1
|
Hau PT, Shiu A, Tam EWT, Chau ECT, Murillo M, Humer E, Po WW, Yu RCW, Fung J, Seto SW, Tsang CC, Chow FWN. Diversity and Antifungal Susceptibilities of Yeasts from Mangroves in Hong Kong, China-A One Health Aspect. J Fungi (Basel) 2024; 10:728. [PMID: 39452680 PMCID: PMC11508678 DOI: 10.3390/jof10100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
While mangrove ecosystems are rich in biodiversity, they are increasingly impacted by climate change and urban pollutants. The current study provides first insights into the emergence of potentially pathogenic yeasts in Hong Kong's mangroves. Sediment and water samples were collected from ten urban and rural mangroves sites. Initial CHROMagarTM Candida Plus screening, representing the first application of this differential medium for water and soil samples collected from a non-clinical environment, enabled the rapid, preliminary phenotypic identification of yeast isolates from mangroves. Subsequent molecular profiling (ITS and/or 28S nrDNA sequencing) and antifungal drug susceptibility tests were conducted to further elucidate yeast diversity and drug resistance. A diversity of yeasts, including 45 isolates of 18 distinct species across 13 genera/clades, was isolated from sediments and waters from Hong Kong mangroves. Molecular profiling revealed a dominance of the Candida/Lodderomyces clade (44.4%), a group of notorious opportunistic pathogens. The findings also reveal a rich biodiversity of non-Candida/Lodderomyces yeasts in mangroves, including the first reported presence of Apiotrichum domesticum and Crinitomyces flavificans. A potentially novel Yamadazyma species was also discovered. Remarkably, 14.3% of the ubiquitous Candida parapsilosis isolates displayed resistance to multiple antifungal drugs, suggesting that mangroves may be reservoirs of multi-drug resistance. Wildlife, especially migratory birds, may disseminate these hidden threats. With significant knowledge gaps regarding the environmental origins, drug resistance, and public health impacts of pathogenic yeasts, urgent surveillance is needed from a One Health perspective. This study provides an early warning that unrestrained urbanization can unleash resistant pathogens from coastal ecosystems globally. It underscores the necessity for enhanced surveillance studies and interdisciplinary collaboration between clinicians, ornithologists, and environmental microbiologists to effectively monitor and manage this environmental health risk, ensuring the maintenance of 'One Health'.
Collapse
Affiliation(s)
- Pak-Ting Hau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Anson Shiu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Emily Wan-Ting Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China;
| | - Eddie Chung-Ting Chau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Michaela Murillo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Eva Humer
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Krems, Am Campus Krems, Trakt G, 3500 Krems an der Donau, Austria
| | - Wai-Wai Po
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Ray Chun-Wai Yu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Joshua Fung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China;
- School of Biomedical Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - Chi-Ching Tsang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| |
Collapse
|
2
|
Kondori N, Jaén-Luchoro D, Karlsson R, Abedzaedeh B, Hammarström H, Jönsson B. Exophiala species in household environments and their antifungal resistance profile. Sci Rep 2024; 14:17622. [PMID: 39085337 PMCID: PMC11291800 DOI: 10.1038/s41598-024-68166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
The black fungus Exophiala causes a wide range of infections from superficial to subcutaneous, but also invasive fungal infections in immunocompromised patients as well as healthy individuals. In addition, Exophiala, is a common colonizer of the air ways of patients with cystic fibrosis. However, the source of infection and mode of transmission is still unclear. The aim of this study was to investigate the presence of Exophiala in samples collected from Swedish indoor environments. We found that the Exophiala species were commonly found in dishwashers and that Exophiala dermatitidis was the most common Exophiala species, being identified in 70% (26 out of the 37) of samples. Almost all E. dermatitidis isolates had the ability to grow at 42 °C (P = 0.0002) and were catalase positive. Voriconazole and posaconazole exhibited the lowest MICs, while caspofungin and anidulafungin lack the antifungal activities in vitro. Future studies are needed to illuminate the transmission mode of the fungi.
Collapse
Affiliation(s)
- Nahid Kondori
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 7193, 402 34, Gothenburg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 7193, 402 34, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 7193, 402 34, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| | - Bahman Abedzaedeh
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Helena Hammarström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 7193, 402 34, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Bodil Jönsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 7193, 402 34, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
3
|
Ravenel K, Guegan H, Gastebois A, Bouchara JP, Gangneux JP, Giraud S. Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs. Mycopathologia 2024; 189:19. [PMID: 38407729 DOI: 10.1007/s11046-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
Filamentous fungi frequently colonize the airways of patients with cystic fibrosis and may cause severe diseases, such as the allergic bronchopulmonary aspergillosis. The most common filamentous fungi capable to chronically colonize the respiratory tract of the patients are Aspergillus fumigatus and Scedosporium species. Defining the treatment strategy may be challenging, the number of available drugs being limited and some of the causative agents being multiresistant microorganisms. The knowledge of the fungal niches in the outdoor and indoor environment is needed for understanding the origin of the contamination of the patients. In light of the abundance of some of the causative molds in compost, agricultural and flower fields, occupational activities related to such environments should be discouraged for patients with cystic fibrosis (CF). In addition, the microbiological monitoring of their indoor environment, including analysis of air and dust on surfaces, is essential to propose preventive measures aiming to reduce the exposure to environmental molds. Nevertheless, some specific niches were also identified in the indoor environment, in relation with humidity which favors the growth of thermotolerant molds. Potted plants were reported as indoor reservoirs for Scedosporium species. Likewise, Exophiala dermatitidis may be spread in the kitchen via dishwashers. However, genotype studies are still required to establish the link between dishwashers and colonization of the airways of CF patients by this black yeast. Moreover, as nothing is known regarding the other filamentous fungi associated with CF, further studies should be conducted to identify other potential specific niches in the habitat.
Collapse
Affiliation(s)
- Kévin Ravenel
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Hélène Guegan
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Amandine Gastebois
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Philippe Bouchara
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Pierre Gangneux
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Sandrine Giraud
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France.
| |
Collapse
|
4
|
Futatsuya T, Mura T, Anzawa K, Mochizuki T, Shimizu A, Iinuma Y. MALDI-TOF MS identification of Exophiala species isolated in Japan: Library enrichment and faster sample preparation. J Dermatol 2023; 50:1313-1320. [PMID: 37381719 DOI: 10.1111/1346-8138.16878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Exophiala species cause chromoblastomycosis, mycetoma, and phaeohyphomycosis, which are occasionally fatally in immunocompromised patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provides rapid and accurate examination of isolated bacteria and some fungal isolates, but the preparation method for filamentous fungi is complicated. In this study, 31 clinical isolates of Exophiala spp. in Japan were identified by MALDI-TOF MS with a library enriched by adding data. To simplify the sample preparation method, two modified methods were compared with the standard method for filamentous fungi. The agar cultivation sample preparation method reduced the time required for liquid culture and was considered suitable for clinical use. In 30 of 31 clinical isolates of Exophiala spp., the species identified by MALDI-TOF MS with the highest score matched the species identified by sequencing the internal transcribed spacer region. Exophiala dermatitidis, E. lecanii-corni, and E. oligosperma were identified above the genus level, while E. jeanselmei and E. xenobiotica were often not identified at the species level. The identification scores tended to be lower for less-registered strains in the in-house library. It is suggested that library enrichment and the modified preparation method may facilitate early diagnosis of rare fungal infections by Exophiala spp. in clinical laboratories using MALDI-TOF MS.
Collapse
Affiliation(s)
| | - Tatsuki Mura
- Department of Clinical Laboratory, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Kazushi Anzawa
- Department of Dermatology, Kanazawa Medical University, Ishikawa, Japan
| | - Takashi Mochizuki
- Department of Dermatology, Kanazawa Medical University, Ishikawa, Japan
| | - Akira Shimizu
- Department of Dermatology, Kanazawa Medical University, Ishikawa, Japan
| | - Yoshitsugu Iinuma
- Department of Infectious Diseases, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
5
|
Osada H, Nagashima-Fukui M, Okazawa T, Omura M, Makimura K, Ohmori K. Case report: First isolation of Exophiala dermatitidis from subcutaneous phaeohyphomycosis in a cat. Front Vet Sci 2023; 10:1259115. [PMID: 37789870 PMCID: PMC10543274 DOI: 10.3389/fvets.2023.1259115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Phaeohyphomycosis, which is caused by the opportunistic black yeast-like fungus Exophiala dermatitidis, has been reported in humans and dogs. However, no previous studies describing E. dermatitidis infections in cats have been published. Herein, we report a case of subcutaneous phaeohyphomycosis caused by E. dermatitidis. A 12-year-old, castrated male Japanese domestic short-haired cat presented with a solitary subcutaneous abscess on the left side of the neck, where an esophageal tube for force-feeding had been placed previously. The cat was diagnosed with hepatitis and was treated with prednisolone. The subcutaneous abscess was incised using a scalpel blade and the pus was excreted. The cytology of the pus revealed hyphae with neutrophil and macrophage infiltration. Although the cat was treated with oral itraconazole or an infusion of topical ketoconazole cream applied to the lesion, it died. The fungal culture of the pus specimen developed dark-green, waxy, smooth, yeast-like colonies. Sequencing of the internal transcribed spacer 1-4 regions of the ribosomal DNA of the pus specimen showed 100% identity with that of the standard strains of E. dermatitidis. Based on these results, the cat was diagnosed with subcutaneous phaeohyphomycosis caused by E. dermatitidis. The antifungal susceptibility test revealed that the fungus showed low or moderate susceptibility to the antifungal drugs examined, except for amphotericin B, which exhibited high in vitro antifungal activity. This is the first case report to provide definitive evidence of E. dermatitidis infection in cats and antifungal susceptibility test results against clinically isolated E. dermatitidis.
Collapse
Affiliation(s)
- Hironari Osada
- Animal Medical Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Maiko Nagashima-Fukui
- Animal Medical Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Taiga Okazawa
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Miki Omura
- School of Medicine, Graduate School of Medicine, Teikyo University, Itabashi, Tokyo, Japan
- Mycolabo Co., Ltd, Mitaka, Tokyo, Japan
| | - Koichi Makimura
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | - Keitaro Ohmori
- Animal Medical Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
6
|
Kurbessoian T, Murante D, Crocker A, Hogan DA, Stajich JE. In host evolution of Exophiala dermatitidis in cystic fibrosis lung micro-environment. G3 (BETHESDA, MD.) 2023; 13:jkad126. [PMID: 37293838 PMCID: PMC10484061 DOI: 10.1093/g3journal/jkad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/26/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Individuals with cystic fibrosis (CF) are susceptible to chronic lung infections that lead to inflammation and irreversible lung damage. While most respiratory infections that occur in CF are caused by bacteria, some are dominated by fungi such as the slow-growing black yeast Exophiala dermatitidis. Here, we analyze isolates of E. dermatitidis cultured from two samples, collected from a single subject 2 years apart. One isolate genome was sequenced using long-read Nanopore technology as an in-population reference to use in comparative single nucleotide polymorphism and insertion-deletion variant analyses of 23 isolates. We then used population genomics and phylo-genomics to compare the isolates to each other as well as the reference genome strain E. dermatitidis NIH/UT8656. Within the CF lung population, three E. dermatitidis clades were detected, each with varying mutation rates. Overall, the isolates were highly similar suggesting that they were recently diverged. All isolates were MAT 1-1, which was consistent with their high relatedness and the absence of evidence for mating or recombination between isolates. Phylogenetic analysis grouped sets of isolates into clades that contained isolates from both early and late time points indicating there are multiple persistent lineages. Functional assessment of variants unique to each clade identified alleles in genes that encode transporters, cytochrome P450 oxidoreductases, iron acquisition, and DNA repair processes. Consistent with the genomic heterogeneity, isolates showed some stable phenotype heterogeneity in melanin production, subtle differences in antifungal minimum inhibitory concentrations, and growth on different substrates. The persistent population heterogeneity identified in lung-derived isolates is an important factor to consider in the study of chronic fungal infections, and the analysis of changes in fungal pathogens over time may provide important insights into the physiology of black yeasts and other slow-growing fungi in vivo.
Collapse
Affiliation(s)
- Tania Kurbessoian
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Alex Crocker
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Torres-Garcia D, García D, Réblová M, Jurjević Ž, Hubka V, Gené J. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. PERSOONIA 2023; 51:194-228. [PMID: 38665982 PMCID: PMC11041900 DOI: 10.3767/persoonia.2023.51.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 04/28/2024]
Abstract
Black yeasts comprise a group of Ascomycota of the order Chaetothyriales with highly variable morphology, a great diversity of ecological niches and life cycles. Despite the ubiquity of these fungi, their diversity in freshwater sediments is still poorly understood. During a survey of culturable Ascomycota from river and stream sediments in various sampling sites in Spain, we obtained 47 isolates of black yeasts by using potato dextrose agar supplemented with cycloheximide. A preliminary morphological study and sequence analyses of the internal transcribed spacer region (ITS) and the large subunit (LSU) of the nuclear rDNA revealed that most of the isolates belonged to the family Herpotrichiellaceae. We have confidently identified 30 isolates representing the following species: Capronia pulcherrima, Cladophialophora emmonsii, Exophiala equina, Exophiala pisciphila, Exophiala radicis, and Phialophora americana. However, we encountered difficulty in assigning 17 cultures to any known species within Chaetothyriales. Combining phenotypic and multi-locus phylogenetic analyses based on the ITS, LSU, β-tubulin (tub2) and translation elongation factor 1-α (tef1-α) gene markers, we propose the new genus Aciculomyces in the Herpotrichiellaceae to accommodate the novel species Aciculomyces restrictus. Other novel species in this family include Cladophialophora denticulata, Cladophialophora heterospora, Cladophialophora irregularis, Exophiala candelabrata, Exophiala dehoogii, Exophiala ramosa, Exophiala verticillata and Phialophora submersa. The new species Cyphellophora spiralis, closely related to Cyphellophora suttonii, is described, and the phylogeny of the genus Anthopsis in the family Cyphellophoraceae is discussed. By utilizing these four markers, we were able to strengthen the phylogenetic resolution and provide more robust taxonomic assessments within the studied group. Our findings indicate that freshwater sediments may serve as a reservoir for intriguing black yeasts, which warrant further investigation to address gaps in phylogenetic relationships, particularly within Herpotrichiellaceae. Citation: Torres-Garcia D, García D, Réblová M, et al. 2023. Diversity and novel lineages of black yeasts in Chaetothyriales from freshwater sediments in Spain. Persoonia 51: 194-228. doi: 10.3767/persoonia.2023.51.05.
Collapse
Affiliation(s)
- D. Torres-Garcia
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - D. García
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - M. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, Průhonice, Czech Republic
| | - Ž. Jurjević
- EMSL Analytical, Cinnaminson, New Jersey, USA
| | - V. Hubka
- Charles University, Faculty of Science, Department of Botany, Prague, Czech Republic
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, Prague, Czech Republic
| | - J. Gené
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| |
Collapse
|
8
|
The origin of human pathogenicity and biological interactions in Chaetothyriales. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractFungi in the order Chaetothyriales are renowned for their ability to cause human infections. Nevertheless, they are not regarded as primary pathogens, but rather as opportunists with a natural habitat in the environment. Extremotolerance is a major trend in the order, but quite different from black yeasts in Capnodiales which focus on endurance, an important additional parameter is advancing toxin management. In the ancestral ecology of rock colonization, the association with metabolite-producing lichens is significant. Ant-association, dealing with pheromones and repellents, is another mainstay in the order. The phylogenetically derived family, Herpotrichiellaceae, shows dual ecology in monoaromatic hydrocarbon assimilation and the ability to cause disease in humans and cold-blooded vertebrates. In this study, data on ecology, phylogeny, and genomics were collected and analyzed in order to support this hypothesis on the evolutionary route of the species of Chaetothyriales. Comparing the ribosomal tree with that of enzymes involved in toluene degradation, a significant expansion of cytochromes is observed and the toluene catabolism is found to be complete in some of the Herpotrichiellaceae. This might enhance human systemic infection. However, since most species have to be traumatically inoculated in order to cause disease, their invasive potential is categorized as opportunism. Only in chromoblastomycosis, true pathogenicity might be surmised. The criterion would be the possible escape of agents of vertebrate disease from the host, enabling dispersal of adapted genotypes to subsequent generations.
Collapse
|
9
|
Thitla T, Kumla J, Khuna S, Lumyong S, Suwannarach N. Species Diversity, Distribution, and Phylogeny of Exophiala with the Addition of Four New Species from Thailand. J Fungi (Basel) 2022; 8:766. [PMID: 35893134 PMCID: PMC9331753 DOI: 10.3390/jof8080766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The genus Exophiala is an anamorphic ascomycete fungus in the family Herpotrichiellaceae of the order Chaetothyriales. Exophiala species have been classified as polymorphic black yeast-like fungi. Prior to this study, 63 species had been validated, published, and accepted into this genus. Exophiala species are known to be distributed worldwide and have been isolated in various habitats around the world. Several Exophiala species have been identified as potential agents of human and animal mycoses. However, in some studies, Exophiala species have been used in agriculture and biotechnological applications. Here, we provide a brief review of the diversity, distribution, and taxonomy of Exophiala through an overview of the recently published literature. Moreover, four new Exophiala species were isolated from rocks that were collected from natural forests located in northern Thailand. Herein, we introduce these species as E. lamphunensis, E. lapidea, E. saxicola, and E. siamensis. The identification of these species was based on a combination of morphological characteristics and molecular analyses. Multi-gene phylogenetic analyses of a combination of the internal transcribed spacer (ITS) and small subunit (nrSSU) of ribosomal DNA, along with the translation elongation factor (tef), partial β-tubulin (tub), and actin (act) genes support that these four new species are distinct from previously known species of Exophiala. A full description, illustrations, and a phylogenetic tree showing the position of four new species are provided.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Marques GN, Cota JB, Leal MO, Silva NU, Flanagan CA, Crosta L, Tavares L, Oliveira M. First Documentation of Exophiala spp. Isolation in Psittaciformes. Animals (Basel) 2022; 12:ani12131699. [PMID: 35804598 PMCID: PMC9264867 DOI: 10.3390/ani12131699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/19/2022] Open
Abstract
Several fungi species are reported to act as opportunistic agents of infection in avian species. After the isolation of Exophiala spp., a dematiaceous fungal pathogen associated with a mucosal lesion in a military macaw (Ara militar), samples were collected from another 24 birds of the order Psittaciformes to study the possibility of Exophiala spp. being part of the commensal microbiota of these animals or its possible association with other clinical conditions. Swab samples were collected from the trachea and/or choanae of the birds and inoculated in Sabouraud chloramphenicol agar for fungal isolation. After incubation, fungal species were identified through their macroscopic and microscopic morphology. The presence of Exophiala spp. was identified in 15 of the 25 birds sampled and no statistical association was found between the clinical record of the birds and the fungal isolation. Our results suggest that Exophiala spp. can colonize the upper respiratory airways of psittaciform birds and has a low pathogenic potential in these animals. To the authors’ knowledge, this is the first report of Exophiala spp. isolation from samples of the upper respiratory tract of Psittaciformes.
Collapse
Affiliation(s)
- Gonçalo N. Marques
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - João B. Cota
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477 Lisbon, Portugal; (J.B.C.); (L.T.)
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Miriam O. Leal
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - Nuno U. Silva
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - Carla A. Flanagan
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - Lorenzo Crosta
- AEZAVEC (Avian, Exotic and Zoo Animal Veterinary Consultants), 22040 Tirol, Italy;
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477 Lisbon, Portugal; (J.B.C.); (L.T.)
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477 Lisbon, Portugal; (J.B.C.); (L.T.)
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
11
|
Ahamad A, Tehreem B, Farooqi M, Maramara B. Case report and literature review: double jeopardy – Exophiala dermatitidis and Mycobacterium canariasense central line-associated bloodstream infection in a patient. Access Microbiol 2022; 4:000347. [PMID: 35812706 PMCID: PMC9260090 DOI: 10.1099/acmi.0.000347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
Central line-associated bloodstream infection (CLABSI) is the most common nosocomial-acquired infection, affecting 38 000 patients in the USA annually. Approximately 8–10 % of inserted catheters lead to bloodstream infections, and ~25–30 % of infections are associated with mortality. Although proper line maintenance is essential to prevent infection, it is quite a challenge to avoid infection in patients with a long-term catheter. We present a case of a female in her 40s with a previous history of irritable bowel syndrome (IBS) who has had a central line for total parenteral nutrition for the past 2 years. The patient recently visited the emergency room with fever and generalized fatigue. Blood cultures sent to microbiology were positive for black mould, Exophiala dermatitidis. However, after a few days, microbiology reported an additional micro-organism, Mycobacterium canariasense, a pathogen rarely associated with bacteraemia. The patient was administered voriconazole and moxifloxacin for black mould and mycobacterium infection, respectively. We present an unusual case of rare opportunistic organisms causing bacteraemia and fungaemia in a patient with a long-term catheter. CLABSI remains a serious challenge for clinical facilities. Implementation and monitoring of effective strategies can prevent catheter-related bloodstream infections in patients with long-term catheters and can reduce the morbidity and mortality associated with CLABSI.
Collapse
Affiliation(s)
- Afrinash Ahamad
- Clinical Laboratory Sciences Program, School of Health Professions, Stony Brook University, Stony Brook, NY, USA
- Department of Neuroscience and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Bushra Tehreem
- Neonatal-Perinatal Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Maaz Farooqi
- Medical Informatics, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Bennadette Maramara
- Divison of Infectious Disease, Stony Brook Medical Center, Stony Brook, NY, USA
| |
Collapse
|
12
|
Alimu Y, Ban S, Yaguchi T. Molecular Phylogenetic Study of Strains Morphologically Identified as <i>Exophiala dermatitidis</i> from Clinical and Environmental Specimens in Japan. Med Mycol J 2022; 63:1-9. [DOI: 10.3314/mmj.21-00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yikelamu Alimu
- Medical Mycology Research Center (MMRC), Chiba University
| | - Sayaka Ban
- Medical Mycology Research Center (MMRC), Chiba University
| | | |
Collapse
|
13
|
Isola D, Scano A, Orrù G, Prenafeta-Boldú FX, Zucconi L. Hydrocarbon-Contaminated Sites: Is There Something More Than Exophiala xenobiotica? New Insights into Black Fungal Diversity Using the Long Cold Incubation Method. J Fungi (Basel) 2021; 7:jof7100817. [PMID: 34682237 PMCID: PMC8538888 DOI: 10.3390/jof7100817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
Human-made hydrocarbon-rich environments are important reservoirs of microorganisms with specific degrading abilities and pathogenic potential. In particular, black fungi are of great interest, but their presence in the environment is frequently underestimated because they are difficult to isolate. In the frame of a biodiversity study from fuel-contaminated sites involving 30 diesel car tanks and 112 fuel pump dispensers (52 diesel and 60 gasoline, respectively), a total of 181 black fungal strains were isolated. The long cold incubation (LCI) of water-suspended samples, followed by plating on Dichloran Rose Bengal Chloramphenicol Agar (DRBC), gave isolation yields up to six times (6.6) higher than those of direct plating on DRBC, and those of enrichment with a phenolic mix. The sequencing of ITS and LSU-rDNA confirmed the dominance of potentially pathogenic fungi from the family Herpotrichiellaceae and Exophiala xenobiotica. Moreover, other opportunistic species were found, including E. opportunistica, E. oligosperma, E. phaeomuriformis, and Rhinocladiella similis. The recurrent presence of E. crusticola, Knufia epidermidis, Aureobasidium melanogenum, Cladosporium spp., and Scolecobasidium spp. was also recorded. Interestingly, 12% of total isolates, corresponding to 50% of taxa found (16/32), represent new species. All the novel taxa in this study were isolated by LCI. These findings suggest that black fungal diversity in hydrocarbon-rich niches remains largely unexplored and that LCI can be an efficient tool for further investigations.
Collapse
Affiliation(s)
- Daniela Isola
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy;
- Correspondence: ; Tel.: +39-0761-357138
| | - Alessandra Scano
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (G.O.)
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (G.O.)
| | | | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy;
| |
Collapse
|
14
|
Microbial communities associated with honey bees in Brazil and in the United States. Braz J Microbiol 2021; 52:2097-2115. [PMID: 34264502 DOI: 10.1007/s42770-021-00539-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Honey bee colony losses worldwide call for a more in-depth understanding of the pathogenic and mutualistic components of the honey bee microbiota and their relation with the environment. In this descriptive study, we characterized the yeast and bacterial communities that arise from six substrates associated with honey bees: corbicular pollen, beebread, hive debris, intestinal contents, body surface of nurses and forager bees, comparing two different landscapes, Minas Gerais, Brazil and Maryland, United States. The sampling of five hives in Brazil and four in the USA yielded 217 yeast and 284 bacterial isolates. Whereas the yeast community, accounted for 47 species from 29 genera, was dominated in Brazil by Aureobasidium sp. and Candida orthopsilosis, the major yeast recovered from the USA was Debaryomyces hansenii. The bacterial community was more diverse, encompassing 65 species distributed across 31 genera. Overall, most isolates belonged to Firmicutes, genus Bacillus. Among LAB, species from Lactobacillus were the most prevalent. Cluster analysis evidenced high structuration of the microbial communities, with two distinguished microbial groups between Brazil and the United States. In general, the higher difference among sites and substrates were dependents on the turnover effect (~ 93% of the beta diversity), with a more pronounced effect of nestedness (~ 28%) observed from Brazil microbiota change. The relative abundance of yeasts and bacteria also showed the dissimilarity of the microbial communities between both environments. These results provide a comprehensive view of microorganisms associated with A. mellifera, highlighting the importance of the environment in the establishment of the microbiota associated with honey bees.
Collapse
|
15
|
Yu HY, Qu TT, Yang Q, Hu JH, Sheng JF. A fatal case of Exophiala dermatitidis meningoencephalitis in an immunocompetent host: A case report and literature review. J Infect Chemother 2021; 27:1520-1524. [PMID: 34215497 DOI: 10.1016/j.jiac.2021.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Central nervous system (CNS) infection due to Exophiala dermatitidis is rare and fatal, and primarily reported in immunocompromised patients or those with caspase recruitment domain-containing protein 9 deficiency. Herein, we describe a case of an otherwise healthy person (without underlying disease or gene deficiency) diagnosed with Exophiala dermatitidis meningoencephalitis. The patient achieved clinical remission under high-dose antifungal therapy in the first 14 months but died after 2 years of the therapy. CASE PRESENTATION A 15-year-old student with headache and fever was admitted to our department. Lumbar puncture showed increased cerebrospinal fluid (CSF) pressure, moderately high CSF protein levels and cell counts, and a remarkable decrease in CSF glucose and chloride. Magnetic resonance imaging of the brain revealed multiple lesions and cerebral pia mater enhancement. CSF culture confirmed E. dermatitidis infection. We administered 4-week antifungal therapy of amphotericin B, but his CSF culture remained positive. After receiving the 12-week standard dose of voriconazole (200 mg q12h), the patient's CSF culture became negative, but his condition deteriorated with intracranial lesion enlargement. We administered a high-dose voriconazole therapy (600-800 mg per day) for 12 months, which led to clinical remission. The voriconazole dose was reduced due to adverse effects including hepatic dysfunction and hypokalemia, and the disease progressed with high intracranial pressure and epileptic seizures. CONCLUSIONS CNS infection caused by E. dermatitidis is fatal and the most serious form of fungal infection. Initially, high-dose and long-term antifungal therapy could be effective. Gene defect and related antifungal immunodeficiency may be the most important pathogenic and lethal factor.
Collapse
Affiliation(s)
- Hai-Ying Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| | - Ting-Ting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| | - Jian-Hua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| | - Ji-Fang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Shangcheng District, Hangzhou, Zhejiang, China- 310003.
| |
Collapse
|
16
|
Bahadori T, Didehdar M, Khansarinezhad B, Shokohi T. Identification of opportunistic and nonopportunistic Exophiala species using high resolution melting analysis. Med Mycol 2021; 58:938-945. [PMID: 31977020 DOI: 10.1093/mmy/myz136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/02/2019] [Accepted: 12/20/2019] [Indexed: 01/13/2023] Open
Abstract
Exophiala is a genus comprising several species of opportunistic black yeasts. Exophiala species identification by morphological, physiological, and biochemical characteristics is challenging because of the low degree of phenotypic differences between species and its polyphyletic nature. We aimed to develop a high-resolution melting (HRM) assay based on the internal transcribed spacer (ITS) region to differentiate between pairs of clinical and environmental Exophiala species. HRM primers were designed based on the conserved ITS region of five Exophiala species (E. dermatitidis, E. phaeomuriformis, E. heteromorpha, E. xenobiotica, and E. crusticola). Environmental and clinical Exophiala isolates representing these five species (n = 109) were analyzed. The HRM assay was optimized using clinical and environmental reference isolates (n = 22), and then the results were compared with those obtained with nonreference isolates of Exophiala (n = 87) using two designed primer sets. The designed HRM assay was based on the normalized melting peak approach and two primer sets, and successfully distinguished between the five Exophiala species. The HRM1 primer set provided sufficient resolution, with a melting temperature (Tm) difference of approximately 2.5°C among the analyzed species and of approximately 1°C between E. dermatitidis and E. phaeomuriformis. HRM typing results were in agreement with those of ITS-sequence typing (100% sensitivity and specificity). The developed HRM assay can be used to ascertain the identity of Exophiala species, which may differ in clinical significance, with high accuracy. Its application to identify species directly in clinical samples and/or environmental niches may be possible in the future.
Collapse
Affiliation(s)
- Tanaz Bahadori
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojtaba Didehdar
- Department of Medical Mycology and Parasitology, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinezhad
- Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Tahereh Shokohi
- Invasive Fungi Research Center (IFRC), Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Black Fungi and Hydrocarbons: An Environmental Survey for Alkylbenzene Assimilation. Microorganisms 2021; 9:microorganisms9051008. [PMID: 34067085 PMCID: PMC8151820 DOI: 10.3390/microorganisms9051008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022] Open
Abstract
Environmental pollution with alkylbenzene hydrocarbons such as toluene is a recurring phenomenon. Their toxicity and harmful effect on people and the environment drive the search for sustainable removal techniques such as bioremediation, which is based on the microbial metabolism of xenobiotic compounds. Melanized fungi present extremophilic characteristics, which allow their survival in inhospitable habitats such as those contaminated with hydrocarbons. Screening methodologies for testing the microbial assimilation of volatile organic compounds (VOC) are scarce despite their importance for the bioremediation of hydrocarbon associated areas. In this study, 200 strains of melanized fungi were isolated from four different hydrocarbon-related environments by using selective methods, and their biodiversity was assessed by molecular and ecological analyses. Seventeen genera and 27 species from three main orders, namely Chaetothyriales, Cladosporiales, and Pleosporales, were identified. The ecological analysis showed a particular species distribution according to their original substrate. The isolated strains were also screened for their toluene assimilation potential using a simple and inexpensive methodology based on miniaturized incubations under controlled atmospheres. The biomass produced by the 200 strains with toluene as the sole carbon source was compared against positive and negative controls, with glucose and with only mineral medium, respectively. Nineteen strains were selected as the most promising for further investigation on the biodegradation of alkylbenzenes.
Collapse
|
18
|
Itoh N, Murakami H, Ishibana Y, Matsubara Y, Yaguchi T, Kamei K. Challenges in the diagnosis and management of central line-associated blood stream infection due to Exophiala dermatitidis in an adult cancer patient. J Infect Chemother 2021; 27:1360-1364. [PMID: 33888421 DOI: 10.1016/j.jiac.2021.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Exophiala (Wangiella) dermatitidis is a clinically relevant black yeast. Although E. dermatitidis rarely causes human infection, it can cause superficial and deep-seated infections, and cutaneous and subcutaneous diseases. Cases of fungemia and central line-associated bloodstream infections due to E. dermatitidis are extremely uncommon, and their clinical manifestations and prognosis are still not well-known. Herein, we report a case of central line-associated bloodstream infections in a patient with cancer. These infections were caused by melanized yeast that was finally identified as E. dermatitidis via internal transcribed spacer sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. CASE PRESENTATION A 75-year-old man with thoracic esophageal cancer and early gastric cancer presented with a 1-day history of fever during his hospitalization at our hospital. A central venous port was placed in the patient for total parenteral nutrition. Two E. dermatitidis isolates were recovered from two blood samples drawn at different times from a peripheral vein and this central venous port. The isolate was identified as E. dermatitidis by internal transcribed spacer sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The central venous port was removed, and the patient was administered micafungin and voriconazole. Although the minimum inhibitory concentrations of E. dermatitidis for voriconazole and minimum effective concentrations for micafungin were 2 μg/mL and 4 μg/m, respectively, the bacteremia was successfully treated. CONCLUSIONS Although no clear treatment guidelines have been proposed for E. dermatitidis infections, immediate removal of central venous catheters is the key to improving central line-associated bloodstream infections.
Collapse
Affiliation(s)
- Naoya Itoh
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan; Collaborative Chairs Emerging and Reemerging Infectious Diseases, National Center for Global Health and Medicine, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Hiromi Murakami
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yuichi Ishibana
- Division of Infectious Diseases, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Yuki Matsubara
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| |
Collapse
|
19
|
Mills R, Rautemaa-Richardson R, Wilkinson S, Patel L, Maitra A, Horsley A. Impact of airway Exophiala spp. on children with cystic fibrosis. J Cyst Fibros 2021; 20:702-707. [PMID: 33775601 DOI: 10.1016/j.jcf.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Isolation of Exophiala species from sputum samples has become increasingly reported in Cystic Fibrosis (CF). However, the clinical significance of Exophiala spp. with regards to the paediatric CF population is unknown. METHODS A case control study was undertaken to compare CF children with and without chronic Exophiala spp. in their sputum samples. Demographic and clinical data were collected retrospectively for each case from the date of Exophiala isolation and for 12 months preceding isolation. Each case was compared to three age and year-matched controls. To determine the effect of Exophiala on clinical course, patients were then followed for 12 months post isolation. RESULTS In total, 27 of 244 eligible paediatric CF patients (11%) isolated Exophiala spp. on more than one occasion. There were no significant differences in the key clinical parameters: spirometry, mean number of intravenous (IV) antibiotic days and body mass index (BMI), between cases and controls (p = 0.91, p = 0.56 and p = 0.63 respectively). A higher proportion of cases isolated Candida spp. (67% vs 21%, p < 0.0001) and Aspergillus fumigatus (37% vs 26%, p = 0.37). There was no clinically significant difference in spirometry, mean number of IV antibiotic days and BMI in cases pre and post Exophiala spp. isolation. Posaconazole was the only drug used that successfully eradicated Exophiala. CONCLUSION Despite the frequent isolation of Exophiala spp. in this cohort, in most patients it is not associated with significant clinical deterioration. It does however seem to be associated with isolation of other fungi.
Collapse
Affiliation(s)
- Rowena Mills
- Mycology Reference Centre Manchester, ECMM Centre of Excellence for Medical Mycology and the Department of Infectious Diseases, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK; Paediatric Respiratory Department, Royal Manchester Children's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester, UK; Department of General Paediatrics, Birmingham Children's Hospital, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence for Medical Mycology and the Department of Infectious Diseases, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK; Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart Wilkinson
- Paediatric Respiratory Department, Royal Manchester Children's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - Latifa Patel
- Paediatric Respiratory Department, Royal Manchester Children's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - Anirban Maitra
- Paediatric Respiratory Department, Royal Manchester Children's Hospital, Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - Alex Horsley
- Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Adult Cystic Fibrosis Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
20
|
Inherited CARD9 Deficiency in a Child with Invasive Disease Due to Exophiala dermatitidis and Two Older but Asymptomatic Siblings. J Clin Immunol 2021; 41:975-986. [PMID: 33558980 DOI: 10.1007/s10875-021-00988-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Autosomal recessive CARD9 deficiency predisposes patients to invasive fungal disease. Candida and Trichophyton species are major causes of fungal disease in these patients. Other CARD9-deficient patients display invasive diseases caused by other fungi, such as Exophiala spp. The clinical penetrance of CARD9 deficiency regarding fungal disease is surprisingly not complete until adulthood, though the age remains unclear. Moreover, the immunological features of genetically confirmed yet asymptomatic individuals with CARD9 deficiency have not been reported. METHODS Identification of CARD9 mutations by gene panel sequencing and characterization of the cellular phenotype by quantitative PCR, immunoblot, luciferase reporter, and cytometric bead array assays were performed. RESULTS Gene panel sequencing identified compound heterozygous CARD9 variants, c.1118G>C (p.R373P) and c.586A>G (p.K196E), in a 4-year-old patient with multiple cerebral lesions and systemic lymphadenopathy due to Exophiala dermatitidis. The p.R373P is a known disease-causing variant, whereas the p.K196E is a private variant. Although the patient's siblings, a 10-year-old brother and an 8-year-old sister, were also compound heterozygous, they have been asymptomatic to date. Normal CARD9 mRNA and protein expression were found in the patient's CD14+ monocytes. However, these cells exhibited markedly impaired pro-inflammatory cytokine production in response to fungal stimulation. Monocytes from both asymptomatic siblings displayed the same cellular phenotype. CONCLUSIONS CARD9 deficiency should be considered in previously healthy patients with invasive Exophiala dermatitidis disease. Asymptomatic relatives of all ages should be tested for CARD9 deficiency. Detecting cellular defects in asymptomatic individuals is useful for diagnosing CARD9 deficiency.
Collapse
|
21
|
Attempted Isolation of Cryptococcus Species and Incidental Isolation of Exophiala dermatitidis from Human Oral Cavities. Mycopathologia 2020; 185:1051-1055. [PMID: 32949296 DOI: 10.1007/s11046-020-00490-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/09/2020] [Indexed: 10/20/2022]
Abstract
Recent molecular studies suggest that Cryptococcus may inhabit the normal human mouth. We attempted to isolate Cryptococcus from 21 adult non-acutely ill patients and 40 volunteer medical and non-medical staff in Southeastern Wisconsin, USA. An upper lip sulcus culture and an oral rinse specimen were inoculated separately onto Staib (birdseed) agar containing chloramphenicol and incubated in gas impermeable zip lock bags at 35 °C. No cryptococci were grown from any of the 122 samples from the 61 subjects. Both specimens from a woman with no risk factors for fungal disease yielded a black yeast at 4 days on Staib agar. This isolate was shown to be Exophiala dermatitidis by colony and microscopic morphology, analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and sequencing through the internal transcribed spacer ribosomal RNA gene. This appears to be a novel isolation of E. dermatitidis from the oral cavity of a generally healthy human.
Collapse
|
22
|
Molecular identification of environmental dematiaceous fungi isolates from Babol city, north of Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Borman AM, Fraser M, Schilling W, Jones G, Pearl R, Linton CJ, Johnson EM. Exophiala campbellii causing a subcutaneous palmar cyst in an otherwise healthy UK resident. Med Mycol Case Rep 2020; 29:43-45. [PMID: 32817812 PMCID: PMC7424171 DOI: 10.1016/j.mmcr.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022] Open
Abstract
Exophiala is a ubiquitous genus encompassing more than forty species, a number of which have been associated with superficial or systemic infections in humans, and other hot- or cold-blooded animals. Here we report a human case of subcutaneous mycotic cyst caused by Exophiala campbellii. To our knowledge, this is only the third reported human infection caused by E. campbellii, all three of which involved subcutaneous nodules in patients who had resided in the United Kingdom.
Collapse
Affiliation(s)
- Andrew M. Borman
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, EX4 4QD, United Kingdom
- Corresponding author. UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, United Kingdom.
| | - Mark Fraser
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, United Kingdom
| | - William Schilling
- Royal Sussex County Hospital, Brighton and Sussex University Hospitals NHS Trust, Eastern Road, Brighton, BN2 5BE, United Kingdom
| | - Gillian Jones
- Royal Sussex County Hospital, Brighton and Sussex University Hospitals NHS Trust, Eastern Road, Brighton, BN2 5BE, United Kingdom
| | - Robert Pearl
- Queen Victoria Hospital NHS Foundation Trust, Holtye Road, East Grinstead, West Sussex, RH19 3DZ, United Kingdom
| | - Christopher J. Linton
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, United Kingdom
| | - Elizabeth M. Johnson
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
24
|
Abstract
AbstractChaetothyriales is an ascomycetous order within Eurotiomycetes. The order is particularly known through the black yeasts and filamentous relatives that cause opportunistic infections in humans. All species in the order are consistently melanized. Ecology and habitats of species are highly diverse, and often rather extreme in terms of exposition and toxicity. Families are defined on the basis of evolutionary history, which is reconstructed by time of divergence and concepts of comparative biology using stochastical character mapping and a multi-rate Brownian motion model to reconstruct ecological ancestral character states. Ancestry is hypothesized to be with a rock-inhabiting life style. Ecological disparity increased significantly in late Jurassic, probably due to expansion of cytochromes followed by colonization of vacant ecospaces. Dramatic diversification took place subsequently, but at a low level of innovation resulting in strong niche conservatism for extant taxa. Families are ecologically different in degrees of specialization. One of the clades has adapted ant domatia, which are rich in hydrocarbons. In derived families, similar processes have enabled survival in domesticated environments rich in creosote and toxic hydrocarbons, and this ability might also explain the pronounced infectious ability of vertebrate hosts observed in these families. Conventional systems of morphological classification poorly correspond with recent phylogenetic data. Species are hypothesized to have low competitive ability against neighboring microbes, which interferes with their laboratory isolation on routine media. The dataset is unbalanced in that a large part of the extant biodiversity has not been analyzed by molecular methods, novel taxonomic entities being introduced at a regular pace. Our study comprises all available species sequenced to date for LSU and ITS, and a nomenclatural overview is provided. A limited number of species could not be assigned to any extant family.
Collapse
|
25
|
Bombassaro A, Schneider GX, Costa FF, Leão ACR, Soley BS, Medeiros F, da Silva NM, Lima BJFS, Castro RJA, Bocca AL, Baura VA, Balsanelli E, Pankievicz VCS, Hrysay NMC, Scola RH, Moreno LF, Azevedo CMPS, Souza EM, Gomes RR, de Hoog S, Vicente VA. Genomics and Virulence of Fonsecaea pugnacius, Agent of Disseminated Chromoblastomycosis. Front Genet 2020; 11:822. [PMID: 32849816 PMCID: PMC7417343 DOI: 10.3389/fgene.2020.00822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
Among agents of chromoblastomycosis, Fonsecaea pugnacius presents a unique type of infection because of its secondary neurotropic dissemination from a chronic cutaneous case in an immunocompetent patient. Neurotropism occurs with remarkable frequency in the fungal family Herpotrichiellaceae, possibly associated with the ability of some species to metabolize aromatic hydrocarbons. In an attempt to understand this new disease pattern, were conducted genomic analysis of Fonsecaea pugnacius (CBS 139214) performed with de novo assembly, gene prediction, annotation and mitochondrial genome assembly, supplemented with animal infection models performed with Tenebrio molitor in Mus musculus lineages BALB/c and C57BL/6. The genome draft of 34.8 Mb was assembled with a total of 12,217 protein-coding genes. Several proteins, enzymes and metabolic pathways related to extremotolerance and virulence were recognized. The enzyme profiles of black fungi involved in chromoblastomycosis and brain infection were analyzed with the Carbohydrate-Active Enzymes (CAZY) and peptidases database (MEROPS). The capacity of the fungus to survive inside Tenebrio molitor animal model was confirmed by histopathological analysis and by presence of melanin and hyphae in host tissue. Although F. pugnacius was isolated from brain in a murine model following intraperitoneal infection, cytokine levels were not statistically significant, indicating a profile of an opportunistic agent. A dual ecological ability can be concluded from presence of metabolic pathways for nutrient scavenging and extremotolerance, combined with a capacity to infect human hosts.
Collapse
Affiliation(s)
- Amanda Bombassaro
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Gabriela X Schneider
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Flávia F Costa
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Aniele C R Leão
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Bruna S Soley
- Pharmacology Post-graduation Program, Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | - Fernanda Medeiros
- Graduation in Biology Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Nickolas M da Silva
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Bruna J F S Lima
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Anamélia L Bocca
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Valter A Baura
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | | | - Nyvia M C Hrysay
- Service of Neuromuscular and Demyelinating Diseases, Complex Histochemistry-Immunity Laboratory, Hospital of Clinics, Federal University of Paraná, Curitiba, Brazil
| | - Rosana H Scola
- Service of Neuromuscular and Demyelinating Diseases, Complex Histochemistry-Immunity Laboratory, Hospital of Clinics, Federal University of Paraná, Curitiba, Brazil
| | - Leandro F Moreno
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | | | - Emanuel M Souza
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Sybren de Hoog
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Vânia A Vicente
- Microbiology, Parasitology and Pathology Post-graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
26
|
First Report of Environmental Isolation of Exophiala spp. in Malaysia. Curr Microbiol 2020; 77:2915-2924. [PMID: 32661678 DOI: 10.1007/s00284-020-02109-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
The opportunistic pathogen Exophiala dermatitidis has been frequently isolated from tropical regions of the world. However, there is no report of environmental isolation of Exophiala spp. from Malaysia. The information regarding the ecology of this microbe is important for a better understanding of the opportunism. This study aims to conduct a survey of natural distribution of Exophiala spp. in Malaysia. Forty-seven strains of Exophiala-like was isolated by using selective media. These isolates from the fields were molecularly identified based on the ITS region. The biochemical activity of these microbes was tested by conducting various tests, i.e. DNase test, proteinase activity, and urea hydrolysis. Overall, 22 strains of E. dermatitidis were successfully obtained and identified from burnt tree bark, oil dripped soil sample, hot spring biofilm, railway track stones, tar road contaminated with petrol hydrocarbon, drain and deep mud of Sungai Pinang besides the new discovery from pigeon droppings. A single strain of E. heteromorpha was identified from tar road contaminated with petrol hydrocarbon. Genotypes of the isolated E. dermatitidis were identified by the neighbor-joining tree and grouped into Genotype A, A2 and B. The existence of new Genotype A4 was confirmed by a similar cladogram position in both neighbor-joining and maximum likelihood tree. The survival of E. dermatitidis in the hydrocarbon contaminated environment was studied by supplying engine oil and observing the growth pattern. The results of this study suggest that the opportunistic Exophiala spp. was isolated from nutrient limited and harsh conditions in the natural environment.
Collapse
|
27
|
Fungal Planet description sheets: 1042-1111. Persoonia - Molecular Phylogeny and Evolution of Fungi 2020; 44:301-459. [PMID: 33116344 PMCID: PMC7567971 DOI: 10.3767/persoonia.2020.44.11] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii.Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis.Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica.Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens.Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias.India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii.Poland, Lecanicillium praecognitum on insects’ frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa.Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae.UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis.USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
|
28
|
Schroeder WL, Harris SD, Saha R. Computation-Driven Analysis of Model Polyextremo-tolerant Fungus Exophiala dermatitidis: Defensive Pigment Metabolic Costs and Human Applications. iScience 2020; 23:100980. [PMID: 32240950 PMCID: PMC7115120 DOI: 10.1016/j.isci.2020.100980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
The polyextremotolerant black yeast Exophiala dermatitidis is a tractable model system for investigation of adaptations that support growth under extreme conditions. Foremost among these adaptations are melanogenesis and carotenogenesis. A particularly important question is their metabolic production cost. However, investigation of this issue has been hindered by a relatively poor systems-level understanding of E. dermatitidis metabolism. To address this challenge, a genome-scale model (iEde2091) was developed. Using iEde2091, carotenoids were found to be more expensive to produce than melanins. Given their overlapping protective functions, this suggests that carotenoids have an underexplored yet important role in photo-protection. Furthermore, multiple defensive pigments with overlapping functions might allow E. dermatitidis to minimize cost. Because iEde2091 revealed that E. dermatitidis synthesizes the same melanins as humans and the active sites of the key tyrosinase enzyme are highly conserved this model may enable a broader understanding of melanin production across kingdoms.
Collapse
Affiliation(s)
- Wheaton L Schroeder
- Department of Chemical and Biomolecular Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Steven D Harris
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
29
|
Song Y, da Silva NM, Weiss VA, Vu D, Moreno LF, Vicente VA, Li R, de Hoog GS. Comparative Genomic Analysis of Capsule-Producing Black Yeasts Exophiala dermatitidis and Exophiala spinifera, Potential Agents of Disseminated Mycoses. Front Microbiol 2020; 11:586. [PMID: 32373085 PMCID: PMC7179667 DOI: 10.3389/fmicb.2020.00586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
The two black yeasts Exophiala dermatitidis and Exophiala spinifera that are clinically considered as the most virulent species potentially causing disseminated infections are both producing extracellular capsule-like material, are compared. In this study, 10 genomes of E. spinifera and E. dermatitidis strains, including both clinical and environmental isolates, were selected based on phylogenetic analysis, physiology tests and virulence tests, sequenced on the Illumina MiSeq sequencer and annotated. Comparison of genome data were performed between intraspecific and interspecific strains. We found capsule-associated genes were however not consistently present in both species by the comparative genomics. The prevalent clinical species, E. dermatitidis, has small genomes containing significantly less virulence-associated genes than E. spinifera, and also than saprobic relatives. Gene OG0012246 and Myb-like DNA-binding domain and SANT/Myb domain, restricted to two strains from human brain, was shared with the neurotropic species Rhinocladiella mackenziei. This study indicated that different virulence profiles existed in the two capsule-producing black yeasts, and the absence of consistent virulence-associated profiles supports the hypothesis that black yeasts are opportunists rather than primary pathogens. The results also provide the key virulence genes and drive the continuing research forward pathogen–host interactions to explore the pathogenesis.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Nickolas Menezes da Silva
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil.,Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands.,Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Vinicius Almir Weiss
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | - Leandro F Moreno
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Amsterdam Medical Center, Amsterdam, Netherlands
| | - Vania Aparecida Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - G Sybren de Hoog
- Research Center for Medical Mycology, Peking University, Beijing, China.,Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Brazil.,Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Amsterdam Medical Center, Amsterdam, Netherlands
| |
Collapse
|
30
|
Bakker A, Siegel JA, Mendell MJ, Prussin AJ, Marr LC, Peccia J. Bacterial and fungal ecology on air conditioning cooling coils is influenced by climate and building factors. INDOOR AIR 2020; 30:326-334. [PMID: 31845419 DOI: 10.1111/ina.12632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The presence of biofilms on the cooling coils of commercial air conditioning (AC) units can significantly reduce the heat transfer efficiency of the coils and may lead to the aerosolization of microbes into occupied spaces of a building. We investigated how climate and AC operation influence the ecology of microbial communities on AC coils. Forty large-scale commercial ACs were considered with representation from warm-humid and hot-dry climates. Both bacterial and fungal ecologies, including richness and taxa, on the cooling coil surfaces were significantly impacted by outdoor climate, through differences in dew point that result in increased moisture (condensate) on coils, and by the minimum efficiency reporting value (MERV 8 vs MERV 14) of building air filters. Based on targeted qPCR and sequence analysis, low efficiency upstream filters (MERV 8) were associated with a greater abundance of pathogenic bacteria and medically relevant fungi. As the implementation of air conditioning continues to grow worldwide, better understanding of the factors impacting microbial growth and ecology on cooling coils should enable more rational approaches for biofilm control and ultimately result in reduced energy consumption and healthier buildings.
Collapse
Affiliation(s)
- Alexa Bakker
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Jeffrey A Siegel
- Department of Civil & Mineral Engineering, The University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, The University of Toronto, Toronto, ON, Canada
| | - Mark J Mendell
- California Department of Public Health, Environmental Health Laboratory Branch, Richmond, CA, USA
| | - Aaron J Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
31
|
Fungal Infections and ABPA. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
|
33
|
Sticks and bones: Traumatic phaeohyphomycosis presenting as an epidural scalp abscess and cranial osteomyelitis. Med Mycol Case Rep 2019; 24:75-77. [PMID: 31080712 PMCID: PMC6503212 DOI: 10.1016/j.mmcr.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022] Open
Abstract
The pigmented molds can cause soft tissue and invasive disease (phaeohyphomycosis) in immunocompetent patients. We describe a 76-year-old male patient who developed a Cladophialophora bantiatum posterior scalp abscess and cranial osteomyelitis following an incidental scalp exposure with a tree branch. Management requires extensive surgical debridement followed by prolonged antifungal therapy.
Collapse
|
34
|
Kirchhoff L, Olsowski M, Rath PM, Steinmann J. Exophiala dermatitidis: Key issues of an opportunistic fungal pathogen. Virulence 2019; 10:984-998. [PMID: 30887863 PMCID: PMC8647849 DOI: 10.1080/21505594.2019.1596504] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The black yeast Exophiala dermatitidis is an opportunistic pathogen, causing phaeohyphomycosis in immunosuppressed patients, chromoblastomycosis and fatal infections of the central nervous system in otherwise healthy Asian patients. In addition, it is also regularly isolated from respiratory samples from cystic fibrosis patients, with rates varying between 1% and 19%.Melanin, as part of the cell wall of black yeasts, is one major factor known contributing to the pathogenicity of E. dermatitidis and increased resistance against host defense and anti-infective therapeutics. Further virulence factors, e.g. the capability to adhere to surfaces and to form biofilm were reported. A better understanding of the pathogenicity of E. dermatitidis is essential for the development of novel preventive and therapeutic strategies. In this review, the current knowledge of E. dermatitidis prevalence, clinical importance, diagnosis, microbiological characteristics, virulence attributes, susceptibility, and resistances as well as therapeutically strategies are discussed.
Collapse
Affiliation(s)
- Lisa Kirchhoff
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maike Olsowski
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
35
|
Vila A, Jahan C, Rivero C, Amadio C, Ampuero A, Pagella H. Central line associated blood stream infection (CLABSI) due to Exophiala dermatitidis in an adult patient: Case report and review. Med Mycol Case Rep 2019; 24:33-36. [PMID: 30949426 PMCID: PMC6429541 DOI: 10.1016/j.mmcr.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
Exophiala dermatitidis is a dematiaceous fungus with yeast-like and hyphal growth states that may cause cutaneous and visceral infections. Recently, E. dermatitidis has been linked to central line associated blood stream infection (CLABSI), probably due to its ability to produce extracellular polysaccharides and grow as biofilm. We describe an E. dermatitidis CLASBI. The strain was identified by morphological and molecular methods. E. dermatitidis CLASBI is highly uncommon, but seems to be increasing.
Collapse
Affiliation(s)
- Andrea Vila
- Hospital Italiano de Mendoza, San José, 3283, Argentina
| | - Cintia Jahan
- Hospital Italiano de Mendoza, San José, 3283, Argentina
| | | | - Claudio Amadio
- Obra Social Empleados Públicos (OSEP), Mendoza, 5500, Argentina
| | | | - Hugo Pagella
- Hospital Italiano de Mendoza, San José, 3283, Argentina
| |
Collapse
|
36
|
Saraiva M, Beckmann MJ, Pflaum S, Pearson M, Carcajona D, Treasurer JW, van West P. Exophiala angulospora infection in hatchery-reared lumpfish (Cyclopterus lumpus) broodstock. JOURNAL OF FISH DISEASES 2019; 42:335-343. [PMID: 30632621 PMCID: PMC6378594 DOI: 10.1111/jfd.12940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 06/01/2023]
Abstract
Samples from moribund lumpfish were collected in a marine hatchery in Scotland in 2015. Black nodules were noted on the skin, and gills and fungal hyphae were extensively distributed in musculature and internal organs. Multifocal chronic inflammatory lesions displaced structures in all affected organs. Mortalities commenced on completion of spawning in May and were evenly distributed over the second year in the temperature range 11-15°C. The main systemic infection causing agent was initially identified based on morphological characteristics as an Exophiala species. Ribosomal DNA (rDNA) ITS regions of the isolates were subsequently sequenced confirming the isolates belonged to Exophiala genus. All isolates fell in a single phylogenetic cluster, which is represented by Exophiala angulospora. Fish were treated with either formalin or Bronopol or a combination of both, but there was no effect on the pattern or numbers of mortalities. Isolates were also tested against three different concentrations of Latrunculin A, Amphotericin B and Itraconazole with no success. It is of utmost importance to increase the knowledge on pathogen-host interactions to successfully develop sustainable control methods.
Collapse
Affiliation(s)
- Marcia Saraiva
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and DevelopmentInstitute of Medical SciencesForesterhill, AberdeenUK
| | - Max J. Beckmann
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and DevelopmentInstitute of Medical SciencesForesterhill, AberdeenUK
| | | | | | | | | | - Pieter van West
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and DevelopmentInstitute of Medical SciencesForesterhill, AberdeenUK
| |
Collapse
|
37
|
Hagiya H, Maeda T, Kusakabe S, Kawasaki K, Hori Y, Kimura K, Ueda A, Yoshioka N, Sunada A, Nishi I, Morii E, Kanakura Y, Tomono K. A fatal case of Exophiala dermatitidis disseminated infection in an allogenic hematopoietic stem cell transplant recipient during micafungin therapy. J Infect Chemother 2019; 25:463-466. [PMID: 30679025 DOI: 10.1016/j.jiac.2018.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 01/14/2023]
Abstract
Exophiala dermatitidis is a dematiaceous fungus that is increasingly becoming the cause of fungal infection in immunocompromised patients. However, the risk factors and optimal treatment modality for E. dermatitidis infection are unknown to date. Herein, we present a fatal case of E. dermatitidis infection in an adult patient that developed after allogeneic hematopoietic stem cell transplantation for chronic active Epstein-Barr virus infection. The dematiaceous fungus caused a breakthrough fungemia despite prophylactic administration of micafungin. Although the patient was intensively treated with liposomal-amphotericin B and voriconazole, serum level of beta-D-glucan continuously increased, and the patient eventually died because of cerebral hemorrhage. An autopsy found multiple involvements of the fungal infection at the bilateral lungs, thoracic cavities, diaphragm, and thyroid. To the best of our knowledge, this is the first reported case of E. dermatitidis infection involving these tissues as determined via autopsy. This case highlights the importance of attention for Exophiala infection in immunocompromised individuals in those given antifungal therapy with echinocandins.
Collapse
Affiliation(s)
- Hideharu Hagiya
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan.
| | - Tetsuo Maeda
- Department of Hematology, Osaka University Hospital, Osaka, Japan
| | | | - Keisuke Kawasaki
- Department of Pathology, Osaka University Hospital, Osaka, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Hospital, Osaka, Japan
| | - Keigo Kimura
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Akiko Ueda
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Nori Yoshioka
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan; Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Atsuko Sunada
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Isao Nishi
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Hospital, Osaka, Japan
| | - Yuzuru Kanakura
- Department of Hematology, Osaka University Hospital, Osaka, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
38
|
Zajc J, Gostinčar C, Černoša A, Gunde-Cimerman N. Stress-Tolerant Yeasts: Opportunistic Pathogenicity Versus Biocontrol Potential. Genes (Basel) 2019; 10:genes10010042. [PMID: 30646593 PMCID: PMC6357073 DOI: 10.3390/genes10010042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 01/26/2023] Open
Abstract
Stress-tolerant fungi that can thrive under various environmental extremes are highly desirable for their application to biological control, as an alternative to chemicals for pest management. However, in fungi, the mechanisms of stress tolerance might also have roles in mammal opportunism. We tested five species with high biocontrol potential in agriculture (Aureobasidium pullulans, Debayomyces hansenii, Meyerozyma guilliermondii, Metschnikowia fructicola, Rhodotorula mucilaginosa) and two species recognized as emerging opportunistic human pathogens (Exophiala dermatitidis, Aureobasidium melanogenum) for growth under oligotrophic conditions and at 37 °C, and for tolerance to oxidative stress, formation of biofilms, production of hydrolytic enzymes and siderophores, and use of hydrocarbons as sole carbon source. The results show large overlap between traits desirable for biocontrol and traits linked to opportunism (growth under oligotrophic conditions, production of siderophores, high oxidative stress tolerance, and specific enzyme activities). Based on existing knowledge and these data, we suggest that oligotrophism and thermotolerance together with siderophore production at 37 °C, urease activity, melanization, and biofilm production are the main traits that increase the potential for fungi to cause opportunistic infections in mammals. These traits should be carefully considered when assessing safety of potential biocontrol agents.
Collapse
Affiliation(s)
- Janja Zajc
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
- Institut 'Jožef Stefan', Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Anja Černoša
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
39
|
Metin B, Döğen A, Yıldırım E, de Hoog GS, Heitman J, Ilkit M. Mating type (MAT) locus and possible sexuality of the opportunistic pathogen Exophiala dermatitidis. Fungal Genet Biol 2019; 124:29-38. [PMID: 30611834 DOI: 10.1016/j.fgb.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 11/27/2022]
Abstract
Sexual reproduction among the black yeasts is generally limited to environmental saprobic species and is rarely observed among opportunists in humans. To date, a complete sexual cycle has not been observed in Exophiala dermatitidis. In this study, we aimed to gain insight into the reproductive mode of E. dermatitidis by characterizing its mating type (MAT) locus, conducting MAT screening of environmental and clinical isolates, examining the expression of the MAT genes and analyzing the virulence of the isolates of different mating types. Similar to other members of the Pezizomycotina, the E. dermatitidis genome harbors a high mobility group (HMG) domain gene (MAT1-2-1) in the vicinity of the SLA2 and APN2 genes. The MAT loci of 74 E. dermatitidis isolates (11 clinical and 63 environmental) were screened by PCR, and the surrounding region was amplified using long-range PCR. Sequencing of the ∼ 12-kb PCR product of a MAT1-1 isolate revealed an α-box gene (MAT1-1-1). The MAT1-1 idiomorph was 3544-bp long and harbored the MAT1-1-1 and MAT1-1-4 genes. The MAT1-2 idiomorph was longer, 3771-bp, and harbored only the MAT1-2-1 gene. This structure suggests a heterothallic reproduction mode. The distribution of MAT among 74 isolates was ∼ 1:1 with a MAT1-1:MAT1-2 ratio of 35:39. RT-PCR analysis indicated that the MAT genes are transcribed. No significant difference was detected in the virulence of isolates representing different mating types using a Galleria mellonella model (P > 0.05). Collectively, E. dermatitidis is the first opportunistic black yeast in which both MAT idiomorphs have been characterized. The occurrence of isolates bearing both idiomorphs, their approximately equal distribution, and the expression of the MAT genes suggest that E. dermatitidis might reproduce sexually.
Collapse
Affiliation(s)
- Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Esra Yıldırım
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, the Netherlands.
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey.
| |
Collapse
|
40
|
Moreno LF, Vicente VA, de Hoog S. Black yeasts in the omics era: Achievements and challenges. Med Mycol 2018. [PMID: 29538737 DOI: 10.1093/mmy/myx129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Black yeasts (BY) comprise a group of polyextremotolerant fungi, mainly belonging to the order Chaetothyriales, which are capable of colonizing a wide range of extreme environments. The tolerance to hostile habitats can be explained by their intrinsic ability to survive under acidic, alkaline, and toxic conditions, high temperature, low nutrient availability, and osmotic and mechanical stress. Occasionally, some species can cause human chromoblastomycosis, a chronic subcutaneous infection, as well as disseminated or cerebral phaeohyphomycosis. Three years after the release of the first black yeast genome, the number of projects for sequencing these organisms has significantly increased. Over 37 genomes of important opportunistic and saprobic black yeasts and relatives are now available in different databases. The whole-genome sequencing, as well as the analysis of differentially expressed mRNAs and the determination of protein expression profiles generated an unprecedented amount of data, requiring the development of a curated repository to provide easy accesses to this information. In the present article, we review various aspects of the impact of genomics, transcriptomics, and proteomics on black yeast studies. We discuss recent key findings achieved by the use of these technologies and further directions for medical mycology in this area. An important vehicle is the Working Groups on Black Yeasts and Chromoblastomycosis, under the umbrella of ISHAM, which unite the clinicians and a highly diverse population of fundamental scientists to exchange data for joint publications.
Collapse
Affiliation(s)
- Leandro Ferreira Moreno
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.,Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazil
| | | | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.,Department of Basic Pathology, Federal University of Paraná State, Curitiba, PR, Brazil.,Center of Expertise in Mycology of Radboudumc / CWZ, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Chen M, Kondori N, Deng S, Gerrits van den Ende AHG, Lackner M, Liao W, de Hoog GS. Direct detection of Exophiala and Scedosporium species in sputa of patients with cystic fibrosis. Med Mycol 2018; 56:695-702. [PMID: 29228273 DOI: 10.1093/mmy/myx108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023] Open
Abstract
Detection of species of Exophiala and Scedosporium in the respiratory tracts of cystic fibrosis (CF) patients remains controversial because of highly variable results. The results of our study suggested a significantly higher prevalence and more complex colonization than previously estimated. Approximately 17% (27/162) of clinical sputum samples were found to be positive for Exophiala dermatitidis and 30% (49/162) were positive for Scedosporium apiospermum / S. boydii species complex determined by reverse line blot (RLB) hybridization. In contrast, only 14.2% (23/162) and 1.2% (2/162) of clinical sputa were positive for E. dermatitidis and S. apiospermum / S. boydii species complex when tested by culture, respectively. Molecular detection methods, such as loop-mediated isothermal amplification (LAMP) or reverse line blot (RLB) hybridization, have the potential to become powerful alternatives to selective culture, providing a more realistic understanding on the prevalence of E. dermatitidis and S. apiospermum / S. boydii species complex in the respiratory tract of CF patients.
Collapse
Affiliation(s)
- Min Chen
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Nahid Kondori
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Shuwen Deng
- Department of Medical Microbiology, People's Hospital of Suzhou National New & Hi-Tech Industrial Development Zone, Jiangsu, China
| | | | - M Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - G S de Hoog
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,Peking University First Hospital, Research Center for Medical Mycology, Beijing, China; Department of Basic Biology, University of Paraná, Curitiba, Brazil
| |
Collapse
|
42
|
Poyntner C, Mirastschijski U, Sterflinger K, Tafer H. Transcriptome Study of an Exophiala dermatitidis PKS1 Mutant on an ex Vivo Skin Model: Is Melanin Important for Infection? Front Microbiol 2018; 9:1457. [PMID: 30018609 PMCID: PMC6037837 DOI: 10.3389/fmicb.2018.01457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
The black yeast Exophiala dermatitidis is a polyextremophilic human pathogen, especially known for growing in man-made extreme environments. Reported diseases caused by this fungus range from benign cutaneous to systemic infections with 40% fatality rate. While the number of cases steadily increases in both immunocompromised and immunocompetent people, detailed knowledge about infection mechanisms, virulence factors and host response are scarce. To understand the impact of the putative virulence factor melanin on the infection, we generated a polyketide synthase (PKS1) mutant using CRISPR/Cas9 resulting in a melanin deficient strain. The mutant and the wild-type fungus were inoculated onto skin explants using an ex vivo skin organ culture model to simulate in vivo cutaneous infection. The difference between the mutant and wild-type transcriptional landscapes, as assessed by whole RNA-sequencing, were small and were observed in pathways related to the copper homeostasis, cell wall genes and proteases. Seven days after inoculation the wild-type fungus completely colonized the stratum corneum, invaded the skin and infected keratinocytes while the mutant had only partially covered the skin and showed no invasiveness. Our results suggest that melanin dramatically improves the invasiveness and virulence of E. dermatitidis during the first days of the skin infection.
Collapse
Affiliation(s)
- Caroline Poyntner
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ursula Mirastschijski
- Wound Repair Unit, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Division of Plastic and Aesthetic Surgery, Rotkreuzklinikum München, Munich, Germany
| | - Katja Sterflinger
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hakim Tafer
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
43
|
Gülmez D, Doğan Ö, Boral B, Döğen A, İlkit M, de Hoog GS, Arikan-Akdagli S. In vitro activities of antifungal drugs against environmentalExophialaisolates and review of the literature. Mycoses 2018; 61:561-569. [DOI: 10.1111/myc.12779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Dolunay Gülmez
- Department of Medical Microbiology; Faculty of Medicine; Hacettepe University; Ankara Turkey
| | - Özlem Doğan
- Department of Medical Microbiology; Faculty of Medicine; Hacettepe University; Ankara Turkey
- Medical Microbiology Department; Haydarpaşa Numune Hospital; Istanbul Turkey
| | - Barış Boral
- Department of Medical Microbiology; Faculty of Medicine; Hacettepe University; Ankara Turkey
- Department of Medical Microbiology; Faculty of Medicine; Çukurova University; Adana Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology; Faculty of Pharmacy; Mersin University; Mersin Turkey
| | - Macit İlkit
- Department of Medical Microbiology; Faculty of Medicine; Çukurova University; Adana Turkey
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute; Utrecht The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ; Nijmegen The Netherlands
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology; Faculty of Medicine; Hacettepe University; Ankara Turkey
| |
Collapse
|
44
|
Wang X, Cai W, van den Ende AHGG, Zhang J, Xie T, Xi L, Li X, Sun J, de Hoog S. Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other vertebrates. Sci Rep 2018; 8:7685. [PMID: 29769615 PMCID: PMC5955924 DOI: 10.1038/s41598-018-26071-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/30/2018] [Indexed: 11/09/2022] Open
Abstract
Indoor wet cells serve as an environmental reservoir for a wide diversity of melanized fungi. A total of 313 melanized fungi were isolated at five locations in Guangzhou, China. Internal transcribed spacer (rDNA ITS) sequencing showed a preponderance of 27 species belonging to 10 genera; 64.22% (n = 201) were known as human opportunists in the orders Chaetothyriales and Venturiales, potentially causing cutaneous and sometimes deep infections. Knufia epidermidis was the most frequently encountered species in bathrooms (n = 26), while in kitchens Ochroconis musae (n = 14), Phialophora oxyspora (n = 12) and P. europaea (n = 10) were prevalent. Since the majority of species isolated are common agents of cutaneous infections and are rarely encountered in the natural environment, it is hypothesized that indoor facilities explain the previously enigmatic sources of infection by these organisms.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Dermatology and Venerology, Guangming New District Central Hospital, Shenzhen, Guangdong Province, China
| | - Wenying Cai
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Junmin Zhang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Xie
- Department of Dermatology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyan Xi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Dematology Hospital of Southern Medical University, Guangzhou, China
| | - Xiqing Li
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Center of Expertise in Mycology of Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Basic Pathology Department, Federal University of Paraná State, Curitiba, Paraná, Brazil.,Department of Dermatology, First Hospital of Peking University, Beijing, China
| |
Collapse
|
45
|
Zupančič J, Raghupathi PK, Houf K, Burmølle M, Sørensen SJ, Gunde-Cimerman N. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers. Front Microbiol 2018; 9:21. [PMID: 29441043 PMCID: PMC5797641 DOI: 10.3389/fmicb.2018.00021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022] Open
Abstract
Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis, the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health.
Collapse
Affiliation(s)
- Jerneja Zupančič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Prem K Raghupathi
- Molecular Microbial Ecology Group, Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Hygiene and Technology, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Kurt Houf
- Laboratory of Hygiene and Technology, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Mette Burmølle
- Molecular Microbial Ecology Group, Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Molecular Microbial Ecology Group, Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
46
|
Song Y, Laureijssen-van de Sande WWJ, Moreno LF, Gerrits van den Ende B, Li R, de Hoog S. Comparative Ecology of Capsular Exophiala Species Causing Disseminated Infection in Humans. Front Microbiol 2017; 8:2514. [PMID: 29312215 PMCID: PMC5742258 DOI: 10.3389/fmicb.2017.02514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Exophiala spinifera and Exophiala dermatitidis (Fungi: Chaetothyriales) are black yeast agents potentially causing disseminated infection in apparently healthy humans. They are the only Exophiala species producing extracellular polysaccharides around yeast cells. In order to gain understanding of eventual differences in intrinsic virulence of the species, their clinical profiles were compared and found to be different, suggesting pathogenic strategies rather than coincidental opportunism. Ecologically relevant factors were compared in a model set of strains of both species, and significant differences were found in clinical and environmental preferences, but virulence, tested in Galleria mellonella larvae, yielded nearly identical results. Virulence factors, i.e., melanin, capsule and muriform cells responded in opposite direction under hydrogen peroxide and temperature stress and thus were inconsistent with their hypothesized role in survival of phagocytosis. On the basis of physiological profiles, possible natural habitats of both species were extrapolated, which proved to be environmental rather than animal-associated. Using comparative genomic analyses we found differences in gene content related to lipid metabolism, cell wall modification and polysaccharide capsule production. Despite the fact that both species cause disseminated infections in apparently healthy humans, it is concluded that they are opportunists rather than pathogens.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China.,Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands
| | | | | | | | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University First Hospital, Beijing, China
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| |
Collapse
|
47
|
Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr Opin Microbiol 2017; 40:46-57. [PMID: 29128761 DOI: 10.1016/j.mib.2017.10.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023]
Abstract
It has been estimated that there are at least 1.5 million fungal species, mostly present in the environment, but only a few of these fungi cause human disease. Most fungal diseases are self-healing and benign, but some are chronic or life-threatening. Acquired and inherited defects of immunity, including breaches of mucocutaneous barriers and circulating leukocyte deficiencies, account for most severe modern-day mycoses. Other types of infection typically accompany these fungal infections. More rarely, severe fungal diseases can strike otherwise healthy individuals. Historical reports of fungi causing chronic peripheral infections (e.g. affecting the nails, skin, hair), and invasive diseases (e.g. brain, lungs, liver), in otherwise healthy patients, can be traced back to the mid-20th century. These fungi typically cause endemic, but not epidemic diseases, are more likely to underlie sporadic than familial cases, and only threaten a small proportion of infected individuals. The basis of this 'idiosyncratic' susceptibility has long remained unexplained, but it has recently become apparent that 'idiopathic' fungal diseases, in children, teenagers, and even adults, may be caused by single-gene inborn errors of immunity. The study of these unusual primary immunodeficiencies (PIDs) has led to the identification of molecules and cells playing a crucial role in human host defenses against certain fungi at particular anatomic sites. A picture is emerging of inborn errors of IL-17 immunity selectively underlying chronic mucocutaneous candidiasis, with little inter-individual variability, and of inborn errors of CARD9 immunity underlying various life-threatening invasive fungal diseases, differing between patients.
Collapse
|
48
|
Gonçalves VN, Vitoreli GA, de Menezes GCA, Mendes CRB, Secchi ER, Rosa CA, Rosa LH. Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 2017; 21:1005-1015. [PMID: 28856503 DOI: 10.1007/s00792-017-0959-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023]
Abstract
Thirty-six seawater samples collected at different depths of the Gerlache and Bransfield Straits in the Northern Antarctic Peninsula were analyzed, and the average of the total fungal counts ranged from 0.3 to >300 colony forming units per liter (CFU/L) in density. The fungal were purified and identified as 15 taxa belonged to the genera Acremonium, Aspergillus, Cladosporium, Cystobasidium, Exophiala, Glaciozyma, Graphium, Lecanicillium, Metschnikowia, Penicillium, Purpureocillium and Simplicillium. Penicillium chrysogenum, Cladosporium sphaerospermum, and Graphium rubrum were found at high densities in at least two different sites and depths. Our results show at the first time that in the seawater of Antarctic Ocean occur diverse fungal assemblages despite extreme conditions, which suggests the presence of a complex aquatic fungi food web, including species reported as barophiles, symbionts, weak and strong saprobes, parasites and pathogens, as well as those found in the polluted environments of the world. Additionally, some taxa were found in different sites, suggesting that the underwater current might contribute to fungal (and microbial) dispersal across the Antarctic Ocean, and nearby areas such as South America and Australia.
Collapse
Affiliation(s)
- Vívian N Gonçalves
- Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Gislaine A Vitoreli
- Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Graciéle C A de Menezes
- Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Carlos R B Mendes
- Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Eduardo R Secchi
- Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Carlos A Rosa
- Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, CEP 31270-901, Brazil
- Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Luiz H Rosa
- Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
49
|
Vicente VA, Weiss VA, Bombassaro A, Moreno LF, Costa FF, Raittz RT, Leão AC, Gomes RR, Bocca AL, Fornari G, de Castro RJA, Sun J, Faoro H, Tadra-Sfeir MZ, Baura V, Balsanelli E, Almeida SR, Dos Santos SS, Teixeira MDM, Soares Felipe MS, do Nascimento MMF, Pedrosa FO, Steffens MB, Attili-Angelis D, Najafzadeh MJ, Queiroz-Telles F, Souza EM, De Hoog S. Comparative Genomics of Sibling Species of Fonsecaea Associated with Human Chromoblastomycosis. Front Microbiol 2017; 8:1924. [PMID: 29062304 PMCID: PMC5640708 DOI: 10.3389/fmicb.2017.01924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/21/2017] [Indexed: 01/16/2023] Open
Abstract
Fonsecaea and Cladophialophora are genera of black yeast-like fungi harboring agents of a mutilating implantation disease in humans, along with strictly environmental species. The current hypothesis suggests that those species reside in somewhat adverse microhabitats, and pathogenic siblings share virulence factors enabling survival in mammal tissue after coincidental inoculation driven by pathogenic adaptation. A comparative genomic analysis of environmental and pathogenic siblings of Fonsecaea and Cladophialophora was undertaken, including de novo assembly of F. erecta from plant material. The genome size of Fonsecaea species varied between 33.39 and 35.23 Mb, and the core genomes of those species comprises almost 70% of the genes. Expansions of protein domains such as glyoxalases and peptidases suggested ability for pathogenicity in clinical agents, while the use of nitrogen and degradation of phenolic compounds was enriched in environmental species. The similarity of carbohydrate-active vs. protein-degrading enzymes associated with the occurrence of virulence factors suggested a general tolerance to extreme conditions, which might explain the opportunistic tendency of Fonsecaea sibling species. Virulence was tested in the Galleria mellonella model and immunological assays were performed in order to support this hypothesis. Larvae infected by environmental F. erecta had a lower survival. Fungal macrophage murine co-culture showed that F. erecta induced high levels of TNF-α contributing to macrophage activation that could increase the ability to control intracellular fungal growth although hyphal death were not observed, suggesting a higher level of extremotolerance of environmental species.
Collapse
Affiliation(s)
- Vania A Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Vinícius A Weiss
- Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil.,Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Amanda Bombassaro
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Leandro F Moreno
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Flávia F Costa
- Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Roberto T Raittz
- Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil
| | - Aniele C Leão
- Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil.,Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Anamelia L Bocca
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - Gheniffer Fornari
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Helisson Faoro
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | | | - Valter Baura
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Sandro R Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Suelen S Dos Santos
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcus de Melo Teixeira
- Department of Cell Biology, University of Brasília, Brasilia, Brazil.,Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Maria S Soares Felipe
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasilia, Brazil
| | | | - Fabio O Pedrosa
- Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Maria B Steffens
- Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil.,Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | | | - Mohammad J Najafzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Flávio Queiroz-Telles
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,Clinical Hospital of the Federal University of Paraná, Curitiba, Brazil
| | - Emanuel M Souza
- Laboratory of Bioinformatics, Sector of Technological and Professional Education, Federal University of Paraná, Curitiba, Brazil.,Department of Biochemistry, Federal University of Paraná, Curitiba, Brazil
| | - Sybren De Hoog
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil.,CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
50
|
Progress in Definition, Prevention and Treatment of Fungal Infections in Cystic Fibrosis. Mycopathologia 2017; 183:21-32. [DOI: 10.1007/s11046-017-0182-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
|