3934/publichealth.2021030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
In December 2020, COVID-19 vaccination started in many countries, with which the world community hopes to stop the further spread of the current pandemic. More than 90% of sick and deceased patients belong to the category of older adults (65 years and older). This category of the population is most vulnerable to infectious diseases, so vaccination is the most effective preventive strategy, the need for which for older adults is indisputable. Here we briefly summarize information about age-related changes in the immune system and present current data on their impact on the formation of the immune response to vaccination. Older age is accompanied by the process of biological aging accompanied by involution of the immune system with increased susceptibility to infections and a decrease in the effect of immunization. Therefore, in the ongoing mass COVID-19 vaccination, the older adults are a growing public health concern. The authors provide an overview of the various types of COVID-19 vaccines approved for mass immunization of the population by the end of 2020, including older adults, as well as an overview of strategies and platforms to improve the effectiveness of vaccination of this population. In the final part, the authors propose for discussion a system for assessing the safety and monitoring the effectiveness of COVID-19 vaccines for the older adults.
Collapse
Affiliation(s)
- Boris G Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087, Vladivostok, Russia
- Far Eastern Federal University (FEFU), 690091, Vladivostok, Russia
| | - Natalya N Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087, Vladivostok, Russia
| |
Collapse
|