1
|
Santos KFDN, Oliveira MS, Ferreira EPDB, Amaral ADG, Martin-Didonet CCG. Physicochemical characterization of the brown pigment produced by Azospirillum brasilense HM053 using tryptophan as precursor. Braz J Microbiol 2024; 55:2227-2237. [PMID: 38954221 PMCID: PMC11405611 DOI: 10.1007/s42770-024-01433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.
Collapse
Affiliation(s)
- Karina Freire d'Eça Nogueira Santos
- Embrapa Arroz e Feijão, Rodovia GO-462, Km12, Fazenda Capivara, Santo Antônio de Goiás,, GO, Brazil.
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo, UEG, Anápolis, GO, Brazil.
| | - Marilene Silva Oliveira
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo, UEG, Anápolis, GO, Brazil
- Simple Agro Corporation, Rua Augusta Bastos, 866, Setor Central, Rio Verde, GO, Brazil
| | | | | | | |
Collapse
|
2
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Li J, Yin S, Wei Z, Xiao Z, Kang Z, Wu Y, Huang Y, Jia Q, Peng Y, Ru Z, Sun X, Yang Y, Yang Q, Wang J, Liu C, Yang M, Wang Y, Yang X. Newly identified peptide Nigrocin-OA27 inhibits UVB induced melanin production via the MITF/TYR pathway. Peptides 2024; 177:171215. [PMID: 38608837 DOI: 10.1016/j.peptides.2024.171215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Melasma is a common skin disease induced by an increase in the content of melanin in the skin, which also causes serious physical and mental harm to patients. In this research, a novel peptide (Nigrocin-OA27) from Odorrana andersonii is shown to exert a whitening effect on C57 mice pigmentation model. The peptide also demonstrated non-toxic and antioxidant capacity, and can significantly reduce melanin content in B16 cells. Topical application effectively delivered Nigrocin-OA27 to skin's epidermal and dermal layers and exhibited significant preventive and whitening effects on the UVB-induced ear pigmentation model in C57 mice. The whitening mechanism of Nigrocin-OA27 may be related to reduced levels of the microphthalmia-associated transcription factor and the key enzyme for melanogenesis-tyrosinase (TYR). Nigrocin-OA27 also inhibited the catalytic activity by adhering to the active core of TYR, thereby reducing melanin formation and deposition. In conclusion, Nigrocin-OA27 may be a potentially effective external agent to treat melasma by inhibiting aberrant skin melanin synthesis.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ziqi Wei
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhaoxun Xiao
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yubing Huang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuye Jia
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiaohan Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yuliu Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qian Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Junyuan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Chengxing Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Ma S, Huis in't Veld RV, Hao Y, Gu Z, Rich C, Gelmi MC, Mulder AA, van Veelen PA, Vu TKH, van Hall T, Ossendorp FA, Jager MJ. Tumor Pigmentation Does Not Affect Light-Activated Belzupacap Sarotalocan Treatment but Influences Macrophage Polarization in a Murine Melanoma Model. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 38271187 PMCID: PMC10829805 DOI: 10.1167/iovs.65.1.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Purpose Pigmentation in uveal melanoma is associated with increased malignancy and is known as a barrier for photodynamic therapy. We investigated the role of pigmentation in tumor behavior and the response to light-activated Belzupacap sarotalocan (Bel-sar) treatment in a pigmented (wild type) and nonpigmented (tyrosinase knock-out [TYR knock-out]) cell line in vitro and in a murine model. Methods The B16F10 (TYR knock-out) was developed using CRISPR/Cas9. After the treatment with light-activated Bel-sar, cytotoxicity and exposure of damage-associated molecular patterns (DAMPs) were measured by flow cytometry. Treated tumor cells were co-cultured with bone marrow-derived macrophages (BMDMs) and dendritic cells (DCs) to assess phagocytosis and activation. Both cell lines were injected subcutaneously in syngeneic C57BL/6 mice. Results Knock-out of the tyrosinase gene in B16F10 led to loss of pigmentation and immature melanosomes. Pigmented tumors contained more M1 and fewer M2 macrophages compared with amelanotic tumors. Bel-sar treatment induced near complete cell death, accompanied with enhanced exposure of DAMPs in both cell lines, resulting in enhanced phagocytosis of BMDMs and maturation of DCs. Bel-sar treatment induced a shift to M1 macrophages and delayed tumor growth in both in vivo tumor models. Following treatment, especially the pigmented tumors and their draining lymph nodes contained IFN-gamma positive CD8+T cells. Conclusions Pigmentation influenced the type of infiltrating macrophages in the tumor, with more M1 macrophages in pigmented tumors. Belzupacap sarotalocan treatment induced immunogenic cell death and tumor growth delay in pigmented as well as in nonpigmented models and stimulated M1 macrophage influx in both models.
Collapse
Affiliation(s)
- Sen Ma
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ruben V. Huis in't Veld
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Yang Hao
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Zili Gu
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Cadmus Rich
- Aura Biosciences, Inc., Boston, Massachusetts, United States
| | - Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Aat A. Mulder
- Department of Electron Microscopy, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - T. Khanh H. Vu
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncology Institute, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
5
|
Danielyan M, Nebogova K, Simonyan R, Hovsepyan A, Avetisyan Z, Simonyan K, Simonyan G, Khachatryan V, Karapetyan K. Regulatory effect of bacterial melanin on the isoforms of new superoxide-producing associates from rat tissues in rotenone-induced Parkinson's disease. BMC Neurosci 2023; 24:69. [PMID: 38124101 PMCID: PMC10734125 DOI: 10.1186/s12868-023-00838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
According to recent research, selective neuronal vulnerability in Parkinson's disease (PD) results from several phenotypic traits, including calcium-dependent, feed-forward control of mitochondrial respiration leading to elevated reactive oxygen species and cytosolic calcium concentration, an extensive axonal arbor, and a reactive neurotransmitter. Therefore, antioxidant therapy is a promising direction in the treatment of PD. In vitro studies have indicated the survival-promoting activity of bacterial melanin (BM) on midbrain dopaminergic neuron cultures. It has been established that BM has a number of protective and anti-inflammatory properties, so there is a high probability of a protective effect of BM in the early stages of PD. In this study, PD was induced through the unilateral intracerebral administration of rotenone followed by bacterial melanin. Tissues (brain, lungs, and small intestine) from the observed groups underwent isolation and purification to extract isoforms of new thermostable superoxide (О2-)-producing associates between NADPH-containing lipoprotein (NLP) and NADPH oxidase-Nox (NLP-Nox). The optical absorption spectral characteristics, specific amounts, stationary concentration of the produced О2-, and the content of NADPH in the observed associates were determined. The optical absorption spectra of the NLP-Nox isoforms in the visible and UV regions in the experimental groups did not differ from those of the control group. However, compared with the control group, the specific content of the total fractions of NLP-Nox isoforms associated with PD groups was higher, especially in the small intestine. These findings suggest that the described changes may represent a novel mechanism for rotenone-induced PD. Furthermore, bacterial melanin demonstrated antioxidant properties and regulated membrane formation in the brain, lung, and small intestine. This regulation occurred by inhibiting the release of new membrane-bound formations (NLP-Nox associates) from these membranes while simultaneously regulating the steady-state concentration of the formed О2-.
Collapse
Affiliation(s)
| | | | | | - Anichka Hovsepyan
- Scientific and Production Center "Armbiotechnology" NAS RA, Yerevan, Armenia
| | | | | | | | | | | |
Collapse
|
6
|
Liu S, Liu X, Zhang X, Su Y, Chen X, Cai S, Liao D, Pan N, Su J, Chen X, Xiao M, Liu Z. Exploring the Potential of Water-Soluble Squid Ink Melanin: Stability, Free Radical Scavenging, and Cd 2+ Adsorption Abilities. Foods 2023; 12:3963. [PMID: 37959093 PMCID: PMC10648800 DOI: 10.3390/foods12213963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Squid ink melanin can be efficiently extracted from the byproduct ink sac generated during squid processing. As a natural food colorant, it possesses inherent antioxidant properties and the capability to adsorb heavy metals. This study aims to investigate the solubility of water-soluble squid ink melanin (WSSM) obtained from the ink sac, as well as its stability under various conditions including temperature, pH, salt, sugar, potassium sorbate, metal ions, sodium benzoate, sodium sulfite (reducing agent), and hydrogen peroxide (oxidizing agent). Moreover, it explores the scavenging effects of WSSM on free radicals and cadmium ions. The findings suggest that WSSM's stability is insignificantly affected by high temperature, sucrose, and salt. However, acidity, sodium benzoate, potassium sorbate, sodium sulfite (Na2SO3), and hydrogen peroxide (H2O2) significantly influence its stability. Most metal ions do not impact the stability of WSSM, except for Fe2+, Fe3+, Al3+, and Cu2+, which result in the precipitation of WSSM. Additionally, WSSM exhibits remarkable antioxidant activity with IC50 values of 0.91, 0.56, and 0.52 mg/mL for scavenging superoxide anion radicals (O2-·), hydroxyl radicals (·OH), and DPPH radicals, respectively. It also demonstrates the ability to adsorb the heavy metal Cd2+, with the adsorption rate gradually increasing with a higher temperature and larger amounts of WSSM added. Infrared spectroscopy analysis reveals the weakening of characteristic peaks (-COOH and -OH) during the process of Cd2+ adsorption by WSSM, while SEM confirms surface roughening and structural damage after Cd2+ adsorption. This study provides valuable insights for the utilization of squid melanin products as natural antioxidants and heavy metal adsorbents in the food industry.
Collapse
Affiliation(s)
- Shuji Liu
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (S.L.); (Y.S.); (S.C.); (D.L.); (N.P.); (J.S.); (X.C.)
| | - Xianwei Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (X.L.); (X.Z.)
| | - Xueqin Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (X.L.); (X.Z.)
| | - Yongchang Su
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (S.L.); (Y.S.); (S.C.); (D.L.); (N.P.); (J.S.); (X.C.)
| | - Xiao’e Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Joint Key Laboratory of Aquatic Products Processing Technology of Zhejiang Province, Zhoushan 316022, China;
| | - Shuilin Cai
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (S.L.); (Y.S.); (S.C.); (D.L.); (N.P.); (J.S.); (X.C.)
| | - Dengyuan Liao
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (S.L.); (Y.S.); (S.C.); (D.L.); (N.P.); (J.S.); (X.C.)
| | - Nan Pan
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (S.L.); (Y.S.); (S.C.); (D.L.); (N.P.); (J.S.); (X.C.)
| | - Jie Su
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (S.L.); (Y.S.); (S.C.); (D.L.); (N.P.); (J.S.); (X.C.)
| | - Xiaoting Chen
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (S.L.); (Y.S.); (S.C.); (D.L.); (N.P.); (J.S.); (X.C.)
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (X.L.); (X.Z.)
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (S.L.); (Y.S.); (S.C.); (D.L.); (N.P.); (J.S.); (X.C.)
| |
Collapse
|
7
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
8
|
Ogawa Y, Kawaguchi T, Tanaka M, Hashimoto A, Fukui K, Uekawa N, Ozawa T, Kamachi T, Kohno M. Quenching effect of cerium oxide nanoparticles on singlet oxygen: validation of the potential for reaction with multiple reactive oxygen species. J Clin Biochem Nutr 2023; 73:1-8. [PMID: 37534098 PMCID: PMC10390806 DOI: 10.3164/jcbn.22-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/07/2022] [Indexed: 08/04/2023] Open
Abstract
Here we studied cerium oxide nanoparticles (nanoceria) as an agent for the future treatment of oxidative damage by validating and evaluating its scavenging activity towards reactive oxygen species (ROS) in vitro. Nanoceria has been shown to mimic the activities of superoxide dismutase and catalase, degrading superoxide (O2•-) and hydrogen peroxide (H2O2). We examined the antioxidative activity of nanoceria, focusing on its ability to quench singlet oxygen (1O2) in an aqueous solution. Electron paramagnetic resonance (EPR) was used to determine the rates of second-order reactions between nanoceria and three ROS (1O2, O2•-, and H2O2) in aqueous solution, and its antioxidative abilities were demonstrated. Nanoceria shows a wide range of ultraviolet-light absorption bands and thus 1O2 was produced directly in a nanoceria suspension using high-frequency ultrasound. The quenching or scavenging abilities of nanoceria for 1O2 and hypoxanthine-xanthine oxidase reaction-derived O2•- were examined by EPR spin-trapping methods, and the consumption of H2O2 was estimated by the EPR oximetry method. Our results indicated that nanoceria interact not only with two previously reported ROS but also with 1O2. Nanoceria were shown to degrade O2•- and H2O2, and their ability to quench 1O2 may be one mechanism by which they protect against oxidative damage such as inflammation.
Collapse
Affiliation(s)
- Yukihiro Ogawa
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tsunetaka Kawaguchi
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Mami Tanaka
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Akiko Hashimoto
- Applause Company Limited, Biko-building 4F, 2-24-2, Shinkawa, Chuo-ku, Tokyo 104-0033, Japan
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of System Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Naofumi Uekawa
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-chou, Image-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Toshihiko Ozawa
- School of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, lna-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Toshiaki Kamachi
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masahiro Kohno
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Chowaniec K, Latkowska E, Skubała K. Effect of thallus melanisation on the sensitivity of lichens to heat stress. Sci Rep 2023; 13:5083. [PMID: 36977766 PMCID: PMC10049980 DOI: 10.1038/s41598-023-32215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Extreme climatic phenomena such as heat waves, heavy rainfall and prolonged droughts are one of the main problems associated with ongoing climate change. The global increase in extreme rainfalls associated with summer heatwaves are projected to increase in amplitude and frequency in the near future. However, the consequences of such extreme events on lichens are largely unknown. The aim was to determine the effect of heat stress on the physiology of lichen Cetraria aculeata in a metabolically active state and to verify whether strongly melanised thalli are more resistant than poorly melanised thalli. In the present study, melanin was extracted from C. aculeata for the first time. Our study showed that the critical temperature for metabolism is around 35 °C. Both symbiotic partners responded to heat stress, manifested by the decreased maximum quantum yield of PSII photochemistry, high level of cell membrane damage, increased membrane lipid peroxidation and decreased dehydrogenase activity. Highly melanised thalli were more sensitive to heat stress, which excludes the role of melanins as compounds protecting against heat stress. Therefore, mycobiont melanisation imposes a trade-off between protection against UV and avoidance of damage caused by high temperature. It can be concluded that heavy rainfall during high temperatures may significantly deteriorate the physiological condition of melanised thalli. However, the level of membrane lipid peroxidation in melanised thalli decreased over time after exposure, suggesting greater efficiency of antioxidant defence mechanisms. Given the ongoing climate changes, many lichen species may require a great deal of plasticity to maintain their physiological state at a level that ensures their survival.
Collapse
Affiliation(s)
- Karolina Chowaniec
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Łojasiewicza 11, 30-348, Kraków, Poland
| | - Ewa Latkowska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Kaja Skubała
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| |
Collapse
|
10
|
Mansouri D, Landreau A, Michel T, De Saint Jores C, Razafimandimby B, Kempf M, Azoulay S, Papaiconomou N, Fernandez X. Commiphora wildii Merxm. Essential Oil: Natural Heptane Source and Co-Product Valorization. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020891. [PMID: 36677948 PMCID: PMC9863203 DOI: 10.3390/molecules28020891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/17/2023]
Abstract
As an alternative to fossil volatile hydrocarbon solvents used nowadays in perfumery, investigation on essential oil of Commiphora wildii Merxm. oleo gum resin as a source of heptane is reported here. Heptane, representing up to 30 wt-% of this oleo gum resin, was successfully isolated from the C. wildii essential oil, using an innovative double distillation process. Isolated heptane was then used as a solvent in order to extract some noble plants of perfumery. It was found that extracts obtained with this solvent were more promising in terms of sensory analysis than those obtained from fossil-based heptane. In addition, in order to valorize the essential oil depleted from heptane, chemical composition of this oil was found to obtain, and potential biological activity properties were studied. A total of 172 different compounds were identified by GC-MS in the remaining oil. In vitro tests-including hyaluronidase, tyrosinase, antioxidant, elastase and lipoxygenase, as well as inhibitory tests against two yeasts and 21 bacterial strains commonly found on the skin-were carried out. Overall, bioassays results suggest this heptane-depleted essential oil is a promising active ingredient for cosmetic applications.
Collapse
Affiliation(s)
- Djallel Mansouri
- Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, F-06108 Nice, France
| | - Anne Landreau
- Infections Respirations Fongiques, Interactions Cellulaires et Applications Thérapeutiques 2, SFR 4208, Université d’Angers, Université de Brest, F-49000 Angers, France
| | - Thomas Michel
- Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, F-06108 Nice, France
| | | | - Bienvenue Razafimandimby
- Infections Respirations Fongiques, Interactions Cellulaires et Applications Thérapeutiques 2, SFR 4208, Université d’Angers, Université de Brest, F-49000 Angers, France
| | - Marie Kempf
- Laboratory of Bacteriology, University Hospital, F-49045 Angers, France
- Immunologie et Nouveaux Concepts en Immunothérapie, INSERM, CHU Angers, Université d’Angers, Nantes Université, F-49000 Angers, France
| | - Stéphane Azoulay
- Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, F-06108 Nice, France
| | - Nicolas Papaiconomou
- Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, F-06108 Nice, France
- Correspondence: (N.P.); (X.F.); Tel.: +33-04-89-15-01-36 (X.F.)
| | - Xavier Fernandez
- Institut de Chimie de Nice, Université Côte d’Azur, CNRS UMR 7272, F-06108 Nice, France
- Correspondence: (N.P.); (X.F.); Tel.: +33-04-89-15-01-36 (X.F.)
| |
Collapse
|
11
|
Gabellone S, Capecchi E, Ortelli LA, Saladino R. First Evidence of Pheomelanin-UVA-Driven Synthesis of Pummerer's Ketones by Peroxidase-Mediated Oxidative Coupling of Substituted Phenols. ACS OMEGA 2022; 7:45688-45696. [PMID: 36530325 PMCID: PMC9753113 DOI: 10.1021/acsomega.2c06584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Photoexcitation of pheomelanin produces high-energy singlet oxygen and the superoxide anion, which are reactive species in damage of cellular targets. In principle, these species can be involved in processes of synthetic utility when adequate experimental conditions are defined. Here, we describe that pheomelanin performs as a selective UVA antenna for the horseradish peroxidase oxidative coupling of substituted phenols to biologically active Pummerer's ketones under 2-methyltetrahydrofuran/buffer biphasic conditions. In this system, singlet oxygen is scavenged by conversion of 2-methyltetrahydrofuran into the corresponding organic hydroperoxide, while the superoxide anion is dismutated into hydrogen peroxide. Both these intermediates are able to oxidize the active site of horseradish peroxidase triggering the oxidative coupling reaction. Trimer derivatives, produced by addition of phenoxy radicals on preformed Pummerer's ketones were also isolated, suggesting the possibility to further improve the structural complexity of the reaction products.
Collapse
|
12
|
Liang S, Tian X, Wang C. Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie. J Inflamm Res 2022; 15:6307-6328. [PMID: 36411826 PMCID: PMC9675353 DOI: 10.2147/jir.s383239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) may generate deleterious effects on biomolecules, such as DNA damage, protein oxidation and lipid peroxidation, causing cell and tissue damage and eventually leading to the pathogenesis of diseases, such as neurodegenerative diseases, ischemia/reperfusion ((I/R)) injury, and inflammatory diseases. Therefore, the modulation of ROS can be an efficient means to relieve the aforementioned diseases. Several studies have verified that antioxidants such as Mitoquinone (a mitochondrial-targeted coenzyme Q10 derivative) can scavenge ROS and attenuate related diseases. Nanozymes, defined as nanomaterials with intrinsic enzyme-like properties that also possess antioxidant properties, are hence expected to be promising alternatives for the treatment of ROS-related diseases. This review introduces the types of nanozymes with inherent antioxidant activities, elaborates on various strategies (eg, controlling the size or shape of nanozymes, regulating the composition of nanozymes and environmental factors) for modulating their catalytic activities, and summarizes their performances in treating ROS-induced diseases.
Collapse
Affiliation(s)
- Shufeng Liang
- Department of Molecular Biology, Shanxi Province Cancer Hospital/Shanxi Hospital, Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
- Institute of Environmental Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, People’s Republic of China
| | - Chunyan Wang
- Department of Transfusion, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
13
|
Kalegari P, Leme DM, Disner GR, Cestari MM, de Lima Bellan D, Meira WV, Mazepa E, Martinez GR. High Melanin Content in Melanoma Cells Contributes to Enhanced DNA Damage after Rose Bengal Photosensitization. Photochem Photobiol 2022; 98:1355-1364. [PMID: 35398885 DOI: 10.1111/php.13632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
Melanoma is a type of tumor that originates from melanocytes. Irradiation of melanin with UVA and visible light can produce reactive oxygen species (ROS) such as singlet molecular oxygen (1 O2 ). The objective of this study was to examine DNA damage in melanoma cells (B16-F10) with different melanin contents, subjected to 1 O2 generation. To this end, we used the photosensitizer Rose Bengal acetate (RBAc) and irradiation with visible light (526 nm) (RBAc-PDT). We used the modified comet assay with the repair enzymes hOGG1 and T4 endonuclease V to detect the DNA damage associated with 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers lesions, respectively. We observed increased formation of hOGG1- and T4endoV-sensitive DNA lesions after light exposure (with or without RBAc). Furthermore, 18 h after irradiation, hOGG1-sensitive DNA lesions increased compared to that at the initial time point (0 h), which shows that a high melanin content contributes to post-irradiation formation of them, mainly via sustained oxidative stress, as confirmed by the measurement of ROS levels and activity of antioxidant enzymes. Contrastingly, the number of T4endoV-sensitive DNA lesions decreased over time (18 h). Our data indicate that in melanoma cells, a higher amount of melanin may affect DNA damage levels when subjected to RBAc-PDT.
Collapse
Affiliation(s)
- Paloma Kalegari
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Daniela Morais Leme
- Departamento de Genética, Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | | | | | - Daniel de Lima Bellan
- Departamento de Biologia Celular, Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Willian Vanderlei Meira
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Ester Mazepa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| | - Glaucia Regina Martinez
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências (Bioquímica), Setor de Ciências Biológicas, UFPR, Curitiba, Brazil
| |
Collapse
|
14
|
Pulido-Hornedo NA, Ventura-Juárez J, Guevara-Lara F, González-Ponce HA, Sánchez-Alemán E, Buist-Homan M, Moshage H, Martínez-Saldaña MC. Hepatoprotective Effect of Opuntia robusta Fruit Biocomponents in a Rat Model of Thioacetamide-Induced Liver Fibrosis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2039. [PMID: 35956519 PMCID: PMC9370284 DOI: 10.3390/plants11152039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Liver fibrosis is a chronic disease associated with oxidative stress that has a great impact on the population mortality. Due to their antioxidant capacity, we evaluated the protective effect of Opuntia robusta fruit (Or) on liver fibrosis. A nutraceutical characterization of Or was performed and a model of fibrosis was induced with thioacetamide (TAA) in Wistar rats. Aminotransferases, reduced glutathione (GSH) and histopathology were evaluated. Or contained 436.5 ± 57 mg of Betacyanins equivalents/L., 793 mg of catechin equivalents (CAE)/100 g for flavonoids, 1118 mg of gallic acid equivalents (GAE)/100 g for total phenols, 141.14 mg/100 g for vitamin C and 429.9 μg/100 g for vitamin E. The antioxidant capacity of Or was: 2.27 mmol of Trolox® equivalents (TE)/L (DPPH), 62.2 ± 5.0 μmol TE/g (ABTS•+), 80.2 ± 11.7 μmol TE/g (FRAP), 247.9 ± 15.6 µmol TE/g (AAPH) and 15.0% of H2O2 elimination. An increase (p < 0.05) of aminotransferases and a decrease (p < 0.05) of hepatic GSH was observed in the TAA group compared to the control and the concomitant groups. Histopathology showed changes in the normal architecture of the liver treated with TAA compared to the concomitant treatments. Or contains bioactive components with antioxidant capacity, which can reduce fibrotic liver damage.
Collapse
Affiliation(s)
| | - Javier Ventura-Juárez
- Basic Sciences Center, Department of Morphology, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | - Fidel Guevara-Lara
- Basic Sciences Center, Department of Chemistry, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | | | - Esperanza Sánchez-Alemán
- Basic Sciences Center, Department of Morphology, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
- Unidad de Medicina Familiar 8, Instituto Mexicano del Seguro Social (IMSS), Aguascalientes 20180, Mexico
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center of Groningen, University of Groningen, 9713 Groningen, The Netherlands
- Department Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center of Groningen, University of Groningen, 9713 Groningen, The Netherlands
- Department Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands
| | | |
Collapse
|
15
|
Goenka S. Comparative Study of Δ9-Tetrahydrocannabinol and Cannabidiol on Melanogenesis in Human Epidermal Melanocytes from Different Pigmentation Phototypes: A Pilot Study. J Xenobiot 2022; 12:131-144. [PMID: 35736025 PMCID: PMC9224588 DOI: 10.3390/jox12020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/21/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Δ9-tetrahydrocannabinol (THC) is one of the primary ingredients of cannabis plants and is responsible for the psychoactive properties of cannabis. While cannabidiol (CBD), the non-psychoactive compound from cannabis, has been shown to stimulate human epidermal melanogenesis, the effects of THC have not been addressed in human epidermal melanocytes. Moreover, to date, no study has tested the effects of these compounds on melanocytes differing in pigmentation, representative of different skin phototypes, which would be significant as different ethnicities are known to differentially metabolize these xenobiotics. Herein, the effects of THC were studied and compared alongside CBD in human epidermal melanocytes derived from lightly-pigmented (HEMn-LP; Caucasian) and darkly-pigmented (HEMn-DP; African-American) cells over a chronic exposure of 6 d. Results demonstrated that both compounds displayed cytotoxicity at 4 µM but stimulated melanin synthesis and tyrosinase activity in a similar manner in LP and DP cells at nontoxic concentrations of 1-2 µM. However, THC and CBD showed a differential effect on dendricity in both cells; THC and CBD reversibly increased dendricity in LP cells while there was no significant change in DP cells. THC and CBD induced higher levels of reactive oxygen species (ROS) in LP cells while there was no change in the ROS levels in DP cells. In summary, although THC was relatively less cytotoxic as compared to CBD to both LP and DP cells, it exhibited a similar capacity as CBD to stimulate melanin synthesis and export in LP cells which was accompanied by a significant oxidative stress. DP cells were relatively resistant to the effects of both THC and CBD which might implicate the protective effects conferred by melanin in dark-skinned individuals.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
16
|
Masutin V, Kersch C, Schmitz-Spanke S. A systematic review: metabolomics-based identification of altered metabolites and pathways in the skin caused by internal and external factors. Exp Dermatol 2022; 31:700-714. [PMID: 35030266 DOI: 10.1111/exd.14529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
The skin's ability to function optimally is affected by many diverse factors. Metabolomics has a great potential to improve our understanding of the underlying metabolic changes and the affected pathways. Therefore, the objective of this study was to review the current state of the literature and to perform further metabolic pathway analysis on the obtained data. The aim was to gain an overview of the metabolic changes under altered conditions and to identify common and different patterns as a function of the investigated factors. A cross-study comparison of the extracted studies from different databases identified 364 metabolites, whose concentrations were considerably altered by the following factor groups: irradiation, xenobiotics, aging, and skin diseases (mainly psoriasis). Using metabolic databases and pathway analysis tools the individual metabolites were assigned to the corresponding metabolic pathways and the most strongly affected signaling pathways were identified. All factors induced oxidative stress. Thus, antioxidant defense systems, especially coenzyme Q10 (aging) and the glutathione system (irradiation, aging, xenobiotics) were impacted. Lipid metabolism was also impacted by all factors studied. The carnitine shuttle as part of β-oxidation was activated by all factor groups except aging. Glycolysis, Krebs (TCA) cycle and purine metabolism were mainly affected by irradiation and xenobiotics. The pentose phosphate pathway was activated and Krebs cycle was downregulated in response to oxidative stress. In summary, it can be ascertained that mainly energy metabolism, lipid metabolism, antioxidative defense and DNA repair systems were impacted by the factors studied.
Collapse
Affiliation(s)
- Viktor Masutin
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
| |
Collapse
|
17
|
Phenotypic Switching of B16F10 Melanoma Cells as a Stress Adaptation Response to Fe3O4/Salicylic Acid Nanoparticle Therapy. Pharmaceuticals (Basel) 2021; 14:ph14101007. [PMID: 34681232 PMCID: PMC8537856 DOI: 10.3390/ph14101007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a melanocyte-derived skin cancer that has a high heterogeneity due to its phenotypic plasticity, a trait that may explain its ability to survive in the case of physical or molecular aggression and to develop resistance to therapy. Therefore, the therapy modulation of phenotypic switching in combination with other treatment modalities could become a common approach in any future therapeutic strategy. In this paper, we used the syngeneic model of B16F10 melanoma implanted in C57BL/6 mice to evaluate the phenotypic changes in melanoma induced by therapy with iron oxide nanoparticles functionalized with salicylic acid (SaIONs). The results of this study showed that the oral administration of the SaIONs aqueous dispersion was followed by phenotypic switching to highly pigmented cells in B16F10 melanoma through a cytotoxicity-induced cell selection mechanism. The hyperpigmentation of melanoma cells by the intra- or extracellular accumulation of melanic pigment deposits was another consequence of the SaIONs therapy. Additional studies are needed to assess the reversibility of SaIONs-induced phenotypic switching and the impact of tumor hyperpigmentation on B16F10 melanoma’s progression and metastasis abilities.
Collapse
|
18
|
Characterization and photoprotective potentiality of lime dwelling Pseudomonas mediated melanin as sunscreen agent against UV-B radiations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112126. [DOI: 10.1016/j.jphotobiol.2021.112126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/13/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023]
|
19
|
Rok J, Rzepka Z, Maszczyk M, Beberok A, Wrześniok D. Minocycline Impact on Redox Homeostasis of Normal Human Melanocytes HEMn-LP Exposed to UVA Radiation and Hydrogen Peroxide. Int J Mol Sci 2021; 22:ijms22041642. [PMID: 33561995 PMCID: PMC7914767 DOI: 10.3390/ijms22041642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Minocycline is a semisynthetic tetracycline antibiotic. In addition to its antibacterial activity, minocycline shows many non-antibiotic, beneficial effects, including antioxidative action. The property is responsible, e.g., for anti-inflammatory, neuroprotective, and cardioprotective effects of the drug. However, long-term pharmacotherapy with minocycline may lead to hyperpigmentation of the skin. The reasons for the pigmentation disorders include the deposition of the drug and its metabolites in melanin-containing cells and the stimulation of melanogenesis. The adverse drug reaction raises a question about the influence of the drug on melanocyte homeostasis. The study aimed to assess the effect of minocycline on redox balance in human normal melanocytes HEMn-LP exposed to hydrogen peroxide and UVA radiation. The obtained results indicate that minocycline induced oxidative stress in epidermal human melanocytes. The drug inhibited cell proliferation, decreased the level of reduced thiols, and stimulated the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). The described changes were accompanied by an increase in the intracellular level of ROS. On the other hand, pretreatment with minocycline at the same concentrations increased cell viability and significantly attenuated the oxidative stress in melanocytes exposed to hydrogen peroxide and UVA radiation. Moreover, the molecular docking analysis revealed that the different influence of minocycline and other tetracyclines on CAT activity can be related to the location of the binding site.
Collapse
Affiliation(s)
- Jakub Rok
- Correspondence: ; Tel.: +48-32-364-10-50
| | | | | | | | | |
Collapse
|
20
|
Pascoe MJ, Maillard JY. The role of melanin in Aspergillus tolerance to biocides and photosensitizers. Lett Appl Microbiol 2020; 72:375-381. [PMID: 33300193 DOI: 10.1111/lam.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Cationic biocides are widely utilized for surface disinfection. Photosensitizers such as toluidine blue O (TBO) produce reactive oxygen species following light excitation and are being investigated as novel biocides for similar applications. Aspergillus brasiliensis conidia contain melanin which protects against environmental stressors. The negative charge and antioxidant properties of melanin may confer resistance to photosensitizers and other biocides. In this study, the yeasticidal and fungicidal activity benzalkonium chloride (BZC), sodium dichloroisocyanurate (NaDCC) and TBO with red light were examined using quantitative suspension tests. All three biocides were highly effective against Candida albicans and > 5·0 log10 reductions in viability were attainable within 5 minutes. Wild-type A. brasiliensis conidia were highly tolerant to treatment and 0·4 log10 reductions in viability were observed within the same time frame when treated with TBO or BZC. NaDCC was markedly more effective. Inhibition of melanin biosynthesis by culturing with 100 μg ml-1 kojic acid resulted in a hypopigmented phenotype with significantly increased sensitivity to all three biocides. These observations indicate that melanin is a significant contributor towards A. brasiliensis tolerance of biocides and photosensitizers and demonstrate that cationic biocides are poorly suited to applications where the control of A. brasiliensis is required.
Collapse
Affiliation(s)
- M J Pascoe
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - J-Y Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
21
|
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2276. [PMID: 33212974 PMCID: PMC7698489 DOI: 10.3390/nano10112276] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bioinspired nanomaterials are ideal components for nanomedicine, by virtue of their expected biocompatibility or even complete lack of toxicity. Natural and artificial melanin-based nanoparticles (MNP), including polydopamine nanoparticles (PDA NP), excel for their extraordinary combination of additional optical, electronic, chemical, photophysical, and photochemical properties. Thanks to these features, melanin plays an important multifunctional role in the design of new platforms for nanomedicine where this material works not only as a mechanical support or scaffold, but as an active component for imaging, even multimodal, and simple or synergistic therapy. The number of examples of bio-applications of MNP increased dramatically in the last decade. Here, we review the most recent ones, focusing on the multiplicity of functions that melanin performs in theranostics platforms with increasing complexity. For the sake of clarity, we start analyzing briefly the main properties of melanin and its derivative as well as main natural sources and synthetic methods, moving to imaging application from mono-modal (fluorescence, photoacoustic, and magnetic resonance) to multi-modal, and then to mono-therapy (drug delivery, anti-oxidant, photothermal, and photodynamic), and finally to theranostics and synergistic therapies, including gene- and immuno- in combination to photothermal and photodynamic. Nanomedicine aims not only at the treatment of diseases, but also to their prevention, and melanin in nature performs a protective action, in the form of nanopigment, against UV-Vis radiations and oxidants. With these functions being at the border between nanomedicine and cosmetics nanotechnology, recently examples of applications of artificial MNP in cosmetics are increasing, paving the road to the birth of the new science of nanocosmetics. In the last part of this review, we summarize and discuss these important recent results that establish evidence of the interconnection between nanomedicine and cosmetics nanotechnology.
Collapse
Affiliation(s)
- Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
- Tecnopolo di Rimini, Via Campana 71, 47922 Rimini, Italy
| |
Collapse
|
22
|
Bahuguna A, Bharadwaj S, Chauhan AK, Kang SC. Inhibitory insights of strawberry (Fragaria × ananassa var. Seolhyang) root extract on tyrosinase activity using computational and in vitro analysis. Int J Biol Macromol 2020; 165:2773-2788. [PMID: 33470201 DOI: 10.1016/j.ijbiomac.2020.10.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/04/2023]
Abstract
The strawberry (Fragaria × ananassa var. seolhyang) is commonly used as fruit but medicinal importance for the non-edible roots which contained a pool of bioactive compounds are not yet studied against tyrosinase inhibition. This study demonstrates the potential of bioactive compounds in root and rhizome of strawberry against tyrosinase inhibition using in silico and in vitro approaches. ADMET profiling and molecular docking analysis show druglikeness for the major bioactive compounds in strawberry root extract (SRE), i.e. procyanidin, procyanidin trimer, kaempferol 3-O-(4-O-p-coumaroyl)-glucoside, neochlorogenic acid, procyanidin tetramer, and quercetin-3-O-pentoside, and docking score between -7.8 to -6.3 kcal/mol with tyrosinase, respectively. Also, these docked complexes exhibit substantial stability contributed by strong hydrogen bonding, hydrophobic interactions, and polar interactions in 100 ns molecular dynamics simulation; further supported by essential dynamics and dynamic cross-correlation matrix analysis. Also, in vitro functional assays support in silico predicted results in terms of substantial cytoprotective and cellular antioxidant potential in Raw 264.7 macrophages challenged by H2O2 as well as non-significant toxicity in zebrafish. SRE exhibits the lowest (5.8%) and highest (42.8%) inhibition of tyrosinase at 100 and 500 μg/ml concentrations, respectively. These results advocated functional properties and tyrosinase inhibition potential of SRE; and hence, SRE can be used in medicinal or cosmetic applications.
Collapse
Affiliation(s)
- Ashutosh Bahuguna
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea; Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Shiv Bharadwaj
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
| | - Anil Kumar Chauhan
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea; Department of Radiology, School of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea.
| |
Collapse
|
23
|
Biological activities of melanin pigment extracted from Bombyx mori gut-associated yeast Cryptococcus rajasthanensis KY627764. World J Microbiol Biotechnol 2020; 36:159. [PMID: 32974753 DOI: 10.1007/s11274-020-02924-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Melanin pigment has been produced and extracted from a wide variety of living forms ranging from microorganisms to higher organisms. Owing to the therapeutic nature of the pigment, various microbial populations have been explored for its production. Hence, we isolated a melanin producing yeast from the insect Bombyx mori gut microflora and identified it as Cryptococcus rajasthanensis based on the molecular characterization. The isolated yeast produced enhanced melanin pigment when cultured in the minimal L-tyrosine broth as compared to the Saboraud medium. The pigment was extracted and characterized as melanin based on UV-Visible spectroscopy, FTIR (Fourier-transform infrared) spectroscopy and 1H NMR (Nuclear magnetic resonance). The melanin pigment was evaluated as a potent bioactive molecule with bioactivity like antimicrobial, antioxidant, anti-inflammatory, and anticancer activity that describes the therapeutic nature of the extracted melanin pigment. Distinct from the biologically active role the melanin pigment isolated from the yeast, the Cryptococcus extract also exhibited killer toxin activity against the pathogenic yeast Candida albicans.
Collapse
|
24
|
Poulose N, Sajayan A, Ravindran A, Sreechithra TV, Vardhan V, Selvin J, Kiran GS. Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: With improved antioxidant and wound healing properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111816. [DOI: 10.1016/j.jphotobiol.2020.111816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
|
25
|
Liu H, Yang Y, Liu Y, Pan J, Wang J, Man F, Zhang W, Liu G. Melanin-Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903129. [PMID: 32274309 PMCID: PMC7141020 DOI: 10.1002/advs.201903129] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Indexed: 05/03/2023]
Abstract
Developing efficient, sustainable, and biocompatible high-tech nanoplatforms derived from naturally existing components in living organisms is highly beneficial for diverse advanced biomedical applications. Melanins are nontoxic natural biopolymers owning widespread distribution in various biosystems, possessing fascinating physicochemical properties and playing significant physiological roles. The multifunctionality together with intrinsic biocompatibility renders bioinspired melanin-like nanomaterials considerably promising as a versatile and powerful nanoplatform with broad bioapplication prospects. This panoramic Review starts with an overview of the fundamental physicochemical properties, preparation methods, and polymerization mechanisms of melanins. A systematical and well-bedded description of recent advancements of melanin-like nanomaterials regarding diverse biomedical applications is then given, mainly focusing on biological imaging, photothermal therapy, drug delivery for tumor treatment, and other emerging biomedicine-related implementations. Finally, current challenges toward clinical translation with an emphasis on innovative design strategies and future striving directions are rationally discussed. This comprehensive and detailed Review provides a deep understanding of the current research status of melanin-like nanomaterials and is expected to motivate further optimization of the design of novel tailorable and marketable multifunctional nanoplatforms in biomedicine.
Collapse
Affiliation(s)
- Heng Liu
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Youyuan Yang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Yu Liu
- Department of UltrasoundThe First Affiliated HospitalArmy Medical UniversityChongqing400038China
| | - Jingjing Pan
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Fengyuan Man
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Weiguo Zhang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
- Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing400042China
| | - Gang Liu
- Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
26
|
Kapoor U, Jayaraman A. Self-Assembly of Allomelanin Dimers and the Impact of Poly(ethylene glycol) on the Assembly: A Molecular Dynamics Simulation Study. J Phys Chem B 2020; 124:2702-2714. [DOI: 10.1021/acs.jpcb.0c00226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
27
|
Ben Tahar I, Kus‐Liśkiewicz M, Lara Y, Javaux E, Fickers P. Characterization of a nontoxic pyomelanin pigment produced by the yeast
Yarrowia lipolytica. Biotechnol Prog 2020; 36:e2912. [DOI: 10.1002/btpr.2912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Imen Ben Tahar
- Microbial Processes and Interactions, TERRA Teaching and Research CentreUniversity of Liège ‐ Gembloux Agro Bio Tech Gembloux Belgium
| | | | - Yannick Lara
- Early Life Traces & Evolution – Astrobiology, UR Astrobiology, Geology DepartmentUniversity of Liège Gembloux Belgium
| | - Emmanuelle Javaux
- Early Life Traces & Evolution – Astrobiology, UR Astrobiology, Geology DepartmentUniversity of Liège Gembloux Belgium
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research CentreUniversity of Liège ‐ Gembloux Agro Bio Tech Gembloux Belgium
| |
Collapse
|
28
|
Zhou X, McCallum NC, Hu Z, Cao W, Gnanasekaran K, Feng Y, Stoddart JF, Wang Z, Gianneschi NC. Artificial Allomelanin Nanoparticles. ACS NANO 2019; 13:10980-10990. [PMID: 31524373 DOI: 10.1021/acsnano.9b02160] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Allomelanin is a type of nitrogen-free melanin most commonly found in fungi. Its existence enhances resistance of the organisms to environmental damage and helps fungi survive harsh radiation conditions such as those found on spacecraft and inside contaminated nuclear power plants. We report the preparation and characterization of artificial allomelanin nanoparticles (AMNPs) via oxidative oligomerization of 1,8-dihydroxynaphthalene (1,8-DHN). We describe the resulting morphological and size control of AMNPs and demonstrate that they are radical scavengers. Finally, we show that AMNPs are taken up by neonatal human epidermal keratinocytes and packaged into perinuclear caps where they quench reactive oxygen species generated following UV exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhao Wang
- Department of Chemistry & Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Nathan C Gianneschi
- Department of Chemistry & Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
29
|
The Role of Melanin in Fungal Pathogenesis for Animal Hosts. Curr Top Microbiol Immunol 2019; 422:1-30. [PMID: 31278515 DOI: 10.1007/82_2019_173] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens-melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.
Collapse
|
30
|
Ji Y, Dai F, Yan S, Shi JY, Zhou B. Identification of Catechol-Type Diphenylbutadiene as a Tyrosinase-Activated Pro-oxidative Chemosensitizer against Melanoma A375 Cells via Glutathione S-Transferase Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9060-9069. [PMID: 31339696 DOI: 10.1021/acs.jafc.9b02875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glutathione S-transferases (GSTs) play an active role in the development of drug resistance by numerous cancer cells, including melanoma cells, which is a major cause of chemotherapy failure. As part of our continuous effort to explore why dietary polyphenols bearing the catechol moiety (dietary catechols) show usually anticancer activity, catechol-type diphenylbutadiene (3,4-DHB) was selected as a model of dietary catechols to probe whether they work as pro-oxidative chemosensitizers via GST inhibition in melanoma cells. It was found that, in human melanoma A375 cells, 3,4-DHB is easily converted to its ortho-quinone via copper-containing tyrosinase-mediated two-electron oxidation along with generation of reactive oxygen species (ROS) derived from the oxidation; the resulting ortho-quinone and ROS are responsible for its ability to sensitize the cisplatin-resistant cells by inhibiting GST, followed by induction of apoptosis in an ASK1-JNK/p38 signaling cascade and mitochondria-dependent pathway. This work provides further evidence to support that dietary catechols exhibit antimelanoma activity by virtue of their tyrosinase-dependent pro-oxidative role and gives useful information for designing polyphenol-inspired GST inhibitors and sensitizers in chemotherapy against melanoma.
Collapse
Affiliation(s)
- Yuan Ji
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , People's Republic of China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , People's Republic of China
| | - Shuai Yan
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , People's Republic of China
| | - Jing-Yang Shi
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , People's Republic of China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , 222 Tianshui Street South , Lanzhou , Gansu 730000 , People's Republic of China
| |
Collapse
|
31
|
Eun Lee K, Bharadwaj S, Yadava U, Gu Kang S. Evaluation of caffeine as inhibitor against collagenase, elastase and tyrosinase using in silico and in vitro approach. J Enzyme Inhib Med Chem 2019; 34:927-936. [PMID: 31039625 PMCID: PMC6493221 DOI: 10.1080/14756366.2019.1596904] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skin ageing results from enhanced activation of intracellular enzymes such as collagenases, elastases and tyrosinase, stimulated by intrinsic ageing and photoageing factors. Recently, caffeine-based cosmetics are introduced that demonstrates to slow down skin photoageing process. However, no attempts have been done so for to understand caffeine functional inhibitory activity against photoageing related enzymes. Hence, this study established the caffeine molecular interaction and inhibition activity profiles against respective enzymes using in silico and in vitro methods, respectively. Results from in silico study indicates that caffeine has comparatively good affinity with collagenase (−4.6 kcal/mol), elastase (−3.36 kcal/mol) and tyrosinase (−2.86 kcal/mol) and formed the stable protein-ligand complex as validated by molecular dynamics simulation (protein-ligand contacts, RMSD, RMSF and secondary structure changes analysis). Moreover, in vitro data showed that caffeine (1000 µg/mL) has statistically significant maximum inhibition activity of 41.86, 36.44 and 13.72% for collagenase, elastase and tyrosinase, respectively.
Collapse
Affiliation(s)
- Kyung Eun Lee
- a Department of Biotechnology , Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University , Gyeongsan , Republic of Korea
| | - Shiv Bharadwaj
- a Department of Biotechnology , Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University , Gyeongsan , Republic of Korea
| | - Umesh Yadava
- b Department of Physics , Deen Dayal Upadhyay Gorakhpur University , Gorakhpur , India
| | - Sang Gu Kang
- a Department of Biotechnology , Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University , Gyeongsan , Republic of Korea.,c Stemforce, 313 Institute of Industrial Technology, Yeungnam University , Gyeongsan , Republic of Korea
| |
Collapse
|
32
|
Crocker L, Fruk L. Flavin Conjugated Polydopamine Nanoparticles Displaying Light-Driven Monooxygenase Activity. Front Chem 2019; 7:278. [PMID: 31080793 PMCID: PMC6497766 DOI: 10.3389/fchem.2019.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
A hybrid of flavin and polydopamine (PDA) has been explored as a photocatalyst, drawing inspiration from natural flavoenzymes. Light-driven monoxygenase activity has been demonstrated through the oxidation of indole under blue light irradiation in ambient conditions, to afford indigo and indirubin dyes. Compared to riboflavin, a flavin-polydopamine hybrid is shown to be more resistant to photobleaching and more selective toward dye production. In addition, it has been demonstrated that it can be recycled from the solution and used for up to four cycles without a marked loss of activity, which is a significant improvement compared to other heterogenous flavin catalysts. The mechanism of action has been explored, indicating that the PDA shell plays an important role in the stabilization of the intermediate flavin-peroxy species, an active component of the catalytic system rather than acting only as a passive nanocarrier of active centers.
Collapse
Affiliation(s)
- Leander Crocker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
34
|
Dai F, Du YT, Zheng YL, Zhou B. A promising redox cycle-based strategy for designing a catechol-type diphenylbutadiene as a potent prooxidative anti-melanoma agent. Free Radic Biol Med 2019; 130:489-498. [PMID: 30458279 DOI: 10.1016/j.freeradbiomed.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
Developing anti-melanoma agents with increased activity and specificity is highly desirable due to the increasing incidence, highly metastatic malignancy, and high mortality rate of melanoma. Abnormal redox characteristics such as higher levels of tyrosinase, NAD(P)H: quinone oxidoreductase-1 (NQO1) and reactive oxygen species (ROS) observed in melanoma cells than in other cancer cells and normal cells illustrate their redox vulnerability and have opened a window for developing prooxidative anti-melanoma agents (PAAs) to target the vulnerability. However, how to design PAAs which promote selectively the ROS accumulation in melanoma cells remains a challenge. This work describes a promising redox cycle-based strategy for designing a catechol-type diphenylbutadiene as such type of PAA. This molecule is capable of constructing an efficient catalytic redox cycle with tyrosinase and NQO1 in melanoma B16F1 cells to induce selectively the ROS (mainly including hydrogen peroxide, H2O2) accumulation in the cells, resulting in highly selective suppression of melanoma B16F1 cells over tyrosinase-deficient HeLa and normal L-02 cells.
Collapse
Affiliation(s)
- Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Ting Du
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
35
|
Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 2018; 17:1816-1841. [PMID: 29405222 DOI: 10.1039/c7pp00395a] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UV-induced DNA damage plays a key role in the initiation phase of skin cancer. When left unrepaired or when damaged cells are not eliminated by apoptosis, DNA lesions express their mutagneic properties, leading to the activation of proto-oncogene or the inactivation of tumor suppression genes. The chemical nature and the amount of DNA damage strongly depend on the wavelength of the incident photons. The most energetic part of the solar spectrum at the Earth's surface (UVB, 280-320 nm) leads to the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (64PPs). Less energetic but 20-times more intense UVA (320-400 nm) also induces the formation of CPDs together with a wide variety of oxidatively generated lesions such as single strand breaks and oxidized bases. Among those, 8-oxo-7,8-dihydroguanine (8-oxoGua) is the most frequent since it can be produced by several mechanisms. Data available on the respective yield of DNA photoproducts in cells and skin show that exposure to sunlight mostly induces pyrimidine dimers, which explains the mutational signature found in skin tumors, with lower amounts of 8-oxoGua and strand breaks. The present review aims at describing the basic photochemistry of DNA and discussing the quantitative formation of the different UV-induced DNA lesions reported in the literature. Additional information on mutagenesis, repair and photoprotection is briefly provided.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, Québec JIH 5N4, Canada.
| | | |
Collapse
|
36
|
Gao LX, Bian C, Wu Y, Nisar MF, Chen S, Li CM, Yu L, Ji P, Huang E, Zhong JL. Label-free electrochemical sensor to investigate the effect of tocopherol on generation of superoxide ions following UV irradiation. J Biol Eng 2018; 12:17. [PMID: 30220911 PMCID: PMC6134779 DOI: 10.1186/s13036-018-0099-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/23/2018] [Indexed: 02/05/2023] Open
Abstract
Background Generation of reactive oxygen species (ROS), triggered by ultraviolet radiation (UVR), is associated with carcinogenesis of the skin. UV irradiation induced superoxide anion (O2•−) is the key ROS involved in the cellular damage. The cytoprotective efficacy of an unknown anti-oxidant compound can be evaluated by analyzing the production of O2•− from treated cells. Methods In this study, a glass carbon electrode functionalized with nanotube@DNA-Mn3(PO4)2 composite was applied to quantitative determination of generation of highly unstable O2•− from the melanoma A375 cell line following UVR(UV, UVA and UVB). In addition, the cytoprotective efficacy of anti-oxidant α-tocopherol was evaluated by quantifying the production of O2•−. Results The results showed that, UVR triggers generation of O2•− in melanoma A375 cells, and α-tocopherol is effective in diminishing the production of O2•− following UV irradiation. By comparing the conventional cell-survival assays results, we found that our simple and quick electrochemical sensing method can quantify O2•− generation through the biological activity of an anti-oxidant compound (α-tocopherol). Conclusion Our label-free electrochemical quantification method for ROS (O2•− major) in cells facing UVR stress demonstrates its potential application for high-throughput screening of anti-oxidation compounds.
Collapse
Affiliation(s)
- Li Xia Gao
- 1College of Bioengineering & School of Life Sciences, Chongqing University, Chongqing, 400044 China.,2Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715 China
| | - Chunxiang Bian
- 1College of Bioengineering & School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Yan Wu
- 1College of Bioengineering & School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Muhammad Farrukh Nisar
- 1College of Bioengineering & School of Life Sciences, Chongqing University, Chongqing, 400044 China.,Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000 Pakistan
| | - Shida Chen
- 1College of Bioengineering & School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Chang Ming Li
- 2Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715 China
| | - Ling Yu
- 2Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, Chongqing, 400715 China
| | - Ping Ji
- Chongqing Municipal Key laboratory of oral diseases and biomedical sciences, Biomedical Engineering of Higher Education, Chongqing, 401147 China
| | - Enyi Huang
- Chongqing Municipal Key laboratory of oral diseases and biomedical sciences, Biomedical Engineering of Higher Education, Chongqing, 401147 China
| | - Julia Li Zhong
- 1College of Bioengineering & School of Life Sciences, Chongqing University, Chongqing, 400044 China.,Chongqing Municipal Key laboratory of oral diseases and biomedical sciences, Biomedical Engineering of Higher Education, Chongqing, 401147 China
| |
Collapse
|
37
|
Gabe Y, Miyaji A, Kohno M, Hachiya A, Moriwaki S, Baba T. Substantial evidence for the rhododendrol-induced generation of hydroxyl radicals that causes melanocyte cytotoxicity and induces chemical leukoderma. J Dermatol Sci 2018; 91:311-316. [DOI: 10.1016/j.jdermsci.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/20/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022]
|
38
|
Taubitz T, Tschulakow AV, Tikhonovich M, Illing B, Fang Y, Biesemeier A, Julien-Schraermeyer S, Schraermeyer U. Ultrastructural alterations in the retinal pigment epithelium and photoreceptors of a Stargardt patient and three Stargardt mouse models: indication for the central role of RPE melanin in oxidative stress. PeerJ 2018; 6:e5215. [PMID: 30038866 PMCID: PMC6054867 DOI: 10.7717/peerj.5215] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background Stargardt disease (SD) is characterized by the accumulation of the age-pigment lipofuscin in the retinal pigment epithelium (RPE) and subsequent neuroretinal degeneration. The disease leads to vision loss early in life. Here, we investigate age-dependent ultrastructural changes in three SD mouse models: albino Abca4-/- and pigmented Abca4-/- and Abca4-/-.Rdh8-/- mice. Since we found indications for oxidative stress primarily in albino SD mice, we tested RPE melanin for its antioxidative capabilities. Methods SD mouse eyes were investigated by light, fluorescence and electron microscopy and were compared to the respective albino and pigmented wild type mice and to a human donor SD eye. To confirm the role of RPE melanin in scavenging oxidative stress, melanin from S. officinalis as a standard and porcine RPE were tested for their capability to quench superoxide anions. Results Histological alterations indicative of oxidative stress and/or lysosomal dysfunction were present in albino Abca4-/- and Abca4-/-.Rdh8-/- mice. Retinal damage, such as inner segment rupture and pyknotic or free photoreceptor nuclei in the subretinal space and RPE vacuolization were exclusively found in albino Abca4-/- mice. Shortened and disorganized photoreceptor outer segments and dead RPE cells were found in albino Abca4-/- and Abca4-/-.Rdh8-/- mice, with earlier onset in albino Abca4-/- mice. Undegraded phagosomes and lipofuscin accumulation were present in the RPE of all three SD strains, but numbers were highest in Abca4-/-.Rdh8-/- mice. Lipofuscin morphology differed between SD strains: (melano-)lipofuscin granules in pigmented Abca4-/- mice had a homogenous electron density and sharp demarcations, while lipofuscin in albino Abca4-/- mice had a flocculent electron density and often lacked a surrounding membrane, indicating loss of lysosomal integrity. Young Abca4-/-.Rdh8-/- mice showed (melano-)lipofuscin granules with homogenous electron density, while in aged animals granules with flocculent electron density predominated. Both strains of pigmented SD mice had melanolipofuscin clusters as found in the human SD eye. Like melanin from S. officinalis, porcine RPE melanin can also quench superoxide anions. Discussion The presented pathologies in albino Abca4-/- and Abca4-/-.Rdh8-/- mice suggest oxidative stress and/or lysosomal dysfunction within the RPE. Since albino Abca4-/- mice have the earliest onset and severest damage and as absence of melanin and also melanin turnover with age are known to diminish RPEs anti-oxidative properties, we assume that RPE melanin plays a role in SD related damages. A lack of pathology in pigmented Abca4-/- mice due to lower stress levels as compared to the Abca4-/-.Rdh8-/- mice underlines this hypothesis. It is also supported by the finding that RPE melanin can quench superoxide anions. We therefore suppose that RPE melanin is important in retinal health and we discuss its role as an oxidative stress scavenger.
Collapse
Affiliation(s)
- Tatjana Taubitz
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Marina Tikhonovich
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Barbara Illing
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Yuan Fang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Antje Biesemeier
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
39
|
Kim KH, Choi H, Kim HJ, Lee TR. TNFSF14 inhibits melanogenesis via NF-kB signaling in melanocytes. Cytokine 2018; 110:126-130. [PMID: 29730385 DOI: 10.1016/j.cyto.2018.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 01/07/2023]
Abstract
Melanin synthesis in melanocytes is affected by various cytokines. Here, we reported for the first time that tumor necrosis factor superfamily member 14 (TNFSF14) inhibits melanogenesis in the primary culture of human epidermal melanocytes. TNFSF14 is known to bind to its receptors herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR) for signal transduction, but TNFSF14-induced hypopigmentation was independent of HVEM and LTβR in melanocytes. To explore signaling in melanocytes treated with TNFSF14, we performed RNA-seq and found that nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling is activated by TNFSF14. Further, we observed that inhibition of NF-kB effectively blocks the hypopigmentation induced by TNFSF14. We conclude that TNFSF14 inhibits melanogenesis in melanocytes via NF-κB signaling and could be applied in the treatment of cutaneous pigment disorders.
Collapse
Affiliation(s)
- Kyu-Han Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| | - Hyunjung Choi
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Hyoung-June Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| |
Collapse
|
40
|
Zha H, Jeffs A, Dong Y, Lewis G. Potential virulence factors of bacteria associated with tail fan necrosis in the spiny lobster, Jasus edwardsii. JOURNAL OF FISH DISEASES 2018; 41:817-828. [PMID: 29473647 DOI: 10.1111/jfd.12791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
Tail fan necrosis (TFN) is a common condition found in commercially exploited spiny lobsters that greatly diminishes their commercial value. Bacteria possessing proteolytic, chitinolytic and lipolytic capabilities were associated with TFN in spiny lobsters, Jasus edwardsii. In this study, 69 bacterial isolates exhibiting all the three enzymatic capabilities from the haemolymph and tail fans of J. edwardsii with and without TFN were further characterized and compared, including morphology, biofilm formation, antimicrobial activity, antimicrobial resistance, and production of siderophores, melanin and ammonia. The genomic patterns of the most common Vibrio crassostreae isolates were also compared between TFN-affected and unaffected lobsters. Biofilm formation was stronger in bacterial isolates from both haemolymph and tail fans of TFN-affected lobsters compared to those from the unaffected lobsters, while melanin production and siderophore production were stronger in the isolates from tail fans of lobsters with TFN. By contrast, the other characteristics of isolates were similar in lobsters with and without TFN. The Vib. crassostreae isolates from the affected lobsters had similar genomic patterns. Overall, the results indicate that in addition to proteolytic, chitinolytic and lipolytic activities, the bacteria associated with TFN commonly have enhanced activity of important virulence factors, including biofilm formation, melanin production and siderophore production.
Collapse
Affiliation(s)
- H Zha
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - A Jeffs
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Y Dong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - G Lewis
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Tyutereva EV, Dobryakova KS, Schiermeyer A, Shishova MF, Pawlowski K, Demidchik V, Reumann S, Voitsekhovskaja OV. The levels of peroxisomal catalase protein and activity modulate the onset of cell death in tobacco BY-2 cells via reactive oxygen species levels and autophagy. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:247-258. [PMID: 32291039 DOI: 10.1071/fp16418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/03/2017] [Indexed: 06/11/2023]
Abstract
In plant cells, peroxisomes participate in the metabolism of reactive oxygen species (ROS). One of the major regulators of cellular ROS levels - catalase (CAT) - occurs exclusively in peroxisomes. CAT activity is required for immunity-triggered autophagic programmed cell death (PCD). Autophagy has been recently demonstrated to represent a route for degradation of peroxisomes in plant cells. In the present study, the dynamics of the cellular peroxisome pool in tobacco BY-2 cell suspension cultures were used to analyse the effects of inhibition of basal autophagy with special attention to CAT activity. Numbers of peroxisomes per cell, levels of CAT protein and activity, cell viability, ROS levels and expression levels of genes encoding components of antioxidant system were analysed upon application of 3-methyladenine (3-MA), an inhibitor of autophagy, and/or aminotriazole (AT), an inhibitor of CAT. When applied separately, 3-MA and AT led to an increase in cell death, but this effect was attenuated by their simultaneous application. The obtained data suggest that both the levels of CAT protein in peroxisomes as well as CAT activity modulate the onset of cell death in tobacco BY-2 cells via ROS levels and autophagy.
Collapse
Affiliation(s)
- Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint Petersburg, Russia
| | - Ksenia S Dobryakova
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint Petersburg, Russia
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, D-52074 Aachen, Germany
| | - Maria F Shishova
- Department of Physiology and Biochemistry of Plants, Saint Petersburg State University, Universitetskaya em., 7/9, 199034 Saint Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Vadim Demidchik
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint Petersburg, Russia
| | - Sigrun Reumann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University of Goettingen, Justus-von-Liebig Weg 11, D-37077, Goettingen, Germany
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376 Saint Petersburg, Russia
| |
Collapse
|
42
|
Knörle R. Neuromelanin in Parkinson's Disease: from Fenton Reaction to Calcium Signaling. Neurotox Res 2017; 33:515-522. [PMID: 28879408 DOI: 10.1007/s12640-017-9804-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Neuromelanin is supposed to play a key role in the pathogenesis of Parkinson's disease. A common theory is the formation of reactive oxygen species through the Fenton reaction catalyzed by neuromelanin-bound iron ions and subsequent death of the dopaminergic cells in the substantia nigra. From a physicochemical point of view, this pathway is rather implausible: a highly reactive radical built within a powerful radical scavenger would more promptly be inactivated before it might diffuse within the cell to reach a target to exert its deleterious potential. This review of the literature provides evidence for an interaction of neuromelanin with the calcium signaling pathway in Parkinson's disease and expands the view of the pathophysiological contribution of neuromelanin towards a cytoprotective involvement of this macromolecule in the calcium signaling system. More probably than being directly involved in the production of reactive oxygen species, neuromelanin may act as a calcium reservoir and thus protect dopaminergic cells from cell death. A loss of neuromelanin, as observed in the substantia nigra of Parkinson patients, would lead to enhanced calcium messaging through the loss of an important calcium reservoir and thus finally via the formation of reactive oxygen species to cell death within the substantia nigra.
Collapse
Affiliation(s)
- Rainer Knörle
- IBAM GbR Dr. Rainer Knörle Dr. Peter Schnierle, Ferdinand-Porsche-Str. 5, 79211, Denzlingen, Germany.
| |
Collapse
|
43
|
Comparative EPR studies of free radicals in melanin synthesized by Bacillus weihenstephanensis soil strains. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
Smith RAW, Garrett B, Naqvi KR, Fülöp A, Godfrey SP, Marsh JM, Chechik V. Mechanistic insights into the bleaching of melanin by alkaline hydrogen peroxide. Free Radic Biol Med 2017; 108:110-117. [PMID: 28323131 DOI: 10.1016/j.freeradbiomed.2017.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022]
Abstract
This work aims to determine the roles of reactive oxygen species HO∙ and HO2- in the bleaching of melanins by alkaline hydrogen peroxide. Experiments using melanosomes isolated from human hair indicated that the HO∙ radical generated in the outside solution does not contribute significantly to bleaching. However, studies using soluble Sepia melanin demonstrated that both HO2- and HO∙ will individually bleach melanin. Additionally, when both oxidants are present, bleaching is increased dramatically in both rate and extent. Careful experimental design enabled the separation of the roles and effects of these key reactive species, HO∙ and HO2-. Rationalisation of the results presented, and review of previous literature, allowed the postulation of a simplified general scheme whereby the strong oxidant HO∙ is able to pre-oxidise melanin units to o-quinones enabling more facile ring opening by the more nucleophilic HO2-. In this manner the efficiency of the roles of both species is maximised.
Collapse
Affiliation(s)
- R A W Smith
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - B Garrett
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - K R Naqvi
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - A Fülöp
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - S P Godfrey
- Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65824 Schwalbach am Taunus, Germany
| | - J M Marsh
- The Procter & Gamble Company, Mason Business Center, 8700 Mason Montgomery Road, Mason, OH 45040, United States
| | - V Chechik
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom.
| |
Collapse
|
45
|
ElObeid AS, Kamal-Eldin A, Abdelhalim MAK, Haseeb AM. Pharmacological Properties of Melanin and its Function in Health. Basic Clin Pharmacol Toxicol 2017; 120:515-522. [PMID: 28027430 DOI: 10.1111/bcpt.12748] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/14/2016] [Indexed: 01/08/2023]
Abstract
The biological pigment melanin is present in most of the biological systems. It manifests a host of biological and pharmacological properties. Its role as a molecule with special properties and functions affecting general health, including photoprotective and immunological action, are well recognized. Its antioxidant, anti-inflammatory, immunomodulatory, radioprotective, hepatic, gastrointestinal and hypoglycaemic benefits have only recently been recognized and studied. It is also associated with certain disorders of the nervous system. In this MiniReview, we consider the steadily increasing literature on the bioavailability and functional activity of melanin. Published literature shows that melanin may play a number of possible pharmacological effects such as protective, stimulatory, diagnostic and curative roles in human health. In this MiniReview, possible health roles and pharmacological effects are considered.
Collapse
Affiliation(s)
- Adila Salih ElObeid
- King Abdullah International Medical Research Centre, National Guard & Health Affairs, Riyadh, Saudi Arabia
| | - Afaf Kamal-Eldin
- Department of Food Science, United Arab Emirates University, AlAin, United Arab Emirates
| | | | - Adil M Haseeb
- Physics and Astronomy Department, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Ogawa Y, Ueno M, Sekine-Suzuki E, Nakanishi I, Matsumoto KI, Fujisaki S. Non-invasive measurement of melanin-derived radicals in living mouse tail using X-band EPR. J Clin Biochem Nutr 2016; 59:160-164. [PMID: 27895382 PMCID: PMC5110934 DOI: 10.3164/jcbn.15-99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/22/2016] [Indexed: 01/18/2023] Open
Abstract
The aim of this experiment is to measure in vivo generation of melanin-derived radicals non-invasively, as a quantifiable index of radio-biological effect. Melanin-derived radicals in a living intact mouse tail tip were non-invasively measured in very simple way using an X-band electron paramagnetic resonance spectrometer. Colored mouse strains, C57BL/6NCr, BDF1, and C3H/He, have clear EPR signal corresponding to melanin-derived radicals in the tail tip; however, albino mouse strains, BALB/cCr, ddY, ICR, have no EPR signals. An X-ray fraction of 2 Gy/day (1 Gy/min) was repeatedly irradiated to a C3H/He mouse tail skin every Monday to Friday for 4 weeks. In comparison to before starting irradiation, the C3H/He mouse tail skin became darker, like a suntan. The melanin-derived radicals in C3H/He mouse tail skin were increased in association with X-ray fractions. Melanin-derived radicals in mouse tail skin can be readily and chronologically measurable by using X-band EPR spectrometer, and can be a marker for a radiobiological effect in the skin.
Collapse
Affiliation(s)
- Yukihiro Ogawa
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan; Department of Biomolecular Science, Toho University Graduate School of Science, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Megumi Ueno
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Emiko Sekine-Suzuki
- Research Program for the Application of Heavy Ions in Medical Sciences, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan; Department of Biomolecular Science, Toho University Graduate School of Science, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan; Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-chou, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Shingo Fujisaki
- Department of Biomolecular Science, Toho University Graduate School of Science, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510, Japan
| |
Collapse
|
47
|
Miyaji A, Gabe Y, Kohno M, Baba T. Generation of hydroxyl radicals and singlet oxygen during oxidation of rhododendrol and rhododendrol-catechol. J Clin Biochem Nutr 2016; 60:86-92. [PMID: 28366986 PMCID: PMC5370526 DOI: 10.3164/jcbn.16-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/10/2016] [Indexed: 12/18/2022] Open
Abstract
The generation of hydroxyl radicals and singlet oxygen during the oxidation of 4-(4-hydroxyphenyl)-2-butanol (rhododendrol) and 4-(3,4-dihydroxyphenyl)-2-butanol (rhododendrol-catechol) with mushroom tyrosinase in a phosphate buffer (pH 7.4) was examined as the model for the reactive oxygen species generation via the two rhododendrol compounds in melanocytes. The reaction was performed in the presence of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) spin trap reagents for hydroxyl radical or 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen, and their electron spin resonances were measured. An increase in the electron spin resonances signal attributable to the adduct of DMPO reacting with the hydroxyl radical and that of 4-oxo-TEMP reacting with singlet oxygen was observed during the tyrosinase-catalyzed oxidation of rhododendrol and rhododendrol-catechol, indicating the generation of hydroxyl radical and singlet oxygen. Moreover, hydroxyl radical generation was also observed in the autoxidation of rhododendrol-catechol. We show that generation of intermediates during tyrosinase-catalyzed oxidation of rhododendrol enhances oxidative stress in melanocytes.
Collapse
Affiliation(s)
- Akimitsu Miyaji
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yu Gabe
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Masahiro Kohno
- Department of Bioengineering, Tokyo Institute of Technology, 4259-G1-25, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Toshihide Baba
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
48
|
Tada M, Niwano Y, Kohno M. Generation Mechanism of Deferoxamine Radical by Tyrosine-Tyrosinase Reaction. ANAL SCI 2016; 31:911-6. [PMID: 26353957 DOI: 10.2116/analsci.31.911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nitroxide radical formations of deferoxamine mesylate (DFX) that is used clinically to treat iron-overload patients was examined by a tyrosine-tyrosinase reaction system as models of the H-atom transfer or proton-coupled electron transfer. When DFX was exposed to the tyrosine-tyrosinase reaction, nine-line ESR spectrum (g = 2.0063, hfcc; aN = 0.78 mT, aH(2) = 0.63 mT) was detected, indicating that the oxidation of DFX leads to a nitroxide radical. The signal intensity of the DFX radical increased dependently on the concentrations of tyrosine and tyrosinase. The amounts of DMPO-OH spin adducts via the tyrosine-tyrosinase reaction declined with DFX. Furthermore, mass spectra of an extra removed from the tyrosine-tyrosinase reaction mixture showed that the enzyme reactions might not be degradations of DFX. Therefore, there might be two types of DFX reaction passways, which could be through an internal electron transfer from tyrosine and hydrogen absorptions by ·OH directly.
Collapse
Affiliation(s)
- Mika Tada
- Center for General Education, Tohoku Institute of Technology
| | | | | |
Collapse
|
49
|
Miyaji A, Kohno M, Inoue Y, Baba T. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase. Biochem Biophys Res Commun 2016; 471:450-3. [PMID: 26898801 DOI: 10.1016/j.bbrc.2016.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
Abstract
The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that (1)O2 generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte.
Collapse
Affiliation(s)
- Akimitsu Miyaji
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Masahiro Kohno
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yoshihiro Inoue
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshihide Baba
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.
| |
Collapse
|
50
|
Katsuda Y, Niwano Y, Nakashima T, Mokudai T, Nakamura K, Oizumi S, Kanno T, Kanetaka H, Egusa H. Cytoprotective effects of grape seed extract on human gingival fibroblasts in relation to its antioxidant potential. PLoS One 2015; 10:e0134704. [PMID: 26258747 PMCID: PMC4530871 DOI: 10.1371/journal.pone.0134704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/13/2015] [Indexed: 11/18/2022] Open
Abstract
Cytoprotective effects of short-term treatment with grape seed extract (GSE) upon human gingival fibroblasts (hGFs) were evaluated in relation to its antioxidant properties and compared with those of a water-soluble analog of vitamin E: trolox (Tx). GSE and Tx showed comparable antioxidant potential in vitro against di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH; a stable radical), hydroxyl radical (•OH), singlet oxygen (1O2), and hydrogen peroxide (H2O2). Pretreatment or concomitant treatment with GSE for 1 min protected hGFs from oxidative stressors, including H2O2, acid-electrolyzed water (AEW), and 1O2, and attenuated the intracellular formation of reactive oxygen species induced by H2O2 and AEW. Tx also reduced the H2O2- and AEW-induced intracellular formation of reactive oxygen species, but showed no cytoprotective effects on hGFs exposed to H2O2, AEW, or 1O2. These results suggest that the cytoprotective effects of GSE are likely exerted independently of its antioxidant potential.
Collapse
Affiliation(s)
- Yusuke Katsuda
- Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshimi Niwano
- Tohoku University Graduate School of Dentistry, Sendai, Japan
- * E-mail:
| | - Takuji Nakashima
- Kiasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | | | | | - Satomi Oizumi
- Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Taro Kanno
- Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | - Hiroshi Egusa
- Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|