1
|
Naz M, Afzal MR, Qi SS, Dai Z, Sun Q, Du D. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. CHEMOSPHERE 2024; 365:143397. [PMID: 39313079 DOI: 10.1016/j.chemosphere.2024.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Phytoremediation, the use of plants to remove heavy metals from polluted environments, has been extensively studied. However, abiotic stresses such as drought, salt, and high temperatures can limit plant growth and metal uptake, reducing phytoremediation efficiency. High levels of HMs are also toxic to plants, further decreasing phytoremediation efficacy. This manuscript explores the potential of microbial-assisted and chelation-supported approaches to improve phytoremediation under abiotic stress conditions. Microbial assistance involves the use of specific microbes, including fungi that can produce siderophores. Siderophores bind essential metal ions, increasing their solubility and bioavailability for plant uptake. Chelation-supported methods employ organic acids and amino acids to enhance soil absorption and supply of essential metal ions. These chelating agents bind HMs ions, reducing their toxicity to plants and enabling plants to better withstand abiotic stresses like drought and salinity. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of heavy metal and abiotic stresses. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of HMs and abiotic stresses.These strategies represent a significant advancement in phytoremediation technology, potentially expanding its applicability to more challenging environmental conditions. In this review, we examined how microbial-assisted and chelation-supported techniques can enhance phytoremediation a method that uses plants to remove heavy metals from contaminated sites. These approaches not only boost plant growth and metal uptake but also alleviate the toxic effects of HMs and abiotic stresses like drought and salinity. By doing so, they make phytoremediation a more viable and effective solution for environmental remediation.
Collapse
Affiliation(s)
- Misbah Naz
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Shan Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Zhicong Dai
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu Province, PR China.
| | - Qiuyang Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
2
|
Vohník M, Josefiová J. Novel epiphytic root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum from the Red Sea. MYCORRHIZA 2024:10.1007/s00572-024-01161-9. [PMID: 39073598 DOI: 10.1007/s00572-024-01161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Symbioses with fungi are important and ubiquitous on dry land but underexplored in the sea. As yet only one seagrass has been shown to form a specific root-fungus symbiosis that resembles those occurring in terrestrial plants, namely the dominant long-lived Mediterranean species Posidonia oceanica (Alismatales: Posidoniaceae) forming a dark septate (DS) endophytic association with the ascomycete Posidoniomyces atricolor (Pleosporales: Aigialaceae). Using stereomicroscopy, light and scanning electron microscopy, and DNA cloning, here we describe a novel root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum (Alismatales: Cymodoceaceae) from a site in the Gulf of Aqaba in the Red Sea. Similarly to P. oceanica, the mycobiont of T. ciliatum occurs more frequently in thinner roots that engage in nutrient uptake from the seabed and forms extensive hyphal mantles composed of DS hyphae on the root surface. Contrary to P. oceanica, the mycobiont occurs on the roots with root hairs and does not colonize its host intraradically. While the cloning revealed a relatively rich spectrum of fungi, they were mostly parasites or saprobes of uncertain origin and the identity of the mycobiont thus remains unknown. Symbioses of seagrasses with fungi are probably more frequent than previously thought, but their functioning and significance are unknown. Melanin present in DS hyphae slows down their decomposition and so is true for the colonized roots. DS fungi may in this way conserve organic detritus in the seagrasses' rhizosphere, thus contributing to blue carbon sequestration in seagrass meadows.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
- KROKODIVE.CZ, Údolní 219/47, Prague, 14700, Czechia.
| | - Jiřina Josefiová
- Laboratory of Molecular Biology and Bioinformatics, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, 25243, Czechia
| |
Collapse
|
3
|
Vohník M, Réblová M. Fungi in hair roots of Vaccinium spp. (Ericaceae) growing on decomposing wood: colonization patterns, identity, and in vitro symbiotic potential. MYCORRHIZA 2023; 33:69-86. [PMID: 36700963 PMCID: PMC9938075 DOI: 10.1007/s00572-023-01101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 05/04/2023]
Abstract
Most of our knowledge on the ericoid mycorrhizal (ErM) symbiosis comes from temperate heathlands characterized by acidic peaty soils and many experiments with a few ascomycetous fungi. However, ericaceous plants thrive in many other ecosystems and in temperate coniferous forests, their seedlings often prosper on decomposing wood. While wood is typically exploited by basidiomycetous ectomycorrhizal (EcM) and saprobic fungi, the role of ErM fungi (ErMF) is much less clear. We explored the cultivable mycobiota of surface sterilized hair roots of Vaccinium spp. growing on decomposing wood in two coniferous forests in Mid-Norway (Scandinavia) and Northern Bohemia (Central Europe). Obtained isolates were identified using molecular tools and their symbiotic potential was tested in vitro. While the detected community lacked the archetypal ErMF Hyaloscypha hepaticicola and the incidence of dark septate endophytes and EcM fungi was negligible, it comprised other frequent asexual ascomycetous ErMF, namely H. variabilis and Oidiodendron maius, together with several isolates displaying affinities to sexual saprobic H. daedaleae and H. fuckelii. Ascomycete-suppressing media revealed representatives of the saprobic basidiomycetous genera Coprinellus, Gymnopilus, Mycena (Agaricales), and Hypochnicium (Polyporales). In the resyntheses, the tested basidiomycetes occasionally penetrated the rhizodermal cells of their hosts but never formed ericoid mycorrhizae and in many cases overgrew and killed the inoculated seedlings. In contrast, a representative of the H. daedaleae/H. fuckelii-related isolates repeatedly formed what morphologically appears as the ErM symbiosis and supported host's growth. In conclusion, while basidiomycetous saprobic fungi have a potential to colonize healthy-looking ericaceous hair roots, the mode(-s) of their functioning remain obscure. For the first time, a lineage in Hyaloscypha s. str. (corresponding to the former Hymenoscyphus ericae aggregate) where sexual saprobes are intermingled with root symbionts has been revealed, shedding new light on the ecology and evolution of these prominent ascomycetous ErMF.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, 252 43, Czechia.
| | - Martina Réblová
- Department of Taxonomy, Institute of Botany, Czech Academy of Sciences, Zámek 1, Průhonice, 252 43, Czechia
| |
Collapse
|
4
|
Mikheev VS, Struchkova IV, Ageyeva MN, Brilkina AA, Berezina EV. The Role of Phialocephala fortinii in Improving Plants' Phosphorus Nutrition: New Puzzle Pieces. J Fungi (Basel) 2022; 8:1225. [PMID: 36422046 PMCID: PMC9695368 DOI: 10.3390/jof8111225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 07/29/2023] Open
Abstract
Plants' mineral nutrition in acidic soils can be facilitated by phosphate solubilizing fungi inhabiting the root systems of these plants. We attempt to find dark septate endophyte (DSE) isolates in the roots of wild-heather plants, which are capable of improving plants' phosphorus nutrition levels. Bright-field and confocal laser scanning microscopy were used for the visualization of endophytes. A model system of co-cultivation with Vaccinium macrocarpon Ait. was used to study a fungal isolate's ability to supply plants with phosphorus. Fungal phytase activity and phosphorus content in plants were estimated spectrophotometrically. In V. vitis-idaea L. roots, we obtained a Phialocephala fortinii Wang, Wilcox DSE2 isolate with acid phytase activity (maximum 6.91 ± 0.17 U on 21st day of cultivation on potato-dextrose broth medium) and the ability to accumulate polyphosphates in hyphae cells. The ability of the isolate to increase both phosphorus accumulation and biomass in V. macrocarpon is also shown. The data obtained for the same isolate, as puzzle pieces put together, indicate the possible mediation of P. fortinii DSE2 isolate in the process of phosphorus intake from inorganic soil reserves to plants.
Collapse
|
5
|
Yuan Z, Wu Q, Xu L, Druzhinina IS, Stukenbrock EH, Nieuwenhuis BPS, Zhong Z, Liu ZJ, Wang X, Cai F, Kubicek CP, Shan X, Wang J, Shi G, Peng L, Martin FM. Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism. THE ISME JOURNAL 2022; 16:1294-1305. [PMID: 34916613 PMCID: PMC9038928 DOI: 10.1038/s41396-021-01176-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022]
Abstract
Comparative and pan-genomic analyses of the endophytic fungus Pezicula neosporulosa (Helotiales, Ascomycota) from needles of the relict fir, Abies beshanzuensis, showed expansions of carbohydrate metabolism and secondary metabolite biosynthetic genes characteristic for unrelated plant-beneficial helotialean, such as dark septate endophytes and ericoid mycorrhizal fungi. The current species within the relatively young Pliocene genus Pezicula are predominantly saprotrophic, while P. neosporulosa lacks such features. To understand the genomic background of this putatively convergent evolution, we performed population analyses of 77 P. neosporulosa isolates. This revealed a mosaic structure of a dozen non-recombining and highly genetically polymorphic subpopulations with a unique mating system structure. We found that one idiomorph of a probably duplicated mat1-2 gene was found in putatively heterothallic isolates, while the other co-occurred with mat1-1 locus suggesting homothallic reproduction for these strains. Moreover, 24 and 81 genes implicated in plant cell-wall degradation and secondary metabolite biosynthesis, respectively, showed signatures of the balancing selection. These findings highlight the evolutionary pattern of the two gene families for allowing the fungus a rapid adaptation towards endophytism and facilitating diverse symbiotic interactions.
Collapse
Affiliation(s)
- Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091, Beijing, China. .,Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China.
| | - Qi Wu
- grid.458488.d0000 0004 0627 1442State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Liangxiong Xu
- grid.411411.00000 0004 0644 5457School of Life Sciences, Huizhou University, Huizhou, 516007 China
| | - Irina S. Druzhinina
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Plant Immunity, Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 China ,grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, A1060 Austria
| | - Eva H. Stukenbrock
- grid.9764.c0000 0001 2153 9986Botanical Institute, Christian-Albrechts Universität zu Kiel, 24118 Kiel, Germany ,grid.419520.b0000 0001 2222 4708Environmental Genomics Research Group, Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Bart P. S. Nieuwenhuis
- grid.5252.00000 0004 1936 973XDivision of Evolutionary Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Zhenhui Zhong
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China ,grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - Zhong-Jian Liu
- grid.256111.00000 0004 1760 2876Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xinyu Wang
- grid.509676.bResearch Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 China
| | - Feng Cai
- grid.27871.3b0000 0000 9750 7019Key Laboratory of Plant Immunity, Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Christian P. Kubicek
- grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, A1060 Austria
| | - Xiaoliang Shan
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China ,grid.509676.bResearch Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 China
| | - Jieyu Wang
- grid.458495.10000 0001 1014 7864Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Guohui Shi
- grid.458488.d0000 0004 0627 1442State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Long Peng
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, 100091 Beijing, China ,grid.509676.bResearch Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400 China
| | - Francis M. Martin
- grid.29172.3f0000 0001 2194 6418Université de Lorraine, INRAe, UMR 1136 Interactions Arbres/Microorganismes, INRAe-Grand Est-Nancy, 54280 Champenoux, France
| |
Collapse
|
6
|
Vohník M, Figura T, Réblová M. Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. MYCORRHIZA 2022; 32:105-122. [PMID: 35028741 DOI: 10.1007/s00572-021-01064-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/23/2021] [Indexed: 05/21/2023]
Abstract
Historically, Hyaloscypha s. lat. (Hyaloscyphaceae, Helotiales) included various saprobes with small apothecia formed on decaying plant matter, usually wood, that were defined by chemical and (ultra)structural aspects. However, recent molecular phylogenetic and resynthesis studies have narrowed the concept of the genus and shown that it contains several widely distributed species with unknown sexual morphs that form ectomycorrhizae, ericoid mycorrhizae, and mycothalli and also grow endophytically in plant roots and hypogeous ectomycorrhizal (EcM) fruitbodies (i.e., the historical Hymenoscyphus ericae aggregate). Hence, some of the sexually reproducing saprobic Hyaloscypha s. lat. and the symbionts belong to the monophyletic Hyaloscypha s. str. Here, we introduce two new root-symbiotic Hyaloscypha s. str. species, i.e., H. gabretae and H. gryndleri spp. nov. While the former was isolated only from ericaceous hosts (Vaccinium myrtillus from Southern Bohemia, Czechia and Calluna vulgaris from England, UK), the latter was obtained from a basidiomycetous EcM root tip of Picea abies (Pinaceae), roots of Pseudorchis albida (Orchidaceae), and hair roots of V. myrtillus from Southern Bohemia and C. vulgaris from England. Hyaloscypha gryndleri comprises two closely related lineages, suggesting ongoing speciation, possibly connected with the root-symbiotic life-style. Fungal isolates from ericaceous roots with sequences similar to H. gabretae and H. gryndleri have been obtained in Japan and in Canada and Norway, respectively, suggesting a wide and scattered distribution across the Northern Hemisphere. In a series of in vitro experiments, both new species failed to form orchid mycorrhizal structures in roots of P. albida and H. gryndleri repeatedly formed what morphologically corresponds to the ericoid mycorrhizal (ErM) symbiosis in hair roots of V. myrtillus, whereas the ErM potential of H. gabretae remained unresolved. Our results highlight the symbiotic plasticity of root-associated hyaloscyphoid mycobionts as well as our limited knowledge of their diversity and distribution, warranting further ecophysiological and taxonomic research of these important and widespread fungi.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, 25243, Průhonice, Czechia.
| | - Tomáš Figura
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844, Prague, Czechia
| | - Martina Réblová
- Department of Taxonomy, Institute of Botany, Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czechia
| |
Collapse
|
7
|
The Rhizosphere Responds: Rich Fen Peat and Root Microbial Ecology after Long-Term Water Table Manipulation. Appl Environ Microbiol 2021; 87:e0024121. [PMID: 33811029 DOI: 10.1128/aem.00241-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrologic shifts due to climate change will affect the cycling of carbon (C) stored in boreal peatlands. Carbon cycling in these systems is carried out by microorganisms and plants in close association. This study investigated the effects of experimentally manipulated water tables (lowered and raised) and plant functional groups on the peat and root microbiomes in a boreal rich fen. All samples were sequenced and processed for bacterial, archaeal (16S DNA genes; V4), and fungal (internal transcribed spacer 2 [ITS2]) DNA. Depth had a strong effect on microbial and fungal communities across all water table treatments. Bacterial and archaeal communities were most sensitive to the water table treatments, particularly at the 10- to 20-cm depth; this area coincides with the rhizosphere or rooting zone. Iron cyclers, particularly members of the family Geobacteraceae, were enriched around the roots of sedges, horsetails, and grasses. The fungal community was affected largely by plant functional group, especially cinquefoils. Fungal endophytes (particularly Acephala spp.) were enriched in sedge and grass roots, which may have underappreciated implications for organic matter breakdown and cycling. Fungal lignocellulose degraders were enriched in the lowered water table treatment. Our results were indicative of two main methanogen communities, a rooting zone community dominated by the archaeal family Methanobacteriaceae and a deep peat community dominated by the family Methanomicrobiaceae. IMPORTANCE This study demonstrated that roots and the rooting zone in boreal fens support organisms likely capable of methanogenesis, iron cycling, and fungal endophytic association and are directly or indirectly affecting carbon cycling in these ecosystems. These taxa, which react to changes in the water table and associate with roots and, particularly, graminoids, may gain greater biogeochemical influence, as projected higher precipitation rates could lead to an increased abundance of sedges and grasses in boreal fens.
Collapse
|
8
|
Tymon LS, Morgan P, Gundersen B, Inglis DA. Potential of endophytic fungi collected from Cucurbita pepo roots grown under three different agricultural mulches as antagonistic endophytes to Verticillium dahliae in western Washington. Microbiol Res 2020; 240:126535. [PMID: 32629360 DOI: 10.1016/j.micres.2020.126535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
Verticillium dahliae is a significant pathogen in cucurbit cropping systems for which there are limited control options outside of soil fumigation. Endophytes, fungi and bacteria that live within plant hosts without impacting the host negatively, have exhibited antagonism to V. dahliae. The objectives of this study were to survey potential V. dahliae-antagonistic endophytes from roots of 'Cinnamon Girl' pumpkin (Cucurbita pepo) grown under either polyethylene (PE), an experimental polylactic acid/ poly(hydroxalkanoate) (PLA/PHA) mulch, Weed Guard Plus, or no mulch, as well as from 'Sugar Baby' watermelon (Citrullus lanatus), and 'Tetsukabuto' squash (C. maxima x C. moschata). Four selected endophytes were screened for antagonism against V. dahliae in the laboratory, greenhouse, and field. A total of 777 isolates of potential fungal endophytes were recovered from pumpkin, watermelon, and squash roots between 2015 and 2016 of which 198 isolates were identified down to the genus level. Of those isolates, frequency of isolation was greatest for Dichotomopilus/Chaetomium spp. (5%), Cladosporium spp. (15.2 %), Clonostachys spp. (5.6 %), Epicoccum spp. (22.2 %), and Fusarium spp. (24.7 %). All five genera only weakly associated with roots grown under a particular mulch treatment (Cramer's V = 0.22) or cucurbit host (Cramer's V = 0.1925). In a laboratory culture plate assay, V. dahliae isolate JAW-113 was plated against one of four prospective endophytes (Dichotomopilus sp., Epicoccum sp., Microdochium sp., or Schizothecium sp.). The area under the Verticillium culture growth curve (AUVGC) was significantly highest (P < 0.0001) when V. dahliae was by Schizothecium sp. or Dichotomopilus sp. In a greenhouse study using a Mason jar assay with V. dahliae amended potting mix, pumpkin plant vigor, plant fresh weight, root fresh weight, and root dry weight were significantly higher (P < 0.05) for plants inoculated with Dichotomopilus sp., Epicoccum sp., Microdochium sp., and Schizothecium sp. compared to plants without endophyte inoculation. Subsequent field trials in 2017 and 2018 showed no significant differences in foliar disease severity or fruit yield, regardless of whether plants were inoculated with an endophyte or not. However, recovery of V. dahliae colony forming units from pumpkin stem sap was significantly lower (P < 0.0001) for plants inoculated with either Dichotomopilus sp. or Schizothecium sp. in 2017 or Dichotomopilus sp. in 2018.
Collapse
Affiliation(s)
- Lydia S Tymon
- Department of Plant Pathology, Washington State University, Northwestern Washington Research & Extension Center, Mount Vernon, WA, 98273, USA.
| | - Paul Morgan
- Department of Plant Pathology, Washington State University, Northwestern Washington Research & Extension Center, Mount Vernon, WA, 98273, USA
| | - Babette Gundersen
- Department of Plant Pathology, Washington State University, Northwestern Washington Research & Extension Center, Mount Vernon, WA, 98273, USA
| | - Debra Ann Inglis
- Department of Plant Pathology, Washington State University, Northwestern Washington Research & Extension Center, Mount Vernon, WA, 98273, USA
| |
Collapse
|
9
|
Radujković D, van Diggelen R, Bobbink R, Weijters M, Harris J, Pawlett M, Vicca S, Verbruggen E. Initial soil community drives heathland fungal community trajectory over multiple years through altered plant-soil interactions. THE NEW PHYTOLOGIST 2020; 225:2140-2151. [PMID: 31569277 DOI: 10.1111/nph.16226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Dispersal limitation, biotic interactions, and environmental filters interact to drive plant and fungal community assembly, but their combined effects are rarely investigated. This study examines how different heathland plant and fungal colonization scenarios realized via three biotic treatments - addition of mature heathland-derived sod, addition of hay, and no additions - affect soil fungal community development over 6 yr along a manipulated pH gradient in a large-scale experiment starting from an agricultural, topsoil removed state. Our results show that both biotic and abiotic (pH) treatments had a persistent influence on the development of fungal communities, but that sod additions diminished the effect of abiotic treatments through time. Analysis of correlation networks between soil fungi and plants suggests that the reduced effect of pH in the sod treatment, where both soil and plant propagules were added, might be due to plant-fungal interactions since the sod additions caused stronger, more specific, and more consistent connections compared with the no addition treatment. Based on these results, we suggest that the initial availability of heathland fungal and plant taxa, which reinforce each other, can significantly steer further fungal community development to an alternative configuration, overriding the otherwise prominent effect of abiotic (pH) conditions.
Collapse
Affiliation(s)
- Dajana Radujković
- Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Rudy van Diggelen
- Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University, PO Box 6558, 6503 GB, Nijmegen, the Netherlands
| | - Maaike Weijters
- B-WARE Research Centre, Radboud University, PO Box 6558, 6503 GB, Nijmegen, the Netherlands
| | - Jim Harris
- School of Water, Energy, and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Mark Pawlett
- School of Water, Energy, and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Sara Vicca
- Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Erik Verbruggen
- Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| |
Collapse
|
10
|
Lalancette S, Lerat S, Roy S, Beaulieu C. Fungal Endophytes of Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth. MYCOBIOLOGY 2019; 47:415-429. [PMID: 32010463 PMCID: PMC6968708 DOI: 10.1080/12298093.2019.1660297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Soil contamination by metals is of particular interest, given that their retention times within the profile can be indefinite. Thus, phytostabilization can be viewed as a means of limiting metal toxicity in soils. Due to their ability to grow on contaminated soils, alders have repeatedly been used as key species in phytostabilization efforts. Alder ability to grow on contaminated sites stems, in part, from its association with microbial endophytes. This work emphasizes the fungal endophytes populations associated with Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa (previously A. viridis ssp. crispa) under a phytostabilization angle. Fungal endophytes were isolated from alder trees that were growing on or near disturbed environments; their tolerances to Cu, Ni, Zn, and As, and acidic pH (4.3, 3, and 2) were subsequently assessed. Cryptosporiopsis spp. and Rhizoscyphus spp. were identified as fungal endophytes of Alnus for the first time. When used as inoculants for alder, some isolates promoted plant growth, while others apparently presented antagonistic relationships with the host plant. This study reports the first step in finding the right fungal endophytic partners for two species of alder used in phytostabilization of metal-contaminated mining sites.
Collapse
Affiliation(s)
- Steve Lalancette
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada
| | - Sylvain Lerat
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada
| | - Sébastien Roy
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada
| | - Carole Beaulieu
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
11
|
Birnbaum C, Hopkins AJM, Fontaine JB, Enright NJ. Soil fungal responses to experimental warming and drying in a Mediterranean shrubland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:524-536. [PMID: 31146058 DOI: 10.1016/j.scitotenv.2019.05.222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/28/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Implications of a drying and warming climate have been investigated for aboveground vegetation across a range of biomes yet below-ground effects on microorganisms have received considerably less attention, especially in Mediterranean Type Ecosystems (MTE) that are predicted to be negatively impacted by climate change. We experimentally reduced rainfall and increased temperature across two contrasting study sites (deep sand dune vs shallow sand swale) to test how projected future climate conditions may impact soil fungal composition, richness and diversity. We also assessed fungal OTU warming responses and putative functions of 100 most abundant OTUs and 120 OTUs that either increased or decreased based on their presence/absence across treatments. We found a significant effect of study site, treatment and canopy species on fungal composition. Soil fungal diversity increased under warming treatment in swale plots as compared to control plots indicating a positive effect of warming on fungal diversity. In dunes, significantly more OTUs responded to drought than warming treatment. Among the most abundant soil fungal putative functional groups were endophytes, ericoid mycorrhizas, yeasts and ectomycorrhizas consistent with previous studies. Plant pathogens were found to increase across dunes and swales, while ericoid mycorrhizae decreased. In summary, our study revealed that it is critical to understand belowground microbial patterns as a result of climate change treatments for our ability to better predict how ecosystems may respond to global environmental changes in the future.
Collapse
Affiliation(s)
- Christina Birnbaum
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia.
| | - Anna J M Hopkins
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia; Centre for Ecosystem Management, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Joseph B Fontaine
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia
| | - Neal J Enright
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Western Australia 6150, Australia
| |
Collapse
|
12
|
Johnston PR, Quijada L, Smith CA, Baral HO, Hosoya T, Baschien C, Pärtel K, Zhuang WY, Haelewaters D, Park D, Carl S, López-Giráldez F, Wang Z, Townsend JP. A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus 2019; 10:1. [PMID: 32647610 PMCID: PMC7325659 DOI: 10.1186/s43008-019-0002-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
Fungi in the class Leotiomycetes are ecologically diverse, including mycorrhizas, endophytes of roots and leaves, plant pathogens, aquatic and aero-aquatic hyphomycetes, mammalian pathogens, and saprobes. These fungi are commonly detected in cultures from diseased tissue and from environmental DNA extracts. The identification of specimens from such character-poor samples increasingly relies on DNA sequencing. However, the current classification of Leotiomycetes is still largely based on morphologically defined taxa, especially at higher taxonomic levels. Consequently, the formal Leotiomycetes classification is frequently poorly congruent with the relationships suggested by DNA sequencing studies. Previous class-wide phylogenies of Leotiomycetes have been based on ribosomal DNA markers, with most of the published multi-gene studies being focussed on particular genera or families. In this paper we collate data available from specimens representing both sexual and asexual morphs from across the genetic breadth of the class, with a focus on generic type species, to present a phylogeny based on up to 15 concatenated genes across 279 specimens. Included in the dataset are genes that were extracted from 72 of the genomes available for the class, including 10 new genomes released with this study. To test the statistical support for the deepest branches in the phylogeny, an additional phylogeny based on 3156 genes from 51 selected genomes is also presented. To fill some of the taxonomic gaps in the 15-gene phylogeny, we further present an ITS gene tree, particularly targeting ex-type specimens of generic type species. A small number of novel taxa are proposed: Marthamycetales ord. nov., and Drepanopezizaceae and Mniaeciaceae fams. nov. The formal taxonomic changes are limited in part because of the ad hoc nature of taxon and specimen selection, based purely on the availability of data. The phylogeny constitutes a framework for enabling future taxonomically targeted studies using deliberate specimen selection. Such studies will ideally include designation of epitypes for the type species of those genera for which DNA is not able to be extracted from the original type specimen, and consideration of morphological characters whenever genetically defined clades are recognized as formal taxa within a classification.
Collapse
Affiliation(s)
- Peter R. Johnston
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | - Luis Quijada
- Department of Organismic and Evolutionary Biology, Harvard Herbarium, 22 Divinity Ave, Cambridge, MA 02138 USA
| | | | | | - Tsuyoshi Hosoya
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005 Japan
| | - Christiane Baschien
- Leibniz-Institute DSMZ German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Kadri Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, EE-51005 Tartu, Estonia
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Danny Haelewaters
- Department of Organismic and Evolutionary Biology, Harvard Herbarium, 22 Divinity Ave, Cambridge, MA 02138 USA
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Duckchul Park
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | - Steffen Carl
- Leibniz-Institute DSMZ German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | | | - Zheng Wang
- Department of Biostatistics, Yale University, 135 College St, New Haven, CT 06510 USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, 135 College St, New Haven, CT 06510 USA
| |
Collapse
|
13
|
Adamczyk M, Hagedorn F, Wipf S, Donhauser J, Vittoz P, Rixen C, Frossard A, Theurillat JP, Frey B. The Soil Microbiome of GLORIA Mountain Summits in the Swiss Alps. Front Microbiol 2019; 10:1080. [PMID: 31156590 PMCID: PMC6529532 DOI: 10.3389/fmicb.2019.01080] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 01/03/2023] Open
Abstract
While vegetation has intensively been surveyed on mountain summits, limited knowledge exists about the diversity and community structure of soil biota. Here, we study how climatic variables, vegetation, parent material, soil properties, and slope aspect affect the soil microbiome on 10 GLORIA (Global Observation Research Initiative in Alpine environments) mountain summits ranging from the lower alpine to the nival zone in Switzerland. At these summits we sampled soils from all four aspects and examined how the bacterial and fungal communities vary by using Illumina MiSeq sequencing. We found that mountain summit soils contain highly diverse microbial communities with a total of 10,406 bacterial and 6,291 fungal taxa. Bacterial α-diversity increased with increasing soil pH and decreased with increasing elevation, whereas fungal α-diversity did not change significantly. Soil pH was the strongest predictor for microbial β-diversity. Bacterial and fungal community structures exhibited a significant positive relationship with plant communities, indicating that summits with a more distinct plant composition also revealed more distinct microbial communities. The influence of elevation was stronger than aspect on the soil microbiome. Several microbial taxa responded to elevation and soil pH. Chloroflexi and Mucoromycota were significantly more abundant on summits at higher elevations, whereas the relative abundance of Basidiomycota and Agaricomycetes decreased with elevation. Most bacterial OTUs belonging to the phylum Acidobacteria were indicators for siliceous parent material and several OTUs belonging to the phylum Planctomycetes were associated with calcareous soils. The trends for fungi were less clear. Indicator OTUs belonging to the genera Mortierella and Naganishia showed a mixed response to parent material, demonstrating their ubiquitous and opportunistic behaviour in soils. Overall, fungal communities responded weakly to abiotic and biotic factors. In contrast, bacterial communities were strongly influenced by environmental changes suggesting they will be strongly affected by future climate change and associated temperature increase and an upward migration of vegetation. Our results provide the first insights into the soil microbiome of mountain summits in the European Alps that are shaped as a result of highly variable local environmental conditions and may help to predict responses of the soil biota to global climate change.
Collapse
Affiliation(s)
- Magdalene Adamczyk
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Hagedorn
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sonja Wipf
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Jonathan Donhauser
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pascal Vittoz
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Christian Rixen
- Community Ecology, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jean-Paul Theurillat
- Fondation J.-M. Aubert, Champex-Lac, Switzerland
- Department of Botany and Plant Biology, University of Geneva, Chambésy, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
14
|
Fabiańska I, Gerlach N, Almario J, Bucher M. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:2123-2137. [PMID: 30317641 PMCID: PMC6519159 DOI: 10.1111/nph.15538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/19/2018] [Indexed: 05/22/2023]
Abstract
Plants respond to phosphorus (P) limitation through an array of morphological, physiological and metabolic changes which are part of the phosphate (Pi) starvation response (PSR). This response influences the establishment of the arbuscular mycorrhizal (AM) symbiosis in most land plants. It is, however, unknown to what extent available P and the PSR redefine plant interactions with the fungal microbiota in soil. Using amplicon sequencing of the fungal taxonomic marker ITS2, we examined the changes in root-associated fungal communities in the AM nonhost species Arabidopsis thaliana in response to soil amendment with P and to genetic perturbations in the plant PSR. We observed robust shifts in root-associated fungal communities of P-replete plants in comparison with their P-deprived counterparts, while bulk soil communities remained unaltered. Moreover, plants carrying mutations in the phosphate signaling network genes, phr1, phl1 and pho2, exhibited similarly altered root fungal communities characterized by the depletion of the chytridiomycete taxon Olpidium brassicae specifically under P-replete conditions. This study highlights the nutritional status and the underlying nutrient signaling network of an AM nonhost plant as previously unrecognized factors influencing the assembly of the plant fungal microbiota in response to P in nonsterile soil.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
| | - Nina Gerlach
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
| | - Juliana Almario
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneCologne50931Germany
- Present address:
Center for Plant Molecular BiologyUniversity of TübingenTübingen72074Germany
| | - Marcel Bucher
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneCologne50931Germany
| |
Collapse
|
15
|
Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health. FORESTS 2019. [DOI: 10.3390/f10010042] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Terrestrial plants including forest trees are generally known to live in close association with microbial organisms. The inherent features of this close association can be commensalism, parasitism or mutualism. The term “microbiota” has been used to describe this ecological community of plant-associated pathogenic, mutualistic, endophytic and commensal microorganisms. Many of these microbiota inhabiting forest trees could have a potential impact on the health of, and disease progression in, forest biomes. Comparatively, studies on forest tree microbiomes and their roles in mutualism and disease lag far behind parallel work on crop and human microbiome projects. Very recently, our understanding of plant and tree microbiomes has been enriched due to novel technological advances using metabarcoding, metagenomics, metatranscriptomics and metaproteomics approaches. In addition, the availability of massive DNA databases (e.g., NCBI (USA), EMBL (Europe), DDBJ (Japan), UNITE (Estonia)) as well as powerful computational and bioinformatics tools has helped to facilitate data mining by researchers across diverse disciplines. Available data demonstrate that plant phyllosphere bacterial communities are dominated by members of only a few phyla (Proteobacteria, Actinobacteria, Bacteroidetes). In bulk forest soil, the dominant fungal group is Basidiomycota, whereas Ascomycota is the most prevalent group within plant tissues. The current challenge, however, is how to harness and link the acquired knowledge on microbiomes for translational forest management. Among tree-associated microorganisms, endophytic fungal biota are attracting a lot of attention for their beneficial health- and growth-promoting effects, and were preferentially discussed in this review.
Collapse
|
16
|
Vergara C, Araujo KEC, Urquiaga S, Santa-Catarina C, Schultz N, da Silva Araújo E, de Carvalho Balieiro F, Xavier GR, Zilli JÉ. Dark Septate Endophytic Fungi Increase Green Manure- 15N Recovery Efficiency, N Contents, and Micronutrients in Rice Grains. FRONTIERS IN PLANT SCIENCE 2018; 9:613. [PMID: 29780402 PMCID: PMC5946629 DOI: 10.3389/fpls.2018.00613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/18/2018] [Indexed: 06/02/2023]
Abstract
An understanding of the interaction between rice and dark septate endophytic (DSE) fungi, under green fertilization, may lead to sustainable agricultural practices. Nevertheless, this interaction is still poorly understood. Therefore, in this study, we aimed to evaluate the accumulation of macro- and micronutrients, dry matter, and protein and N recovery efficiency from Canavalia ensiformis (L.)-15N in rice inoculated with DSE fungi. An experiment under greenhouse conditions was conducted in a randomized complete block design comprising split-plots, with five replicates of rice plants potted in non-sterilized soil. Rice (Piauí variety) seedlings were inoculated with DSE fungi, A101 and A103, or left uninoculated (control) and transplanted into pots containing 12 kg of soil, which had previously been supplemented with dry, finely ground shoot biomass of C. ensiformis enriched with 2.15 atom % 15N. Two collections were performed in the experiment: one at 54 days after transplanting (DAT) and one at 130 DAT (at maturation). Growth indicators (at 54 DAT), grain yield, nutrient content, recovery efficiency, and the amount of N derived from C. ensiformis were quantified. At 54 DAT, the N content, chlorophyll content, and plant height of inoculated plants had increased significantly compared with the control, and these plants were more proficient in the use of N derived from C. ensiformis. At maturation, plants inoculated with A103 were distinguished by the recovery efficiency and amount of N derived from C. ensiformis and N content in the grain and shoot being equal to that in A101 inoculation and higher than that in the control, resulting in a higher accumulation of crude protein and dry matter in the full grain and panicle of DSE-rice interaction. In addition, Fe and Ni contents in the grains of rice inoculated with these fungi doubled with respect to the control, and in A103 inoculation, we observed Mn accumulation that was three times higher than in the other treatments. Our results suggest that the inoculation of rice with DSE fungi represents a strategy to improve green manure-N recovery, grain yield per plant, and grain quality in terms of micronutrients contents in cropping systems with a low N input.
Collapse
Affiliation(s)
- Carlos Vergara
- Departamento de Ciências do Solo, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Karla E. C. Araujo
- Departamento de Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Claudete Santa-Catarina
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Nivaldo Schultz
- Departamento de Ciências do Solo, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | | | | | | |
Collapse
|
17
|
Diversity of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. C R Biol 2017; 340:226-237. [PMID: 28302364 DOI: 10.1016/j.crvi.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/20/2022]
Abstract
The plants belonging to the Ericaceae family are morphologically diverse and widely distributed groups of plants. They are typically found in soil with naturally poor nutrient status. The objective of the current study was to identify cultivable mycobionts from roots of nine species of Ericaceae (Calluna vulgaris, Erica arborea, Erica australis, Erica umbellate, Erica scoparia, Erica multiflora, Arbutus unedo, Vaccinium myrtillus, and Vaccinium corymbosum). The sequencing approach was used to amplify the Internal Transcribed Spacer (ITS) region. Results from the phylogenetic analysis of ITS sequences stored in the Genbank confirmed that most of strains (78) were ascomycetes, 16 of these were closely related to Phialocephala spp, 12 were closely related to Helotiales spp and 6 belonged to various unidentified ericoid mycorrhizal fungal endophytes. Although the isolation frequencies differ sharply according to regions and ericaceous species, Helotiales was the most frequently encountered order from the diverse assemblage of associated fungi (46.15%), especially associated with C. vulgaris (19.23%) and V. myrtillus (6.41%), mostly present in the Loge (L) and Mellousa region (M). Moreover, multiple correspondence analysis (MCA) showed three distinct groups connecting fungal order to ericaceous species in different regions.
Collapse
|
18
|
Huusko K, Ruotsalainen AL, Markkola AM. A shift from arbuscular mycorrhizal to dark septate endophytic colonization in Deschampsia flexuosa roots occurs along primary successional gradient. MYCORRHIZA 2017; 27:129-138. [PMID: 27761663 DOI: 10.1007/s00572-016-0736-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Soil fungal community and dominant mycorrhizal types are known to shift along with plant community changes during primary succession. However, it is not well understood how and why root fungal symbionts and colonization types vary within the plant host when the host species is able to thrive both at young and at old successional stages with different light and nutrient resource availability. We asked (i) how root fungal colonization of Deschampsia flexuosa (Poaceae) by arbuscular mycorrhizal (AM) fungi and dark septate endophytes (DSE) changes along a postglacial primary successional land uplift gradient. As neighboring vegetation may play a role in root fungal colonization, we also asked (ii) whether removal of the dominant neighbor, Empetrum nigrum ssp. hermaphroditum (Ericaceae), affects root fungal colonization of Deschampsia. We also studied whether (iii) foliar carbon (C) and nitrogen (N) concentration of Deschampsia is related to successional changes along a land uplift gradient. AM colonization decreased (-50 %), DSE colonization increased (+200 %), and foliar C declined in Deschampsia along with increasing successional age, whereas foliar N was not affected. Empetrum removal did not affect AM colonization but increased DSE sclerotial colonization especially at older successional stages. The observed decrease in foliar C coincides with an increase in canopy closure along with increasing successional age. We suggest that the shift from an AM-dominated to a DSE-dominated root fungal community in Deschampsia along a land uplift successional gradient may be related to different nutritional benefits gained through these root fungal groups.
Collapse
Affiliation(s)
- K Huusko
- Department of Ecology, University of Oulu, PO Box 3000, 90014, Oulu, Finland.
| | - A L Ruotsalainen
- Department of Ecology, University of Oulu, PO Box 3000, 90014, Oulu, Finland
| | - A M Markkola
- Department of Ecology, University of Oulu, PO Box 3000, 90014, Oulu, Finland
| |
Collapse
|
19
|
|
20
|
Romão-Dumaresq AS, Dourado MN, Fávaro LCDL, Mendes R, Ferreira A, Araújo WL. Diversity of Cultivated Fungi Associated with Conventional and Transgenic Sugarcane and the Interaction between Endophytic Trichoderma virens and the Host Plant. PLoS One 2016; 11:e0158974. [PMID: 27415014 PMCID: PMC4944904 DOI: 10.1371/journal.pone.0158974] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022] Open
Abstract
Plant-associated fungi are considered a vast source for biotechnological processes whose potential has been poorly explored. The interactions and diversity of sugarcane, one of the most important crops in Brazil, have been rarely studied, mainly concerning fungal communities and their interactions with transgenic plants. Taking this into consideration, the purpose of this study was, based on culture dependent strategy, to determine the structure and diversity of the fungal community (root endophytes and rhizosphere) associated with two varieties of sugarcane, a non-genetically modified (SP80-1842) variety and its genetically modified counterpart (IMI-1, expressing imazapyr herbicide resistance). For this, the sugarcane varieties were evaluated in three sampling times (3, 10 and 17 months after planting) under two crop management (weeding and herbicide treatments). In addition, a strain of Trichoderma virens, an endophyte isolated from sugarcane with great potential as a biological control, growth promotion and enzyme production agent, was selected for the fungal-plant interaction assays. The results of the isolation, characterization and evaluation of fungal community changes showed that the sugarcane fungal community is composed of at least 35 different genera, mostly in the phylum Ascomycota. Many genera are observed at very low frequencies among a few most abundant genera, some of which were isolated from specific plant sites (e.g., the roots or the rhizosphere). An assessment of the possible effects upon the fungal community showed that the plant growth stage was the only factor that significantly affected the community's structure. Moreover, if transgenic effects are present, they may be minor compared to other natural sources of variation. The results of interaction studies using the Green fluorescent protein (GFP)-expressing T. virens strain T.v.223 revealed that this fungus did not promote any phenotypic changes in the host plant and was found mostly in the roots where it formed a dense mycelial cover and was able to penetrate the intercellular spaces of the root epidermis upper layers. The ability of T. virens to colonize plant roots suggests a potential for protecting plant health, inhibiting pathogens or inducing systemic resistance.
Collapse
Affiliation(s)
- Aline Silva Romão-Dumaresq
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
| | - Manuella Nóbrega Dourado
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Léia Cecilia de Lima Fávaro
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, Distrito Federal, Brazil
| | - Rodrigo Mendes
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariuna, São Paulo, Brazil
| | - Anderson Ferreira
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agrosilvopastoral, Sinop, Mato Grosso, Brazil
| | - Welington Luiz Araújo
- Department of Genetics, Escola Superior de Agricultura “Luiz de Queiroz”(ESALQ), University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Tanney JB, Douglas B, Seifert KA. Sexual and asexual states of some endophytic Phialocephala species of Picea. Mycologia 2016; 108:255-80. [PMID: 26740545 DOI: 10.3852/15-136] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/30/2015] [Indexed: 11/10/2022]
Abstract
Unidentified DNA sequences in isolation-based or culture-free studies of conifer endophytes are a persistent problem that requires a field approach to resolve. An investigation of foliar endophytes of Picea glauca, P. mariana, P. rubens and Pinus strobus in eastern Canada, using a combined field, morphological, cultural and DNA sequencing approach, resulted in the frequent isolation of Phialocephala spp. and the first verified discovery of their mollisia-like sexual states in the field. Phialocephala scopiformis and Ph. piceae were the most frequent species isolated as endophytes from healthy conifer needles. Corresponding Mollisia or mollisioid sexual states for Ph. scopiformis, Ph. piceae and several undescribed species in a clade containing Ph. dimorphospora were collected in the sampling area and characterized by analysis of the nuc internal transcribed spacer rDNA (ITS) and gene for the largest subunit of RNA polymerase II (RPB1) loci. Four novel species and one new combination in a clade containing Ph. dimorphospora, the type of Phialocephala, are presented, accompanied by descriptions of apothecia and previously undocumented synanamorphs. An epitype culture and corresponding reference sequences for Phialocephala dimorphospora are proposed. The resulting ITS barcodes linked with robust taxonomic species concepts are an important resource for future research on forest ecosystems and endophytes.
Collapse
Affiliation(s)
- Joey B Tanney
- Biodiversity (Mycology & Botany), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6 Canada
| | - Brian Douglas
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom
| | - Keith A Seifert
- Biodiversity (Mycology & Botany), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6 Canada
| |
Collapse
|
22
|
Barrenia, a new genus associated with roots of switchgrass and pine in the oligotrophic pine barrens. Fungal Biol 2015; 119:1216-1225. [DOI: 10.1016/j.funbio.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/21/2022]
|
23
|
Majewska ML, Błaszkowski J, Nobis M, Rola K, Nobis A, Łakomiec D, Czachura P, Zubek S. Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties. Symbiosis 2015; 65:101-115. [PMID: 26160995 PMCID: PMC4488508 DOI: 10.1007/s13199-015-0324-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/24/2015] [Indexed: 11/30/2022]
Abstract
In order to recognize interactions between alien vascular plants and soil microorganisms and thus better understand the mechanisms of plant invasions, we examined the mycorrhizal status, arbuscular mycorrhizal fungi (AMF) colonization rate, arbuscular mycorrhiza (AM) morphology and presence of fungal root endophytes in 37 non-native species in Central Europe. We also studied the AMF diversity and chemical properties of soils from under these species. The plant and soil materials were collected in southern Poland. We found that 35 of the species formed AM and their mycorrhizal status depended on species identity. Thirty-three taxa had AM of Arum-type alone. Lycopersicon esculentum showed intermediate AM morphology and Eragrostis albensis developed both Arum and Paris. The mycelia of dark septate endophytes (DSE) were observed in 32 of the species, while sporangia of Olpidium spp. were found in the roots of 10. Thirteen common and worldwide occurring AMF species as well as three unidentified spore morphotypes were isolated from trap cultures established with the soils from under the plant species. Claroideoglomus claroideum, Funneliformis mosseae and Septoglomus constrictum were found the most frequently. The presence of root-inhabiting fungi and the intensity of their colonization were not correlated with soil chemical properties, plant invasion status, their local abundance and habitat type. No relationships were also found between the presence of AMF, DSE and Olpidium spp. These suggest that other edaphic conditions, plant and fungal species identity or the abundance of these fungi in soils might have an impact on the occurrence and intensity of fungal root colonization in the plants under study.
Collapse
Affiliation(s)
- Marta L. Majewska
- />Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland
| | - Janusz Błaszkowski
- />Department of Ecology, Protection and Shaping of Environment, West Pomeranian University of Technology, Słowackiego 17, 71-434 Szczecin, Poland
| | - Marcin Nobis
- />Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland
| | - Kaja Rola
- />Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland
| | - Agnieszka Nobis
- />Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland
| | - Daria Łakomiec
- />Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland
| | - Paweł Czachura
- />Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland
| | - Szymon Zubek
- />Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Kraków, Poland
| |
Collapse
|
24
|
Poosakkannu A, Nissinen R, Kytöviita MM. Culturable endophytic microbial communities in the circumpolar grass, Deschampsia flexuosa in a sub-Arctic inland primary succession are habitat and growth stage specific. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:111-122. [PMID: 25721603 DOI: 10.1111/1758-2229.12195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Little is known about endophytic microbes in cold climate plants and how their communities are formed.We compared culturable putative endophytic bacteria and fungi in the ecologically important circumpolargrass, Deschampsia flexuosa growing in two successional stages of subarctic sand dune (68°29′N).Sequence analyses of partial 16S rRNA and internal transcribed spacer (ITS) sequences of culturable endophytes showed that diverse bacteria and fungi inhabit different tissues of D. flexuosa. A total of 178 bacterial isolates representing seven taxonomic divisions, Alpha, Beta and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria, and 30 fungal isolates representing the phylum Ascomycota were identified. Several endophytes were affiliated with specific plant tissues or successional stages. This first report of bacterial endophytes in D. flexuosa revealed that the genus Pseudomonas is tightly associated with D. flexuosa, and encompassed 39% of the bacterial isolates, and 58% of seed isolates. Based on 16S rRNA and ITS sequence data, most of the D. flexuosa endophytes were closely related to microbes from other cold environments. The majority of seed endophytic bacterial isolates were able to solubilize organic form of phosphate suggesting that these endophytes could play a role in resource mobilization in germinating seeds in nutrient-poor habitat.
Collapse
Affiliation(s)
- Anbu Poosakkannu
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | | | | |
Collapse
|
25
|
Francini G, Männistö M, Alaoja V, Kytöviita MM. Arbuscular mycorrhizal fungal community divergence within a common host plant in two different soils in a subarctic Aeolian sand area. MYCORRHIZA 2014; 24:539-550. [PMID: 24687606 DOI: 10.1007/s00572-014-0573-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
There is rising awareness that different arbuscular mycorrhizal (AM) fungi have different autoecology and occupy different soil niches and that the benefits they provide to the host plant are dependent on plant-AM fungus combination. However, the role and community composition of AM fungi in succession are not well known and the northern latitudes remain poorly investigated ecosystems. We studied AM fungal communities in the roots of the grass Deschampsia flexuosa in two different, closely located, successional stages in a northern Aeolian sand area. The AM fungal taxa richness in planta was estimated by cloning and sequencing small subunit ribosomal RNA genes. AM colonization, shoot δ (13)C signature, and %N and %C were measured. Soil microbial community structure and AM fungal mycelium abundance were estimated using phospholipid (PLFA) and neutral lipid (NLFA) analyses. The two successional stages were characterized by distinct plant, microbial, and fungal communities. AM fungal species richness was very low in both the early and late successional stages. AM frequency in D. flexuosa roots was higher in the early successional stage than in the late one. The AM fungal taxa retrieved belonged to the genera generally adapted to Arctic or extreme environments. AM fungi seemed to be important in the early stage of the succession, suggesting that AM fungi may help plants to better cope with the harsh environmental conditions, especially in an early successional stage with more extreme environmental fluctuations.
Collapse
Affiliation(s)
- Gaia Francini
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland,
| | | | | | | |
Collapse
|
26
|
Walsh E, Luo J, Zhang N. Acidomelania panicicola gen. et sp. nov. from switchgrass roots in acidic New Jersey pine barrens. Mycologia 2014; 106:856-64. [PMID: 24891423 DOI: 10.3852/13-377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new genus, Acidomelania, is described based on molecular phylogenetic analyses and ecological and morphological characters. Isolated from switchgrass roots in acidic and oligotrophic New Jersey pine barrens in this study, Acidomelania likely has a global distribution because its internal transcribed spacer (ITS) sequence has high similarity with a number of GenBank sequences resulted from various ecological studies. Apparently these samples all were from roots of plants that lived in acidic, nutrient-poor environments. Phylogenetic analyses based on ITS, LSU and ACT sequence data strongly supported the fact that Acidomelania isolates formed a monophyletic clade in Helotiales, distinct from any known taxa. Phylogenetically Acidomelania is closely related to Loramyces, Mollisia and Phialocephala fortinii, Acephala applanata species complex (PAC), the dark septate endophytes. Acidomelania also can be distinguished from Loramyces and Mollisia by its association with living grass roots. While taxa in PAC also are root endophytes, they have more complex phialid arrangement than Acidomelania. Results from this work will facilitate ecological and evolutionary studies on root-associated fungi.
Collapse
Affiliation(s)
- Emily Walsh
- Department of Plant Biology and Pathology, 201 Foran Hall, 59 Dudley Road, and Department of Biochemistry and Microbiology, 76 Lipman Drive, Rutgers University, New Brunswick, New Jersey 08901
| | - Jing Luo
- Department of Plant Biology and Pathology, 201 Foran Hall, 59 Dudley Road, and Department of Biochemistry and Microbiology, 76 Lipman Drive, Rutgers University, New Brunswick, New Jersey 08901
| | - Ning Zhang
- Department of Plant Biology and Pathology, 201 Foran Hall, 59 Dudley Road, and Department of Biochemistry and Microbiology, 76 Lipman Drive, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
27
|
Hazard C, Gosling P, Mitchell DT, Doohan FM, Bending GD. Diversity of fungi associated with hair roots of ericaceous plants is affected by land use. FEMS Microbiol Ecol 2013; 87:586-600. [DOI: 10.1111/1574-6941.12247] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Christina Hazard
- School of Biology and Environmental Science; University College Dublin; Dublin Ireland
| | - Paul Gosling
- School of Life Sciences; University of Warwick; Coventry UK
| | - Derek T. Mitchell
- School of Biology and Environmental Science; University College Dublin; Dublin Ireland
| | - Fiona M. Doohan
- School of Biology and Environmental Science; University College Dublin; Dublin Ireland
| | | |
Collapse
|
28
|
Dean SL, Farrer EC, Taylor DL, Porras-Alfaro A, Suding KN, Sinsabaugh RL. Nitrogen deposition alters plant-fungal relationships: linking belowground dynamics to aboveground vegetation change. Mol Ecol 2013; 23:1364-1378. [PMID: 24112704 DOI: 10.1111/mec.12541] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 12/14/2022]
Abstract
Nitrogen (N) deposition rates are increasing globally due to anthropogenic activities. Plant community responses to N are often attributed to altered competitive interactions between plants, but may also be a result of microbial responses to N, particularly root-associated fungi (RAF), which are known to affect plant fitness. In response to N, Deschampsia cespitosa, a codominant plant in the alpine tundra at Niwot Ridge (CO), increases in abundance, while Geum rossii, its principal competitor, declines. Importantly, G. rossii declines with N even in the absence of its competitor. We examined whether contrasting host responses to N are associated with altered plant-fungal symbioses, and whether the effects of N are distinct from effects of altered plant competition on RAF, using 454 pyrosequencing. Host RAF communities were distinct (only 9.4% of OTUs overlapped). N increased RAF diversity in G. rossii, but decreased it in D. cespitosa. D. cespitosa RAF communities were more responsive to N than G. rossii RAF communities, perhaps indicating a flexible microbial community aids host adaptation to nutrient enrichment. Effects of removing D. cespitosa were distinct from effects of N on G. rossii RAF, and D. cespitosa presence reversed RAF diversity response to N. The most dominant G. rossii RAF order, Helotiales, was the most affected by N, declining from 83% to 60% of sequences, perhaps indicating a loss of mutualists under N enrichment. These results highlight the potential importance of belowground microbial dynamics in plant responses to N deposition.
Collapse
Affiliation(s)
- Sarah L Dean
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | | | |
Collapse
|
29
|
Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 2013; 59:153-66. [PMID: 23832271 DOI: 10.1007/s00294-013-0396-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 01/05/2023]
Abstract
This study aimed to perform a comparative analysis of the diversity of endophytic fungal communities isolated from the leaves and branches of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa trees inhabiting two mangroves in the state of São Paulo, Brazil [Cananeia and Bertioga (oil spill-affected and unaffected)] in the summer and winter. Three hundred and forty-three fungi were identified by sequencing the ITS1-5.8S-ITS2 region of rDNA. Differences were observed in the frequencies of fungi isolated from the leaves and branches of these three different plant species sampled from the Bertioga oil spill-affected and the oil-unaffected mangrove sites in the summer and winter; these differences indicate a potential impact on fungal diversity in the study area due to the oil spill. The molecular identification of the fungi showed that the fungal community associated with these mangroves is composed of at least 34 different genera, the most frequent of which were Diaporthe, Colletotrichum, Fusarium, Trichoderma and Xylaria. The Shannon and the Chao1 indices [H'(95 %) = 4.00, H'(97 %) = 4.22, Chao1(95 %) = 204 and Chao1(97 %) = 603] indicated that the mangrove fungal community possesses a vast diversity and richness of endophytic fungi. The data generated in this study revealed a large reservoir of fungal genetic diversity inhabiting these Brazilian mangrove forests and highlighted substantial differences between the fungal communities associated with distinct plant tissues, plant species, impacted sites and sampling seasons.
Collapse
|
30
|
Klymiuk AA, Taylor TN, Taylor EL, Krings M. Paleomycology of the Princeton Chert II. Dark-septate fungi in the aquatic angiosperm Eorhiza arnoldii indicate a diverse assemblage of root-colonizing fungi during the Eocene. Mycologia 2013; 105:1100-9. [PMID: 23709575 DOI: 10.3852/13-025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tissues of the extinct aquatic or emergent angiosperm, Eorhiza arnoldii incertae sedis, were extensively colonized by microfungi, and in this study we report the presence of several types of sterile mycelia. In addition to inter- and intracellular proliferation of regular septate hyphae, the tissues contain monilioid hyphae with intercalary branching. These filamentous mycelia are spatially associated with two distinct morphotypes of intracellular microsclerotia. These quiescent structures are morphologically similar to loose and cerebriform microsclerotia found within the living tissues of some plants, which have been attributed to an informal assemblage of dematiaceous ascomycetes, the dark-septate endophytes. While there are significant challenges to interpreting the ecology of fossilized fungi, these specimens provide evidence for asymptomatic endophytic colonization of the rooting structures of a 48.7 million year old aquatic angiosperm.
Collapse
Affiliation(s)
- Ashley A Klymiuk
- University of Kansas, Department of Ecology & Evolutionary Biology; Biodiversity Institute, Lawrence, Kansas 66045-7534
| | | | | | | |
Collapse
|
31
|
Kohout P, Těšitelová T, Roy M, Vohník M, Jersáková J. A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. FUNGAL ECOL 2013. [DOI: 10.1016/j.funeco.2012.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Tejesvi MV, Sauvola T, Pirttilä AM, Ruotsalainen AL. Neighboring Deschampsia flexuosa and Trientalis europaea harbor contrasting root fungal endophytic communities. MYCORRHIZA 2013; 23:1-10. [PMID: 22592854 DOI: 10.1007/s00572-012-0444-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/02/2012] [Indexed: 05/21/2023]
Abstract
Fungal endophytic communities and potential host preference of root-inhabiting fungi of boreal forest understory plants are poorly known. The objective of this study was to find out whether two neighboring plant species, Deschampsia flexuosa (Poaceae) and Trientalis europaea (Primulaceae), share similar root fungal endophytic communities and whether the communities differ between two sites. The study was carried out by analysis of pure culture isolates and root fungal colonization percentages. A total of 84 isolates from D. flexuosa and 27 isolates from T. europaea were obtained. The roots of D. flexuosa harbored 16 different isolate types based on macromorphological characteristics, whereas only 4 isolate types were found in T. europaea. The root colonization by dark septate and hyaline septate hyphae correlated with isolate numbers being higher in D. flexuosa compared to T. europaea. The different isolate types were further identified on the basis of internal transcribed spacer sequence and phylogenetic analysis. An isolate type identified as dark septate endophyte Phialocephala fortinii colonized 50 % of the T. europaea and 21 % of the D. flexuosa specimens. In addition, Meliniomyces variabilis, Phialocephala sphaeroides, and Umbelopsis isabellina were found colonizing the grass, D. flexuosa, for the first time and Mycena sp. was confirmed as an endophyte of D. flexuosa. Site-specific differences were observed in the abundance and diversity of endophytic fungi in the roots of both study plants, but the differences were not as predominant as those between plant species. It is concluded that D. flexuosa harbors both higher amount and more diverse community of endophytic fungi in its roots compared to T. europaea.
Collapse
Affiliation(s)
- Mysore V Tejesvi
- Department of Biology, University of Oulu, P.O. Box 3000, Oulu 90014, Finland.
| | | | | | | |
Collapse
|
33
|
Kohout P, Sýkorová Z, Ctvrtlíková M, Rydlová J, Suda J, Vohník M, Sudová R. Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol 2012; 80:216-35. [PMID: 22224638 DOI: 10.1111/j.1574-6941.2011.01291.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/18/2011] [Accepted: 12/18/2011] [Indexed: 11/30/2022] Open
Abstract
Similarly to plants from terrestrial ecosystems, aquatic species harbour wide spectra of root-associated fungi (RAF). However, comparably less is known about fungal diversity in submerged roots. We assessed the incidence and diversity of RAF in submerged aquatic plants using microscopy, culture-dependent and culture-independent techniques. We studied RAF of five submerged isoetid species collected in four oligotrophic freshwater lakes in Norway. Levels of dark septate endophytes (DSE) colonization differed among the lakes and were positively related to the organic matter content and negatively related to pH. In total, we identified 41 fungal OTUs using culture-dependent and culture-independent techniques, belonging to Mucoromycotina, Chytridiomycota, Glomeromycota, Ascomycota as well as Basidiomycota. Sequences corresponding to aquatic hyphomycetes (e.g. Nectria lugdunensis, Tetracladium furcatum and Varicosporium elodeae) were obtained. Eight arbuscular mycorrhizal taxa belonging to the orders Archaeosporales, Diversisporales and Glomerales were also detected. However, the vast majority of the fungal species detected (e.g. Ceratobasidium sp., Cryptosporiopsis rhizophila, Leptodontidium orchidicola, and Tuber sp.) have previously been known only from roots of terrestrial plants. The abundance and phylogenetic distribution of mycorrhizal as well as nonmycorrhizal fungi in the roots of submerged plants have reshaped our views on the fungal diversity in aquatic environment.
Collapse
Affiliation(s)
- Petr Kohout
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A. Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. THE NEW PHYTOLOGIST 2011; 191:515-527. [PMID: 21463329 DOI: 10.1111/j.1469-8137.2011.03703.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ericoid mycorrhizal fungi differ in their abilities to use nitrogen sources and may be integral to maintaining fungal and plant diversity in ecosystems in which Ericaceae occur. In this study, we tested whether the fungal communities differ among three species of co-occurring Ericaceae. Fungi colonizing Cassiope tetragona, Empetrum nigrum and Vaccinium vitis-idaea roots in the Arctic tundra were characterized via culture-dependent and culture-independent techniques. The cultured fungi were tested for their ability to colonize Vaccinium uliginosum in laboratory-based assays. The pure-cultured Helotiales were grouped into eight clades and dominated by the Phialocephala-Acephala complex. Representatives of these clades, plus an unknown basidiomycete with affinity to the genus Irpex (Polyporales), colonized V. uliginosum intracellularly. The Helotiales detected by direct PCR, cloning and sequencing were assigned to 14 clades and dominated by members of the Rhizoscyphus ericae complex. Ordination analyses indicated that culture-dependent and culture-independent assays provided distinct views of root fungal communities, but no evidence for host specificity. These data suggest that ericaceous roots host diverse fungal communities dominated by the Helotiales. However, these fungal communities are unlikely to be controlled by fungal host preferences. The mechanisms maintaining high diversity in root-symbiotic communities remain to be elucidated.
Collapse
Affiliation(s)
- John F Walker
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Amanda Riffel
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Holly Barbare
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Justin Trowbridge
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
36
|
Abstract
• Dark septate endophytes (DSE) frequently colonize roots in the natural environment, but the effects of these fungi on plants are obscure, with previous studies indicating negative, neutral or positive effects on plant performance. • In order to reach a consensus for how DSE influence plant performance, meta-analyses were performed on data from 18 research articles, in which plants had been inoculated with DSE in sterile substrates. • Negative effects of DSE on plant performance were not recorded. Positive effects were identified on total, shoot and root biomass, and on shoot nitrogen (N) and phosphorus contents, with increases of 26-103% in these parameters for plants inoculated with DSE, relative to uninoculated controls. Inoculation increased total, shoot and root biomass by 52-138% when plants had not been supplied with additional inorganic N, or when all, or the majority, of N was supplied in organic form. Inoculation with the DSE Phialocephala fortinii was found to increase shoot and root biomass, shoot P concentration and shoot N content by 44-116%, relative to uninoculated controls. • The analyses here suggest that DSE enhance plant performance under controlled conditions, particularly when all, or the majority, of N is available in organic form.
Collapse
Affiliation(s)
- K K Newsham
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| |
Collapse
|
37
|
Ruotsalainen A, Markkola A, Kozlov M. Birch effects on root fungal colonisation of crowberry are uniform along different environmental gradients. Basic Appl Ecol 2010. [DOI: 10.1016/j.baae.2010.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Upson R, Newsham K, Bridge P, Pearce D, Read D. Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. FUNGAL ECOL 2009. [DOI: 10.1016/j.funeco.2009.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Upson R, Read DJ, Newsham KK. Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. MYCORRHIZA 2009; 20:1-11. [PMID: 19495811 DOI: 10.1007/s00572-009-0260-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/20/2009] [Indexed: 05/13/2023]
Abstract
Fungi with dematiaceous septate hyphae, termed dark septate endophytes (DSE), are common in plant roots, particularly in cold-stressed habitats, but their effects on their host plants remain obscure. Here, we report a study that assessed the effects of six DSE on the growth and nutrient balance of Deschampsia antarctica when plants were supplied with the same amount of nitrogen in organic (casein hydrolysate) or inorganic (ammonium sulphate) form under controlled conditions. After 60 days, the DSE, that had each been isolated from D. antarctica and which analyses of internal transcribed spacer and large subunit regions indicated were similar to members of the Helotiales (Oculimacula yallundae, Mollisia and Tapesia spp.) and unassigned anamorphic ascomycetes, typically had no effect on, or reduced by 33-71%, shoot and root dry weights relative to uninoculated controls when plants had been supplied with nitrogen in inorganic form. In contrast, the DSE usually enhanced shoot and root dry weights by 51-247% when plants had been supplied with organic nitrogen. In the presence of inorganic nitrogen, only sporadic effects of DSE were recorded on shoot and root nitrogen or phosphorus concentrations, whereas in the presence of organic nitrogen, three to six of the DSE isolates increased shoot and root nitrogen and phosphorus contents. Most of the isolates decreased the phosphorus concentrations of shoots and roots when plants had been supplied with nitrogen in organic form. Our data suggest that DSE are able to mineralise peptides and amino acids in the rhizosphere, making nitrogen more freely available to roots.
Collapse
Affiliation(s)
- Rebecca Upson
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - David J Read
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Kevin K Newsham
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| |
Collapse
|
40
|
Münzenberger B, Bubner B, Wöllecke J, Sieber TN, Bauer R, Fladung M, Hüttl RF. The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii. MYCORRHIZA 2009; 19:481-492. [PMID: 19415343 DOI: 10.1007/s00572-009-0239-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 03/17/2009] [Indexed: 05/27/2023]
Abstract
Relatively few ectomycorrhizal fungal species are known to form sclerotia. Usually, sclerotia are initiated at the extraradical mycelium. In this study, we present anatomical and ultrastructural evidence for the formation of sclerotia directly in the hyphal mantle of the mycorrhizal morphotype Pinirhiza sclerotia. A dark-pigmented fungal strain was isolated from Pinirhiza sclerotia and identified by molecular tools as Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii s.l. As dark septate fungi are known to be mostly endophytic, resyntheses with Pinus sylvestris and A. macrosclerotiorum as well as Populus tremula x Populus tremuloides and A. macrosclerotiorum or P. fortinii s.l. were performed under axenic conditions. No mycorrhizas were found when hybrid aspen was inoculated with A. macrosclerotiorum or P. fortinii. However, A. macrosclerotiorum formed true ectomycorrhizas in vitro with P. sylvestris. Anatomical and ultrastructural features of this ectomycorrhiza are presented. The natural and synthesized ectomycorrhizal morphotypes were identical and characterized by a thin hyphal mantle that bore sclerotia in a later ontogenetic stage. The Hartig net was well-developed and grew up to the endodermis. To our knowledge, this is the first evidence at the anatomical and ultrastructural level that a close relative of P. fortinii s.l. forms true ectomycorrhizas with a coniferous host.
Collapse
Affiliation(s)
- Babette Münzenberger
- Institute of Landscape Matter Dynamics, Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany.
| | - Ben Bubner
- Institute of Landscape Matter Dynamics, Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany
| | - Jens Wöllecke
- Brandenburg University of Technology, Chair of Soil Protection and Recultivation, P.O. Box 101344, 03013, Cottbus, Germany
| | - Thomas N Sieber
- ETH Zürich, Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, CH-8092, Zürich, Switzerland
| | - Robert Bauer
- Eberhard-Karls-University Tübingen, Botanical Institute, Systematic Botany and Mycology, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Matthias Fladung
- Johann Heinrich von Thünen-Institute (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute for Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany
| | - Reinhard F Hüttl
- Brandenburg University of Technology, Chair of Soil Protection and Recultivation, P.O. Box 101344, 03013, Cottbus, Germany
- German Research Centre of Geosciences Potsdam (GFZ), Telegrafenberg, 14473, Potsdam, Germany
| |
Collapse
|
41
|
Zhang C, Yin L, Dai S. Diversity of root-associated fungal endophytes in Rhododendron fortunei in subtropical forests of China. MYCORRHIZA 2009; 19:417-423. [PMID: 19396474 DOI: 10.1007/s00572-009-0246-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 04/06/2009] [Indexed: 05/11/2023]
Abstract
To investigate the diversity of root endophytes in Rhododendron fortunei, fungal strains were isolated from the hair roots of plants from four habitats in subtropical forests of China. In total, 220 slow-growing fungal isolates were isolated from the hair roots of R. fortunei. The isolates were initially grouped into 17 types based on the results of internal transcribed spacer-restriction fragment length polymorphism (ITS-RFLP) analysis. ITS sequences were obtained for representative isolates from each RFLP type and compared phylogenetically with known sequences of ericoid mycorrhizal endophytes and selected ascomycetes or basidiomycetes. Based on phylogenetic analysis of the ITS sequences in GenBank, 15 RFLP types were confirmed as ascomycetes, and two as basidiomycetes; nine of these were shown to be ericoid mycorrhizal endophytes in experimental cultures. The only common endophytes of R. fortunei were identified as Oidiodendron maius at four sites, although the isolation frequency (3-65%) differed sharply according to habitat. Phialocephala fortinii strains were isolated most abundantly from two habitats which related to the more acidic soil and pine mixed forests. A number of less common mycorrhizal RFLP types were isolated from R. fortunei at three, two, or one of the sites. Most of these appeared to have strong affinities for some unidentified root endophytes from Ericaceae hosts in Australian forests. We concluded that the endophyte population isolated from R. fortunei is composed mainly of ascomycete, as well as a few basidiomycete strains. In addition, one basidiomycete strain was confirmed as a putative ericoid mycorrhizal fungus.
Collapse
Affiliation(s)
- Chunying Zhang
- Shanghai Landscape and Gardening Research Institute, Shanghai, 200232, People's Republic of China.
| | - Lijuan Yin
- Shanghai Landscape and Gardening Research Institute, Shanghai, 200232, People's Republic of China
| | - Silan Dai
- College of Landscape and Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
42
|
van der Wal A, de Boer W, Klein Gunnewiek PJA, van Veen JA. Possible Mechanism for Spontaneous Establishment ofCalluna vulgarisin a Recently Abandoned Agricultural Field. Restor Ecol 2009. [DOI: 10.1111/j.1526-100x.2007.00349.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Curlevski NJ, Chambers SM, Anderson IC, Cairney JW. Identical genotypes of an ericoid mycorrhiza-forming fungus occur in roots of Epacris pulchella (Ericaceae) and Leptospermum polygalifolium (Myrtaceae) in an Australian sclerophyll forest. FEMS Microbiol Ecol 2009; 67:411-20. [DOI: 10.1111/j.1574-6941.2008.00637.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Grelet GA, Johnson D, Paterson E, Anderson IC, Alexander IJ. Reciprocal carbon and nitrogen transfer between an ericaceous dwarf shrub and fungi isolated from Piceirhiza bicolorata ectomycorrhizas. THE NEW PHYTOLOGIST 2009; 182:359-366. [PMID: 19320835 DOI: 10.1111/j.1469-8137.2009.02813.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The overstorey coniferous trees and understorey ericaceous dwarf shrubs of northern temperate and boreal forests have previously been considered to form mycorrhizas with taxonomically and functionally distinct groups of fungi. Here, we tested the hypothesis that Meliniomyces variabilis and Meliniomyces bicolor, isolated from Piceirhiza bicolorata ectomycorrhizas of pine, can function as ericoid mycorrhizal symbionts with Vaccinium vitis-idaea. We used split-compartment microcosms to measure the reciprocal exchange of (13)C and (15)N between V. vitis-idaea and three fungal isolates in the Hymenoscyphus ericae aggregate isolated from Scots pine ectomycorrhizas (M. variabilis and M. bicolor) or Vaccinium roots (M. variabilis). The extramatrical fungal mycelium of labelled mycorrhizal plants was significantly enriched in (13)C, and the leaves were significantly enriched in (15)N, compared with nonmycorrhizal and nonlabelled controls. * These findings show for the first time that fungi in the H. ericae aggregate, isolated from pine ectomycorrhizas, can transfer C and N and can thus form functional ericoid mycorrhizas in an understorey ericaceous shrub.
Collapse
Affiliation(s)
- Gwen-Aëlle Grelet
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
- The Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - David Johnson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Eric Paterson
- The Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Ian C Anderson
- The Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- Centre for Plant and Food Science, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia
| | - Ian J Alexander
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| |
Collapse
|
45
|
Chambers SM, Curlevski NJ, Cairney JW. Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a south-eastern Australian sclerophyll forest. FEMS Microbiol Ecol 2008; 65:263-70. [DOI: 10.1111/j.1574-6941.2008.00481.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO. Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microbiol 2008; 74:2805-13. [PMID: 18344349 PMCID: PMC2394874 DOI: 10.1128/aem.02769-07] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 03/01/2008] [Indexed: 11/20/2022] Open
Abstract
The broad distribution and high colonization rates of plant roots by a variety of endophytic fungi suggest that these symbionts have an important role in the function of ecosystems. Semiarid and arid lands cover more than one-third of the terrestrial ecosystems on Earth. However, a limited number of studies have been conducted to characterize root-associated fungal communities in semiarid grasslands. We conducted a study of the fungal community associated with the roots of a dominant grass, Bouteloua gracilis, at the Sevilleta National Wildlife Refuge in New Mexico. Internal transcribed spacer ribosomal DNA sequences from roots collected in May 2005, October 2005, and January 2006 were amplified using fungal-specific primers, and a total of 630 sequences were obtained, 69% of which were novel (less than 97% similarity with respect to sequences in the NCBI database). B. gracilis roots were colonized by at least 10 different orders, including endophytic, coprophilous, mycorrhizal, saprophytic, and plant pathogenic fungi. A total of 51 operational taxonomic units (OTUs) were found, and diversity estimators did not show saturation. Despite the high diversity found within B. gracilis roots, the root-associated fungal community is dominated by a novel group of dark septate fungi (DSF) within the order Pleosporales. Microscopic analysis confirmed that B. gracilis roots are highly colonized by DSF. Other common orders colonizing the roots included Sordariales, Xylariales, and Agaricales. By contributing to drought tolerance and nutrient acquisition, DSF may be integral to the function of arid ecosystems.
Collapse
Affiliation(s)
- Andrea Porras-Alfaro
- Department of Biology, MSC03 2020, 1 The University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | | | |
Collapse
|