1
|
Barrera-Adame DA, Marin-Felix Y, Wegener AK, Lalk M, Stadler M, Niedermeyer THJ. Bulbillosins A - E, azaphilones from Tengochaetabulbillosa sp. nov. ( Chaetomiaceae), a root endophyte of the Chinese medicinal plant Astertataricus. IMA Fungus 2025; 16:e141036. [PMID: 40052077 PMCID: PMC11882021 DOI: 10.3897/imafungus.16.141036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/08/2024] [Indexed: 03/09/2025] Open
Abstract
Astertataricus is a plant used in Traditional Chinese Medicine. From its roots, we isolated four endophytic fungi strains. After mass spectrometry analysis and subsequent molecular networking and dereplication, one of the strain's extracts showed a cluster of yet undescribed natural products. Additionally, the extract was found to be lethal for the nematode Caenorhabditiselegans and cytotoxic against eukaryotic cell lines. The fungal strain was characterized by morphological and molecular studies, allowing its description as a new species in the genus Tengochaeta (Chaetomiaceae), Tengochaetabulbillosa. After cultivation and extraction of the strain, the major secondary metabolites were isolated. Structure elucidation based on nuclear magnetic resonance spectroscopy and high-resolution tandem mass spectrometry revealed these compounds to be five new azaphilones. Additionally, the localization of these azaphilones in the host plant was studied by mass spectrometry imaging of different plant tissues, revealing that they were mainly localized in the aerial parts of the plant. The main compound, bulbillosin A, was evaluated for its activity against sixty cancer cell lines, revealing a differential cytotoxicity profile.
Collapse
Affiliation(s)
- Diana Astrid Barrera-Adame
- Department of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, GermanyFreie Universität BerlinBerlinGermany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, GermanyHelmholtz Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Ana Kristin Wegener
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), GermanyMartin Luther University Halle-WittenbergHalle (Saale)Germany
- Current affiliation: Winckelmann Apotheke, 39576 Stendal, GermanyWinckelmann ApothekeStendalGermany
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, GermanyUniversity of GreifswaldGreifswaldGermany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, GermanyHelmholtz Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Timo H. J. Niedermeyer
- Department of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, GermanyFreie Universität BerlinBerlinGermany
| |
Collapse
|
2
|
Barnés-Guirado M, Cano-Lira JF, Miller AN, Stchigel AM. New Species of Ascomycetes from Two Hypersaline Endorheic Lagoon Complexes in Zaragoza Province (Aragon Community, Spain). J Fungi (Basel) 2025; 11:139. [PMID: 39997433 PMCID: PMC11856669 DOI: 10.3390/jof11020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Although certain hypersaline endorheic lagoons in Spain have been investigated to evaluate the composition, spatial structure, and ecological roles of their macro- and microbiota, the fungi inhabiting these niches remain largely unexplored. In this study, we isolated several microfungi from the Salada Grande de Chiprana and La Playa lagoons, located in the Saladas de Chiprana (Directed Natural Reserve and Ramsar Wetland) and the Saladas de Sástago-Bujaraloz (Ramsar Wetland), respectively. As a result of morphological characterization and phylogenetic analysis using four informative molecular markers, we report the discovery of two new species of the genus Montagnula (M.), M. globospora and M. terricola, as well as one new species of Monosporascus (Mo.), Mo. auratispora. Montagnula globospora, isolated from a sediment sample from Salada Grande de Chiprana lagoon, is the only species of the genus producing unicellular, globose ascospores inside cleistothecial ascomata with a cephalothecoid peridium. Montagnula terricola was originally isolated from a soil sample in Malawi (ex-type strain). However, we have also identified another strain of this species from a sediment sample collected at La Playa lagoon. The remarkable features of M. terricola are the production of non-cephalothecoid cleistothecial ascomata and bicellular, bi-cupulate ascospores. Regarding Mo. auratispora, it was isolated from sediments of Salada Grande de Chiprana and is characterized by the production of golden-brown ascospores that do not turn black with age. Also, due to the results of our phylogenetic analysis, we transferred Herpotrichia striatispora to the genus Montagnula, as M. striatispora, and Montangula jonessi to the new genus Neomontagnula (N.), as N. jonessi.
Collapse
Affiliation(s)
- María Barnés-Guirado
- Mycology Unit, Medical School, University Rovira i Virgili, C/Sant Llorenç 21, 43201 Tarragona, Spain; (M.B.-G.); (A.M.S.)
| | - José F. Cano-Lira
- Mycology Unit, Medical School, University Rovira i Virgili, C/Sant Llorenç 21, 43201 Tarragona, Spain; (M.B.-G.); (A.M.S.)
| | - Andrew N. Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, 1816 South Oak Street, Champaign, IL 61820-6970, USA;
| | - Alberto M. Stchigel
- Mycology Unit, Medical School, University Rovira i Virgili, C/Sant Llorenç 21, 43201 Tarragona, Spain; (M.B.-G.); (A.M.S.)
| |
Collapse
|
3
|
Dikunova A, Noskova N, Overbeck JH, Polak M, Stelzig D, Zapletal D, Kubicek K, Novacek J, Sprangers R, Stefl R. Assembly of the Xrn2/Rat1-Rai1-Rtt103 termination complexes in mesophilic and thermophilic organisms. Structure 2025; 33:300-310.e6. [PMID: 39657659 DOI: 10.1016/j.str.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The 5'-3' exoribonuclease Xrn2, known as Rat1 in yeasts, terminates mRNA transcription by RNA polymerase II (RNAPII). In the torpedo model of termination, the activity of Xrn2/Rat1 is enhanced by Rai1, which is recruited to the termination site by Rtt103, an adaptor protein binding to the RNAPII C-terminal domain (CTD). The overall architecture of the Xrn2/Rat1-Rai1-Rtt103 complex remains unknown. We combined structural biology methods to characterize the torpedo complex from Saccharomyces cerevisiae and Chaetomium thermophilum. Comparison of the structures from these organisms revealed a conserved protein core fold of the subunits, but significant variability in their interaction interfaces. We found that in the mesophile, Rtt103 utilizes an unstructured region to augment a Rai1 β-sheet, while in the thermophile Rtt103 binds to a C-terminal helix of Rai1 via its CTD-interacting domain with an α-helical fold. These different torpedo complex assemblies reflect adaptations to the environment and impact complex recruitment to RNAPII.
Collapse
Affiliation(s)
- Alzbeta Dikunova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Nikola Noskova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan H Overbeck
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Martin Polak
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - David Stelzig
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - David Zapletal
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czechia; Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Jiri Novacek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia.
| |
Collapse
|
4
|
Bamigbade GB, Oyelami OI, Babalola OO, Adewolu A, Omemu AM, Ogunsanya TF, Sanusi JOF, Daniel OM. An updated comprehensive review on waste valorization: Informetric analysis, current insights and future perspectives on cereal waste and byproduct utilization for sustainable industrial applications. BIORESOURCE TECHNOLOGY 2025; 418:131868. [PMID: 39581479 DOI: 10.1016/j.biortech.2024.131868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Cereal crops have been integral to human sustenance since the Neolithic era which have earned significant attention as staple foods. The year-round cultivation and consumption of cereal-based products have led to the escalating global production of cereals and a rise in industrial processing which results in significant waste generation. These wastes contain high-value nutrients such as carbohydrates, proteins, and lipids. Due to their dense nutritional values, there is a need to link the diverse array of nutrients in major cereal wastes and by-products to their functionalities and relevant industrial applications. This will not only promote sustainable waste management but also economic stability. Existing studies on cereal research were investigated using informetric analysis to provide a quantitative outlook and identify key trends, research priorities, and gaps in cereal studies. Overall, this review presents a comprehensive update on the past, present, and future of sustainable cereal waste valorization, highlighting previous studies and providing insights for future exploration of these biowastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates; Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria.
| | - Oluwaseun Isaac Oyelami
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa.
| | - Abiodun Adewolu
- Department of Chemistry and Biochemistry, Chemical Science Laboratory, Florida State University, Tallahassee, FL 32306, USA
| | - Adebukunola Mobolaji Omemu
- Department of Hospitality and Tourism, College of Food Science and Human Ecology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Tobiloba Felix Ogunsanya
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| | | | - Olujimi Makanjuola Daniel
- Department of Biological Sciences, College of Natural and Applied Sciences, Crescent University, Abeokuta, Nigeria
| |
Collapse
|
5
|
Nguyen TTT, Lee HB. Descriptions of 19 Unrecorded Species Belonging to Sordariomycetes in Korea. MYCOBIOLOGY 2024; 52:405-438. [PMID: 39845177 PMCID: PMC11749255 DOI: 10.1080/12298093.2024.2426840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 01/24/2025]
Abstract
A survey of fungal diversity in soil and freshwater habitats in Korea isolated several species of the class Sordariomycetes. Morphological characteristics and multigene phylogenetic analyses showed that these species represented new records for Korea. Herein, we report the descriptions, illustrations, and molecular phylogeny of 19 species previously undescribed in Korea, including Achaetomiella virescens, Arxotrichum gangligerum, Caespitomonium euphorbiae, Comoclathris typhicola, Gamsia aggregata, Luteonectria nematophila, Paramyrothecium sinense, Parasarocladium debruynii, Pleurocordyceps agarica, Pyrenochaetopsis sinensis, Scedosporium boydii, Scedosporium dehoogii, Scedosporium minutisporum, Striatibotrys rhabdosporus, Trichocladium crispatum, Trichoderma azevedoi, Trichoderma longifialidicum, Xepicula leucotricha, and Xylomelasma sordida.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Liu NG, Hyde KD, Sun YR, Bhat DJ, Jones EBG, Jumpathong J, Lin CG, Lu YZ, Yang J, Liu LL, Liu ZY, Liu JK. Notes, outline, taxonomy and phylogeny of brown-spored hyphomycetes. FUNGAL DIVERS 2024; 129:1-281. [DOI: 10.1007/s13225-024-00539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/23/2024] [Indexed: 01/05/2025]
|
7
|
Qian N, Wu Y, Zhang W, Yang J, Bhadauria V, Zhang G, Yan J, Zhao W. Three New Species and Five New Host Records from Chaetomiaceae with Anti-Phytopathogenic Potential from Cover Crops Astragalus sinicus and Vicia villosa. J Fungi (Basel) 2024; 10:776. [PMID: 39590695 PMCID: PMC11595803 DOI: 10.3390/jof10110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Cover crops, typically planted during off-seasons and requiring less agronomic manipulation, may provide abundant fungal resources. Certain species of Chaetomiaceae could serve as potential agents for controlling plant diseases and developing bioorganic fertilizers. Eight species from five genera of Chaetomiaceae were identified from healthy Astragalus sinicus and Vicia villosa, two major cover crops, through multigene phylogenetic analysis, morphological identification, and pairwise homoplasy index testing. The identified species comprise three new species: Achaetomium astragali, Subramaniula henanensis, and S. sichuanensis, as well as five known but new host record species: Botryotrichum murorum, Chaetomium coarctatum, C. pseudocochliodes, C. pseudoglobosum, and Collariella pachypodioides. Dual culture tests revealed that isolates of all eight Chaetomiaceae species exhibited antagonistic effects on multiple phytopathogens. Among the identified fungi, the NSJA2 isolate, belonging to C. coarctatum, exhibited significant relative inhibition effects on 14 out of 15 phytopathogens tested in this study, indicating its broad-spectrum antagonistic effects. Additionally, NSJA2 exhibited excellent salt tolerance. Overall, our study has identified multiple fungi with anti-phytopathogens potential, among which NSJA2 exhibits high potential for practical application. This finding paves the way for further exploration and exploitation of NSJA2 as a promising biocontrol agent.
Collapse
Affiliation(s)
- Ning Qian
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China; (N.Q.); (Y.W.); (J.Y.)
| | - Yuhong Wu
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China; (N.Q.); (Y.W.); (J.Y.)
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Jun Yang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China; (N.Q.); (Y.W.); (J.Y.)
| | - Vijai Bhadauria
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (V.B.); (G.Z.)
| | - Guozhen Zhang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (V.B.); (G.Z.)
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Wensheng Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China; (N.Q.); (Y.W.); (J.Y.)
| |
Collapse
|
8
|
Mo Y, Bier R, Li X, Daniels M, Smith A, Yu L, Kan J. Agricultural practices influence soil microbiome assembly and interactions at different depths identified by machine learning. Commun Biol 2024; 7:1349. [PMID: 39424928 PMCID: PMC11489707 DOI: 10.1038/s42003-024-07059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Agricultural practices affect soil microbes which are critical to soil health and sustainable agriculture. To understand prokaryotic and fungal assembly under agricultural practices, we use machine learning-based methods. We show that fertility source is the most pronounced factor for microbial assembly especially for fungi, and its effect decreases with soil depths. Fertility source also shapes microbial co-occurrence patterns revealed by machine learning, leading to fungi-dominated modules sensitive to fertility down to 30 cm depth. Tillage affects soil microbiomes at 0-20 cm depth, enhancing dispersal and stochastic processes but potentially jeopardizing microbial interactions. Cover crop effects are less pronounced and lack depth-dependent patterns. Machine learning reveals that the impact of agricultural practices on microbial communities is multifaceted and highlights the role of fertility source over the soil depth. Machine learning overcomes the linear limitations of traditional methods and offers enhanced insights into the mechanisms underlying microbial assembly and distributions in agriculture soils.
Collapse
Affiliation(s)
- Yujie Mo
- Sino-French Engineer School, Beihang University, Beijing, China
| | - Raven Bier
- Stroud Water Research Center, Avondale, PA, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Xiaolin Li
- Zibo Vocational Institute, Zibo, Shandong, China
| | | | | | - Lei Yu
- Sino-French Engineer School, Beihang University, Beijing, China.
| | - Jinjun Kan
- Stroud Water Research Center, Avondale, PA, USA.
| |
Collapse
|
9
|
Guerra-Mateo D, Cano-Lira JF, Fernández-Bravo A, Gené J. Sunken Riches: Ascomycete Diversity in the Western Mediterranean Coast through Direct Plating and Flocculation, and Description of Four New Taxa. J Fungi (Basel) 2024; 10:281. [PMID: 38667952 PMCID: PMC11051201 DOI: 10.3390/jof10040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The Mediterranean Sea stands out as a hotspot of biodiversity, whose fungal composition remains underexplored. Marine sediments represent the most diverse substrate; however, the challenge of recovering fungi in culture hinders the precise identification of this diversity. Concentration techniques like skimmed milk flocculation (SMF) could represent a suitable solution. Here, we compare the effectiveness in recovering filamentous ascomycetes of direct plating and SMF in combination with three culture media and two incubation temperatures, and we describe the fungal diversity detected in marine sediments. Sediments were collected at different depths on two beaches (Miracle and Arrabassada) on the Spanish western Mediterranean coast between 2021 and 2022. We recovered 362 strains, and after a morphological selection, 188 were identified primarily with the LSU and ITS barcodes, representing 54 genera and 94 species. Aspergillus, Penicillium, and Scedosporium were the most common genera, with different percentages of abundance between both beaches. Arrabassada Beach was more heterogeneous, with 42 genera representing 60 species (Miracle Beach, 28 genera and 54 species). Although most species were recovered with direct plating (70 species), 20 species were exclusively obtained using SMF as a sample pre-treatment, improving our ability to detect fungi in culture. In addition, we propose three new species in the genera Exophiala, Nigrocephalum, and Queenslandipenidiella, and a fourth representing the novel genus Schizochlamydosporiella. We concluded that SMF is a useful technique that, in combination with direct plating, including different culture media and incubation temperatures, improves the chance of recovering marine fungal communities in culture-dependent studies.
Collapse
Affiliation(s)
| | | | | | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut and Institut Universitari de Recerca en Sostenibilitat, Canvi Climàtic i Transició Energètica (IU-RESCAT), Universitat Rovira i Virgili, 43201 Reus, Spain; (D.G.-M.); (J.F.C.-L.); (A.F.-B.)
| |
Collapse
|
10
|
Barnés-Guirado M, Stchigel AM, Cano-Lira JF. A New Genus of the Microascaceae (Ascomycota) Family from a Hypersaline Lagoon in Spain and the Delimitation of the Genus Wardomyces. J Fungi (Basel) 2024; 10:236. [PMID: 38667907 PMCID: PMC11051006 DOI: 10.3390/jof10040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The Saladas de Sástago-Bujaraloz is an endorheic and arheic complex of lagoons located in the Ebro Basin and protected by the Ramsar Convention on Wetlands. Due to the semi-arid climate of the region and the high salinity of their waters, these lagoons constitute an extreme environment. We surveyed the biodiversity of salt-tolerant and halophilic fungi residents of the Laguna de Pito, a lagoon belonging to this complex. Therefore, we collected several samples of water, sediments, and soil of the periphery. Throughout the study, we isolated 21 fungal species, including a strain morphologically related to the family Microascaceae. However, this strain did not morphologically match any of genera within this family. After an in-depth morphological characterization and phylogenetic analysis using a concatenated sequence dataset of four phylogenetically informative molecular markers (the internal transcribed spacer region (ITS) of the nuclear ribosomal DNA (nrDNA); the D1-D2 domains of the 28S gene of the nuclear ribosomal RNA (LSU); and a fragment of the translation elongation factor 1-alpha (EF-1α) and the β-tubulin (tub2) genes), we established the new genus Dactyliodendromyces, with Dactyliodendromyces holomorphus as its species. Additionally, as a result of our taxonomic study, we reclassified the paraphyletic genus Wardomyces into three different genera: Wardomyces sensu stricto, Parawardomyces gen. nov., and Pseudowardomyces gen. nov., with Parawardomyces ovalis (formerly Wardomyces ovalis) and Pseudowardomyces humicola (formerly Wardomyces humicola) as the type species of their respective genera. Furthermore, we propose new combinations, including Parawardomyces giganteus (formerly Wardomyces giganteus) and Pseudowardomyces pulvinatus (formerly Wardomyces pulvinatus).
Collapse
Affiliation(s)
| | - Alberto Miguel Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain; (M.B.-G.); (J.F.C.-L.)
| | | |
Collapse
|
11
|
Wang HY, Li X, Dong CB, Zhang YW, Chen WH, Liang JD, Han YF. Two new species of Sordariomycetes (Chaetomiaceae and Nectriaceae) from China. MycoKeys 2024; 102:301-315. [PMID: 38495535 PMCID: PMC10940860 DOI: 10.3897/mycokeys.102.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 03/19/2024] Open
Abstract
Rich and diverse fungal species occur in different habitats on the earth. Many new taxa are being reported and described in increasing numbers with the advent of molecular phylogenetics. However, there are still a number of unknown fungi that have not yet been discovered and described. During a survey of fungal diversity in different habitats in China, we identified and proposed two new species, based on the morphology and multi-gene phylogenetic analyses. Herein, we report the descriptions, illustrations and molecular phylogeny of the two new species, Bisifusariumkeratinophilumsp. nov. and Ovatosporasinensissp. nov.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Institute of Fungus Resources, Department of Ecology, College of Life Science, Guizhou University, Guiyang 550025 Guizhou, ChinaGuizhou UniversityGuiyangChina
| | - Xin Li
- Institute of Fungus Resources, Department of Ecology, College of Life Science, Guizhou University, Guiyang 550025 Guizhou, ChinaGuizhou UniversityGuiyangChina
| | - Chun-Bo Dong
- Institute of Fungus Resources, Department of Ecology, College of Life Science, Guizhou University, Guiyang 550025 Guizhou, ChinaGuizhou UniversityGuiyangChina
| | - Yan-Wei Zhang
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, ChinaGuizhou Education UniversityGuiyangChina
| | - Wan-Hao Chen
- Center for Mycomedicine Research, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, ChinaGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Jian-Dong Liang
- Center for Mycomedicine Research, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, ChinaGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yan-Feng Han
- Institute of Fungus Resources, Department of Ecology, College of Life Science, Guizhou University, Guiyang 550025 Guizhou, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
12
|
Daroodi Z, Taheri P. The genus Acrophialophora: History, phylogeny, morphology, beneficial effects and pathogenicity. Fungal Genet Biol 2024; 171:103875. [PMID: 38367800 DOI: 10.1016/j.fgb.2024.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The genus Acrophialophora is a thermotolerant fungus, which is widely distributed in temperate and tropical zones. This fungus is classified in Ascomycota and belongs to the Chaetomiaceae family and the genera of Parathielavia, Pseudothielavia and Hyalosphaerella are closely related to Acrophialophora. For this genus have been reported 28 species so far, which two species of Acrophialophora jodhpurensis and Acrophialophora teleoafricana produce only sexual phase and other species produce asexual form. Therefore, producing both sexual and asexual forms were not reported by any species. Many applications were reported by some species in agriculture, pharmacy and industry. Production of enzymes, antimicrobial metabolites and plant growth-promoting factors were reported by some species. The species of A. nainiana is used in the industries of textile, fruit juice, pulp and paper due to extracellular enzyme production. Also, other species produce extracellular enzymes that can be used in various industries. The species Acrophialophora are used in the composting industry due to the production of various enzymes and to be thermotolerant. In addition, some species were isolated from hostile environmental conditions. Therefore has been suggested that it can be used for mycoremediation. Also, antimicrobial metabolites of Acrophialophora have been reported to be effective against human and plant pathogens. In contrast to the beneficial effects described, the Acrophialophora pathogenicity has been rarely reported. Two species A. fusispora and A. levis are opportunistic fungi and have been reported as pathogens in humans, animals and plants. Currently, the development and applications of Acrophialophora species have increased more than past. To our knowledge, there is no report with comprehensive information on the species of Acrophialophora, which include their disadvantage and beneficial effects, particularly in agriculture. Therefore, it seems necessary to pay more in-depth attention to the application of this genus as a beneficial fungus in agriculture, pharmaceutical and industry. This review is focused on the history, phylogeny, morphology, valuable roles of Acrophialophora and pathogenicity.
Collapse
Affiliation(s)
- Zoha Daroodi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
13
|
Liu Y, Deng G, Liu H, Chen P, Pan Y, Chen L, Chen H, Zhang G. Seasonal variations of airborne microbial diversity in waste transfer stations and preventive effect on Streptococcus pneumoniae induced pulmonary inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168888. [PMID: 38030004 DOI: 10.1016/j.scitotenv.2023.168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Environment, location, and season are important factors that influence the microbiological community, yet, little research on airborne microorganisms in waste transfer stations (WTSs). Here, the airborne bacterial and fungal communities at four WTSs during different seasons were analyzed by high-throughput sequencing. The bacteria were isolated by cultural method and screened bacterium alleviate inflammation induced by Streptococcus pneumoniae (Spn) by regulating gut microbiome. The results revealed that collected bioaerosols from the WTSs varied significantly by location and season. Proteobacteria and Pseudomonadota are prevalent in summer and winter, respectively. Ascomycota was predominant in two seasons. Hazard quotients for adults from four WTSs were below one. Three selected potential probiotics were formulated into a microbial preparation with a carrier that effectively prevented inflammation in bacterial and animal experiments. The expression levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α in Pre group (0.11, 0.17, and 0.48-fold) were significantly lower than Spn group (2.75, 1.71, and 5.01-fold). These mechanisms are associated with changes in gut microbiota composition and short-chain fatty acids (SCFAs) levels, such as affecting Lachnospiraceae lachnospira abundance and acetic acid content. This study provides insights into the potential application of probiotics derived from WTSs as an alternative approach to preventing respiratory infections.
Collapse
Affiliation(s)
- Yuqi Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guanhua Deng
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Huanhuan Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Nansha District Center for Disease Control and Prevention, Guangzhou 511455, China
| | - Yimin Pan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; Liwan District Center for Disease Control and Prevention, Guangzhou 510176, China
| | - Lingyun Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Huashan Chen
- Guoke (Foshan) Testing and Certification Co., Ltd, Foshan 528299, China
| | - Guoxia Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Pandey S, Meshram V, Yehia HM, Alzahrani A, Akhtar N, Sur A. Efficient production and characterization of melanin from Thermothelomyces hinnuleus SP1, isolated from the coal mines of Chhattisgarh, India. Front Microbiol 2024; 14:1320116. [PMID: 38293558 PMCID: PMC10826702 DOI: 10.3389/fmicb.2023.1320116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
In the present study, fungi were isolated and screened from barren land in south-eastern Coalfields limited (SECL) in Chhattisgarh, India. Out of 14 isolated fungi, only three fungal isolates exhibited pigmentation in screening studies. The isolated fungal strain SP1 exhibited the highest pigmentation, which was further utilized for in vivo production, purification, and characterization of melanin pigment. The physical and chemical properties of the fungal pigment showed insolubility in organic solvents and water, solubility in alkali, precipitation in acid, and decolorization with oxidizing agents. The physiochemical characterization and analytical studies of the extracted pigment using ultraviolet-visible spectroscopy and Fourier transform infrared (FTIR) confirmed it as a melanin pigment. The melanin-producing fungus SP1 was identified as Thermothelomyces hinnuleus based on 18S-rRNA sequence analysis. Furthermore, to enhance melanin production, a response surface methodology (RSM) was employed, specifically utilizing the central composite design (CCD). This approach focused on selecting efficient growth as well as progressive yield parameters such as optimal temperature (34.4°C), pH (5.0), and trace element concentration (56.24 mg). By implementing the suggested optimal conditions, the production rate of melanin increased by 62%, resulting in a yield of 28.3 mg/100 mL, which is comparatively higher than the actual yield (17.48 ± 2.19 mg/100 mL). Thus, T. hinnuleus SP1 holds great promise as a newly isolated fungal strain that could be used for the industrial production of melanin.
Collapse
Affiliation(s)
- Shalini Pandey
- Amity Institute of Biotechnology, Amity University, Raipur, Chhattisgarh, India
| | - Vineet Meshram
- Department of Biotechnology and Microbiology, Anjaneya University, Raipur, Chhattisgarh, India
| | - Hany M. Yehia
- Department of Food Science and Nutrition, Faculty of Home Economics, Helwan University, Cairo, Egypt
| | - Abdulhakeem Alzahrani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Arunima Sur
- Amity Institute of Biotechnology, Amity University, Raipur, Chhattisgarh, India
| |
Collapse
|
15
|
Wang Z, Kim W, Wang YW, Yakubovich E, Dong C, Trail F, Townsend JP, Yarden O. The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1214537. [PMID: 37746130 PMCID: PMC10512317 DOI: 10.3389/ffunb.2023.1214537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 09/26/2023]
Abstract
Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium, Neurospora, and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Republic of Korea
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
16
|
Peng L, Zhang YW, Wang HY, Dong CB, Chen WH, Liang JD, Han YF. Taxonomy and Phylogeny of Eight New Acrophialophora Species (Sordariales, Chaetomiaceae) from China. J Fungi (Basel) 2023; 9:645. [PMID: 37367581 DOI: 10.3390/jof9060645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The genus Acrophialophora belongs to the family Chaetomiaceae. With the addition of new species and transferred species from other genera, the genus Acrophialophora has expanded. In this study, eight new species related to Acrophialophora were isolated from soil samples in China. Using muti-locus phylogenetic (ITS, LSU, tub2 and RPB2) analysis combined with morphological characteristics, eight new species (Acrophialophora curvata, A. fujianensis, A. guangdongensis, A. longicatenata, A. minuta, A. multiforma, A. rhombica, and A. yunnanensis) are described. Descriptions, illustrations, and notes of the new species are also provided.
Collapse
Affiliation(s)
- Lan Peng
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yan-Wei Zhang
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Hai-Yan Wang
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Chun-Bo Dong
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Wan-Hao Chen
- Center for Mycomedicine Research, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jian-Dong Liang
- Center for Mycomedicine Research, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yan-Feng Han
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Skalidis I, Kyrilis FL, Tüting C, Hamdi F, Träger TK, Belapure J, Hause G, Fratini M, O'Reilly FJ, Heilmann I, Rappsilber J, Kastritis PL. Structural analysis of an endogenous 4-megadalton succinyl-CoA-generating metabolon. Commun Biol 2023; 6:552. [PMID: 37217784 DOI: 10.1038/s42003-023-04885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
The oxoglutarate dehydrogenase complex (OGDHc) participates in the tricarboxylic acid cycle and, in a multi-step reaction, decarboxylates α-ketoglutarate, transfers succinyl to CoA, and reduces NAD+. Due to its pivotal role in metabolism, OGDHc enzymatic components have been studied in isolation; however, their interactions within the endogenous OGDHc remain elusive. Here, we discern the organization of a thermophilic, eukaryotic, native OGDHc in its active state. By combining biochemical, biophysical, and bioinformatic methods, we resolve its composition, 3D architecture, and molecular function at 3.35 Å resolution. We further report the high-resolution cryo-EM structure of the OGDHc core (E2o), which displays various structural adaptations. These include hydrogen bonding patterns confining interactions of OGDHc participating enzymes (E1o-E2o-E3), electrostatic tunneling that drives inter-subunit communication, and the presence of a flexible subunit (E3BPo), connecting E2o and E3. This multi-scale analysis of a succinyl-CoA-producing native cell extract provides a blueprint for structure-function studies of complex mixtures of medical and biotechnological value.
Collapse
Affiliation(s)
- Ioannis Skalidis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120, Halle/Saale, Germany
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120, Halle/Saale, Germany
| | - Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
| | - Toni K Träger
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120, Halle/Saale, Germany
| | - Jaydeep Belapure
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany
| | - Gerd Hause
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany
| | - Marta Fratini
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Francis J O'Reilly
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, Scotland, United Kingdom
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120, Halle/Saale, Germany.
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany.
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, 11635, Greece.
| |
Collapse
|
18
|
Charria-Girón E, Stchigel AM, Čmoková A, Kolařík M, Surup F, Marin-Felix Y. Amesia hispanica sp. nov., Producer of the Antifungal Class of Antibiotics Dactylfungins. J Fungi (Basel) 2023; 9:463. [PMID: 37108917 PMCID: PMC10141101 DOI: 10.3390/jof9040463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During a study of the diversity of soilborne fungi from Spain, a strain belonging to the family Chaetomiaceae (Sordariales) was isolated. The multigene phylogenetic inference using five DNA loci showed that this strain represents an undescribed species of the genus Amesia, herein introduced as A. hispanica sp. nov. Investigation of its secondary metabolome led to the isolation of two new derivatives (2 and 3) of the known antifungal antibiotic dactylfungin A (1), together with the known compound cochliodinol (4). The planar structures of 1-4 were determined by ultrahigh performance liquid chromatography coupled with diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) and extensive 1D and 2D nuclear magnetic resonance (NMR) spectroscopy after isolation by HPLC. All isolated secondary metabolites were tested for their antimicrobial and cytotoxic activities. Dactylfungin A (1) showed selective and strong antifungal activity against some of the tested human pathogens (Aspergillus fumigatus and Cryptococcus neoformans). The additional hydroxyl group in 2 resulted in the loss of activity against C. neoformans but still retained the inhibition of As. fumigatus in a lower concentration than that of the respective control, without showing any cytotoxic effects. In contrast, 25″-dehydroxy-dactylfungin A (3) exhibited improved activity against yeasts (Schizosaccharomyces pombe and Rhodotorula glutinis) than 1 and 2, but resulted in the appearance of slight cytotoxicity. The present study exemplifies how even in a well-studied taxonomic group such as the Chaetomiaceae, the investigation of novel taxa still brings chemistry novelty, as demonstrated in this first report of this antibiotic class for chaetomiaceous and sordarialean taxa.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alberto Miguel Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Tarragona, Spain
| | - Adéla Čmoková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
19
|
Hill R, Levicky Q, Pitsillides F, Junnonen A, Arrigoni E, Bonnin JM, Kermode A, Mian S, Leitch IJ, Buddie AG, Buggs RJA, Gaya E. Tapping Culture Collections for Fungal Endophytes: First Genome Assemblies for Three Genera and Five Species in the Ascomycota. Genome Biol Evol 2023; 15:evad038. [PMID: 36881851 PMCID: PMC10027605 DOI: 10.1093/gbe/evad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The Ascomycota form the largest phylum in the fungal kingdom and show a wide diversity of lifestyles, some involving associations with plants. Genomic data are available for many ascomycetes that are pathogenic to plants, but endophytes, which are asymptomatic inhabitants of plants, are relatively understudied. Here, using short- and long-read technologies, we have sequenced and assembled genomes for 15 endophytic ascomycete strains from CABI's culture collections. We used phylogenetic analysis to refine the classification of taxa, which revealed that 7 of our 15 genome assemblies are the first for the genus and/or species. We also demonstrated that cytometric genome size estimates can act as a valuable metric for assessing assembly "completeness", which can easily be overestimated when using BUSCOs alone and has broader implications for genome assembly initiatives. In producing these new genome resources, we emphasise the value of mining existing culture collections to produce data that can help to address major research questions relating to plant-fungal interactions.
Collapse
Affiliation(s)
- Rowena Hill
- Royal Botanic Gardens Kew, Richmond, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Quentin Levicky
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | - Sahr Mian
- Royal Botanic Gardens Kew, Richmond, UK
| | | | | | - Richard J A Buggs
- Royal Botanic Gardens Kew, Richmond, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | |
Collapse
|
20
|
Ryu JJ, Das K, Lim SK, Hong SM, Lee SY, Jung HY. Taxonomy of Botryotrichum luteum sp. nov. based on Morphology and Phylogeny Isolated from Soil in Korea. MYCOBIOLOGY 2023; 51:72-78. [PMID: 37122684 PMCID: PMC10142302 DOI: 10.1080/12298093.2023.2192613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, a fungal strain KNUF-22-025 belonging to the genus Botryotrichum was isolated from the soil in Korea. The cultural and morphological characteristics of this strain differed from those of closely related species. On malt extract agar, strain KNUF-22-025 showed slower growth than most of the related species, except B. domesticum. The conidia size (9.6-21.1 × 9.9-18.4 µm) of strain KNUF-22-025 was larger than those of B. piluliferum, B. domesticum, and B. peruvianum but smaller than those of B. atrogriseum and B. iranicum. Conidiophores in strain KNUF-22-025 (137 µm) were longer than those in other closely related species but shorter than those in B. atrogriseum. Multi-locus analysis of molecular markers, such as ITS, 28S ribosomal DNA, RBP2, and TUB2 revealed that strain KNUF-22-025 was distinct from other Botryotrichum species. Thus, this strain is proposed as a novel species based on morphological characteristics along with molecular phylogeny and named Botryotrichum luteum sp. nov.
Collapse
Affiliation(s)
- Jung-Joo Ryu
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seong-Keun Lim
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Soo-Min Hong
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seung-Yeol Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Young Jung
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
- CONTACT Hee-Young Jung
| |
Collapse
|
21
|
Zhao H, Karppi J, Nguyen TTM, Bellemare A, Tsang A, Master E, Tenkanen M. Characterization of a novel AA3_1 xylooligosaccharide dehydrogenase from Thermothelomyces myriococcoides CBS 398.93. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:135. [PMID: 36476312 PMCID: PMC9730589 DOI: 10.1186/s13068-022-02231-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The Carbohydrate-Active enZymes (CAZy) auxiliary activity family 3 (AA3) comprises flavin adenine dinucleotide-dependent (FAD) oxidoreductases from the glucose-methanol-choline (GMC) family, which play auxiliary roles in lignocellulose conversion. The AA3 subfamily 1 predominantly consists of cellobiose dehydrogenases (CDHs) that typically comprise a dehydrogenase domain, a cytochrome domain, and a carbohydrate-binding module from family 1 (CBM1). RESULTS In this work, an AA3_1 gene from T. myriococcoides CBS 398.93 encoding only a GMC dehydrogenase domain was expressed in Aspergillus niger. Like previously characterized CDHs, this enzyme (TmXdhA) predominantly accepts linear saccharides with β-(1 → 4) linkage and targets the hydroxyl on the reducing anomeric carbon. TmXdhA was distinguished, however, by its preferential activity towards xylooligosaccharides over cellooligosaccharides. Amino acid sequence analysis showed that TmXdhA possesses a glutamine at the substrate-binding site rather than a threonine or serine that occupies this position in previously characterized CDHs, and structural models suggest the glutamine in TmXdhA could facilitate binding to pentose sugars. CONCLUSIONS The biochemical analysis of TmXdhA revealed a catalytic preference for xylooligosaccharide substrates. The modeled structure of TmXdhA provides a reference for the screening of oxidoreductases targeting xylooligosaccharides. We anticipate TmXdhA to be a good candidate for the conversion of xylooligosaccharides to added-value chemicals by its exceptional catalytic ability.
Collapse
Affiliation(s)
- Hongbo Zhao
- grid.7737.40000 0004 0410 2071Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Johanna Karppi
- grid.7737.40000 0004 0410 2071Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thi Truc Minh Nguyen
- grid.410319.e0000 0004 1936 8630Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Annie Bellemare
- grid.410319.e0000 0004 1936 8630Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Adrian Tsang
- grid.410319.e0000 0004 1936 8630Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada
| | - Emma Master
- grid.5373.20000000108389418Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland ,grid.17063.330000 0001 2157 2938Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada
| | - Maija Tenkanen
- grid.7737.40000 0004 0410 2071Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Li X, Skillman V, Dung J, Frost K. Legacy effects of fumigation on soil bacterial and fungal communities and their response to metam sodium application. ENVIRONMENTAL MICROBIOME 2022; 17:59. [PMID: 36461097 PMCID: PMC9719244 DOI: 10.1186/s40793-022-00454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soil microorganisms are integral to maintaining soil health and crop productivity, but fumigation used to suppress soilborne diseases may affect soil microbiota. Currently, little is known about the legacy effects of soil fumigation on soil microbial communities and their response to fumigation at the production scale. Here, 16S rRNA gene and internal transcribed spacer amplicon sequencing was used to characterize the bacterial and fungal communities in soils from intensively managed crop fields with and without previous exposure to metam sodium (MS) fumigation. The effect of fumigation history, soil series, and rotation crop diversity on microbial community variation was estimated and the response of the soil microbiome to MS application in an open microcosm system was documented. RESULTS We found that previous MS fumigation reduced soil bacterial diversity but did not affect microbial richness and fungal diversity. Fumigation history, soil series, and rotation crop diversity were the main contributors to the variation in microbial β-diversity. Between fumigated and non-fumigated soils, predominant bacterial and fungal taxa were similar; however, their relative abundance varied with fumigation history. In particular, the abundance of Basidiomycete yeasts was decreased in fumigated soils. MS fumigation also altered soil bacterial and fungal co-occurrence network structure and associations. In microcosms, application of MS reduced soil microbial richness and bacterial diversity. Soil microbial β-diversity was also affected but microbial communities of the microcosm soils were always similar to that of the field soils used to establish the microcosms. MS application also induced changes in relative abundance of several predominant bacterial and fungal genera based on a soil's previous fumigation exposure. CONCLUSIONS The legacy effects of MS fumigation are more pronounced on soil bacterial diversity, β-diversity and networks. Repeated fumigant applications shift soil microbial compositions and may contribute to differential MS sensitivity among soil microorganisms. Following MS application, microbial richness and bacterial diversity decreases, but microbial β-diversity was similar to that of the field soils used to establish the microcosms in the short-term (< 6 weeks). The responses of soil microbiome to MS fumigation are context dependent and rely on abiotic, biotic, and agricultural management practices.
Collapse
Affiliation(s)
- Xiaoping Li
- Virginia Tech, Hampton Roads Agricultural Research and Extension Center, Virginia Beach, VA, 23455, USA
| | - Victoria Skillman
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, 97838, USA
| | - Jeremiah Dung
- Central Oregon Agricultural Research and Extension Center, Oregon State University, Madras, OR, 97741, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA
| | - Kenneth Frost
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, 97838, USA.
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97333, USA.
| |
Collapse
|
23
|
Alves V, Lira R, Lima J, Barbosa R, Bento D, Barbier E, Bernard E, Souza-Motta C, Bezerra J. Unravelling the fungal darkness in a tropical cave: richness and the description of one new genus and six new species. Fungal Syst Evol 2022; 10:139-167. [PMID: 36741552 PMCID: PMC9875697 DOI: 10.3114/fuse.2022.10.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
Caves are special environments that harbour an incredible diversity of life, including fungal species. Brazilian caves have been demonstrated to be biodiversity hotspots for known and unknown fungal species. We investigated the richness of culturable fungi in a tropical cave in Brazil by isolating these microorganisms from the sediment and air. The fungal abundance of colony-forming units (CFUs) was 3 178 in sediment and 526 in air. We used morphological features and phylogenetic analyses of actin (actA), calmodulin (cmdA), internal transcribed spacer regions and intervening 5.8S rRNA (ITS), large subunit (LSU) rDNA, RNA polymerase II second largest subunit (rpb2), translation elongation factor 1-alpha (tef1), and β-tubulin (tub2) genes to identify these isolates. Forty-one species belonging to 17 genera of Ascomycota and two of Basidiomycota were identified, and the genus Aspergillus was most commonly observed in the cave (13 taxa). Twenty-four species were found in sediment (16 exclusives) and 25 species were found in air (17 exclusives). In this study, we introduced a new genus (Pseudolecanicillium gen. nov.) in the family Cordycipitaceae and six new species (14 % of the total taxa identified) of fungal isolates obtained from sediment and air: Aspergillus lebretii sp. nov., Malbranchea cavernosa sp. nov., Pseudohumicola cecavii sp. nov., Pseudolecanicillium caatingaense sp. nov., Talaromyces cavernicola sp. nov., and Tritirachium brasiliense sp. nov. In addition, we built a checklist of the fungal taxa reported from Brazilian caves. Our results highlight the contribution of Brazilian caves to the estimation of national and global fungal diversity. Citation: Alves VCS, Lira RA, Lima JMS, Barbosa RN, Bento DM, Barbier E, Bernard E, Souza-Motta CM, Bezerra JDP (2022). Unravelling the fungal darkness in a tropical cave: richness and the description of one new genus and six new species. Fungal Systematics and Evolution 10: 139-167. doi: 10.3114/fuse.2022.10.06.
Collapse
Affiliation(s)
- V.C.S. Alves
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - R.A. Lira
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - J.M.S. Lima
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - R.N. Barbosa
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - D.M. Bento
- Centro Nacional de Pesquisa e Conservação de Cavernas, Base Avançada no Rio Grande do Norte, Instituto Chico Mendes de Conservação da Biodiversidade, CEP: 59015-350, Natal, RN, Brazil
| | - E. Barbier
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - E. Bernard
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - C.M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - J.D.P. Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, CEP: 74605-050, Goiânia, GO, Brazil
| |
Collapse
|